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Abstract

We consider maximum likelihood (ML) estimation of mean and covariance

structure models when data are missing. Expectation maximization (EM),

generalized expectation maximization (GEM), Fletcher-Powell, and Fisher-

scoring algorithms are described for parameter estimation. It is shown how

the machinery within a software that handles the complete data problem can

be utilized to implement each algorithm. A numerical differentiation method

for obtaining the observed information matrix and the standard errors is

given. This method too uses the complete data program machinery. The

likelihood ratio test is discussed for testing hypotheses. Three examples are

used to compare the cost of the four algorithms mentioned above, as well as to

illustrate the standard error estimation and the test of hypothesis considered.

The sensitivity of the ML estimates as well as the mean imputed and listwise

deletion estimates to missing data mechanisms is investigated using three

artificial data sets that are missing completely at random (MCAR), missing

at random (MAR), and neither MCAR nor MAR.

Key Words: Factor analysis, Incomplete data, Listwise Deletion, Mean im-

putation, Missing data mechanism, Observed information, Test of hypothesis.



1 Introduction

In mean and covariance structure analysis, an important application of mul-

tivariate statistics, a simple random sample from a multivariate normal pop-

ulation with mean � and covariance Σ is drawn, and a hypothesized pa-

rameterization (structure) of the mean � = �(�) and the covariance matrix

Σ = Σ(�) is evaluated. Based on unstructured maximum likelihood (ML)

estimators of � and Σ, asymptotically efficient estimators of the parame-

ter vector �, the covariance matrix of the estimator, and goodness-of-fit χ 2

tests of the null hypothesis have been developed. A summary of this sta-

tistical theory can be found, for example, in Satorra (1992) and Browne

and Arminger (1995). Effective computational procedures for implement-

ing this theory exist in various standard computer programs such as EQS

(Bentler, 1995), LISREL (Jöreskog & Sörbom, 1988), MECOSA (Schepers

& Arminger, 1992), and SEPATH (Steiger, 1994), and have recently been

discussed by Arminger (1994), Browne and Du Toit (1992), and Cudeck,

Klebe, and Henly (1993).

This statistical theory, and its computational implementation, is based

on the assumption that there is no missing data. Unfortunately, this is an

empirically unlikely, if not actually untenable, assumption. In this paper we

review the foundations of the theory in the presence of missing data. For

the missing data mechanism we assume ignorable nonresponse, as defined by

Rubin (1987, Chapter 2). This assumption is satisfied if data are missing

completely at random (MCAR) or are missing at random (MAR) (see, Little

& Rubin 1987, Chapter 5). Briefly, data are said to be MCAR if their

missingness is independent of the missing values themselves or the observed

values of the other variables. Data are said to be MAR if the missing data

do not depend on the missing values themselves, but may depend on the

observed values of other variables. We refer to missing data mechanisms
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that are neither MCAR nor MAR as not missing at random (NMAR).

As we shall see, various approaches to handling missing data in this con-

text already have been developed. These approaches require specialized and

often complex computer routines for their implementation, which may ac-

count for the absence of theoretically adequate methods for handling missing

data in extant structural modeling programs. In this paper we consider four

algorithms that can be implemented in standard programs such as the ones

mentioned above with little difficulty. The key, as we show, is the method by

which the modules in a program that handles complete data problems, hence-

forth referred to as a complete data program, can be utilized to fit models to

incomplete data.

Heuristic methods to dealing with missing data certainly exist. The most

common of these use an estimate of the unstructured mean and covariance as

empirical data in a complete data program to obtain an estimate of �. Three

common examples of such methods are the mean imputation (MI) method,

the listwise deletion (LD) method, and the maximum likelihood imputation

(MLI) method. In each case the unstructured mean and covariance is ob-

tained as follows: The MI method replaces missing values of each variable

by the mean of the observed values from that variable and uses the mean

and the covariance of the completed data set as empirical data. The LD

method discards all the incomplete cases and uses the mean and covariance

based on completely observed cases. The MLI method uses maximum like-

lihood estimates of the unstructured mean and covariance that are obtained

by iterative imputation of the missing data (see e.g., Little & Rubin, 1987,

Chapter 8). Finkbeiner (1979) and Brown (1983) surveyed these and other

methods in the context of exploratory factor analysis. As they pointed out,

some of these methods result in bias and significant loss of efficiency when

the amount of missing data is substantial. Of the three methods mentioned

above, the MLI method was favored by Brown. Arminger and Sobel (1990)
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pointed out two main shortcomings of the MLI method: First, it is difficult

to obtain standard errors of estimates from this method because it is hard

to account for the variability of the unstructured mean and covariance esti-

mates used to obtain estimates of �. Second, this procedure’s estimates are

not as efficient as ML estimates that we will discuss shortly.

As opposed to the heuristic methods mentioned above, a model based

approach may be considered. More specifically, suppose x 1, · · · ,xn are iid

variables, completely or partially observed, from the p-variate normal distri-

bution N p(�(�),Σ(�)). Let y i denote the observed (non-missing) part of x i.

Then assuming ignorable nonresponse, y i has a marginal normal distribution

N pi(�i(�),Σi(�)), where p i is the number of elements of y i, and � i(�) and

Σi(�) are appropriate subvector and submatrix of �(�) and Σ(�). Then for

a given value of Y = (y 1, · · · ,y n) an estimate of � is obtained by maximizing

the the observed data log-likelihood

Ly(�|Y ) = −N
2

log(2π)− 1

2

n∑
i=1

{
log |Σ i(�)| + trace

[
Σ−1
i (�)Ci(�)

]}
, (1)

where, C i(�) = [y i − �i(�)] [y i −�i(�)]T and N =
∑n
i=1 pi. We denote the

value that maximizes (1) by �̂ and hereafter we refer to it as ML.

