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Abstract

Chemical exposure via dust ingestion is of great interest to researchers and regulators because 

children are exposed to dust through their daily activities, and as a result, to the many chemicals 

contained within dust. Our goal was to develop a workflow to identify and rank organic chemicals 

that could be used as tracers to calculate children’s dust ingestion rates. We proposed a set of 

criteria for a chemical to be considered a promising tracer. The best tracers must be (1) ubiquitous 

in dust, (2) unique to dust, (3) detectable as biomarkers in accessible biological samples, and (4) 

have available or obtainable ADME information for biomarker-based exposure reconstruction. To 

identify compounds meeting these four criteria, we developed a workflow that encompasses non-

targeted analysis approaches, literature and database searching, and multimedia modeling. We then 

implemented an ad hoc grading system and ranked candidate chemicals based on fulfillment of our 

criteria (using one small, publicly available dataset to show proof of concept). Initially, five 

chemicals (1,3-diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate diester, 6:2 

fluorotelomer phosphate diester) appeared to satisfy many of our criteria. However, a rigorous 

manual investigation raised many questions about the applicability of these chemicals as tracers. 

Based on the results of this initial pilot study, no individual compounds can be unequivocally 

considered suitable tracers for calculating dust ingestion rates. Future work must therefore 

consider larger datasets, generated from broader measurement studies and literature searches, as 

well as refinements to selection criteria, to identify robust and defensible tracer compounds.
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INTRODUCTION

Dust ingestion can be a major route of chemical exposure for young children because of the 

way children interact with their environment (e.g., longer times spent on the floor and 

unique mouthing behaviors) [1,2,3]. Children aged 6 months to 3 years place their hands and 

objects into their mouths several times a day [3, 4], substantially increasing their potential 

chemical exposure through the non-dietary ingestion route [1,2,3]. Chemicals from personal 

care products (PCPs), household products (e.g., cleaners, pesticides), electronic appliances, 

furniture, and building materials can be released from their original sources and partition 

into dust [5, 6], making it an important exposure medium for children.

Three methodologies are routinely used to estimate dust and soil ingestion: (i) tracer 

elements, (ii) lead (Pb) biokinetic model comparisons, and (iii) activity patterns [1,2,3]. The 

tracer element methodology uses earth elements, such as aluminum, lanthanum or silicon, to 

quantify amounts of soil and dust ingested by analyzing children’s feces and urine together 

with soil and dust samples from their environment. A common challenge with this approach 

is that earth elements are found in substantial quantities in food, soil, and other media that 

people ingest, making it difficult to isolate the fraction that is coming from dust.

The Pb biokinetic model comparison methodology uses the concentrations of Pb measured 

in blood or urine and compares them with estimates from a biokinetic model that describes 

human exposure to Pb via inhalation, ingestion, and dermal contact with dust and soil. 

Usually inputs include Pb concentration and bioavailability in food, and various 

environmental media and intake parameters for ingestion [7,8,9,10]. The main challenge 

associated with biokinetic modeling is that the approach requires a highly accurate 

accounting of all sources of Pb.

The activity pattern methodology uses information about hand- and object-to-mouth 

activities, time spent in various microenvironments, and other exposure factors to estimate 

soil and dust ingestion. One of the main limitations of the activity pattern approach is that 

estimates for soil and dust ingestion rely heavily on the quality and quantity of available data 

used to calibrate the model [1,2,3].

All three approaches provide useful information, but generally fail to distinguish between 

dust and soil ingestion estimates. To our knowledge, only two previous studies have 

attempted to distinguish between soil and dust ingestion. Calabrese and Stanek [11] 

attempted to distinguish between soil and dust ingestion using a comparison of element 

ratios. According to their findings, the element ratios measured in children’s feces were 

more like those measured in soil than dust, indicating that soil ingestion occurs at higher 

quantities than dust ingestion. However, the study did not provide an estimate for dust 

ingestion. Özkaynak et al. [12] conducted a modeling study using the activity pattern 

methodology and the Stochastic Human Exposure and Dose Simulation model for 

multimedia pollutants (SHEDS-Multimedia) to estimate separate ingestion rates for soil and 

dust by taking into account the pathway of exposure, source type, and population group. To 

the best of our knowledge, this is the only study to provide separate estimates for dust and 

soil ingestion rates for children aged 3 to <6 years. It should be clarified, however, that the 
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evaluation of the modeling estimates was made by comparing the findings of the study to 

previous studies of soil and dust ingestion estimates using earth elements as tracers. Such an 

evaluation may be sufficient when comparing total estimated soil and dust ingestion to 

analytical data, but it does not allow for an assessment of the soil and dust ingestion 

estimates separately.

