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Abstract

Advances in computational performance and the advent of big data have allowed the emergence of new

methodologies for modeling infectious diseases as complex systems representing aspects such as non-linearity,

emergence, and feedback loops, among others, with increasing spatio-temporal resolution. Agent based mod-

els have been used in many other disciplines such as social sciences, ecology, city planing, and, more recently,

epidemiology. With the objective of better integration of data and theory, we used agent based modeling

and global sensitivity analysis of complex models under different epidemiological scenarios and with varying

degrees of data availability and quality.

In the first chapter, we integrated data from publications between February 2020-February 2021 and from

phone interviews in a typical nursing home in California to develop an agent based model to explore the

impact of non-pharmaceutical interventions and vaccination in the prevention and control of COVID-19 in

nursing homes.

In the second chapter, we used information from the literature and from sow farm production records in the

Midwestern United States to develop a model that evaluates the effect of herd management and vaccination

in the control of porcine reproductive and respiratory syndrome (PRRS), an endemic disease in the US pork

industry.

In the third chapter, we used data provided by the National Veterinary Services of Ecuador (AGROCAL-

IDAD) to evaluate the impact of simulated re-introductions of foot-and-mouth disease (FMD), which is in

the last phase of disease eradication in Ecuador, and to evaluate strategies for better prevention and control

of FMD.

The findings for each of the presented chapters can be used to support disease eradication efforts of com-

municable disease outbreaks through approaches centering local epidemiological dynamics under different

settings.
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Section 1

Introduction

Mathematical modeling in epidemiology has been used to understand the transmission dynamics of diseases

since 1920’s [Abbey, 1952]. One of the first contributions to this area was by Kendric and McKendrick’s, that

proposed a compartmental model where the population is divided into compartments and the population

transition between compartments is modeled using ordinary differential equations (ODE) [Kermack and

McKendrick, 1927]. Initially the model proposed by Kendric and McKendricks included only 3 disease states

or compartments, (S-susceptible, I-infected and R-recovered) and was deterministic. This approach has been

expanded and adapted to different situations adding or removing compartments for different disease status

or characteristics of the population (i.e. age, sex, among others) and introducing stochasticity.

Equation based models have been used widely in epidemiology because are relatively simply to implement and

can be expanded more compartments to represent better the heterogeneity of the population. However, these

type of models still assume that the population will be homogeneously mixed within each compartment and

the transition rates between compartments are constant over the simulation time, which can be unrealistic

for capturing individual variations for certain diseases [Epstein et al., 2008]. Woolhouse suggested that 20%

of the host population contributes at least 80% of the net transmission potential [Woolhouse et al., 1997].

Multiple approaches to ODE compartmental models have been used to address the heterogeneity of the

population. Some of the most popular approaches in the last couple of years include network based models

and spatial models. Network based models treat the population as nodes and edges, where the nodes represent

the individuals (or group of individuals) and the edges the contacts between individuals. Once the network

has been defined, simulations can be made to represent the disease transmission. To investigate the influence

of spatial dynamics on the transmission of diseases, researchers have also integrated geographical information
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systems to create more complex models [Randhawa et al., 2021, Mao and Bian, 2010, Martínez-López et al.,

2010].

Recently, agent-based models (ABM) have been used in epidemiology to more accurate model the transmis-

sion dynamics of infectious diseases. ABM integrates concepts used in previous modeling approaches such

as mathematical methods to inform the progression of the disease in an individual or complex networks to

represent contact patterns between individuals.

In this section we will do a brief introduction to some of the applications of ABM in epidemiology and

basic concepts, then throughout the chapters presented in this dissertation, we explored the applications of

ABM under different epidemiological scenarios, with two epidemic diseases (COVID-19 and foot and mouth

disease) and one endemic disease (porcine reproductive and respiratory syndrome). All the chapters aim

to provide an insight not only in the overall impact of the disease, but in the effect of the interventions on

preventing and controlling the outbreaks.

In chapter 1 we developed an ABM to support the design and deployment of COVID-19 prevention and

control interventions in long term care facilities, which has been among the most affected groups by the

pandemic [CMS, 2021]. Given the continued challenges of the implementation of robust protective measures

in long term care facilities, the uncertainty involved in the vaccine efficacy in vulnerable population and

new circulating strains, in this study we aim to quantify the effect of testing rates and different vaccination

strategies in the COVID-19 morbidity and mortality in a long-term care setting under different scenarios.

The model presented in chapter 1 was carefully designed and calibrated based on interviews with long term

care facilities staff and data obtained from publicly available sources.

In chapter 2 we developed a model to explore the impact of herd management and vaccination strategies

for prevention and control of porcine reproductive and respiratory syndrome (PRRS), which is an endemic

disease that affects the swine industry in the United States. PRRS was introduced in early 1990s in the

US [Mardassi et al., 1994, Meng et al., 1994] and since then it has established as an endemic disease that

generates severe economic losses every year [Holtkamp et al., 2013, Nathues et al., 2017]. The main challenges

on the disease eradication relies on the genetic diversity of the PRRS virus, therefore, the field strains can

vary widely in the virulence, antigenic response and the protection immunity provided from the vaccine

[Halbur et al., 1996b,a, Mengeling et al., 1996]. Using the model developed in chapter 2, we explore the

impact of the disease in a typical sow farm in the Midwestern US and the effect of interventions such as herd

management and vaccination have on the disease impact.

For chapter 3 we explored the impact of a potential reintroduction of foot-and-mouth (FMD) disease to
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Ecuador and strategies for disease control. Foot and mouth disease is a viral disease that affects cloven

hoofed animal, including several livestock species. Several countries in Latin america, including Ecuador,

have been advancing towards the eradication of the disease in the last decade. The ABM developed in

this chapter is a computationally efficient disease spread model that represent both local and long distance

disease spread dynamics. This approach allows to explore the effect of interventions such as restriction of

movements, emergency vaccination and culling of infected farms for controlling the outbreak and identify

vulnerable areas.

1.1 ABM in epidemiology

In an ideal world, when we design an experiment, we would like to have pairs of subjects that are comparable

to each other and assign them to either a treatment or control group to evaluate the effect of the treatment.

Due to logistics of the implementations or ethical considerations, this is not always possible. Although there

are several statistical methods meant to control for confounder variables and reduce the potential bias that

can be introduced in our experiment due to external factors, it is always necessary to have some degree

of assumptions to guide the analysis. The acceptable weights that observed data and the assumptions

we make about a phenomena will vary depending on the subject of study. Traditional epidemiological

methods (i.e. directed acyclic graphs and regression) often assume linear relationships and unidirectional

causal relationships between exposure and outcomes. Nevertheless, infectious disease dynamics can present

aspects characteristic of complex systems such as non-linear relationships, emergence of macro patterns that

arise from micro level behavior, and feedback loops [Hawe and Shiell, 2000, Galea et al., 2010]. Some of these

aspects can be addressed with methodologies such as multilevel models and Bayesian frameworks, however,

ABM provides an approach to develop tailor made models to address specific diseases in specific populations.

ABMs can be essential part of an epidemiological study when is not feasible to run an experiment due to

ethical or logistic aspects [Hernán, 2015] and can be used to study the counterfactual when a solid model is

developed [Marshall and Galea, 2015].

The freedom that ABM offers in the model formulation provides the opportunity to integrate different

methodologies and concepts from other modeling approaches. For example, to represent the heterogeneity

of the population and spatial relationships while maintain computational efficiency in large populations,

individuals can be aggregated in neighborhoods, farms or other unit of aggregation and SIR approaches

can be used to represent the disease transmission within units of aggregation [Kano et al., 2020, Bradhurst

et al., 2015]. Network dynamics can also be integrated in ABM to represent the complex interrelationships
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of the agents in a simulation [Arruda et al., 2017, Barrett et al., 2008]. The flexibility in ABM also allows

to obtain high resolution spatio-temporal outcomes, which can be useful to simulate targeted interventions

for specific time points or group of agents in the simulation. High resolution ABM can be particularly

challenging because there is not always enough data available for validating the model and the results can

remain questionable in terms on how good the model represents the reality, but with the advances on data

availability this will become less of a problem in the future.

In the past, ABM in epidemiology have been used for two main reasons: model general disease behaviors, and

model specific disease in specific populations. For example, Epstein et al. [Epstein et al., 2008] developed

a generic disease spread model to explore the influence of human behaviors such as fleeing from the area

of an outbreak in the diseases spread. Models for specific diseases in generic populations can also be used

to unravel macro patterns that arise from micro behaviors. For example, Kano et al. [Kano et al., 2020]

developed a model to explore the impact of COVID-19 in economic activities. More localized disease spread

dynamics have also been studied wit ABM, this can provide insights in how local landscape characteristics

[Dion et al., 2011] or socioeconomic aspects [Aleta et al., 2020] can influence the spread of a disease in a

specific population.

1.2 Basic concepts in agent based modeling

An agent can represent any entity that have some degree of autonomy [Crooks et al., 2017], this could include

individual people, animals, buildings, farms, among others. In ABM we assign specific characteristics to the

agents in a simulation under a set of rules that determine how the agents interact with each other and

their environment, this allows to capture interactions at individual level and the impact it has at multiple

spatial and temporal scales. ABM allow us to use multiple sources of information including quantitative data

measurements and qualitative theory to combine our observations and hypotheses within a single integrative

framework. Depending of the interest of the modeler, different characteristics of the population such as:

contact structure, spatial distribution, or other demographic traits can be represented in the model.

Due to the flexibility and freedom ABM offers, there is a lack of clear definitions and standard protocols

that can often lead to confusion on the different components of the model and comparing to other models.

In an effort to standardize some definitions of ABM in epidemiology, Marshall and Galea defined ABMs as

follows [Marshall and Galea, 2015]:

For each agent 𝑖 = 1, ..., 𝑁 , where 𝑁 is the total population, a set of 𝑚 = 1, ..., 𝑀 individual characteristics

is described at time 𝑡 = 1, ..., 𝑇 . This can be represented in a 𝑁 × 𝑀 matrix S𝑡:
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S𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑆𝑡
1,1 𝑆𝑡

1,2 … 𝑆𝑡
1,𝑀

𝑆𝑡
2,1 𝑆𝑡

2,2 … 𝑆𝑡
2,𝑀

⋮ ⋮ ⋱ ⋮
𝑆𝑡

𝑁,1 𝑆𝑡
𝑁,2 … 𝑆𝑡

𝑁,𝑀

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where each row describes the values of each agents characteristics or traits at time 𝑡. These characteristics

can be defined as continuous (i.e. age, probability of death), dichotomous (i.e. infectious yes/no, sex) or

categorical (i.e. stage of development, age group).

At each time step, each agent 𝑖 interacts with a subset of the population described by an agent-agent

interaction matrix K𝑡 where each element 𝑘𝑡
𝑖,𝑗 𝜖 {0, 1} indicates whether agent 𝑖 interacts with agent 𝑗 during

time step 𝑡, depending on the context, these interaction might or not be symmetrical (i.e. unidirectional

contacts vs bidirectional). In addition to the interactions network, the agents can also be placed in different

environments represented by a matrix E𝑡 where each agent is located within one 𝑝 = 1, … , 𝑃 possible

environmental states at time 𝑡. The effect of the spatial location in of the agent can be captured by both the

agent-agent interaction matrix (i.e. agents in close proximity are assumed to interact) and the environmental

state matrix (i.e. the spatial location can represent the relationship of the agent with the environment). The

model is initialized populating the baseline agent trait matrix S0, interaction matrix K0 and environmental

states E0 with values defined by the modeler. A set of rules Z will determine how the agents interact with

each other and the environment. Assuming that the rules are stable and independent of agent behavior, the

evolution of the model can be described as:

𝑠𝑡
𝑖,𝑚 =𝑓(S𝑡−1, K𝑡−1, E𝑡−1, 𝜉𝑖,𝑚,𝑡)

𝑘𝑡
𝑖,𝑗 =𝑔(S𝑡−1, K𝑡−1, E𝑡−1, 𝜖𝑖,𝑗,𝑡)

𝑒𝑡
𝑖,𝑝 =ℎ(S𝑡−1, K𝑡−1, E𝑡−1, 𝜁𝑖,𝑝,𝑡)

Where the functions 𝑓(), 𝑔() and ℎ() with the error terms 𝜉𝑖,𝑚,𝑡, 𝜖𝑖,𝑚,𝑡 and 𝜁𝑖,𝑚,𝑡 represent the set of rules

defined by Z. The set of defined rules Z can be dynamic, adaptive and reactive to the environment states,

and change during the course of one simulation run. Different type of agents can be defined in the simulation

and the interactions between them can be as complex as desired.