Finkbeiner (1979) proposed using �̂ in the context of exploratory factor

analysis when data are incomplete. Using a Monte Carlo study, he compared

�̂ to several heuristic estimates of �, a few of which were mentioned above,

and concluded that �̂ was superior. Muthén, Kaplan, and Hollis (1987) also

studied the ML estimates of � and concluded that these estimates were “su-

perior (to a number of methods that they tried) even in situations that (ML)

did not fulfill the prerequisite for it to be maximum likelihood.” Muthén

et.al. (1987) also discussed an extension of the maximum likelihood method

that modeled a missing data mechanism. As mentioned above, here we con-

sider only missing data mechanisms that satisfy the ignorable nonresponse

assumption.
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Finkbeiner (1979) proposed a Fletcher-Powell (FP) algorithm to obtain

�̂ for the factor analysis model. In his algorithm, the Fisher information

matrix is computed at the initial point and it is updated by the Fletcher-

Powell formulas (see e.g., Luenberger, 1984). Finkbeiner gave the necessary

formulas for implementing his algorithm for the exploratory factor analysis

model. Lee (1986) considered the covariance structure Σ(�) with �(�) = 0.

To estimate the parameters �, he proposed the generalized least squares and

ML methods. For the ML method, he suggested using the Fisher-Scoring

(FS) algorithm which, as he pointed out, is an iteratively reweighted Gauss-

Newton algorithm. He developed the relevant formulas for the confirmatory

factor analysis model. When data are missing, his assumption of zero means

causes his estimates not to be fully efficient unless the population mean is

known to be zero. His algorithm, however, can be extended to the case of

nonzero means.

To date, the methods, just discussed have not been implemented on any

of the standard software packages such as EQS or LISREL 1. This may be

because these packages generally handle models with mean and covariance

structures that are more complex than that of the factor analysis model.

Extending the formulas to accommodate these more complex models is cum-

bersome if one is to use the direct approach of implementing algorithms used

by Finkbeiner (1979) and Lee (1986). For example, computing the score

function, required in both the FP and the FS algorithms, by direct differ-

entiation of the observed log-likelihood can be complicated for the general

model. The formulas will depend on the structures and they require special

code. In this paper we show how these algorithms can be implemented using

existing modules in a complete data program.

A class of methods utilizes the complete data programs to obtain �̂. We

1Since the submission of this paper, Finkbeiner’s method has been implemented in
AMOS
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refer to these as complete data based methods. A complete data program

maximizes the the complete data log-likelihood

Lx(�|x̄,S) = −(n/2)
{
p log(2π) + log |Σ(�)|+

trace
[
Σ−1(�)

(
S − �(�)x̄T − x̄�(�)T + �(�)�(�)T

)]}
, (2)

for given values of S = (1/n)
∑n

i=1 xix
T
i and x̄ = (1/n)

∑n
i=1 xi, assuming

that xi’s have no missing values. Allison (1987), Muthén et. al. (1987), and

Arminger and Sobel (1990) described methods that use the multiple group

option of existing complete data programs (e.g., EQS and LISREL). The

idea is to treat every set of observations with the same missing data pattern

as a group and then impose equality restrictions on the parameters across

groups. However, as these authors have noted, their approach requires the

matrix of second order sample moments for each group (in this context for

each pattern of missing data) to be positive definite, so the number of ob-

served cases for each pattern has to be at least as large as the number of

variables observed for that pattern. This assumption is practically restric-

tive, and requires throwing out data for infrequent patterns. Bentler (1990)

suggested the improvement of collecting all data that would be discarded into

an additional group for which heuristic methods could be used to produce a

sample mean and covariance matrix. Although Bentler’s approach avoids dis-

carding data, it is not fully efficient. Jamshidian (1997) gave an extension of

the Expectation-Maximization (EM) algorithm of Rubin and Thayer (1982)

to obtain �̂ for the confirmatory factor analysis (CFA) model when data

are incomplete. Generalization of his algorithm, however, to more complex

mean and covariance structure models is not trivial. In addition Jamshid-

ian’s (1997) algorithm is a complete-data-based method, however, it does not

use (2) as the complete data log-likelihood.

To overcome the shortcomings of the complete data methods just dis-

cussed, here we propose an EM algorithm whose implementation for a gen-
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eral mean and covariance structure model is simple. It utilizes the modules

already available in a standard complete data program. Our main goal is to

facilitate extension of a complete data program to handling an incomplete

data problem for a general mean and covariance structure model. In Sec-

tion 2 we describe four algorithms for parameter estimation. In section 3

we discuss methods of obtaining standard errors. Section 4 discusses test of

hypothesis. Finally Section 5 contains examples to evaluate the procedures

discussed in sections 1–4. Moreover, an example is used to discuss sensitivity

of the very commonly used MI and LD estimates as well as the ML estimates

to the three missing data mechanisms of MCAR, MAR, and NMAR. Finally,

in Section 6 we give a summary and discussion.