Ideally, a tracer for dust ingestion should be found primarily in dust and not be present in 

substantial quantities in other media that children contact or ingest. Previous targeted 

analysis studies have reported measurements for a plethora of organic and inorganic 

substances in dust. Some examples are polybrominated diphenyl ethers (PBDEs) [6], per- 

and polyfluoroalkyl substances (PFAS) [5], several pesticides [13], chemicals from PCPs 

[14], and heavy metals [15]. Recently published non-targeted analysis (NTA) studies have 

indicated that house dust contains thousands of chemicals of varying structures and 

properties [16, 17]. Given the findings from these targeted and NTA studies, our research 

objective was to develop a workflow to prioritize chemicals found in dust based on their 

suitability as tracers for estimating children’s dust ingestion rates.

MATERIALS AND METHODS

The criteria

In order to identify potential tracers, we developed a set of evaluation criteria. Ideal tracers 

must: (1) be ubiquitous in dust; this criterion ensures that we can monitor the tracers across a 

broad geographical area, in both a variety of populations and locations; (2) be unique to dust 

and not present in measurable amounts in other media such as soil, food, water, and 

children’s PCPs; this criterion ensures that the tracers do not reflect exposure from other 

pathways; (3) be measurable as a biomarker, either directly or as a metabolite, in an 

accessible biological medium; this criterion ensures that we can generate surrogate measures 

of internal dose; and (4) have well-defined absorption, distribution, metabolism, and 

excretion (ADME) properties; this criterion enables us to reconstruct external exposures 

from biomarker measures.

The case study

For our proof-of-concept case study, we used a small, publicly available dataset generated by 

Moschet et al. [16], who collected and analyzed 38 dust samples from homes in California, 

using both NTA and targeted analysis methodologies. This research group also collected and 

analyzed eight soil samples from areas adjacent to the same homes, three composite food 

samples, and one composite PCP sample as part of a contract with EPA (#EP-16-W-000173; 

see Supplementary Information (SI) for additional details on sample collection and 

processing). To the best of our knowledge, this dataset was the only dataset available 

containing data on multimedia samples (dust, soil, food, and PCPs) and results from both 

NTA and targeted analysis methodologies for use in our proof-of-concept case study.

To address the first criterion (ubiquity), we sorted all dust compounds based on detection 

frequency and selected those with a detection frequency ≥90% (34/38 samples) for further 

consideration (Supplementary Information Spreadsheet: SIS). To address the second 
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criterion (uniqueness), we compared the chemicals found in the dust samples to those found 

in the soil, food, and PCP samples. Furthermore, we queried the literature and selected data 

sources (e.g., databases and reports (Table S1)) to determine whether chemicals from the 

Moschet et al. [16] dataset had been previously reported in food, soil, and drinking water. To 

complement the literature and database searching, and to further understand the behavior of 

these chemicals, we developed a multimedia model that describes chemical fate in both the 

indoor and outdoor environments. Implementation of this model allowed us to focus on 

chemicals not expected to partition into either indoor air or outdoor soil. Finally, addressing 

the third and fourth criteria, we conducted a literature review to ascertain whether 

measurable biomarkers and ADME data exist for chemicals of interest.

Targeted and non-targeted analysis

The methods and materials for the dust sample extraction and analysis are presented in detail 

in Moschet et al. [16]. Details on how the composite soil, food, and PCP samples were 

prepared and extracted are presented in the SI. Instrument and data analysis methods for the 

composite soil, food, and PCP samples were the same as those used for the dust samples. 

Briefly, samples were analyzed using gas chromatography (GC)—quadrupole time-of-flight 

mass spectrometry (QTOF MS) and liquid chromatography (LC)—QTOF MS, with both 

targeted and NTA (including suspect screening) approaches. Target chemicals included 

select PBDEs, organophosphate flame retardants (OPFR), phenols, polycyclic aromatic 

hydrocarbons (PAHs), phthalates, UV filters, fragrance components, pesticides, plasticizers, 

parabens, biocides, PFAS, surfactants, and skin oils. For NTA using GC-QTOF MS, the 

analysis was performed via spectral deconvolution followed by a library search [18]. For 

NTA using LC-QTOF MS, a first analysis matched observed molecular features to 

compounds within two Agilent Personal Compound Database and Libraries (PCDLs): 

Forensic Toxicology and Agilent Water Contaminants (containing about 10,000 chemicals). 

A second analysis enabled compound determination by use of two in silico fragmentation 

software tools: Agilent Molecular Structure Correlator and MetFrag [19]. Using this 

assortment of analytical techniques and compound identification strategies, the study 

samples were screened for the presence of tens-of-thousands of compounds. After manual 

review, 271 unique chemical features were identified in the dust samples (with thousands of 

additional features requiring further review). One-hundred sixty-three were confirmed with 

reference standards ([20], Level 1), and the remaining 108 were classified as tentative 

identifications ([20], Levels 2–4) [16].