Outcomes of interest can be defined and computed at any point of the simulation (such as total number

of infected, new infections per step, location of the infections, etc.) allowing us to explore the spatio-

temporal dynamics of disease spread. The outputs can be obtained repeatedly under different circumstances

and comparisons of treatments can be done using controlled random seeds, which allow us to have direct
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interpretations as counterfactual outcomes.

In the following chapters we will apply this concepts for the formulation and development of ABMs in

epidemiology. The models developed in this dissertation provide an example of how ABM can be used

to integrate multiple sources of information to support prevention and control strategies centering local

epidemiological dynamics under different settings.
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Section 2

I: Testing and Vaccination to Reduce

the Impact of COVID-19 in Nursing

Homes: An Agent-Based Approach
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2.1 Abstract

Background: Efforts to protect residents in nursing homes involve non-pharmaceutical interventions, test-

ing, and vaccine. We sought to quantify the effect of testing and vaccine strategies on the attack rate, length

of the epidemic, and hospitalization.

Methods: We developed an agent-based model to simulate the dynamics of SARS-CoV-2 transmission

among resident and staff agents in a nursing home. Interactions between 172 residents and 170 staff based

on data from a nursing home in Los Angeles, CA. Scenarios were simulated assuming different levels of

non-pharmaceutical interventions, testing frequencies, and vaccine efficacy to reduce transmission.

Results: Under the hypothetical scenario of widespread SARS-CoV-2 in the community, 3-day testing fre-

quency minimized the attack rate and the time to eradicate an outbreak. Prioritization of vaccine among

staff or staff and residents minimized the cumulative number of infections and hospitalization, particularly

in the scenario of high probability of an introduction. Reducing the probability of a viral introduction eased

the demand on testing and vaccination rate to decrease infections and hospitalizations.

Conclusions: Improving frequency of testing from 7-days to 3-days minimized the number of infections

and hospitalizations, despite widespread community transmission. Vaccine prioritization of staff provides

the best protection strategy when the risk of viral introduction is high.

Keywords: Nursing Homes, Testing, Vaccine, COVID-19, Agent-Based Model.
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2.2 Introduction

COVID-19 has highlighted many inadequacies in the American healthcare system. Elderly and frail residents

of long-term care facilities (LTCFs) have experienced a disproportionate burden of infection and death.

Approximately 5% of all US cases have occurred in LTCFs, yet deaths related to COVID-19 in these facilities

account for 34% of all US deaths as of February 12, 2021, according to the New York Times [Times, 2020].

Nationwide, there are about 44,736 LTCFs in the United States, 15,116 of which are nursing homes. Together

these facilities encompass more than 1.2 million staff and 2.1 million residents based on 2015-2016 estimates

[Harris-Kojetin et al., 2019].

Guidance on the prevention and mitigation of COVID-19 in LTCFs was offered by many oversight groups,

including the Centers for Disease Control and Prevention (CDC) and the Center for Medicare and Medicaid

Services (CMS). Substantial numbers of transmission events from symptom-free individuals made it clear that

universal testing, regardless of symptoms, was a critical component of a robust prevention program [Bigelow

et al., 2020, Louie et al. [2020], Ouslander and Grabowski [2020]]. Testing frequency was widely debated, as

LTCFs had to balance the obvious need with the high cost and low availability of testing, especially early in

the pandemic [Blackman et al., 2020, Ouslander and Grabowski [2020], Smith et al. [2020]]. Vaccines provide

an incredible tool for preventing COVID-19 outbreaks in LTCFs, but they are not a magic solution, nor will

they be distributed into an environment that is wholly prepared to implement new protective measures.

Nursing home residents are a priority group for vaccination, as are health care workers. The CDC launched

the Pharmacy Partnerships for Long-Term Care Program in an effort to provide on-site vaccination to

residents and staff members in LTCFs [Gharpure et al., 2021b]. Though deployment of vaccines in LTCFs

appears successful thus far, there is a growing concern that insufficient levels of vaccine coverage will be

reached. As of the end of January 2021, median first dose rates among LTCF residents is 77.8%, but only

a median of 37.5% of staff have received at least their first dose [Gharpure et al., 2021a]. It is unclear at

this time whether the lower vaccination rates among staff is a result of prioritization of residents, lack of

recording alternative sources of vaccination, or staff choice; however, a survey of nursing home staff conducted

in the state of Indiana (November 2020) found that 45% of respondents were willing to receive a COVID-19

vaccine immediately once available, and an additional 24% would consider it in the future [Unroe et al.,

2020]. While visitors are disallowed and residents only interact directly with a small number of other people,

staff are the primary vector for viral introduction [Goldberg et al., 2021, Toth and Khader [2021]]; therefore,

low rates of vaccine uptake among staff should be of great concern from the perspective of preventing an

outbreak. Additionally, there is limited evidence about the ability of vaccines to reduce asymptomatic
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transmission. Preliminary data from the UK suggests a 49.3% reduction in infections from an asymptomatic

source [Voysey et al., 2021]. Recent evidence of the circulation of more transmissible SARS-CoV-2 variants

also raises concerns about the course of this pandemic, particularly as less than 22% of the US population

have received the full vaccine dosage [CDC, 2021a].

Given the continued challenge of implementing robust protective measures in LTCFs, the bevy of unknowns

around vaccine deployment, the uncertainty involved with new circulating strains, and the impending lifting

of co-recreation and visitor restrictions as states ease recommendations, we sought to quantify the effect of

testing rates and differing vaccination strategies on morbidity and mortality in a long term care setting,

using a nursing home in Los Angeles, CA as the foundation for an agent-based model (ABM). Our study

assumes the continued presence of non-pharmaceutical interventions (NPIs) such as mask mandates for staff

and universal testing, and varies the risk of introduction by staff. The main outcome is a model that can be

adapted/modified to study the effects of these interventions in varied nursing home settings. Such modelling

approaches can provide valuable insight into the design and deployment of combined vaccine and surveillance

interventions before primary prospective research can be implemented [Toth and Khader, 2021].

2.3 Methods

2.3.1 Model structure

We developed a stochastic agent-based model to simulate the spread of SARS-CoV-2 in an LTCF, based on

the floor plan and occupancy of a nursing home in Los Angeles County, California with 172 residents and 170

staff [Figure 2.1]. The simplified floor map shows the location of bedrooms with a capacity of 3 residents, 5

quarantine rooms reserved for residents with frequent outside traffic and/or capacity to quarantine exposed

residents, recreation areas which are currently off limits to resident and staff interactions, and rooms for

staff.

Resident and staff agents in our proposed model are represented in epidemiological classes of susceptible but

not yet exposed to the disease (𝑆), non-infectious exposed individuals incubating the disease whose infection

is currently non-detectable by testing (𝐸), infectious individuals with detectable disease who do not yet

exhibit clinical symptoms of illness (𝐼𝑎)[Feaster and Goh, 2020], infectious individuals exhibiting symptoms

of illness (𝐼𝑠), individuals that have recovered and can no longer infect others (𝑅), symptomatic individuals

requiring hospitalization (𝐻), and individuals that succumbed to the disease (𝐷) (Figure 2.2). The model

assumes that residents are not replaced with new susceptible agents, and staff with confirmed exposure to
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Figure 2.1: Case study of a nursing home in Los Angeles, CA.

the virus are replaced by new staff confirmed negative for SARS-CoV-2 during the period of simulation.

Recovered people gain immunity to reinfection lasting 120 days, and the latency period is sampled from a

logarithmic normal distribution [He et al., 2020]. Parameters and sources are described in Table 2.1.

2.3.2 Disease dynamics

The transmission of the virus is based on the probability of contact between susceptible people and those who

are in presymptomatic, asymptomatic, or symptomatic states. The probability of infecting others on contact

was assumed to be the same for each state. Due to default preventive testing and isolation measures, only 𝐼𝑎

and 𝐼𝑠 agents that have not been detected and isolated may contribute to new infections. A newly-infected

individual enters a latency period sampled from a log normal distribution with a mean of 7 days [He et al.,

2020]. After that time, 40% of people remain asymptomatic [Feaster and Goh, 2020] until recovery. For those

who develop symptoms, 23% [Azar et al., 2020, España et al. [2021]] require hospitalization. The average

number of days from the onset of symptoms to hospitalization is 4 days and a person stays in the hospital

for an average of 6 days [CDC, 2021b]. Mortality rate was set at 11.8% [Nuno et al., 2021] for hospitalized

agents. The average recovery time for asymptomatic agents or those who never required hospitalization is

15 days [Walsh et al., 2020], during which they remain infectious. We assumed that recovery from a primary

11



Table 2.1: Parameter descriptions, baseline values, and references.

Description Baseline Value Ref.
Average time a person remains in the non-infectious latency state (𝛼) 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(7, 3)𝑏 [He et al., 2020]
Proportion of asymptomatic people (𝑓) 0.40 [Feaster and Goh, 2020]]
Average recovery time (𝛾1) 15 days [Walsh et al., 2020]
Proportion of hospitalized people (𝜎1) 0.23 [Azar et al., 2020, España et al. 2021]
Median number of days from symptom onset to hospitalization (𝛾2) 4 (1, 9) days [CDC 2021b]
Median number of days of hospitalization (𝛾3) 6 (3, 10) days [CDC 2021b]
Percent that die among those hospitalized. (𝜎2) 11.8% [Nuño et al., 2021]
Shedding probability 0.38 𝑎

Infection probability 0.38 𝑎

Introduction probability 0.1 𝑎

Assumptions for the scenarios
Percentage of staff using PPE 90% 𝑎

Percentage of residents using PPE 75% 𝑎

PPE Effect (𝑂𝑅𝑝𝑖) 0.1467 𝑎 [Chu et al., 2020]
Test detection probability 80% 𝑎

Percentage of Staff tested 90% 𝑎

Percentage of Resident tested 33.3% 𝑎

Frequency of testing 𝑊𝑒𝑒𝑘𝑙𝑦 𝑎

Vaccine effect (𝑂𝑅𝜐) 0.0493 𝑎 [Baden et al., 2020]
Vaccine immunity duration 120 days 𝑎

Distribution of the staff agent characteristics
CN Contacts per hour 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 ∼ (𝑋0 = 0.7, 𝑋1 = 0.3)
RN Contacts per hour 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 ∼ (𝑋0 = 0.25, 𝑋1 = 0.75)
LPN Contacts per hour 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 ∼ (𝑋0 = 0.15, 𝑋2 = 0.2, 𝑋3 = 0.25, 𝑋4 = 0.2, 𝑋5 = 0.2)
Work Schedule 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 ∼ (𝑋𝑚𝑜𝑟𝑛𝑖𝑛𝑔 = 0.4, 𝑋𝑛𝑖𝑔ℎ𝑡 = 0.2)
Staff type 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚 ∼ (𝑋𝐶𝑁 = 0.6, 𝑋𝑅𝑁 = 0.15, 𝑋𝐿𝑃𝑁 = 0.15)

𝑎Explored via sensitivity analysis, 𝑏fitted to a distribution from data and truncated to a range of plausible values

Figure 2.2: Epidemiological classes of the COVID-19 transmission model.
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infection provided adequate immunity for the remainder of the simulation.