2 Algorithms for Parameter Estimation

In this section we describe algorithms for computing �̂. In Section 2.1 we

propose an EM algorithm and a closely related generalized EM (GEM) al-

gorithm for obtaining �̂ (Dempster, Laird, & Rubin, 1977). In Section 2.2

we describe an acceleration of our EM and GEM algorithms. Finally in Sec-

tions 2.3 and 2.4 we describe the FS and the FP algorithms. The latter two

algorithms discussed are trivial extensions of those given by Lee (1986) and

Finkbeiner (1979) to a general mean and covariance structure. Our contri-

bution in this context is mainly to show how the components of each of these

algorithms can be computed using the available modules in a complete data

program.

To be more specific and for our future reference, we list three modules

that are generally available in a complete data program.

Module (a) A module that computes the gradient (score) of L x, at a point �, for

given values of x̄ and S. We denote this gradient by

gx(�|x̄,S) =
∂

∂�
Lx(�|x̄,S).
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Module (b) A module that computes the Fisher information matrix

Ix(�) = E

(
∂2Lx
∂�∂�

)
.

Module (c) A module, or collection of modules that maximize L x(�|x̄,S) with

respect to � for given values of x̄ and S.

The ith element of g x is given by

∂Lx
∂�i

=
n

2
trace

{
Σ−1(�)

[
S −Σ(�) + (�(�)− 2 x̄)�(�)T

]
Σ−1(�)

∂Σ(�)

∂�i
−

Σ−1(�)

[
2(�(�)− x̄)(

∂�(�)

∂�i
)T
]}

,

and the (i, j)th element of I x is given by

(Ix)ij = −n
2

trace

[
Σ−1(�)

(
∂Σ(�)

∂�i

)
Σ−1(�)

(
∂Σ(�)

∂�j

)
+

2Σ−1(�)

(
∂�(�)

∂�i

)(
∂�(�)

∂�j

)T .
Modules (a), (b), and (c) are, for example, available in EQS and LISREL for

the Bentler-Weeks (1980) and the LISREL models, respectively. We use (c)

for our EM and GEM algorithms, and use (a) and (b) for the FP and the FS

algorithms.

2.1 The EM and GEM algorithms

The EM algorithm of Dempster et. al. (1977) is a popular algorithm for

ML estimation. It cleverly exploits the relation between the complete and

incomplete data. The choice of complete data defines the algorithm. We

choose x1, · · · ,xn as the complete data for our algorithm. This choice is

a natural one for maximizing (1), but surprisingly has not been proposed

previously. It, for example, differs from that of Jamshidian (1997). The
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EM algorithm is comprised of two steps; an expectation step (E-step), and a

maximization step (M-step). At a point �, the E-step consists of computing

Q(� ′,�) = E ∗ [Lx(�′|x̄,S)] , (3)

where E ∗(·) = E(·|Y ,�). The M-step consists of maximizing Q(� ′,�) with

respect to � ′ to obtain a new point, say �̃. The iteration process continually

replaces � by �̃ and repeats the E and M steps until the sequence of values

of � hopefully converges to �̂. In our setting (3) can be written as

Q(� ′,�) = (−n/2)

{
p log(2π) + log |Σ(� ′)|+

trace
[
Σ−1(�′)

(
S∗ − �(� ′)(x̄∗)T − x̄∗�(�′)T + �(� ′)�(� ′)T

)]}
, (4)

where

S∗ = (1/n)
n∑
i=1

E∗
(
xix

T
i

)
(5)

and

x̄∗ = (1/n)
n∑
i=1

E∗ (xi) . (6)

To give explicit formulas for computing the expectations in (5) and (6)

we simplify our notation by temporarily dropping the i indices, and thus

we denote a typical case by x instead of x i. We use the imprecise but

convenient notation x T = (yTo ,y
T
m), where y o represents the observed part

of x (previously denoted by y i for case i) and y m is the missing part. Then

based on the observed and missing values we partition � and Σ as

� =

(
�o
�m

)
, Σ =

(
Σoo Σom

Σmo Σmm

)
,

where here we also drop the arguments of � and Σ whenever they are eval-

uated at �. Now

E∗(x) =

(
yo
y∗m

)
, (7)
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with y ∗m = �m + ΣmoΣ
−1
oo (y0 − �o), and

E∗(xxT ) =

(
yoy

T
o yo(y

∗
m)T

y∗my
T
o E∗(ymy

T
m)

)
, (8)

with

E∗(ymy
T
m) = Σmm −ΣmoΣ

−1
oo Σom + y∗m(y∗m)T .

Formulas (7) and (8) can be used to compute each term in the summations

(5) and (6) respectively. In practice the pattern of missing data varies from

case to case, and therefore the vector � and the matrix Σ are partitioned

according to each pattern. As an example, if p = 4 and for a case say only

variables 2 and 4 are observed, then y o will be a 2× 1 vector of the observed

values, � o is the subvector of � with its elements being the second and fourth

element of �, Σ oo is a 2 × 2 submatrix of Σ obtained by deleting the row

and columns 1 and 3, Σ om is the submatrix of Σ obtained by deleting rows

1 and 3 and columns 2 and 4 from Σ. Σ om and Σmm are similarly defined.

To recap, given a starting value �, the EM algorithm proceeds as follows:

Step 1. Compute S ∗ and x̄∗ defined in (5) and (6). This mainly involves

some simple matrix operations that do not depend on the structures of

�(�) and Σ(�).

Step 2. Maximize Q(� ′,�) with respect to � ′. Denote the maximum point

by �̃. Note that

Q(� ′,�) = Lx (�′|x̄∗,S∗) .