Data processing and ranking

We developed a workflow to address our four criteria and an ad hoc grading system for 

ranking chemicals based on how well they met these criteria (Fig. 1). To establish if a 

chemical was ubiquitous in the sampled dust, we selected compounds with a detection 

frequency of ≥90% (137/271). We then restricted our focus to those chemicals with an entry 

in EPA’s CompTox Chemicals Dashboard (hereafter, the “Dashboard”) (90/137). It is 

possible that chemicals without a Dashboard entry could still be useful tracers. It would be 

difficult, however, to assess their uniqueness to dust without having Dashboard-provided 

information on sources, uses, and properties. Of the 90 unique compounds meeting our 
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initial selection criteria, 60 were Level 1 identifications (i.e., confirmed using reference 

standards) and 30 were Level 3 identifications ([20] SIS, column: M).

To establish if a chemical was unique to dust, we first searched the literature to see if the 

chemical was previously reported in indoor air, drinking water, food/beverages, or soil. For 

the literature search, we used SciFinder (CAS, American Chemical Society) and conducted 

the searches between December 2018 and March 2019. We searched for each chemical using 

its CAS number and the key words: “indoor air”, “drinking water”, “food”, and “soil”. 

Outdoor air was not included in our literature search because we assumed that the 

concentrations of chemicals in outdoor air are negligible when compared to chemical 

concentrations in indoor air. We refined our search to include only studies published in peer-

reviewed journals and written in English. First, we examined article titles and abstracts for 

the searched key words. In most studies, the desired information was provided in the 

abstract. In some instances, we read the entire article to ensure the chemical was found in 

the medium of interest. PCPs were not considered in the literature searches because presence 

in a PCP would not necessarily disqualify a chemical from being a potential tracer. For 

example, if a PCP is meant only for adult use (e.g., shaving foam), then children would not 

be expected to have direct exposure, and the chemicals within that PCP could still qualify as 

tracers. Ultimately, manual review of PCPs as exposure sources was performed for 

compounds tagged as promising tracers.

In addition to searching the published literature, we searched data from available public 

sources (Table S1) for evidence of the presence of specific chemicals in various media. If a 

chemical was reported in a medium of interest, either from the literature or public sources, it 

was flagged with the letter “A“ (indoor air), “W” (drinking water), “F” (food), and “S” (soil) 

(SIS, columns: AB-AE and AH-AK). One point was given each time a chemical was found 

absent (based on a lack of reporting) in a medium of interest (up to 4 points total for each 

chemical).

To further examine “uniqueness” (Fig. 1), we compared chemicals deemed “ubiquitous” in 

the dust samples to those measured in analyzed food, soil, and PCP samples. If a chemical 

was found in the analyzed samples it was flagged with the letter “F” (food), “S” (soil), and 

“P” (PCPs) (SIS, columns: AF-AH). When a chemical was not found in these media, it 

received 2 points for each medium. The higher grade in this step gave more weight to the 

analytical data as compared to the literature data.

Chemicals not found in a particular medium in either the public data sources or the literature 

may truly be absent from food, soil, indoor air, and drinking water. It is also possible, 

however, that specific chemicals have yet to be monitored in these media. Furthermore, mere 

detection of a chemical in a medium without any quantitative information should not 

disqualify a chemical from being a suitable tracer. If, for example, a given chemical is 

present in soil at a concentration 1000 times lower than in dust, then uptake from soil would 

be relatively insignificant.

Modeling calculations describing the fate of chemicals (due to their properties) can provide 

estimates of chemical partitioning for quantitative evaluation of likely tracer concentrations 
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in dust and other media (indoor air, soft surfaces, hard surfaces, wallboard, outdoor air, and 

soil). For this reason, we employed a multimedia model that describes the fate of chemicals 

in both the indoor and adjacent outdoor environments. In this study, our model is a 

residential model (not a global model) and the outdoor air and soil compartments cover only 

the adjacent compartments next to the modeled house. A detailed description of the model, 

environmental parameters (including physicochemical properties), parameterization 

methods, and evaluation procedures are presented in the SI (text, Fig. S1, Tables S2–S4) and 

the SIS (columns: N-S).

Chemicals that partition into indoor air in substantial quantities would make inhalation a 

contributing route of exposure in addition to dust ingestion, making that chemical an 

unlikely tracer. The expected presence of a chemical in indoor air was assessed by 

estimating the fraction of chemical partitioning into air relative to other compartments. If the 

amount of chemical in indoor air exceeded 75% of the total amount, then the chemical 

received 0.25 points; if the percentage was between 50 and 75%, the chemical received 0.5 

points; if it was between 25 and 50%, the chemical received 0.75 points; and if it was 

between 0 and 25%, the chemical received 1 point (Fig. 1). This step prioritized the selection 

of chemicals that do not partition into indoor air in substantial quantities.