2.3.3 Staff and resident interactions

Agents in the model include residents and staff only, consistent with the full visitor restrictions. Three

residents are assigned to a single room. Five rooms are designated for quarantine/isolation of infected

patients or for residents who require outside specialty care, such as dialysis. Residents only interact with two

other residents in the same room and with staff, who can be one of three types: Certified Nursing Assistant

(CNA), Registered Nurse (RN), and Licensed Practical Nurse (LPN). Since meals are taken in rooms and use

of communal space is restricted, residents do not currently interact with residents outside assigned rooms.

Each type of staff has different contact patterns with residents throughout the day. These contact rates are

operationalized as contact probabilities defined from a multinomial distribution where each hour a CNA has

a 0.7 chance to have 0 contacts and 0.3 chance to have 1 contact with a resident, a LPN has a 0.15 chance

of having 0 contacts, 0.2 of two constants, 0.25 chance of having 3 contacts, and so on (Table 2.1). Contact

probability parameters were estimated from staff hour-per-resident-day (HRD) data from the CMS Nursing

Home Compare data set. We assumed no difference in probability of viral introduction by staff type. Staff

are assigned to one of three different work schedules: 40% work in the morning (7am -3pm), 40% in the

afternoon (3-11 pm), and 20% work overnight. They spend on average 8 hours inside the nursing home and

the rest of the time in the community. Both scheduled time and type of staff are sampled from a multinomial

distribution to reflect the distribution in our reference nursing home (Table 2.1).

2.3.4 COVID-19 transmission in the community

Though there is large variability on the impact of COVID-19 in these facilities, tied to historic variability in

testing capacity and PPE availability and adherence, the most immediate risk of a COVID-19 outbreak in

a nursing home is the level of community transmission of SARS-CoV-2. Since we assumed that visitors are

disallowed completely, residents’ risk for primary exposure is contact through staff who acquired an infection

from the wider community. A critical factor that our model aimed to study was to assess the impact of

the probability of viral introduction from the community on the predicted size of internal outbreaks. Each

scenario we investigated was simulated across three different probabilities of a staff member introducing

the infection: low (5% per day), medium (10% per day), and high (15% per day). These are expressed as

‘introduction probability’, which is set to 0.1 for the baseline scenario (Table 2.1).

13



2.3.5 Interventions

We parameterized interventions with variable impacts on the transmission of SARS-CoV-2: PPE use and

misuse, regular diagnostic testing, and vaccinations. We considered scenarios where staff were tested every 7

days (baseline), 5 days, and 3 days. Testing of residents in all scenarios assume that one resident per room is

tested weekly, systematically cycling through the each resident every three weeks. Reduction in transmission

probability from PPE use and vaccination were applied by modifying the shedding and infection probability

parameters [Chu et al., 2020]. Vaccine efficacy was translated into odds ratios of infection given exposure

from the Pfizer and Moderna phase 3 clinical trial results. For brand- and age-agnostic scenarios, including

the baseline scenario, the crude overall odds ratio was set to 0.0493. In scenarios where vaccine brand and

recipient age were taken into account, the efficacy of the Moderna vaccine after the second dose was 95.6%

(OR 0.0441) for individuals under 65 years old and 86.4% (OR 0.1357) for 65 and older [Baden et al., 2020].

The efficacy of the Pfizer vaccine for individuals under 65 was roughly equivalent to Moderna (OR 0.434), but

was 94.7% (OR 0.0619 for individuals 65 years and older [Polack et al., 2020]. For ease of implementation,

residents were considered 65 and older, and staff were considered under 65. The vaccine odds ratio has a

direct impact on transmission probabilities and reflects the upper bounds for vaccine efficacy according to

Equation 2.1. Let 𝑝𝑡 be the probability of a transmission event:

𝑝𝑡 = 𝑒ln(𝑂𝑅𝜔𝑋𝜔)+ln(𝑂𝑅𝜋𝑋𝜋)+ln(𝑂𝑅𝜈𝑋𝜈)

1 + 𝑒ln(𝑂𝑅𝜔𝑋𝜔)+ln(𝑂𝑅𝜋𝑋𝜋)+ln(𝑂𝑅𝜈𝑋𝜈) (2.1)

where the odds ratio 𝜔 (𝑂𝑅𝜔) represents the global baseline transmission probability of all agents, the odds

ratio 𝜋 (𝑂𝑅𝜋) represents the transmission reduction from the presence or absence of PPE, and the odds

ratio 𝜈 (𝑂𝑅𝜈) corresponds to the effect of vaccine status on transmission. Probability 𝑝𝑡 is computed for all

agents at each time step in order to reflect different probabilities of transmission based on the interventions

each individual received. For scenarios where a vaccine was implemented, we specified the proportion of

residents and staff that received a vaccine and a fixed time interval of 21 days between the first and second

dose, with a 60% efficacy after the first dose but before the second.

2.3.6 Model Scenarios

The baseline scenario assumed current CDC infection prevention and control recommendations for nursing

homes, including visitor restrictions, daily symptom screening of residents and staff, use of face masks, and

weekly testing of staff. We incorporated weekly cyclic testing of one of three residents per room, with
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alternating residents being tested each week. When a resident tested positive, they were isolated and the

other residents from the same room were tested. Staff who tested positive were ‘isolated’ (removed from the

simulation, as if on paid leave) and replaced with new staff who tested negative. Parameters assumed for the

baseline scenario are described on Table 2.1. We simulated a set of scenarios based on staff testing frequency,

prioritization of residents or staff for vaccination, and vaccine brand. In each scenario we systematically

changed one of these approaches while holding the others at baseline values. Outcomes were estimates of

the length of the outbreak, total number of infections (and attack rate), hospitalizations, and deaths across

three risks of introduction from the community (low, medium, and high).

2.3.7 Model implementation

The model was implemented in GAMA 1.8.1[Taillandier et al., 2019a]. Code for reproducing this study is

available at https://github.com/jpablo91/NH_COVID. Each scenario was simulated 200 times, and the

median and 95% confidence intervals for each outcome were reported. For each set of simulations, we used

the same seed to conduct sensitivity analysis and make comparisons between scenarios. The model was

calibrated with data on confirmed COVID-19 cases reported between May 24, 2020 and February 14, 2021 in

California nursing homes with similar resident census, extracted from the Centers for Medicare & Medicaid

Services (CMS)[CMS, 2021]. We considered a good fit to be have high 𝑅2 and Pearson’s 𝑅 estimates between

the observed and model-predicted cumulative number of confirmed cases.

The model was calibrated with data on confirmed COVID-19 cases reported between May 24, 2020 and

February 14, 2021 in California nursing homes with similar resident census, extracted from the Centers

for Medicare & Medicaid Services (CMS) [CMS, 2021]. We considered a good fit to be have high 𝑅2 and

Pearson’s 𝑅 estimates between the observed and model-predicted cumulative number of confirmed cases.

2.4 Results

2.4.1 Baseline Scenario

In the baseline scenario we assumed PPE mandates, weekly testing, and no vaccination. Baseline attack rate

was 0.17 (95% CI: 0.01, 0.39) and a median time to eradication of 28 days (Table 2.2, Figure 2.3). With the
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Table 2.2: Description of interventions and parameter values.
Probability of Introduction

Low Medium High
Testing Frequency

(𝜔 = Introduction probability)
𝜔 = 0.05 𝜔 = 0.10 𝜔 = 0.15

Testing Interval 7 days 7 days 7 days
Testing Interval 5 days 5 days 5 days
Testing Interval 3 days 3 days 3 days

Vaccine Performance
(𝑉𝑟𝑂𝑅 = Odds ratio for the vaccine effect on residents, 𝑉𝑠𝑂𝑅= Odds ratios for the vaccine effect on staff)

𝜔 = 0.05 𝜔 = 0.10 𝜔 = 0.15

Equal 𝑉𝑟𝑂𝑅 = 0.0493 𝑉𝑟𝑂𝑅 = 0.0493 𝑉𝑟𝑂𝑅 = 0.0493
𝑉𝑠𝑂𝑅 = 0.0493 𝑉𝑠𝑂𝑅 = 0.0493 𝑉𝑠𝑂𝑅 = 0.0493

Pfizer 𝑉𝑟𝑂𝑅 = 0.0619 𝑉𝑟𝑂𝑅 = 0.0619 𝑉𝑟𝑂𝑅 = 0.0619
𝑉𝑠𝑂𝑅 = 0.0434 𝑉𝑠𝑂𝑅 = 0.0434 𝑉𝑠𝑂𝑅 = 0.0434

Moderna 𝑉𝑟𝑂𝑅 = 0.1357 𝑉𝑟𝑂𝑅 = 0.1357 𝑉𝑟𝑂𝑅 = 0.1357
𝑉𝑠𝑂𝑅 = 0.0441 𝑉𝑠𝑂𝑅 = 0.0441 𝑉𝑠𝑂𝑅 = 0.0441

Vaccine Prioritization
(𝑉𝑟%=Percentage of residents vaccinated, 𝑉𝑠%=Percentage of staff vaccinated)

𝜔 = 0.05 𝜔 = 0.10 𝜔 = 0.15

Equal 𝑉𝑟% = 50% 𝑉𝑟% = 50% 𝑉𝑟% = 50%
𝑉𝑠% = 50% 𝑉𝑠% = 50% 𝑉𝑠% = 50%

Staff Priority 𝑉𝑟% = 30% 𝑉𝑟% = 30% 𝑉𝑟% = 30%
𝑉𝑠% = 70% 𝑉𝑠% = 70% 𝑉𝑠% = 70%

Resident priority 𝑉𝑟% = 70% 𝑉𝑟% = 70% 𝑉𝑟% = 70%
𝑉𝑠% = 30% 𝑉𝑠% = 30% 𝑉𝑠% = 30%
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implementation of the vaccine and under the scenario of a high probability of introduction, the attack rate

goes down to 0.02 and the time to the eradication of an outbreak was 14 days. (Figure 2.3).

2.4.2 Testing and Vaccine Interventions

The implementation of frequent testing, particularly every 3-days reduced the attack rate by half and allowed

containment of the outbreak within 9 days, despite high probability of virus introduction. Estimates and

95% confidence intervals illustrated in Figure 2.4 are provided in Table 2.4. When vaccine was prioritized

among staff, residents, or both, the attack did not seem to differ except when the introduction probability

was high, in which case the simulated median attack rate was 0.02 when staff were prioritized compared to

0.03 if residents were prioritized or no prioritization was present. Assuming a low probability of introduction,

no prioritization provided the best opportunity to control an outbreak, leading to a median of 9 days (95%

CI: 7-26) until eradication. We evaluate a vaccine’s ability to block transmission for scenarios of vaccine

efficacy, staff and residents had the same efficacy, and residents had reduced efficacy compared to staff. We

found that the probability of virus introduction was the most significant factor in determining the attack

rate and days to the eradication of an outbreak. The attack rate doubled to 0.02 with high transmission

probability and the time to the eradication of an outbreak was optimal only for low transmission. In all

scenarios of low or moderate probability of transmission, none of the residents were infected.

The model was well calibrated to the cumulative number of cases among residents and staff in California

nursing homes, with 𝑅2 and Pearson’s 𝑅 estimates higher than 0.79 (Figure 2.4). Prospectively, our model

overestimated confirmed cases among staff, likely due the implementation of new interventions, like increased

frequency of testing, put in place after SARS-CoV-2 was introduced in a nursing home. Our model under-

estimated cases among residents, which may be driven by the fact that some staff have more direct contacts

with residents than others.

2.4.3 Sensitivity Analysis

Baseline virus transmission rates, introduction probability, detection probability, PPE implementation and

adherence, testing frequency, and vaccine efficacy were all considered for sensitivity analysis. We found that

changes in the implementation of PPEs had a greater impact on reducing the attack rate and hospitalizations.