Therefore this step can be carried out by a complete data program [see

module (c)].

Step 3. If convergence is not achieved, replace � by �̃ and go to Step 1,

otherwise stop.

A disadvantage of the EM algorithm for our problem here is that its Step

2 is generally iterative. GEM, proposed by Dempster et. al. (1977) is a
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modification of EM that allows us to avoid iterations in Step 2. Instead of

requiring the maximum of Q(� ′,�) with respect to � ′, GEM only requires a

point �̃ in Step 2 such that

Q(�̃,�) > Q(�,�). (9)

Dempster et. al. (1977) showed that the GEM algorithm, like the EM

algorithm, is globally convergent. Theoretically any method can be adopted

in the GEM algorithm to obtain �̃. A good choice, however, results in faster

convergence. We propose using one step of the Fisher-Scoring algorithm

with step-halving (see e.g., Lee & Jennrich, 1979). This gives a point �̃

that satisfies (9). Our choice of the Fisher-scoring step is also motivated by

the fact that existing programs and recent theoretical discussions (see e.g.,

Cudeck et. al., 1993 and Browne & Du Toit, 1992) use and recommend

starting their iterative process in the direction of the Fisher-scoring step.

2.2 The QN1 Algorithm

It is well-known that the EM and GEM algorithms converge slowly when

applied to some problems. A number of methods have been proposed to

accelerate the EM algorithm. Jamshidian and Jennrich (1997a) give a short

review of these methods and propose “a pure accelerator”, which they call

QN1. It is called a pure accelerator since it only uses the EM steps for ac-

celeration, and it is called QN1 since it is the first of the two acceleration

methods based on the quasi-Newton algorithm that they proposed. Practi-

cally any accelerator can be used here. We chose QN1 since it is both simple

to implement and effective in accelerating the EM algorithm.

To describe the QN1 algorithm, let g̃(�) denote the EM step at �. That

is g̃(�) = �̃−�, where �̃ is obtained by using one cycle of the EM algorithm

described in Section 2.1, starting from �. Then the QN1 algorithm proceeds

as follows:
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Starting with � and A = −I , the negative of the identity matrix,

Step 1. Compute g̃ = g̃(�), ∆� = −A g̃, and ∆ g̃ = g̃(� + ∆�)− g̃.

Step 2. Using ∆� and ∆ g̃, replace A by A+ ∆A, where

∆A =
(∆� −A∆ g̃)∆�TA

∆�TA∆g̃
.

Step 3. If convergence is not achieved, replace � by � + ∆�, g̃ by g̃ + ∆ g̃,

and go to Step 1, otherwise stop.

The QN1 algorithm was proposed by Jamshidian and Jennrich (1997a)

to accelerate the EM algorithm. In examples of Section 5 we have used QN1

to accelerate the GEM algorithm. This is done by substituting the EM step

g̃ by the GEM step �̃ − �. Our experience with the examples of Section 5

shows that this acceleration is as effective for the GEM algorithm as it is for

the EM algorithm.

2.3 The Fisher-Scoring Algorithm

In this section we describe the FS algorithm proposed by Lee (1986). We

extend Lee’s work by showing how the FS algorithm can be implemented

using complete data routines. Starting at an initial point �, the FS algorithm

proceeds as follows:

Step 1. Compute I y(�) = E(∂ 2Ly/∂�∂�), the Fisher-information matrix

at �, and g y(�), the gradient of L y at �.

Step 2. Set ∆� = −I −1
y (�)gy(�).

Step 3. Set α = 1, �̃ = � + α∆�. If L y(�̃) > Ly(�) go to Step 4, otherwise

continue halving α until L y(�̃) > Ly(�).

Step 4. If convergence is not achieved, replace � by �̃ and go to Step 1,

otherwise stop.
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Note that each iteration requires computation of the gradient and the Fisher-

information matrix. We show how these quantities can be obtained using

modules in a complete data program.

Using a result due to Fisher (1925) it can be shown that

gy(�) = E ∗
[
∂

∂�
Lx(�|x̄,S)

]
= gx(�|x̄∗,S∗). (10)

This result relates the gradients of the complete and observed data log-

likelihoods. More specifically it reveals that g y(�) can simply be obtained

by inputting x̄∗ and S∗ in place of x̄ and S in the gradient module of a

complete data program [see module (a)].

The (k, l)th element of the Fisher-Information matrix I y(�) is given by

[I y(�)]kl = (−1/2)
n∑
i=1

trace
{
Σ−1
i (�)

(
∂Σi(�)

∂�k

)
Σ−1
i (�)

(
∂Σi(�)

∂�l

)
+

2Σ−1
i (�)

(
∂�i(�)

∂�k

)(
∂�i(�)

∂�l

)T}
, (11)

where � k and � l are the kth and lth elements of �. I y does not depend on the

observed values themselves, but it does depend on the pattern of missing data

through Σ i and �i. A routine that computes the Fisher-information matrix

for a complete data problem [see module (b)] can be used once for every

existing pattern of missing data to obtain each summand in (11). Then I y is

obtained as a weighted average of the Fisher-information matrices obtained

for each pattern with the weights being the number of cases observed for that

pattern.

2.4 The Fletcher-Powell Algorithm

Finkbeiner (1979) used the FP algorithm to obtain �̂ in the context of ex-

ploratory factor analysis. We give this algorithm for the case of general mean

and covariance structures.