The points for the modeling calculations (0.25–1) were equivalent to the point values 

assigned from the literature/database search. For example, if a chemical was absent from 

indoor air in the literature/database search, it received 1 point. In a similar way, if the same 

chemical was predicted to be absent in indoor air based on the modeling calculations, it 

received 1 additional point. We decided to weigh these criteria equally since both 

approaches are theoretical and there were no obvious reasons to prioritize one approach over 

the other.

Similarly, the model was used to assess the prevalence of chemicals in soil relative to dust. 

For that comparison, we used the ratio of the predicted concentration of a chemical in dust to 

that in soil (Cdust/Csoil). Chemicals with a log (Cdust/Csoil) from −1 to 1 received 0.25 points; 

from 1 to 3 received 0.5 point; from 3 to 5 received 0.75 points; and from 5 to 7 received 1 

point (Fig. 1). This step ensured that chemicals with a low presence in soil were prioritized 

over chemicals with a high presence in soil. The reason we used a concentration ratio (Cdust/

Csoil) and not a percentage of chemical amount (as used for indoor air) is because soil is a 

much larger compartment than dust and percentages of chemical amounts would not provide 

useful information with regards to ingestion rates. For example, if a chemical partitions at 

higher quantities in soil compared to dust, the concentration of that chemical in soil could 

still be much lower than in dust due to size dilution and its contribution through ingestion 

could still be minimal compared to dust.

Finally, for criteria related to biomarkers and ADME parameters (iii and iv, respectively), we 

conducted a literature review to find information on biomarkers and metabolism. This step 

ensured that chemicals with available information regarding biomarkers and ADME 

parameters were prioritized over those without that information. Literature search 

procedures/criteria for biomarkers and ADME were similar to those used for presence in 

environmental media. We used SciFinder and searched each chemical using its CAS number 
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and the key words “biomarker”, “absorption”, “distribution”, “metabolism”and “excretion”. 

The rest of the search process was as previously described. Chemicals with a known 

measurable biomarker received 1 point. Chemicals for which ADME parameter information 

was available also received 1 point. These criteria were weighted lower than others (1 vs. 2 

points for analytical data) because absence of information should not disqualify a chemical 

from being a potential tracer (Fig. 1). For many chemicals, biomarker and ADME studies 

have simply not been conducted.

Multimedia modeling

The model used to evaluate partitioning of candidate tracers was a steady-state, non-

equilibrium model of chemical partitioning in both the indoor and outdoor residential 

environments. The model was a modified version of the model developed by Webster et al. 

[21]. In our version, dust is a distinct compartment and the model also includes outdoor air 

and soil. The outdoor compartments are outdoor air and soil adjacent to the house as 

opposed to global/regional air and soil compartments. The model, shown schematically in 

Fig. 2, was built on the fugacity approach introduced by Mackay [22] and first applied to the 

indoor environment by Bennett and Furtaw [23]. Fugacity, f (Pa), is directly related to 

concentration, C (mol), and can be described as the tendency of a chemical to leave a certain 

compartment or the partial pressure of a chemical in a certain compartment. Fugacity is 

related to concentration through the fugacity capacity, Z (mol/m3 Pa) as C = f Z. Fugacity 

capacity is defined as the capacity of a compartment to retain a chemical based on the 

physicochemical properties of the chemical and the properties of the compartment.

For our study, we built a steady-state non-equilibrium model (level 3). The main assumption 

of a level 3 model is that the chemicals are emitted at constant rates and not always at 

equilibrium. Since we are dealing with a diverse set of chemicals that do not have well-

characterized emission routes, we assumed that all emissions occur first in indoor air, 

followed by dust and other compartments. Even though this may not be true for all 

chemicals, emitting the chemicals first to indoor air gives us the worst-case scenario for 

presence in indoor air. This is important because we want to ensure that chemicals we use as 

tracers for dust ingestion are not capturing other exposure routes, such as inhalation. It is 

important to note that the indoor air compartment contains both gas and particulate phases. 

A similar approach on emission scenarios has been previously presented by Liagkouridis et 

al. [24].