Variation in virus transmission rates as well as the introduction probability showed substantial changes in

attack rate and hospitalizations. Implementation of highly effective PPEs reduced the attack rate from 0.66

(95% CI: 0.39-0.85) to 0.02 (95% CI: 0-0.20), prevented 221 total infections, 18 hospitalizations, and reduced
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Figure 2.3: Attack rates for interventions under different assumptions of probability of introduction (low,
medium, high).
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Figure 2.4: Model-predicted and observed number of cumulative incidence of confirmed cases for residents
and staff. Dotted data represent the number of cases observed in the nursing home of study. Dark solid
lines correspond to the median estimates for cases of staff and residents, and 25𝑡ℎ and 75𝑡ℎ percentiles are
depicted in the shaded regions.
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Table 2.3: Results from the sensitivity analysis summarized by the median and 95% confidence intervals for
the various simulations considered.

Target Parameter Value used Days to Eradication Attack Rate Total Infected Infected residents Infected staff Hospitalizations
Baseline 𝑎 28 (7, 70) 0.17 (0.01, 0.39) 59 (2, 134) 32 (0, 82) 23 (1,53) 5 (0, 15)
Transmission probability
Low transmission virus𝑎 0.34 21 (7, 63) 0.03 (0, 0.27) 12 (1, 93) 5 (0, 58) 8 (1, 38) 1 (0, 11)
High transmission virus𝑎 0.42 28 (7, 63) 0.27 (0.01, 0.47) 93 (2, 163) 56 (0, 100) 37 (1, 65) 9 (0, 18)
Introduction probability
Low introduction probability𝑎 0.05 14 (7, 49) 0.02 (0, 0.32) 7 (0, 110) 3 (0, 72) 5 (0, 42) 1 (0, 14)
High introduction probability𝑎 0.15 28 (9, 77) 0.21 (0.01, 0.42) 72 (3, 143) 39 (0, 84) 30 (2, 58) 6 (0, 15)
Detection probability
Low detection probability (test)𝑎 0.7 28 (7, 70) 0.2 (0, 0.47) 68 (1, 161) 38 (0, 97) 30 (1, 62) 5 (0,21)
High detection probability (test)𝑎 0.9 21 (7, 70) 0.09 (0, 0.31) 32 (1, 108) 17 (0, 67) 16 (1, 44) 3 (0, 12)
PPE effect
High effect PPE𝑎 0.07 15 (7, 56) 0.02 (0, 0.2) 7 (1, 69) 2 (0, 40) 5 (1, 31) 1 (0, 7)
Low effect PPE𝑎 0.34 21 (14, 42) 0.66 (0.39, 0.85) 228 (134, 294) 140 (79, 182) 88 (49, 114) 19 (6, 30)
Testing frequency
Testing frequency, 5-days𝑎 5-days 15 (5, 49) 0.03 (0, 0.22) 10 (1, 74) 3 (0, 44) 7 (1, 30) 1 (0, 9)
Testing Frequency, 3-days𝑎 3-days 12 (3, 36) 0.01 (0, 0.15) 5 (1, 51) 1 (0, 34) 4 (1, 21) 1 (0, 5)
Vaccine effect
Similar age-specific vaccine efficacy 0.04 14 (7, 35) 0.01 (0, 0.05) 4 (1, 17) 0 (0, 9) 3 (0, 11) 0 (0, 2)
Different age-specific vaccine efficacy [Pfizer] 0.06𝑏,0.04𝑐 13 (7, 38) 0.01 (0, 0.06) 4 (1, 20) 0 (0, 9) 3 (0, 11) 0 (0, 2)
Different age-specific vaccine efficacy [Moderna] 0.13𝑏, 0.04𝑐 14 (7, 41) 0.01 (0, 0.07) 5 (1, 24) 1 (0, 14) 3 (1, 14) 0 (0, 3)

𝑎No vaccination assumed, 𝑏 Vaccine assumed for resident agents, 𝑐 Vaccine assumed for staff agents

the period to eradicate the outbreak by almost a week. Increasing the probability of an introduction increased

the total number of infections from 7 to 72, and 5 additional individuals were hospitalized. Analyses for

these outcomes revealed significant decreases attributed to testing and vaccination across different frequency

of testing and vaccine efficacy. Prevention of hospitalizations was more effectively accomplished through

vaccination and was independent on age-specific vaccine efficacy assumptions.

2.5 Discussion

The importance of careful use of non-pharmaceutical interventions was a critical lesson from the COVID-

19 pandemic. Mask policies, limited visitation, and especially universal testing were critical to successful

mitigation and prevention plans in the United States. Greater access to PPE and frequent testing surely

played a part in reducing the case burden on LTCFs: case rates have dropped from a high of 33,625 nursing

home cases/week to the current low of 1,927 cases/week [CMS, 2021]. December 18, 2020 marked the start

of the Pharmacy Partnership for Long-Term Care Program in which the CDC partnered with multiple

pharmacies to host on-site vaccination clinics for LTCF residents and staff [Gharpure et al., 2021b]. Despite

good vaccination progress, nursing home residents remain at high risk. As regulations ease, and with the

possibility of requiring yearly vaccinations to prevent future outbreaks, we must consider how surveillance,

PPE usage, and vaccine timing and prioritization complement each other. Our study sought to describe the

potential combined effects of recommended NPIs and vaccine deployment strategies on the size and duration

of a COVID-19 outbreak in a model nursing home.

Results from our model were most evident when we assumed a larger probability of viral introduction.
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Table 2.4: Results from scenario modeling using the median and 95% confidence intervals.

Scenario Days to eradication Attack Rate Total Infected Infected residents Infected staff Hospitalizations Deaths
Introduction Probability & Testing Frequency

High & 7-days 14 (7, 48) 0.02 (0, 0.1) 8 (1, 34) 2 (0, 16) 6 (1, 21) 0.5 (0, 3) 0 (0, 1)
High & 5-days 15 (5, 41) 0.02 (0, 0.07) 7 (1, 25) 1 (0, 12) 5 (1, 18) 0 (0, 3) 0 (0, 1)
High & 3-days 9 (3, 24) 0.01 (0, 0.04) 4 (1, 14) 0 (0, 6) 3 (1, 11) 0 (0, 2) 0 (0, 0)
Moderate & 7-days 14 (7, 41) 0.01 (0, 0.07) 5 (1, 23) 1 (0, 11) 3 (1, 14) 0 (0, 2) 0 (0, 0)
Moderate & 5-days 10 (5, 35) 0.01 (0, 0.07) 4 (0, 24) 0 (0, 12) 3 (0, 13) 0 (0, 2) 0 (0, 0)
Moderate & 3-days 9 (3, 30) 0.01 (0, 0.04) 3 (0, 15) 0 (0, 6) 2 (0, 10) 0 (0, 1) 0 (0, 0)
Low & 7-days 9 (7, 27) 0.01 (0, 0.04) 2 (0, 14) 0 (0, 9) 1 (0, 7) 0 (0, 2) 0 (0, 0)
Low & 5-days 9 (5, 25) 0.01 (0, 0.04) 2 (0, 13) 0 (0, 8) 1 (0, 7) 0 (0, 2) 0 (0, 0)
Low & 3-days 9 (3, 20) 0 (0, 0.02) 1 (0, 8) 0 (0, 4) 1 (0, 5) 0 (0, 1) 0 (0, 0)

Introduction Probability & Vaccine Prioritization
High & Equal distribution 14 (7, 42) 0.02 (0, 0.11) 7 (1, 39) 1 (0, 17) 6 (1, 22) 0 (0, 3) 0 (0, 1)
High & Resident 14 (7, 56) 0.03 (0, 0.1) 9 (1, 35) 2 (0, 14) 7 (1, 22) 0 (0, 3) 0 (0, 1)
High & Staff 14 (7, 49) 0.02 (0, 0.09) 7 (1, 30) 1 (0, 15) 5 (1, 18) 0 (0, 3) 0 (0, 0)
Moderate & Equal distribution 14 (7, 42) 0.01 (0, 0.07) 5 (1, 24) 1 (0, 12) 3 (1, 15) 0 (0, 3) 0 (0, 0.05)
Moderate & Resident 14 (7, 35) 0.01 (0, 0.07) 5 (1, 24) 1 (0, 12) 4 (1, 14) 0 (0, 3) 0 (0, 1)
Moderate & Staff 14 (7, 35) 0.01 (0, 0.06) 5 (1, 22) 1 (0, 11) 3 (0, 11) 0 (0, 2) 0 (0, 0.05)
Low & Equal distribution 9 (7, 26) 0.01 (0, 0.04) 2 (0, 15) 0 (0, 9) 1 (0, 8) 0 (0,2) 0 (0, 0)
Low & Resident 14 (7, 42) 0.01 (0, 0.07) 5 (1, 25) 1 (0, 11) 4 (0, 15) 0 (0, 3) 0 (0, 1)
Low & Staff 14 (7, 35) 0.01 (0, 0.06) 4 (1, 19) 1 (0, 10) 3 (0, 10) 0 (0, 2) 0 (0, 0)

Introduction Probability & Vaccine Performance
High & Similar efficacy 14 (7, 42) 0.02 (0, 0.1) 7 (1, 35) 1 (0, 15) 5 (1, 20) 0 (0, 3) 0 (0, 0)
High & Reduced efficacy (Pfizer) 14 (7, 42) 0.02 (0, 0.1) 7 (1, 33) 1 (0, 15) 6 (1, 18) 0 (0, 4) 0 (0, 0)
High & Reduced efficacy (Moderna) 14 (7, 45) 0.02 (0, 0.12) 7 (1, 40) 1 (0, 19) 6 (1, 21) 0 (0, 4) 0 (0, 1)
Moderate & Similar efficacy 14 (7, 36) 0.01 (0, 0.06) 3 (1, 20) 0 (0, 8) 3 (0, 13) 0 (0, 2) 0 (0, 0)
Moderate & Reduced efficacy (Pfizer) 13 (7, 35) 0.01 (0, 0.06) 3 (1, 20) 0 (0, 6) 3 (0, 11) 0 (0, 2) 0 (0, 0)
Moderate & Reduced efficacy (Moderna) 14 (7, 36) 0.01 (0, 0.06) 3 (1, 21) 0 (0, 9) 3 (0, 14) 0 (0, 2) 0 (0, 0)
Low & Similar efficacy 9 (7, 27) 0 (0, 0.05) 1 (0, 17) 0 (0, 10) 1 (0, 8) 0 (0, 2) 0 (0, 0)
Low & Reduced efficacy (Pfizer) 9 (7, 28) 0.01 (0, 0.05) 2 (0, 16) 0 (0, 9) 1 (0, 7) 0 (0, 2) 0 (0, 0)
Low & Reduced efficacy (Moderna) 9 (7, 28) 0.01 (0, 0.05) 2 (0, 16) 0 (0, 10) 1 (0, 8) 0 (0, 2) 0 (0, 0)

In such cases, increased frequency of universal testing and isolation of positive cases (quarantine or paid

leave) lead to larger reductions in attack rate than any other scenario. Prioritizing the vaccination of staff

over residents lead to a moderate decrease in attack rate when viral introduction probability was high.

Community transmission rate is the strongest predictor of case rates in nursing homes thus far [Konetzka

and Gorges, 2020] and staff are the most important vectors through which introduction from the community

occurs [Goldberg et al., 2021, Toth and Khader [2021], Escobar et al. [2020]]. Our results support using

strategic prioritization of staff for universal testing and vaccination as an important method for reducing the

likelihood of an outbreak, especially in situations where community transmission is high.

There are several important challenges that these facilities will continue to face. LTCF administrators

reported that staffing remains one of the primary barriers to maintaining high infection control standards

[SteelFisher et al., 2021]. Additionally, facilities that had a high degree of disconnectedness via shared staff

showed higher case rates in general [Chen et al., 2021]. Expanded paid leave programs may also reduce the

need for staff to seek additional employment to make ends meet, generally lowering their personal risk and

the risk of introduction events.