Starting at a point �, obtain B = −I −1
y (�) and proceed as follows:
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Step 1. Set d = Bg y(�).

Step 2. Maximize L y(� + αd) with respect to α to obtain �̃ and set ∆� =

αd.

Step 3. Compute g y(�̃) and set ∆g = g y(�̃)− gy(�).

Step 4. Replace B by B + ∆B, where

∆B =
∆�∆�T

∆�T∆g
− (�TB∆g)2

∆gTB∆g

Step 5. If convergence is not achieved replace � by �̃ and go to Step 1,

otherwise Stop.

As described in Section 2.3, g y(�) and I y(�) can be computed using complete

data routines.

3 Computing Standard Errors

Presently popular software packages in mean and covariance structure analy-

sis produce standard errors for the parameter estimates based on the inverse

of the Fisher information matrix. This can also be done for the missing data

problem by using the Fisher information as defined in (12). If we follow this

approach, as we may, there is nothing further on this topic that needs dis-

cussion. There are other alternatives, however, that may be computationally

more feasible while being theoretically at least as defensible.

Let H( �̂) denote the negative of the Hessian of L y(�), known as the

observed information matrix. To obtain standard errors, Efron and Hinkley

(1978) suggested using V ( �̂) = H−1(�̂). This quantity has not received much

attention in the area of mean and covariance structure analysis probably be-

cause analytic computation of H( �̂) is generally complex for many problems
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in this area. Dolan and Molenaar (1991) used these standard errors as “ex-

act SEs” against which they evaluated alternatives such as those based on

the Fisher information matrix in the context of covariance structure analysis

without missing data.

There have been a few proposals for computing H(�), specially in the

context of missing data and the EM algorithm. Jamshidian and Jennrich

(1997b) give a review and propose a method that in their experience worked

well. Their method uses the first order Richardson extrapolation of the center

difference to differentiate the score vector. More specifically, they propose

approximating the jth column of H( �̂) by

Gj(�) = −
gy(� − 2hjej)− 8gy(� − hjej) + 8gy(� + hjej) − gy(� + 2hjej)

12hj
,

(12)

where e j is the unit vector with all of its elements equal to zero except for its

jth element which is equal to 1, and h j = 10−4 max(1, |� j |) with � j denoting

the jth element of �. Thus

H̃(�̂) = [G1(�̂), · · · , G q(�̂)] (13)

is used to approximate H( �̂), where q is the number of parameters in �. Note

that H̃(�̂) may not be symmetric. Jamshidian and Jennrich (1997b) propose

using the degree of asymmetry in H̃(�̂) to predict the accuracy of H̃(�̂) as an

estimate of H(�). We will assess the accuracy of H̃(�̂) for our examples of

Section 5 and see how well the asymmetry can predict its numerical errors.

4 Test of Hypothesis

In a mean and covariance structure analysis it is of interest to test the null

hypothesis

H0 : Σ = Σ(�), � = �(�). (14)
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for a given mean and covariance structure �(�) and Σ(�), versus the alter-

native that the mean vector and the covariance matrix have no structure.

For this, we propose using the likelihood ratio test

λ =
maxΩ0Ly(�)

maxΩLy(�)
. (15)

where Ω represents the space of p by p symmetric matrices and p dimensional

vectors over which Σ and � vary respectively, and Ω 0 is the subspace of Ω

restricted by the null hypothesis (14). It is well-known that −2 log λ, under

the normality assumption, is asymptotically distributed as χ 2 with degrees

of freedom equal to the difference between the dimensions of Ω and Ω 0. The

χ2 test is of course well known. However, it seems not to have been discussed

in the context of mean and covariance structures with missing data.

Note that −2 log λ = −2[L y(�̂) − Ly(�̄)], where �̂ is the ML estimate

obtained under the structure imposed by (14), and �̄ is the maximum of L y

under the assumption that there is no structure on � and Σ. Both �̂ and �̄

can be obtained using any of the algorithms described in Section 2.

In cases where the hypothesis (14) is not rejected, one may wish to con-

sider testing a more restricted hypothesis. More generally, one may wish to

test the null hypothesis

H0 : Σ = Σ(�), � = �(�), � ∈ Ω 0

versus the alternative hypothesis

HA : Σ = Σ(�), � = �(�), � ∈ Ω A

where Ω 0 is a subspace of Ω A. For this, the ratio

λ =
maxΩ0  Ly(�)

maxΩA  Ly(�)
, (16)

may be considered. Again, −2 log λ is distributed asymptotically as χ 2 with

the degrees of freedom being the difference between the dimensions of Ω 0 and

ΩA.
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5 Examples

In this section we use CFA examples to discuss some of the methods men-

tioned above. In Section 5.1 we compare the cost of the algorithms of Section

2. In Section 5.2 we investigate the effect of missing data mechanism on the

ML, MI, and LD estimates using one example. Sections 5.3 and 5.4 apply

and evaluate the standard error and test of hypothesis procedures of Sections

3 and 4 to our examples.

In the CFA model

Σ(�) = ΛΦΛ T + Ψ,

where Λ is a p by k matrix of factor loadings, Φ is the matrix of factor

covariances, and Ψ is a diagonal matrix containing the unique error variances.

As is usual in CFA, we allow some elements in (Λ,Φ,Ψ) to be fixed to constant

values. In all of our examples we assume no structure on �(�), but we do

not assume it to be zero. Thus, for our examples, elements in � consist of

the p parameters in � and the free parameters in Λ, Φ, and Ψ.