For the model calibration and evaluation, we used two datasets: Rudel et al. [25] and Newton 

et al. [26]. The Rudel et al. [25] dataset contains measurements of 88 diverse chemicals 

found in dust and air and the Newton et al. [26] dataset contains measurements for 

brominated flame retardants (n = 14) found in indoor and outdoor air, dust, and soil. The 

physicochemical properties of the chemicals used in the modeling calculations were the 

partition ratios between octanol and water (KOW) and air and water (KAW) and the half-lives 

of the chemicals in air (ThA) and soil (ThS). KOW and KAW were obtained from the OPEn 

structure—activity/property Relationship App (OPERA) through EPA’s CompTox 

Chemicals Dashboard [27], and ThA and ThS were obtained from EPA’s EpiSuite [28].
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RESULTS

Of the 271 chemical features identified in Moschet et al. [16], 137 had a frequency ≥ 90% 

(Fig. 1). We obtained predicted physicochemical properties for 90 of these proposed 

structures via searches on the Dashboard. These 90 chemicals, along with the associated 

information, category scores, and final scores are presented in the SIS. Of the 90 chemicals, 

60 were confirmed using chemical standards and 30 were tentatively identified by in silico 

predicted MS/MS spectra or plausible fragments.

Based on our searches of the literature and public data sources (Table S1), we found 67 

chemicals (out of 90) reported in food, 55 in soil, 52 in drinking water, and 45 in indoor air 

(Fig. 1, 2 and SIS, columns: AB-AE for database and AI-AP for literature, AW for point 

assignment).

Based on laboratory analyses, 23 chemicals were measured in PCPs, 17 chemicals were 

measured in food, and 9 chemicals were measured in soil (Fig. 1). When a chemical was not 

measured in PCPs, food, or soil (SIS columns: AF-AH) it received 2 points for each 

medium. The increased weight at this stage prioritized the analytical data over the literature 

review information.

Our modeling calculations indicated that, for most chemicals, walls and surfaces were 

expected to be the main sinks in the indoor environment (Fig. 3a, SIS columns T-Z). Even 

though partitioning in dust and soil occurred at substantially smaller quantities (Fig. 3b), 

these compartments are of greater interest due to their function as exposure media. 

Calculations for presence of chemicals in indoor air (SIS column V) showed that 87 of the 

90 chemicals are expected to partition at low quantities (0–25%, 1 point, Fig. 1) (Fig. 3c). 

Zero chemicals are expected to partition at medium-low quantities (25–50%, 0.75 points), 

two are expected to partition at medium-high quantities (50–75%, 0.5 points), and one at 

high quantities (75–100%, 0.25 points). This is reasonable since our list contains primarily 

semi-volatile organic compounds. Calculations for presence in dust relative to soil showed 

that 12 chemicals are expected to partition at low concentrations in dust relative to soil (log 

Cdust/Csoil = −1 to 0.5; 0.25 points), 25 chemicals at medium-low (log Cdust/Csoil = 0.5 to 2; 

0.5 points), 28 at medium-high (log Cdust/Csoil = 2 to 3.5; 0.75 points), and 25 at high (log 

Cdust/Csoil = 3.5–5) concentrations in dust (Fig. 1 and SIS, column AA).

During our literature search, biomarker information was found for 50 chemicals and ADME 

information was found for 48 chemicals (SIS, columns: AS-AT). It should be noted that, for 

the majority of the chemicals in the dataset, there are no available human ADME studies and 

we often relied on in vitro and in vivo studies. For ADME parameters, often there are 

available studies on metabolism and excretion, but no studies on absorption and distribution. 

If during our search we found information on metabolism and excretion, or only one of the 

two, but not on absorption or distribution, we marked that chemical as having information on 

ADME parameters.

After compiling all information, nine chemicals with a score ≥12 were grouped as “highly 

likely tracers”, 29 chemicals with a score <12 and ≥10 were grouped as “likely tracers”, 29 

chemicals with a score <10 and ≥8 were grouped as “unlikely tracers”, and 23 chemicals 
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with a score <8 were grouped as “very unlikely tracers” (SIS, column BA). Examples of 

chemicals from each group were (i) 1,3-diphenylguanidine (highly likely tracer), (ii) fipronil 

(likely tracer), (iii) triclosan (unlikely tracer), and (iv) linoleic acid (highly unlikely tracer). 

For 5 of the 9 chemicals classified as “highly likely tracers”, we found some information 

about their biomarkers and ADME parameters. These chemicals were 1,3-

diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate diester, and 6:2 

fluorotelomer phosphate diester (SIS, columns: AS-AT, BA). The other chemicals identified 

as “highly likely tracers” were 1-hydroperfluoroheptane, salnacedin, palmitoylethanolamide, 

and pentaethylene glycol; we were not able to locate any biomarker and ADME information 

for these chemicals.