Evidence indicates that staff may be more hesitant to get the vaccine than residents [Unroe et al., 2020],

and certainly have lower first-dose rates even if unrelated to hesitancy [Gharpure et al., 2021b]. Vaccine

mandates are one way to approach ensuring vaccine coverage goals are reached, but may create additional
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problems maintaining proper staff levels for delivering quality care. Additionally, nursing staff, including

CNAs and LPNs, have high turnover rates in LTCFs. As a result, vaccination rates may fluctuate over time

even within the same facility. Maintaining vaccine coverage goals will likely require an active program that

includes acquiring confirmation from staff who receive vaccines from a different source (i.e. a local pharmacy

or a different job). We have even less data about the risks presented by reopening nursing homes to visitors,

prompting questions about vaccine and testing requirements for visitors. An extension to this model that

adds a visitor agent could help answer these questions before observational data becomes available.

2.5.1 Strengths and Limitations

We calibrated our model using data from a real-world nursing home. The basal transmission model, in which

no agents were vaccinated, generated plausible attack rates when compared to California nursing homes of

a similar size. This, plus incorporating parameters from real-world data, provides external validity to the

changes observed in our model. A particular strength of ABM is to show how complex outcomes can emerge

from simple sets of rules; our model took advantage of this approach to show how interactions between staff

and residents manifest the outbreak patterns observed in vivo. However, this model is primarily useful as

an exploration of the impact of multiple interventions and introduction probabilities on an outbreak once

introduction has occurred, and is therefore not meant to model the processes that lead to an introduction

in the first place. Simulations were run for 150 days or until the facility was disease-free for up to 7 days;

thus, it is also not able examine the impact of multiple introductions over longer periods of time or waning

immunity from recovery or vaccination in its current form.

Not all data-derived parameters were made equally. The estimated effect of PPE use on transmission varied

widely, thus making a reliable parameter difficult to define and the model sensitive to changes. Testing was

also oversimplified in our model, as we assumed instantaneous results and all tests were equally sensitive.

Additionally, we assumed that the effects of immunity, natural or from vaccination, was constant over the

course of an outbreak and did not wane over time. We also assumed that staff agents had an equal chance

of interacting with each resident agent, which is not reflective of intervention strategies that silo staff into

daily routines focused on a specific subset of residents, such as dedicated staff for specific wards within the

nursing home or for positive, isolated individuals.
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3.1 Abstract

INTRODUCTION: Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in many

countries including the United States. The disease is responsible for severe economic losses every year in

swine production systems because of the impact on both the reproduction and the development stages of

the animals. The control and eradication of the disease has been very challenging mostly because of the

rapid spread and the capacity of the virus to quickly mutate making the vaccine development very difficult.

Here we propose a modeling approach that estimates the impact of PRRS on a swine farm and evaluates the

effect of different intervention strategies in the disease control after the introduction in a naïve population.

METHODS: We developed a high-resolution within-farm disease spread agent-based model to simulate

PRRS transmission and evaluate the impact of different PRRS control strategies. Our model recreates the

reproduction dynamics in a typical sow farm, evaluates the impact of the disease in the production, and

the effect of different intervention strategies for disease control (i.e. vaccination, acclimation of replacement

gilts, herd closure). Our model is parametrized based on literature review, observed PRRS outbreaks and

production parameters goals. For parameters with high uncertainty, we evaluated our model using a global

sensitivity analysis framework based on random forest and regression trees, which estimates the influence of

different combinations of parameters on the model outcomes.

RESULTS: The expected cumulative sow incidence in our model ranged from 6.3% to 42%. We present

the impact of the disease under different scenarios using random forests and regression trees as part of our

sensitivity analysis. Herd closure was the most influential parameter in our model reducing the cumulative

incidence of sows in 60% and the time to disease elimination in 46% when implemented. Other parameters

with high influence included the vaccine efficacy and the probability of introduction.

CONCLUSIONS: Our model highlights the importance of a better understanding of the circulating viral

strains and the vaccine development efforts when interventions such as herd closure can not be implemented.

We believe that our modeling framework allows better understanding and hypothesis testing about trans-

mission dynamics and supports the implementation interventions to advance with PRRS prevention and

control.
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3.2 Introduction

Porcine reproductive and respiratory syndrome (PRRS) is a swine disease caused by Porcine reproductive

and respiratory syndrome virus, which has two different genotypes (PRRSV-1 strain Lelystad and PRRSV-2

strain VR-2332) from the Arteriviridae family [Zimmerman et al., 2019]. The disease was identified as an

emergent swine disease almost simultaneously in the early 1990s in Europe [Meulenberg et al., 1993] and

the US [Mardassi et al., 1994, Meng et al., 1994], and since then it has become endemic on several regions

in Europe, America and Asia. The two main genotypes are PRRSV-1, which is mostly present in America

and Asia, and PRRSV-2 which is mostly present in Europe. PRRS is responsible for severe economic losses,

which in US is estimated to be over 600M USD every year [Holtkamp et al., 2013, Nathues et al., 2017].

The disease is characterized for reproductive and respiratory problems, which translates into decreased

number of weaned piglets in sow farms and underweight animals at the nurseries and finishers. PRRSV is

genetically very diverse, and the field strains of PRRSV can vary widely in the virulence and the antigenic

response [Halbur et al., 1996b,a, Mengeling et al., 1996]. The virus is shed in the environment via multiple

secretions including: oral, nasal, urine, semen and feces [Zimmerman et al., 2019]. Some of the infected pigs

might become persistently infected and shed the virus for prolonged periods of time, which plays a very

important role on the disease becoming endemic once has been introduced into a susceptible herd. The main

pathways of introduction into a susceptible farm include spreading from neighboring farms via airborne or

fomites, movement of infected pigs, and semen from infected boars.

In the US, the main prevention and control mechanisms for controlling the disease rely on vaccination and

biosecurity. Although there are several PRRS vaccines available, the vaccine efficacy against the diversity

of circulating PRRSV strains had shown mixed results [Ding et al., 2021, Chase-Topping et al., 2020, Alex-

opoulos et al., 2005, Scortti et al., 2006]. In general, the vaccines has been successful in reducing the viral

shedding and the symptoms, but does not prevent the infection. Previous exposure to the disease has a big

influence on how the disease affects the infected animals and the success of the vaccine reducing the impact

[Trevisan et al., 2021]. Another consideration of the PRRS vaccination is that current serology based tests

can not differentiate between the antibodies produced by infection from the antibodies produced by the

vaccine [Zimmerman et al., 2019].

In terms of biosecurity, cleaning and disinfection along with herd management are the most commonly used

strategies. Some of the herd management practices that have been successful on reducing the PRRS impact

includes herd closure, gilt acclimation and correct management of the newborns. Other strategies such as

partial depopulation or targeted testing and elimination of infected animals have also been suggested but
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due to the economic impact, is rarely considered.

With the objective of improving surveillance and prevention of the disease, multiple efforts have been im-

plemented including the PRRS herd classification system [Holtkamp et al., 2011] and the Swine Health

Monitoring Project (MSHMP). The PRRS classification system consists in assigning a status to the farms

based on the history of PRRS viral circulation assessed via serology and PCR, which is used as a criteria

when finding trade partners to move animals between farms. Farms with status of free of the disease will

avoid trading animals with farms where the disease is present. The MSHMP incorporates this information

along with the estimated herd prevalence of farms in some of the states in the US to provide updates on

the viral circulation for certain regions, which allow the producers to identify high risk movements. One of

the biggest challenges with the surveillance of PRRS is that the data to inform this surveillance systems is

collected voluntarily so not all farms perform routine testing to determine the disease status. PRRS infection

is often unnoticed (i.e does not produce clinical signs), therefore, assessment of population status PRRS is

key for early detection and disease control.

Several modeling efforts have been done to improve the understanding of the impact of PRRS to the swine

industry [Arruda et al., 2017, Galvis et al., 2021, Thomann et al., 2020, Thakur et al., 2015a,b]. Most of

these have explored the between-farm spread of the disease and few have explored the within-farm spread of

the disease [Phoo-ngurn et al., 2019, Colomer et al., 2019, Evans et al., 2010]. Colomer used a population

dynamic P model (PDP) to explore the role of herd management in reducing the impact of the disease at both

breeding and nursery; although the model proved to be very flexible for herd management strategies such

as cross fostering, it did not included other interventions such as vaccination strategies. Phoo-ngurn used

a compartmental Susceptible-Infected-Recovered ordinary differential equation (ODE) model to explore the

effect of vaccination on PRRS reduction, but the model did not explored any other interventions such as herd

management or improved biosecurity. Research has shown that the success in disease control and prevention

will depend on how the vaccination is implemented and other biosecurity measures, which highlights the

importance of evaluating the interaction of multiple control strategies.

Agent based models provide a flexible framework where we can assign individual characteristics to the

population and represent the heterogeneity that could be relevant in terms of disease transmission and

exploring the different implementations of the interventions used for disease control both at population

and individual level. For example, it has been observed that the transmission of PRRS can vary within

litters [Houben et al., 1995]. Agent based models allow us to define the behavior of the population more

explicitly as opposed to other modeling approached where the behavior of the population is assumed to be

homogeneous within groups (i.e. ODE or PDP models). In this work we aim to: 1) estimate the impact of
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PRRS in a typical sow farm of the Midwest US, and 2) estimate the effect of the implementation of different

interventions in reducing the PRRS impact. We believe our modeling framework will be useful to support

decision making and better prevent and control PRRS breaks on farms.

3.3 Methods

3.3.1 Population Structure

We developed a high resolution within-farm disease spread stochastic agent-based model to evaluate the

impact and different prevention and control strategies of PRRS in a sow farm. The population in the model

includes 300 sows and multiple generations of their respective offspring followed up until they are sent to the

nursery. Figure 1a shows the population flow through the sow farm.

Figure 3.1: Population structure. 1a. Different locations inside the sow farm and the flow of the animals in
the farm; 1b. the sow reproductive cycle as represented in our model.
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3.3.2 Population Dynamics

3.3.2.1 Production Cycle

We recreated the sow reproductive cycle, which in our model last 21 days when the animals are not insemi-

nated. When the animal is successfully inseminated a full production cycle is the 116 days of gestation plus

21 days of postpartum. Sows are kept in groups during the gestation and moved to individual crates for

farrowing. The first 3 days of the cycle the animals will remain inactive, then during the cycle days 4 to 8 the

sow can get inseminated and if the insemination is successful, the sow will become pregnant. The pregnancy

of the animals in our model is assumed to be 116 days, after the day 112 of pregnancy the sow is moved

from the gestation pen to an individual farrowing crate. Then the sow will stay in the farrowing crate until

21 days after birth. After the 21 days of postpartum, the sow is moved back to the gestation pen and they

start the cycle again. If the sow is not inseminated, it will stay 21 days inactive in the gestation pen until

they start the reproduction cycle again (Figure 1b). After 21 days in the farrowing room, the piglets will

be moved out to the nursery. Sows are constantly being replaced based on a replacement rate. Parameters

for the production cycle of the sows were assumed to follow the target production parameters for a typical

commercial sow farm in the US.

3.3.2.2 Disease Dynamics

The disease spread is represented using different disease states for each agent (Figure 3.2). Infected animals

transmit the disease to the susceptible based on a probability of transmission (𝛽) and the infection distance

of 1 meter [Wills et al., 1997]. Once a susceptible animal has been exposed to an infection source, we recreate

the viral load and built up of the immune response as described by [Lopez and Osorio, 2004]. When the

animal has been exposed, the viral load starts to increase and peaks at 12 days post infection. After 7-9

days post infection, the immune response start to appear and increases as the viral load decreases. This

dynamic of the viral load and immune response in our model determines the probability of shedding which

is associated by the value of 𝛽𝑠. For the vaccinated animals, this viral shedding is reduced by a parameter

(𝛿𝑣) as shown in Figure 3.2. After day 30 of the simulation we introduce an infected animal, and through the

whole simulation time we also included a parameter that defines the probability of an infected replacement

gilt being introduced.