Our first example is similar to one of the examples used by Finkbeiner

(1979). We generated 64 data points from a multivariate normal distribution

with mean zero and covariance obtained from the population parameters

ΛT =
(−.35 .90 .30 −.60 .00 .00
.00 .00 .20 .60 −.90 −.35

)
,

diag(Ψ) = ( .8775 .1900 .8700 .2800 .1900 .8775 ) ,

and Φ = I . The sample size of 64, as Finkbeiner notes, is very near the

borderline between large and small samples. We then created missing data

using the pattern named “m = 1” by Finkbeiner (1979). In this pattern,

there are 13 complete data cases, and 51 cases with missing variables ranging

from 1 to 3. The model used, restricts the zero elements in population Λ to

zero and fixes Φ = I .
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For our second example we generated 200 data points from a multivariate

normal distribution with mean zero and covariance matrix equal to that given

on page 98 of Jöreskog and Sörbom (1988). This covariance matrix is based

on the nine psychological variables chosen by Jöreskog and Sörbom (1988)

from the Holzinger and Swineford (1939) study. We created missing data by

deleting 20% of the generated data points at random. This resulted in 75

different missing data patterns with the number of missing variables for each

pattern ranging from 1 to 5. There were 30 complete cases. We fit the CFA

model described by Jöreskog and Sörbom (1988, page 104) to the resulting

data set. The model fit to this data was chosen by Jöreskog and Sörbom on

the basis of post-hoc model modification. Hence it may or may not be the

“true” model for this covariance matrix.

Our third example shows the performance of the algorithms on a problem

with a large number of parameters (174 parameters). Two hundred cases

were generated from a multivariate normal distribution with mean 0 and

covariance matrix obtained using the following population parameters: Φ =

I , the 7 by 7 identity matrix, Ψ a diagonal matrix with its diagonal elements

chosen uniformly from the interval (0, 1), and Λ T = ( I Λ̃T ) with Λ̃ being

a 17 by 7 matrix of uniform numbers from the interval (0, 1). To have some

missing data, we deleted a 50 by 12 matrix from the top right and a 50 by

12 matrix from the bottom left of the 200 by 24 data matrix. The model

used to fit to the data fixed the upper 7 by 7 matrix in Λ as well as Φ to the

identity. This example is similar to Example 6 of Jamshidian and Jennrich

(1994).

5.1 Cost of algorithms

In this section we compare the cost of the GEM, QN1, FS, and FP algorithms

described in Section 2. We measure cost by the number of floating point op-

erations (FLOPs) required for convergence. The MATLAB program that we
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used to code our algorithm counts the required FLOPs. Our comparison does

not include the EM algorithm because for our examples the EM algorithm

consistently had a higher cost than GEM. The cost per iteration for the EM

algorithm is more than that of GEM in its Step 2. Generally, however, EM

requires fewer iterations to converge than GEM, but the difference in the

number of iterations often is not large enough to offset the extra cost per

iteration of the EM algorithm. Also close to the solution, �̃ in the Step 2

GEM is very close to that of EM, making EM and GEM behave similarly

close to the solution.

For starting values, we used MI estimates described in Section 1. As in

Jamshidian and Jennrich (1994), we take a few GEM steps before starting

the accelerator QN1. More specifically, we continue taking GEM steps until

the relative gradient (Khalfan, Byrd, & Schnabel, 1993)

rg = max
i

[∣∣∣[gy(�)
]
i

∣∣∣ max{|[� + ∆�] i|, 1}
max{|L y(� + ∆�)|, 1}

]
,

is less than or equal to 10 −2 . Analogously, to start the FP algorithm we take

Fisher-scoring steps until rg ≤ 10 −2 . These initial steps improve on the MI

initial values at which QN1 and FP start. The FP algorithm requires a line

search algorithm in its Step 2. For this we used that used by Jamshidian and

Jennrich (1997a). We stop our algorithms if rg ≤ 10 −6 . This convergence

criterion was recommended by Khalfan et al. (1993). It results in about six

decimal places of accuracy in the value of the log-likelihood and about three

to four digits of accuracy in the parameter estimates.

The results of our comparisons for Examples 1–3 are shown in Table

1. For Example 1, FS required half as many iterations as GEM, but both

algorithms required about the same number of FLOPs. This is because of

the higher cost per iteration of FS on this example. QN1 is faster than GEM

by a factor of about 1.6. FP is the fastest algorithm for this example, both

in terms of the number of iterations and the number of FLOPs. Compared
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Table 1: Cost comparison of four algorithms on Examples 1, 2, and 3

Example 1 Example 2 Example 3

Method Iter. FLOPS/10 5 Iter. FLOPS/10 6 Iter. FLOPS/10 8

GEM 25 5.4 78 11.7 78 5.7

QN1 14 3.3 16 2.5 28 2.1

FS 12 5.5 100 40.6 42 4.5

FP 8 2.8 10 2.9 26 1.0

to QN1, however, it is only faster by a factor of 1.2.

For Example 2, QN1 was the fastest algorithm, accelerating GEM by a

factor of 4.7. While FP required a smaller number of iterations than QN1 for

this example, FP had a higher cost than QN1 on this example. This higher

cost is due to the fact that FP’s line searches at each iteration required two

function-gradient evaluations causing its cost per iteration to be almost twice

as that of QN1. The FS algorithm did not perform well on this example. We

stopped FS after 100 iterations. At this point rg = 10 −4 and the cost of FS

was about 16 times as that of QN1.