Using our workflow and ad hoc grading system, we omitted 85 chemicals from further 

consideration as potential tracers. These chemicals were classified by Moschet et al. [16] as 

surfactants (n = 23), cosmetics (n = 15), natural products (n = 12), plasticizers (n = 10), 

flame retardants (n = 8), pesticides (n = 5), polyfluorinated compounds (n = 5), human 

metabolites (n = 3), industrial chemicals (n = 2), and unknowns (n = 2). Notwithstanding 

human metabolites (which are likely not suitable as tracers for reasons described below) 

surfactants had the highest overall score (mean = 10.7), with 19 out of 23 compounds having 

a score of 10 or higher (Fig. S2), making them at least “likely tracers”. Most of these 

chemicals were seldom found in other media (based on the literature search, database search, 

and laboratory analysis). Yet, only one compound was a confirmed identification, with the 

remaining compounds labeled as tentative identifications (SIS). With eventual confirmation 

using standards, and additional data on available biomarkers and ADME, it is possible that 

individual surfactants may meet the criteria for tracer selection.

Not surprisingly, the lowest final scores were observed for flame retardants (mean = 8.7), 

cosmetics (mean = 8.2), and natural products (mean = 6.9). Despite having biomarker and 

ADME data (and thus elevated final scores), natural product chemicals were frequently 

found in multiple media as part of the laboratory analysis and the literature search (SIS). 

Compared to natural products, consumer product chemicals were found less often in food as 

part of the laboratory analysis. These chemicals were, however, frequently found in PCPs as 

part of the lab analysis, and in all media as part of the literature search. Flame retardant 

chemicals were seldom found in media based on the database queries and lab analyses. Yet, 

each flame retardant chemical was reported in the literature as being previously found in air, 

drinking water, food, and soil. Taken together, these results clearly show the value of using 

independent data streams to vet chemicals for further consideration as useful tracers.

DISCUSSION

Building the workflow

Previous studies of children’s dust ingestion have failed to distinguish between contributions 

from dust and soil. Considering that both dust and soil are important contributors to 

children’s chemical exposures, there is a need to develop methods to distinguish between the 

two sources. In light of this need, we developed a multifaceted workflow to identify 

chemicals that can be used as potential tracers to estimate children’s dust ingestion. Our 

workflow is comprised of laboratory analyses, literature reviews, and multimedia modeling, 
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ensuring that prioritization is based on a weight of evidence, using independent data streams. 

Our workflow utilizes a holistic assessment that integrates both qualitative (NTA and 

literature/database reviews) and quantitative (multimedia modeling) characteristics. The 

workflow is designed to be applicable to any dataset. In this study, we applied the workflow 

to the Moschet et al. [16] dataset, and discuss our findings, limitations, and 

recommendations.

Workflow application

Results from the Moschet et al. [16] dataset suggest that house dust contains organic 

chemicals that are ubiquitous across samples collected in California, and that a subset of 

these ubiquitous compounds are not likely to appear (in measurable amounts) in other media 

that children contact (SIS). Initially, we identified five chemicals that satisfied all four 

selection criteria: 1,3-diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate 

diester, and 6:2 fluorotelomer phosphate diester (SIS). Of these, 1,3-diphenylguanidine and 

leucine had the highest scores (score = 13), suggesting they are the most promising tracers. 

For each candidate tracer, we searched the literature for their primary uses and occurrence in 

consumer products. Additionally, we evaluated their occurrence in consumer products via 

the Dashboard [27], where we searched for each chemical and looked for potential uses 

under the tabs “Exposure” and “Product and use categories”. Even though these chemicals 

scored highly using our ad hoc grading system, and therefore appeared to satisfy our 

selection criteria, further evidence from our final in-depth review suggests they are not 

suitable tracers for estimating dust ingestion rates.

1,3-diphenylguanidine is a synthetic chemical used in the vulcanization of rubber; it is 

therefore commonly linked to rubber products. It is found in shoe soles and tires [29], 

synthetic rubber gloves used by healthcare workers, and goalkeeper gloves [30]. It is known 

to cause dermatitis upon skin contact [31, 32]. At the time of our literature search, 1,3-

diphenylguanidine had not been reported in indoor air, food, or soil. We found one study 

from China [33] reporting that 1,3-diphenylguanidine leached from high density 

polyethylene materials used in drinking water pipes; it is unclear if that exact material is 

used in the United States. 1,3-diphenylguanidine was not found in the food, soil, or PCP 

samples from the analytical part of our study, suggesting minimal contribution from these 

media towards aggregate exposure. The analytical data are in good agreement with our 

modeling calculations, which estimated concentrations of 1,3-diphenylguanidine in soil near 

homes to be about 4 log units lower than concentrations in dust (SIS). While these findings 

reinforce our belief that exposure to 1,3-diphenylguanidine through soil ingestion is not 

expected to be a substantial pathway compared to that of dust ingestion, we have a limited 