To represent the impact of the disease, the infected sows will have a reduced reproductive performance

including lower pregnancy rates [Neuman et al., 2005, Dee et al., 1996], and higher farrowing mortality
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[Scortti et al., 2006]. For purposes of comparing different scenarios we record variables such as: cumulative

incidence for both sows and piglets, and time to elimination of the disease.

Figure 3.2: Disease states represented in our model. a. the transition between disease states representing:
S = susceptible, E = exposed, A = infectious asimptomatic, I = infectious symptomatic, PI = persistently
infected and R = recovered; b. Time series of the Immune response, viral load and vaccination immunity
and its relationship on the probability of shedding trought the infection process of an unvaccinated and a
vaccinated animal.

3.3.2.3 Interventions

We explored different interventions for prevention and control of the disease in our model. Some of the

interventions explored included sow vaccination, vaccination of newborns, herd closure, and testing and

acclimation of replacement gilts. The vaccination in our model is applied for a given number of sows

depending on the proportion of animals to vaccinate 𝑉𝑝, and a re-vaccination happens once a year. The

piglets that are born under the scenarios of newborn vaccination will also receive a vaccine dose, the number

of piglets to vaccinate will also depend on the 𝑉𝑝. The vaccine does not prevent the infections, it will only

reduce the symptoms and the shedding of the virus by the parameter 𝛿𝑣. To represent the herd closure in our

model, once the disease has been detected, the replacement of gilts is stopped until the disease is eliminated.

The vaccination and testing of replacement gilts are also explored in the model, the replacement gilts will be

tested and vaccinated in a quarantine pen before being introduced with the rest of the animals under these
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Table 3.1: Parameters used for the model.

Parameter Value Reference
Production parameters

Number of sows 300
Pregnancy rate 90% 𝑎

Median Number of piglets 9.13 𝑎

Farrowing mortality 14% 𝑎

Days in farrowing 21 days 𝑎

Replacement rate 20% of the inventory per year 𝑎

Disease parameters
Infection distance 1 m (Wills et al. 1997)
Infection probability (16, 20, 24%) 𝑏

Abortion probability 10% (Neuman et al. 2005),
Vertical transmission probability 35% (Neuman et al. 2005; Dee et al. 1996),
Asymptomatic probability 1% (Dee et al. 1996), 𝑏

Born alive when infected -59% (Scortti et al. 2006)
Farrowing mortality when infected +18% (Scortti et al. 2006)

𝑎based on production target. 𝑏Explored via sensitivity analysis

scenarios.

3.3.3 Model implementation and analysis of the outcomes

We ran 2000 simulations for a period of one year using a controlled random seed. Parameters were obtained

from literature and from the target production parameters for a typical commercial sow farm in the US as

shown in Table 3.1. To calibrate our model, we compared the proportion of infected sows in a year to the

MSHMP 2021 report [MSHMP, 2021]. For each of the simulations we sampled selected parameters from

a list of possible values representing low, moderate and high estimates or yes/no for the implementation

of interventions (Table 3.2). We used random forest (RF) to explore influence of the parameters in the

outcome of interest, and classification regression trees (CART) to provide a graphical understanding of

how the parameters interact to affect the outcomes selected, similar to the process described by [Harper

et al., 2011] for global sensitivity analysis (GSA) of complex models. Code for reproduction of the results is

available in https://github.com/jpablo91/PRRS_Modelling. The model was implemented in GAMA 1.8.1

[Taillandier et al., 2019b] and the analysis of model outcomes in R [R Core Team, 2020].
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Table 3.2: Parameters explored for global sensitivity analysis and the sample spcae defined for low, moderate
and high estimates for the PRRS intra farm model.

Parameter Definition Sample space
Shedding_p Daily probability that when infected, an animal will transmit the disease to others within range (0.16, 0.2, 0.24)
Vaccination_p (𝑉𝑝) Proportion of animals vaccinated (0.72, 0.9, 1.00)
V_Shedding (𝛿𝑣) Effect of the vaccine reducing the viral shedding (0.64, 0.8, 0.96)
P_asymptomatic Probability of an infected animal being asymptomatic (0.01, 0.012, 0.015)
P_introduction Probability of introducing an infected animal when replacing sows (0.04, 0.05, 0.06)
Replacement Testing Whether or not to perform testing of replacement sows (yes, no)
Vaccination Replacement Whether or not to perform vaccination of replacement sows (yes, no)
PigletVaccination Whether or not to perform newborn vaccination (yes,no)
HerdClosure Implementation of Herd closure (yes, no)

3.4 Results

The estimated sow cumulative incidence ranged between 6.3% to 42% with a median of 19%. When compared

to the MSHMP 2021 report, we obtained outbreaks of similar sizes in overall magnitudes, data was not

available to make a more in depth comparison of the outbreaks in terms of sequence of events. The farrowing

mortality incidence varied much less, between 11% and 15%, unfortunately there was no data available on

farrowing mortality to compare our simulation results to observed data. The time to elimination of the

disease ranged between 190 and 358 with a mean of 303 days until elimination of the disease, 75% of the

iterations showed a long elimination time (> 358 days to elimination) which could be considered as the disease

establishing on the farm and becoming endemic. RF and CART results show that the model predictions

are sensitive to complex combinations of parameter estimates. The influence of the parameters and these

complex interactions between them is presented in Figure 3. Depending on the outcome analyzed, the

classification and trees generated explained between 65% and 75% of the variance. For the cumulative sow

incidence and time to disease elimination, herd closure was the parameter with the greatest influence. The

implementation of herd closure reduced in average the sow cumulative incidence from 23% to 6.3% and the

time to disease elimination from 358 to 109 days after the introduction. For the case of farrowing mortality,

the proportion of asymptomatic animals was the most influential parameter.

To summarize the impact of the interventions, we looked at the proportionate reduction in each outcome

(sow cumulative incidence, farrowing mortality and time to disease elimination) for the scenarios with the

different implementation of interventions (Figure 4). When comparing the interventions, we see that testing

of the replacement gilts had the greatest effect in reducing the Sow cumulative incidence (-67%), farrowing

mortality (-15.92%) and time to disease elimination (-55.69%).
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Figure 3.3: Global sensitivity analysis. Classification trees showing the interactions between the parameters
explored using global sensitivity analysis for each of the outcomes analyzed (top). Normalized relative
importance of the parameters used for the sensitivity analysis (bottom). Description of the parameters
canbe found on Table 2.

Figure 3.4: Reduction in the cumulative incidence of sows, farrowing mortality and time to disease elimination
presented as the proportionate reduction for each of the outcomes analyzed

33



3.5 Discussion

Despite being one of the most economically important diseases in the swine industry, the transmission

dynamics of PRRS remain poorly understood. In this study we attempt to cover multiple scenarios where

the uncertainty around the virulence and effect of vaccination are considered. We developed a new simulation

model using an agent based approach that allow to simulate different diseases transmission scenarios and

can be easily adapted to different settings (i.e. other swine diseases such as porcine epidemic diarrhea or

African swine fever). Our model allowed to explicitly include the disease progression with much more detail

than previous models have done for this setting. This approach also allow us to be more flexible in terms

of the interventions applied to control the disease and model more specific scenarios. We illustrate our

model performance using a small-medium farm, since we included a population of 300 sows, but the model

is computationally efficient and was able to run several iterations in a personal computer without issues.

Therefore, the model can be definitively expanded and adapted to settings for larger farms and include more

agents to represent bigger farms, but that would require more computational power and time, which was not

of our interest for this publication. Future studies might explore the escalation of this modeling approach

for bigger populations or different combination of strategies, which potentially will require cloud computing

in order to run several iterations of the model.

The data used to calibrate our model infection parameters was from the MSHMP 2021 report, which is

somehow biased towards the production sites that are reporting the PRRS status, presumably the ones

more aware of the disease that are continuously working on improvement of PRRS prevention and with

likely better biosecurity practices. Additional data on the sequence of events would have been very useful to

calibrate better the model, but this data is not easy to obtain for PRRS since during standard practices of an

outbreak only a proportion of the population is sampled for surveillance of the disease. Another limitation

of this publication is that we did not explicitly simulated the movements of personnel and trucks, which its

known to play an important role in PRRS introduction into a site; but we believe that the probability of

introduction parameter used in our model can be used to approximate this (i.e. places where there is more

pig movements or other contacts between farms would be considered with higher introduction probabilities).

The variable importance for the parameters explored in our model is not unexpected, but it provides a

reasonable explanation on how the parameters interact with each other to affect the outcomes analyzed. The

parameter influence is somehow balanced, except for the herd closure effect on time to disease elimination,

none of the parameters had a variable contribution larger than 25%. The modeling approach allowed us

to implement the interventions in a more flexible way that previous models have done and explore the
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interactions between different combination of interventions.

Herd closure accounted for >20% of the relative importance for both the sow cumulative incidence and

time to disease elimination. Herd closure can be difficult to implement in sow farms especially in small sow

farms where the space and resources are limited. Our model suggests that for scenarios where herd closure

can not be implemented, a high vaccine efficacy and a low probability of introduction can still reduce the

sow cumulative incidence almost in half. Parameters such as viral shedding and the effect of the vaccine in

our model can be interpreted as an approximation to the wide genetic diversity of the virus. Our model

was sensible to both parameters which highlights the importance of the selection of an appropriate vaccine

that is more efficient against the circulating virus strains in the area and keeping high biosecurity levels to

minimize the probability of introduction. Although PRRS testing has been improving during the last years,

there is a need to characterize better the circulating strains in order to more efficiently manage the swine

trade and avoid exposing animals to different PRRS strains. In this regard, the use of tools such as Disease

BioPortal (https://bioportal.ucdavis.edu) that allows a better visualization, monitoring and tracing of the

circulating strains across sites and production systems could effectively help to support decision making and

better prevent and control PRRS spread, saving producers millions of dollars annually.
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4.1 Abstract

Foot-and-Mouth Disease continues to be one of the most economically important diseases for the livestock

industry due the international trade restrictions and the production losses in the affected countries. Despite

the intense local, national and international efforts for FMD prevention and control, FMD remains endemic

in many countries in South and central America, most of Africa, Asia and Eastern Europe. In this study

we used data from animal demographics in Ecuador including location of farms, vaccination coverage and

movement patterns to evaluate the spatio-temporal dynamics of FMD at local and national level. Our

model also asses the interventions to control the disease impact, such as emergency vaccination, culling and

movement restrictions. Model outcomes include the total number of infected farms, culled animals and farms

to vaccinate in a disease emergency scenario to control de spread. Risk maps were generated for different

introduction scenarios. Our results suggest that reducing the average number of days to detection and

removal of infected farms from 21 to 7 days can reduce the overall disease impact in a 53.3%. Scenarios where

the index case was introduced in the south region resulted in larger outbreaks. The results presented here

intend to support the current FMD eradication program in Ecuador to improve the emergency preparedness

and advance faster towards the final steps of the eradication process. Our modelling approach can be easily

adapted to different scenarios in other countries and for other transboundary animal diseases such as African

Swine fever.
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4.2 Introduction

Foot and mouth disease (FMD) is a highly contagious viral disease that affects cloven hoofed animals,

including several domestic species such as: cows, pigs, sheep, and goats. Although the disease is usually not

fatal, it usually has a huge economic impact for the livestock industry of the affected countries [Knight-Jones

and Rushton, 2013, Thompson et al., 2002]. The transmission from an infected to a susceptible animal

occurs via respiratory and oral routes and can spread very quickly to other animals in the farm or nearby

farms through direct or indirect contacts. Infected animals shed the virus through secretions (saliva, feces,

semen, milk, etc.) and the virus can survive for long periods of time in the environment making it easy to

be transported on equipment, food supplies, trucks and travel long distances in the air. Other risk factors

associated with the disease includes high animal density [Bessell et al. [2010]; Perez2005], mixing with animals

from different species [Hayama et al., 2012, Bessell et al., 2010, Dukpa et al., 2011], low biosecurity, and high

amount of movements between farms.