For Example 3, GEM was the slowest algorithm closely followed by FS.

QN1 accelerated GEM by a factor of about 2.7. FP was the fastest algorithm,

beating QN1 by a factor of about 2.1. The number of iterations for QN1 and

FP are close, but as opposed to the previous example the cost per iteration of

FP is less than that of QN1 here. This is because for this example, in its Step

2, QN1 requires inversion of a 174 by 174 matrix at every iteration. Such an

operation is not required by FP, at least after the few initial Fisher-scoring

steps that are taken.

To conclude this section, FP and QN1 are close competitors on our exam-

ples. FS does not perform very well overall. GEM is the simplest algorithm
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to implement, however, since QN1 effectively accelerates GEM and is a sim-

ple modification of GEM, it should be considered. An advantage of GEM

over QN1 is its global convergence property.

5.2 The effect of the missing data mechanism

As noted in the Introduction theoretically the ML estimator �̂ requires the

missing data mechanism to be either MCAR or MAR. In this section we use

one example to discuss sensitivity of the ML estimates to the missing data

mechanism. We also compare the ML estimates to the often used MI and

LD estimates. The example here is mainly to give insight. Based on our

experiments with a number of examples, the results discussed here seem to

be very typical. A simulation study of these results would indeed be valuable.

Our example in this section starts with a complete data set having 500

cases generated artificially from a multivariate normal population with � = 0

and covariance matrix obtained from the population parameters

ΛT =

 .81 .66 .77 0 0 0 0 0 .54
0 0 0 .86 .97 .78 0 0 0
0 0 0 0 0 0 .74 1 .5

 , Φ =

 1 .55 .40
.55 1 .25
.40 .25 1

 ,
and diag(Ψ) = (.54, .91, .61, .23, .24, .32, .53, .12, .41). These population

values are the ML estimates obtained in the Example 2 above. The sample

size of 500 was used to have small sampling variability to better illustrate

the effect of missingness. Using the 500 by 9 data matrix, we created three

data sets with missing data by the following three procedures: (i) Delete

each data point with a probability of .25, using a uniform random number

generator. This gives an MCAR data set. (ii) Standardize observed values

of the variable 1 to have mean 0 and variance 1. Denote the ith case of the

standardized variable by v i1. For i = 1, · · · , 500 and j = 2, · · · , 9, calculate

uij = vi1 + zij , where z ij ’s are independent observations from the standard

normal distribution. Delete the (i, j)th observation if u ij > .8. This results
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in an MAR data set. Note that no missing values are created in variable

1, and the missingness on variables 2–9 depend on the values observed for

variable 1. (iii) Let u ij = vij + zij , where z ij is as defined above and v ij is the

i-th case of the variable j standardized to have mean 0 and variance 1. For

i = 1, · · · , 500 and j = 2, · · · , 9 delete the (i, j)th observation if u ij > .8. This

gives a data set that is NMAR. Note that again there are no missing values

in variable 1, and the missingness in variables 2–9 depends on the missing

values themselves. These three procedures resulted in approximately 25%

missing data in each case. The MCAR data have 187 patterns of missing

with 44 complete cases. The MAR data have 154 patterns of missing and

144 complete cases, and the NMAR data have 162 patterns of missing with

66 complete cases.

Figure 1 contains 9 plots comparing the three methods ML, MI, and

LD on the three data sets just described. The vertical axis of each plot

is the difference between the values of the population parameters and their

corresponding estimates obtained from each of the three methods mentioned.

The horizontal axis of each plot shows the parameter numbers. Parameters

1–9 are the mean parameters �, parameters 10–19 are the free (nonzero)

parameters in Λ, parameters 20–22 are parameters in Φ, and parameters

23–31 are parameters in Ψ.

The MCAR data: The plots in the first column of Figure 1 show the errors

in the ML, MI, and LD estimates for the MCAR data set. The ML errors,

shown in Figure 1(a), are very close to zero. In fact Figure 1(a) is very similar

to the plot obtained when fitting the model to the 500 by 9 complete data.

(We have not included the complete data plot here.) Overall, the MI errors

for estimates of �, Φ, and Ψ are only a bit larger than their corresponding ML

errors. What stands out, however, is that the MI estimates of Λ are biased

in this case. The LD estimates do not show any bias, but their errors seem

to be larger than both the ML and the MI. The main reason for the larger
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Figure 1: Comparison of ML, MI, and LD on three data sets
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LD errors is that the LD estimates are based on a sample of size n = 44.

Unbiasedness of the LD may be explained by the fact that the sample used

here is a random subsample of the sample of size n = 500.

The MAR data: As expected, the ML errors in this case, shown in Figure

1(b), are small and no bias is apparent. The MI errors in Figure 1(e) also have

small errors. Note, however, that the MI estimates of both � and Λ show a

slight bias. The LD errors, shown in Figure 1(h), are larger as compared to

errors in Figures 1(b) and 1(e). Again this is mainly due to a smaller sample

used by LD. The bias in estimates of � stands out clearly. In fact three of

the parameters in µ had errors larger than .5 and are not shown in Figure

1(h).