understanding of total exposure potential for 1,3-diphenylguanidine in the outdoor 

environment. For example, soil near driveways or roadways may contain 1,3-

diphenylguanidine coming from car tires. Depending on the air concentrations of 1,3-

diphenylguanidine near driveways/roadways, the inhalation pathway may potentially 

contribute to the overall 1,3-diphenylguanidine exposure for commuters. Since this is 

something that remains to be confirmed through future research, 1,3-diphenylguanidine 

cannot, at this time, be considered a suitable tracer.
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Leucine, despite receiving a high score, would not be a suitable tracer, as it is an endogenous 

chemical in humans. In any sort of observational human exposure measurement study, it 

would be impossible to distinguish between the fraction coming from dust ingestion and the 

fraction produced internally. This observation suggests that a filter step in the workflow may 

be needed to address compounds internally produced in humans. Indeed, five compounds 

(out of 90) are considered here as possible tracers, despite a general lack of suitability based 

on their origin (SIS, column H). Future applications of this workflow should consider and 

address endogenous compounds early in the workflow by matching compound identifiers 

against entries in well-known human metabolite libraries (e.g., the Human Metabolome 

Database) [34,35,36,37].

Piperine is a naturally occurring component of black pepper, previously found to be 

common in house dust [17, 38]. In addition to being present in foods, piperine is used as a 

small animal repellent [39] and a pharmaceutical enhancer [40, 41]. According to our 

findings, the presence of piperine in a child’s diet may be difficult to predict. Specifically, 

despite its origins in black pepper, piperine was not measured in food samples in the 

laboratory component of our study. We note that the analyzed food samples were a 

composite of commonly eaten foods and not an extensive compilation of everything children 

eat (e.g., foods prepared at home and foods prepared and eaten outside the home). Thus, we 

are not able to rule out the dietary pathway as a means of children’s exposure to piperine. 

Furthermore, piperine may have been diluted in the composite sample, the composite sample 

may have been missing foods eaten by the children which contained piperine, or the method 

detection limits may have rendered analysis of the piperine difficult. The laboratory 

component of our study further showed no piperine in soil samples; this is in good 

agreement with our modeling calculations that estimate piperine concentrations in soil to be 

3.3 log units lower than in dust. These results support the notion that the soil ingestion 

pathway contributes little to aggregate piperine exposure. While we may be able to consider 

soil an unlikely exposure source for piperine, the fact that it is most likely found in some 

children’s food renders it an unsuitable choice as a tracer.

6:2/8:2 Fluorotelomer phosphate diester (6:2/8:2 diPAP) and 6:2 fluorotelomer phosphate 

diester (6:2 diPAP) received 12.25 and 12 points, respectively, and ranked fourth and fifth on 

the list of potentially suitable tracers found in dust. Both chemicals belong to the larger 

group of PFAS. They are used to grease-proof food contact paper and have been previously 

reported in food [42, 43]. 6:2/8:2 DiPAP and 6:2 diPAP have been measured in dust samples 

from Canada [44] and in human serum samples from the United States, Canada, and 

Germany [42, 45], indicating the ubiquitous presence of these compounds in the 

environment. Only 6:2 diPAP has been reported in soil [46]. Interestingly, neither of these 

chemicals were detected in children’s food, soil, or PCP samples in the present study. 

However, our dataset may have been too small to detect these PFAS chemicals. Our 

modeling calculations suggest that the estimated concentrations of 6:2/8:2 diPAP in soil are 

similar to those of dust, but that the estimated concentrations of 6:2 diPAP in soil were 3.9 

log units lower than those in dust. Considering the somewhat conflicting information 

stemming from our laboratory, literature, and modeling resources, additional work may be 

needed to clarify whether these two chemicals have potential utility as tracers before 

considering them further.
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Finding a potential tracer that met all evaluation criteria was challenging because dust is 

comprised of fine particles of solid matter (e.g., soil, sediment, plant pollen, human and 

animal hairs, human skin cells, food particles, and anything else found in the local [indoor 

and or outdoor] environment) and these particles may contain myriad chemicals. 

Specifically, dust may contain: pesticides used in the indoor environment, on agricultural 

commodities, or as pet treatments; PCPs adhered to sloughed skin; food residues (e.g., from 

cooking, crumbs, coffee grounds) with associated chemicals; and compounds used for food 

packaging and textile coatings. In short, much of what is found in dust gets there through 

other sources in the home, making it difficult to identify a candidate compound that meets 

all criteria to be considered a suitable tracer.