The process of eradication of FMD relies on the protection of the susceptible population and rapid response

to early detect and rapid control outbreaks. Currently the best tool for control and eradication of FMD is

vaccination. There are many factors that can influence the effectiveness of the vaccination program, such as

the transportation and application of the vaccine. These factors can make the effectiveness vary widely, and

sometimes it can be extremely poor. In the last decade there has been a significant advancement towards the

eradication of FMD in South America. Peru and Bolivia have both halted their vaccination programs and

obtained disease-free without vaccination status from the World Organization for Animal Health (OIE), in

2017 and 2018 respectively. The South America region has an 88.5% extension of territories considered FMD

free, of which 22.8% do not practice vaccination. On the other hand, since 2017 there have been also some

steps back in the eradication process. Venezuela lost the status in 2017 after the decay in the vaccination

coverage from 95% in 2014 to 53% in 2018 [PANAFTOSA-OPS/OMS, 2019], and Colombia experienced an

outbreak with an estimated impact of $300K millions of losses due to trade restrictions and control measures

[Agronegocios, 2019].

Many models of FMD have been developed using a wide variety of methodologies to account for uncertainty

(deterministic or stochastic), heterogeneity of the population (spatial models, contact structure, population

characteristics), and availability of the data. Epidemiological FMD models have been used for three main

reasons: to evaluate response to outbreaks [Ferguson et al., 2001, Hayama et al., 2013, Keeling et al., 2001,

Morris et al., 2001, Boender et al., 2010], to estimate the impact in naïve populations [Bates et al., 2003,

Carpenter et al., 2007, Garner and Beckett, 2005], and to guide the eradication efforts in endemic regions
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[Martínez-López et al., 2014]. Models such as AusSpread [Ward et al., 2009], InterSpread Plus [Sanson,

1993], North America Animal Disease Spread Model (NAADSM)[Harvey et al., 2007], Davis Animal Disease

Simulation (DADS) and DTU-DADS, use a state-transition microsimulation approach where the resolution

level of the population at risk goes down to the farm level and multiple transmission pathways can be

modeled, but these models require a considerable amount of computation time and resources, especially for

nation-wide disease spread simulations.

Most of the countries where FMD models have been recently developed (e.g. UK, US, Australia) are regions

where the disease is absent or was introduced after a long period of absence, and therefore, do not have

a current vaccination program. Other countries where the disease is established or that have a current

vaccination program have notably less research in this area. In 2017, Pomeroy published an extensive

literature review of FMD models and listed only 5 models developed for endemic regions [Martínez-López

et al., 2014, Chowell et al., 2006, Estrada et al., 2008, Rich, 2008, Gilbert et al., 2005] of which most don’t

support scenario modeling and only one uses farm level data[Martínez-López et al., 2014], highlighting the

over-representation of models at locations where FMD has an epidemic character and recognizing the need

for developing FMD models in endemic regions [Pomeroy et al., 2017].

Most of the models previously developed agree that the success of different intervention strategies will vary

depending on the region, which could be due to the different trade patterns and population structure. For

example, by the late 1990s some countries in South America, including Argentina, Brazil, Uruguay, and

Paraguay successfully controlled the disease and ceased vaccination. When the disease re-emerged in 2000,

stamping out was initially tried to control the disease, however, due to the delays in disease reporting and

control, stamping out only was not effective and mass vaccination ended up being re instituted [Rich, 2008].

). In most of the countries where the disease is endemic preventive vaccination is the main tool for control

and eradication, and this represent an extra component that most of the previously developed models are

not implementing. Most of the models developed and discussed previously have been developed specifically

for countries where the disease has been absent for several years, and some of these models (i.e. NAADSM)

explicitly state that they are inappropriate for disease spread simulation of endemic diseases[Reeves et al.,

2012]

Ecuador, although did not report FMD outbreaks since 2012, it is still in trying to control and eradicate

FMD and is currently vaccinating the bovine herds. In this publication we developed an spatial explicit

agent based model with the objective of estimate the impact of a hypothetical re-emergence of FMD in

Ecuador under different scenarios. We used our model to identify vulnerable regions and evaluate the effect

of interventions and control strategies to support decision making and accelerate the last phase of eradication
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in the country.

4.3 Methods

4.3.1 Model framework

We developed a agent based simulation model that recreates the transmission dynamics on a local and

national level. To achieve this we aggregate the demographic characteristics fo the population at risk using

a hexagonal grid of 10km radius where each cell is used as the basic unit of analysis (Figure 4.1). This allow

us to reflect the heterogeneity of the population and incorporate interventions at local level such as culling

and restriction of movements within a 10 km radius.

4.3.2 Data

To inform our model we use the following sources of data provided by the Veterinary Services of Ecuador

(AGROCALIDAD): 1) Vaccination records, AGROCALIDAD performs a biannual vaccination campaign

targeting bovines only. AGROCALIDAD reports a vaccination coverage of nearly 100 % of the cattle

population for each vaccination campaign, this information provides a more up to date estimation of the

distribution of the population in the country than other sources such as the census. Some relevant information

we used for our model from this dataset included: the number of animals per farm, location of the farms, and

vaccine coverage for years 2019 and 2020. 2) Movement records, the SIFAE (Sistema Informático de Fiebre

Aftosa en el Ecuador) is a system for traceability and control of animal movements in the country. As part

of the legislation for animal trade in the country, every movement must be approved, and only movements

from premises where vaccination was performed in the previous vaccination campaign are allowed. We used

data from 2019 to inform our model about the movement patterns of the farms aggregated at the grid level

such as probabilities of movements to other farms and fairs, origins and destinations, and movements within

each hexagonal cell. 3) Census for other species than cattle, locations and number of animals per farms for

other species such as goats, sheep and camelids was also provided by AGROCALIDAD and incorporated in

the model.
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4.3.3 Local spread dynamics

To represent the transmission of FMD at a local level we used a compartmental modeling approach where

the population for each cell (𝑁𝑖) is subdivided into susceptible (𝑆𝑖), exposed (𝐸𝑖), infected (𝐼𝑖), removed

(𝑅𝑖) and culled (𝑋𝑖). Once the disease has been introduced into a cell, the transition between compartments

is calculated using the following ordinary differential equations (ODE):

𝑆𝑖 = −𝛽𝑖𝐼𝑖𝑆𝑖
𝑁𝑖

− 𝜇𝑖𝑆𝑖
𝑁𝑖

𝐸𝑖 = 𝛽𝑖𝐼𝑖𝑆𝑖
𝑁𝑖

− 𝐸𝑖𝜎 − 𝜇𝑖𝐸𝑖
𝑁𝑖

𝐼𝑖 = 𝐸𝑖𝜎 − 𝛾𝑖𝐼𝑖 − 𝜇𝑖𝐼𝑖
𝑁𝑖

𝑅𝑖 = 𝛾𝑖𝐼𝑖

𝑋𝑖 = 𝜇𝑖𝑆𝑖
𝑁𝑖

+ 𝜇𝑖𝐸𝑖
𝑁𝑖

+ 𝜇𝑖𝐼𝑖
𝑁𝑖

The rate at which animals transition from susceptible to exposed (𝛽𝑖) for each cell is calculated as follows:

𝛽𝑖 = 𝛽𝜔1𝜔2𝜔3(1 − 𝑣𝑝)

Where 𝛽 is a global transmission rate, 𝜔1, 𝜔2 and 𝜔3 are the influence of animal density, other species and

within cell movements respectively, and 𝑣𝑝 is the vaccinated proportion. We assume that places with higher

animal density [Bessell et al. [2010]; Perez2005; Branscum et al. [2008]], presence of other species [Hayama

et al., 2012, Bessell et al., 2010, Dukpa et al., 2011] and high within cell number of movements [Fasina et al.,

2013] will have higher transmission rates. The latency period between exposure to infectious (1/𝜎) is assumed

to be 5 days [Yadav et al., 2019]. The transition between infected to removed (𝛾𝑖) is represented as the inverse

of the average number of days to detection and removal of infected farms. We also included a transition

from susceptible, exposed and infected farms to culled farms, which is modulated using a parameter for the

speed at which the farms are culled (𝜇𝑖).

Transmission between spatially adjacent cells is also simulated to represent other disease spread mechanisms

such as fomites and airborne transmission. This adjacent cell transmission is affected by the proportion of

infected animals. For the infected cells, every step of the simulation a Bernoulli distribution describes the

probability of infecting one of the adjacent cells as follows 𝑃(𝑦𝑖𝑗 = 1|𝑥𝑖 = 1) = 𝐼𝑖+2
𝑁𝑖+4 , where 𝑦𝑖𝑗 = 1 is

the adjacent transmission between a pair of cells, 𝑥𝑖 = 1 is that the current cell is infected and 𝐼𝑖
𝑁𝑖

is the

proportion of infected farms. All the parameters are local, which means each hexagonal cell is parametrized
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individually based on the population characteristics, and parameters such as 𝛾𝑖, 𝜇𝑖 and between spatially

adjacent cells transmission are reactive to the disease status of the hexagonal cell and the interventions

implemented in the model.

Figure 4.1: Modeling framework. The population characteristics are aggregated in a hexagonal grid, each
cell from the grid is treated at the unit of analysis. The country is subdivided in 4 main regions: North,
South, Center and Coast with distinctive animal demographics

4.3.4 Long distance spread dynamics.

To represent the transmission of the disease across long distances and between different regions, we used an

origin-destination probability matrix calculated using the movement records. Each cell has a list of potential

trade partners observed from the movements records and probabilities associated for moving animals from

one cell to another in any given day. The probability of exporting infected animals form one farm to another

is represented as a function of the proportion of animals infected at the origin as follows: 𝑃(𝑦𝑖𝑗 = 1|𝑥𝑖 =
1) = ( 𝐼𝑖+2

𝑁𝑖+4 ) (𝑝𝑚𝑜𝑣,𝑖𝑗), where 𝑦𝑖𝑗 = 1 is the long distance transmission between a pair of cells, 𝑥𝑖 = 1 is

that the current cell is infected, 𝐼𝑖+2
𝑁𝑖+4 is the Wilson adjusted proportion of infected farms and 𝑝𝑚𝑜𝑣,𝑖𝑗 is the

probability of a movement between the given pair of cells.
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.

4.3.5 Interventions.

The interventions explored in our model followed the guidelines of the emergency plan in the country, where

control zones are defined for 10 km radius and surveillance zones are defined for a 25 km radius around the

detected farms. The interventions included: restriction of movements, depopulation of farms, emergency

vaccination and increased surveillance.

At the beginning of the simulation, a baseline average time to detection of 21 days is assumed. Once a

farm has been detected positive, movement restrictions and culling of the population are implemented in

the 10 km control zone, and increased awareness and emergency vaccination are implemented in the 25 km

surveillance zone. The movement restriction intervention reduces the parameter 𝑝𝑚𝑜𝑣,𝑖𝑗 = 0, which effectively

stops any movement from the affected cell. Culling implementation is represented increasing the value for

the parameter 𝜇𝑖, which is the rate at which individuals from the compartments 𝑆𝑖, 𝐸𝑖 and 𝐼𝑖 transition to

the compartment 𝑋𝑖. There is a baseline vaccination coverage at the beginning of our simulation according

to either, a homogeneous coverage of a 95% across the country or a per cell coverage estimated using the

data provided by AGROACALIDAD. Then for scenarios with emergency vaccination in our simulation there

will be an increased coverage in the surveillance zone when the disease is detected.

A surveillance zone is defined in a 25 km radius where the awareness of the disease is increased, reflected

in reducing the average number of days to detection; and emergency vaccination is implemented, where we

assume a vaccination coverage based on the parameter 𝑉𝑒𝑣 and a vaccine efficacy 𝑉𝑒𝑓 [Cox and Barnett, 2009].

4.3.6 Model Implementation

We ran 500 simulations for a period of 18 simulated months using a controlled random seed. For each of the

simulations we sampled selected parameters from a list of possible values representing low, moderate and high

estimates or yes/no for the implementation of interventions (Table 4.2). To asses the impact of the disease

we recorded variables such as the total number of infected and culled farms, and we used random forest (RF)

to explore influence of the parameters in the outcome of interest, and classification regression trees (CART)

to provide a graphical understanding of how the parameters interact to affect the outcomes selected, similar

to the process described by [Harper et al., 2011] for global sensitivity analysis (GSA) of complex models.

Code for reproduction of the results is available in https://github.com/jpablo91/EcuadorFMD The model

was implemented in GAMA 1.8.1 [Taillandier et al., 2019b] and the analysis of model outcomes in R [R Core
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Table 4.1: Model parameters.

Parameter Estimate Reference
Population parameters

Number of farms 280, 000 𝑎

Avg. Indegree 49.46 𝑎

South 24.69 𝑎

North 51.72 𝑎

Coast 10.92 𝑎

Center 101.41 𝑎

Avg. Outdegree
South 9.18 𝑎

North 16.46 𝑎

Coast 6.8 𝑎

Center 28.02 𝑎

Disease parameters
Latency period (1/𝜎) 5 days (Yadav et al. 2020)
Vaccine efficacy 70% (Cox and Barnett 2009)
Average days to detection (1/𝛾𝑖) 21 days 𝑏

Interventions
Avg. Vaccination coverage in 2019

South 80% 𝑎

North 75% 𝑎

Coast 77% 𝑎

Center 83% 𝑎

Avg. Vaccination coverage in 2020
South 80% 𝑎

North 80% 𝑎

Coast 79% 𝑎

Center 73% 𝑎

𝑎Estimated from data provided by AGROCALIDAD. 𝑏 Estimated from observed events reported by the
OIE.
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Table 4.2: Parameters explored for global sensitivity analysis.

Parameter Definition Sample space
GBetaPh (𝛽) Global transmission rate for between farm local transmission (0.2, 0.25, 0.3, 0.35)
IntroductionRegion Region where the index case was simulated (Center, Coast, South, North)
V_coverage Initial vaccination coverage (homogeneous, 2019, 2020)
V_efficacy Vaccine efficacy (0.7, 0.8, 0.9)
CullingRate (𝜇𝑖) Local culling rate when the disease has been detected (0.0, 0.1, 0.12)
OREab Influence of the size of farm in the between farm local transmission rate (0.0, 0.1, 0.2)
OROeb Influence of the abundance of other species in the between farm local transmission rate (0.0, 0.1, 0.2)
ORLb Influence of the within cell movements in the between farm local transmission rate (0.0, 0.1, 0.2)
Movement restrictions Whether or not movement restrictions are implemented after the detection of a case (yes, no)
detection_effect Average number of days to detection and removal of infected farms after the first case has been detected (21, 14, 12)
EVCoverage Coverage of emergency vaccination (0.8, 0.95)

Team, 2020].

4.4 Results

The number of infected farms varied between 1 to 267 infected farms with a mean of 15, the number of

culled farms (for scenarios when culling was implemented) ranged from 2 to 733 with a mean of 47, and the

number of farms that required emergency vaccination (when implemented) ranged from 66 to 67,905 with a

median of 5,100.

The influence of the parameters explored via sensitivity analysis in the outcomes examined are presented in

Figures 4.2, 4.3, 4.4. The parameters most influential parameters for the number of infected farms included

the global transmission coefficient (GBeta), region of introduction of the index case (IntroductionRegion)

and the initial vaccination coverage (V_coverage). When comparing the initial vaccination coverage, the

average number of expected farms goes from 19 to 5.7 when a homogeneous vaccination coverage of 95% is

assumed.

For the total culled farms, the most influential parameters included the effect of animal density on the dis-

ease transmission (OREab) introduction region (IntroductionRegion) and the global transmission coefficient

(GBeta). Some interventions in our model showed to reduce the total number of culled animals drastically,

for example the implementation of movement restriction reduced the average number of culled animals from

137 to 50 and the reduction of average number of days to detection from 21 to 7 or 14 reduced the average

number of culled farms from 69 to 23.

The parameters most influential for the number of emergency vaccinated farms included the introduction

region (IntroductionRegion), the influence of the animal density in the transmission coefficient (IREab) and

the culling rate (CullingRate). When the index case was introduced in the Center or North as opposed to
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Figure 4.2: Global sensitivity analysis for the number of infected farms

Figure 4.3: Global sensitivity analysis for the total culled farms when culling was implemented.
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the Coast or South, the average number of farms vaccinated increased from 2.6 thousands to 7.6 thousands

of farms.

Figure 4.4: Global sensitivity analysis for the number of vaccinated farms when emergency vaccination was
implemented.

Based on the number of times a cell was infected for all the simulations, we generated risk maps with the

probability of infection under different scenarios of introduction of the index case (Figure 4.5). The average

number of infected farms was the highest when the disease was introduced in the south of the country with

an average number of infected farms of 21.6. When we look at the resources used to control the outbreaks,

the highest number of culled farms happened when the disease was introduced in the North with average

number of 38 farms, and the highest number of vaccinated farms was when the disease is introduced in the

Center with an average of 4660 farms.

To compare the interventions implemented in detail, we estimated the average proportion in the reduction

of farms infected (Figure 4.6). Reducing the average number of days to the detection of an infected case

showed the greatest effect in reducing the total number of infected farms (53.23%).
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Figure 4.5: Risk maps for the probability of infection based on the region the index case was introduced.

48



Figure 4.6: Reduction in the total number of infected farms presented as the proportionate reduction for
each of the outcomes analyzed.

4.5 Discussion

In this study we present a simulation model for transboundary infectious diseases using census and movement

data to inform the risk of spread for FMD in Ecuador. Our modeling approach using hexagonal grids

allowed us to incorporate the spatio-temporal transmission dynamics at a local and national level, and the

implementation of different strategies for FMD control while decreasing computation power and increasing

the speed to run the simulations. The disease spread pattern based on the region of introduction of the

index case suggests that an introduction in the South region of the country could result in larger outbreaks,

therefore should be targeted for reinforcement of the surveillance and preparedness. When looking at the

interventions individually, emergency vaccination had the lowest impact in reducing the total number of

infected farms, this might be because we are assuming that the vaccination coverage holds constant for each

cell over the simulation period and the vaccination proportion was already >80% for most of the country,

so increasing the vaccination coverage in response of the outbreak did not have as much effect as other

interventions in our simulations.

Due to the absence of the disease since 2008, we did not have any data available for the external validation

of our results and explore model fitting, so we used the global sensitivity analysis for internal validation.

The global sensitivity analysis showed some of the expected relationships between the parameters in the
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model (i.e. higher transmission coefficient resulted into larger outbreaks, higher vaccination coverage and

efficacy resulting into smaller outbreaks). The global sensitivity analysis also unraveled some interesting

relationships of the parameters and allowed us to estimate the magnitude and duration of the epidemic for

the different scenarios that can happen when the disease is introduced.

One limitation from of our approach include:is that the exact number of affected animals is not estimated.,

Although the animal density is incorporated with the intention to reflect the heterogeneity in the different

disease dynamics for the different size of farms, we did not included this explicitly and we limited our results

to describe the number of infected farms as opposed of the number of infected animals. Some of the known

risk factors for a increased susceptibility of farms to the disease are incorporated as the � parameters, but

the parametrization of this was challenging and we limited to just include them on the sensitivity analysis,

which only the influence of animal density showed high influence in the number culled and vaccinated farms .

Since our model is focused on the cattle population, disease spread in other species is not modeled explicitly

here, but we still incorporated the influence of the presence of other species in the between farm disease

transmission.

Very few models have been developed in endemic regions and the presented simulation model attempts to fill

the gap of knowledge regarding the disease transmission in a population that has been exposed to the virus

during for long periods of time. Several countries are investing millions of dollars annually in the eradication

process and models developed specifically for their scenarios like the one presented here could be highly

beneficial in providing valuable information to advance faster towards the final steps of eradication of the

disease.
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Section 5

Conclusion

Infectious disease often involve complex multi-factorial processes. Traditional epidemiological modeling such

as compartmental equation based models have proven to be useful for many cases and can be implemented

relatively easy, but can be limited when exploring in detail complex relationships involved in disease trans-

mission such as non-linearity, emergence of macro patterns form individual behaviors. In this dissertation

we presented an agent based modeling approach to explore in detail the impact of different diseases and

prevention and control strategies. We developed a ABM for each of the chapters which involved the imple-

mentation and evaluation of the presented models. We presented how can ABM can be used as an integrative

framework for both collected data and assumptions made about an event, and how can be useful to support

the decision making process.

The three chapters presented challenges in terms of data availability for parametrization and validation of the

model. For all the chapters, experts in the subject matter were consulted to represent the disease dynamics

as close as possible to reality while maintaining relatively low computing requirements, all the presented

models consumed around 30 min per 500 simulations. Having a computationally efficient model is especially

useful in situations that require quick action.

At the time of publication of chapter 1, there was still a lot of uncertainty regarding the vaccine efficacy in

vulnerable populations. Using the model developed we were able to estimate the impact of COVID-19 in a

long term care facility (LTCF) and evaluate the influence of different intervention strategies under different

assumptions of the effect of the vaccine and PPE in prevention of infections. Out model was calibrated used

observed outbreak data for LTCFs in California, the calibration was somehow limited in the sense that we did

not have detailed information regarding with interventions were being implemented in the observed LTCFs,
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but we still were able to reflect this uncertainty in our estimations. Using a ABM for this was particularly

useful to evaluate the role of testing frequency and community transmission.

Modeling endemic disease such as PRRS can represent a challenge because of the lack of case report data

for validation. The effect of the vaccination efficacy against PRRS can vary widely depending on the strain

infecting the population and the previous exposure to the disease, the ABM developed aimed to model more

accurate the infection dynamics of PRRS including the role of exposure and vaccination immunity in the

individuals. Using this approach allowed us to explore in detail other non-pharmaceutical interventions such

as herd closure and acclimation of the replacement sows, which resulted in contributed the most for the

control of an outbreak.

In chapter 3 we integrated concepts of compartmental, network and spatial models in an agent based frame-

work to represent the spatial and contact patterns heterogeneity of the population while maintaining a

constitutionally efficient model for the whole country of Ecuador. Our model estimated vulnerable regions

that could be more affected in a re introduction of FMD to the country. We also evaluated the effect of

interventions strategies and highlighted the importance of a early detection of the disease. Strategies such

as culling and emergency vaccination were also evaluated and we estimated the amount of resources needed

in case of an emergency. This information can be very valuable to update the current contingency strategies

for disaster epidemiology and guide the surveillance efforts for a more efficient resource allocation.

Using ABM allow us to estimate exactly how many individuals were affected and how many resources were

used to control the epidemic, this could provide an insight to evaluate the cost-effectiveness of interventions

accounting for multiple factors, which is something we hope to explore more in detail in the future. The

model developed can be adapted for different settings and diseases and all the code to reproduce the research

presented here is available in their respective repositories via github.com/jpablo91.

ABM is still a relatively recent field in epidemiological modeling, with the increasing availability of higher

computation resources ABM have become more commonly used as a tool for decision making. However,

there are may challenges and limitations when using these novel methodologies.

The flexibility that ABM offers in the model specification represents both an advantage and a challenge,

special attention must be put on the computing resources needed to run the model. Scaling a complex model

to a bigger population can be unfeasible when high detail is being modeled, hence, a balance between detail

of the model representing the reality and the computing power required must be achieved in order to have

an efficient model.

ABM relies heavily on theory and the understanding we have about a system, hence the model will only
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be as good as the assumptions made on defining the rules and the data used to parametrize it. With the

new advances in data collection and the advent of ‘Big Data’, more information is being becoming available

and the vast amount of information required for parametrizing and validating ABMs is becoming less of a

problem. ABM calls for interdisciplinary research in order to integrate better all the aspects involved when

representing complex problems, having the support of experts in the topic for each of the chapters of the

dissertation was critical for the development of the models.
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