Workflow limitations

Our workflow combined laboratory, literature, and modeling resources to attempt to identify 

chemicals which would be suitable as tracers. We used an ad hoc grading system based on 

expert consideration and subjective cut points. If we had adjusted the range of cut points for 

each category, the number of “highly likely tracers” and “likely tracers” would have 

increased or decreased accordingly. Larger publicly available datasets and evaluations may 

be needed to determine the most appropriate cut points for future applications. Additional 

publicly available datasets would also provide more data and information to evaluate the 

workflow. In performing these additional evaluations, we may discover criteria that should 

be incorporated into the workflow. For example, as described previously, the use of specific 

filters could shift focus away from endogenous compounds that are not well-suited as 

tracers.

In addition to refining the workflow via additional evaluation, any chemical identified as a 

potential tracer requires further vetting. For the compounds we identified, there is a need to 

examine different datasets from other geographic locations to assess the tracers’ spatial and 

temporal variability. The application of our workflow on the Moschet et al. [16] dataset is a 

first step in this direction, but we acknowledge that dust samples collected from California 

may not be representative of other geographical locations. Dust chemical composition may 

vary from place to place depending on chemical use in the home and on construction 

materials used within buildings. Also, dust chemical composition may vary over time as 

chemical usage changes and consumer products are introduced or replaced by newer 

alternatives. Additional analytical research to confirm the absence of potential tracers in 

foods and beverages is also recommended. In this proof-of-concept work, we did not use 

specific search terms for “beverages” because we assumed the key word “food” would 

adequately cover a variety of dietary sources, including beverages. We also did not search 

for “milk” or “breast milk”. Future applications of the workflow should include a more 

exhaustive literature component with specific key words. The food samples collected in 

California may not be representative of other areas, as dietary habits can differ from place to 

place based on a variety of factors (e.g., availability, preferences, customs). Collection and 

analysis of children’s food from various locations will help shed light on this issue and 

ensure that dietary ingestion is not a measurable exposure pathway for potential tracers. 

Even though we accounted for dermal exposure through the analysis of PCPs, there may be 

instances where dermal exposure may contribute to non-dietary ingestion. Future 
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adaptations of the workflow should consider the dermal/non-dietary ingestion relationship 

when choosing a potential tracer. Finally, analysis of food packaging materials will be 

necessary to filter any potential tracers that come in direct contact with food, thus affecting 

dietary exposures.

CONCLUSIONS

This study demonstrates how multiple data streams can be used to identify compounds that 

may be suitable as tracers for calculating children’s dust ingestion rates. Before any 

chemical can be deemed a suitable tracer, it will need further vetting, especially if used in an 

observational human exposure measurement study. Measurements of any chemicals in house 

dust and blood or urine, when carefully interpreted with ADME information, may ultimately 

allow the calculation of dust ingestion rates. Measurements of the same chemicals in food 

and soil will be necessary to ensure that intake from diet and soil are not contributing to 

aggregate exposure. The current study acts as a critical stepping stone for the design of a 

workflow to select candidate tracers. Based on the results of this initial pilot study, no 

individual compounds were identified as suitable tracers for calculating dust ingestion rates. 

Future work must therefore consider larger datasets, generated from broader measurement 

studies and literature searches, as well as refinements to selection criteria, to identify robust 

and defensible tracer compounds.
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Figure 1: 
Workflow for addressing the four criteria with outputs and grading system for each step.
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Figure 2: 
Model diagram depicting the various compartments in the indoor and outdoor environment. 

The arrows show the fugacity rate descriptors for the intra-compartmental fluxes and the 

irreversible losses due to degradation (deg) and advection (adv). The fugacity rate 

descriptors between compartments are represented by the letter D and the initials for the 

compartments that the chemicals are moving from and to. For example, the fugacity rate 

descriptor from indoor air to dust is presented as DIA-D and the fugacity rate descriptor for 

degradation in dust is presented as DDdeg. The emissions are represented by the letter E and 

the initials of the compartment they occur in. In this model, the primary emissions occur in 

indoor air (EIA) and background emissions occur in outdoor air (EOA). Note that both the 

indoor and outdoor air compartments consist of both gas phases and particulate phases. Not 

to scale.

Abrahamsson et al. Page 18

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2022 February 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 3: 
Predicted distributions for all chemicals (panel A in natural space and panel B in log space 

and zoomed to <10%) in the indoor (grey = indoor air, black = dust, red = hard surfaces, 

yellow = soft surfaces, green = wallboard) and outdoor compartments (blue = outdoor air, 

brown = soil) ranked by amount present in indoor air from lowest (left) to highest (right). 

Each bar represents one chemical. Panel C shows the percentages of chemicals in indoor air, 

with chemicals ordered on the x-axis from lowest (left) to highest (right). Panel D shows the 

ratios between the concentrations of chemicals in dust and the concentrations of chemicals 

in soil (Cdust / Csoil), with chemicals ordered on the x-axis based on their presence in soil.
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