The NMAR data: It is of interest to investigate ML estimates for data

that are neither MCAR nor MAR. Figure 1(c) shows ML errors for our

NMAR data. These errors are larger than the ML errors of our MCAR and

MAR data. Also all the parameter estimates show bias. For this data, the MI

estimates have even larger errors than the ML estimates with bias apparent

in the estimates of Λ, �, and Φ. Interestingly, the ML and MI errors of the

first parameter in � is small. Recall that the first variable in the NMAR

data does not have any missing values. Finally, as shown in Figure 1(i), the

LD estimates of the NMAR data are very poor. The estimates of � were

biased with a minimum error of .7. Again estimates of Λ and to some extent

Ψ also show bias.

To summarize, as expected ML performed well under the MCAR and

MAR missing data mechanisms, and overall the ML estimates were superior

to the MI and LD estimates. For the NMAR data, all three methods pro-

duced biased estimates with LD having the largest bias. The MI estimates

were biased in all cases, and the LD estimates were biased for the MAR and

the NMAR data sets.
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5.3 Standard errors

In this section we assess the accuracy of the H̃(�̂) for the Examples of Section

5.1. To do this comparison, we use the Maximum Relative Error (MRE)

MRE = max
`

`T (H−1(�̂)− H̃−1(�̂))`

`TH−1(�̂)`
(17)

introduced by Jamshidian and Jennrich (1997b). This is the upper bound in

the relative error when estimating the variance of an arbitrary linear combi-

nation `T �̂. For example, when ` = e j MRE indicates the maximum relative

error in estimating the standard error of the jth element of �̂. For our exam-

ples, we obtained the values of H( �̂) by analytical differentiation of L y(�).

The MRE’s for Examples 1–3 were 3 × 10 −9 , 2 × 10−11 , and 1 × 10−10 ,

respectively. These values indicate that H̃(�̂) is practically identical to H( �̂).

This is impressive since the analytic derivation and coding of the the deriva-

tives required for H( �̂) is much more complex than that required for H̃(�̂).

In fact the difference in complexity increases as the structures imposed on

the mean and covariance increases.

As noted in Section 3, the asymmetry in H̃(�̂) can be used to measure

numerical errors. Jamshidian and Jennrich (1997b) suggest using

M̂RE = max
`

`T (H̃−1(�̂)− (H̃−1(�̂))T )`

`T H̃−1(�̂)`
(18)

to estimate the MRE’s. For Examples 1–3 the values of M̂RE were 1× 10 −9 ,

6×10−11 , and 2×10−9 , respectively. Comparison of these values to the MRE

values shown above indicates that M̂RE is a very good estimate of MRE.

Finally, we evaluate standard errors of ML and LD for the MACR, MAR,

and NMAR data sets of Section 5.2. Note that standard errors of the MI

estimates are not easy to obtain since it is hard to account for the variability

of the imputed mean values. Figures 2(a)-(c) show the standard errors of ML

(heavier line) and LD (lighter line) estimates of the MCAR, MAR, and the
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Figure 2: The standard errors for ML and LD
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NMCAR data. In all three figures the standard errors correctly reflect the

smaller errors in the ML estimates as compared to LD estimates. The ML

standard errors for both MCAR and MAR are very close. The LD standard

errors of MAR are smaller than those of MCAR. This is because the MAR

data set has 144 complete cases whereas our MCAR data set has only 44

complete cases. The ML standard errors of the NMAR data are as small

as the ML standard errors of the MCAR and MAR data. Comparing the

variability of the ML errors in Figures 1(a)–1(c) to their corresponding vari-

ability measured by the standard errors shown in Figures 2(a)–2(c), it seems

that the standard errors underestimate the variability of the ML estimates

for the NMAR data.

To summarize this section, H̃(�̂) approximates H(�) very well. These

standard errors reflect variability of the ML and LD estimates for the MCAR

and MAR data set well. They, however, underestimate the variability of ML

and LD estimates for our NMAR data.

5.4 Test of hypothesis

We have used the likelihood ratio test (16) to test the structures that we

assumed for our Examples 1 to 3 of Section 5.1. Table 5 gives the values
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Table 2: The restricted and unrestricted values of the log-likelihood, the
value of −2 log λ, degrees of freedom, and p-values for examples 1 to 4 of
Section 3.

Example 1 2 3

maxΩ0 Ly(�) -436.93 -1880.10 -4701.82

maxΩ Ly(�) -432.55 -1840.68 -4622.10

−2 log λ 8.76 78.83 159.44

d.f. 7 23 150

p-values 0.2703 0.0000 0.2835

L(�̂), L(�̄), −2 log λ, the degrees of freedom, and the associated p-value for

our examples. Recall that the data for the Examples 1 and 3 were generated

using the same structure that we used in our model. Therefore we expect

not to reject the null hypothesis (15) for these examples. Indeed the p-values

are in accordance with our expectation.

The p-value for Example 2 does not support the hypothesized model in

Example 2. To investigate whether this was caused by the missing data or

that in fact the model does not fit the covariance matrix used to generate

the data, we tested the model using 10 complete data sets generated from

the covariance matrix of Example 2. Using the significance level of .01, the

model was rejected in 9 out of 10 cases. So the results for both the missing

data case and the complete data case are consistent. The model proposed

by Jöreskog and Sörbom (1988) based on post-hoc model modification may

not be a good one for the given covariance matrix.
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6 Summary and discussion

One of our aims in this paper was to show how complete data programs and

the machinery within them can be used to obtain maximum likelihood esti-

mates of the parameters in a mean and and covariance structure model when

data are incomplete. As this idea was presented for a number of algorithms

in Section 2, it can be used with most gradient optimization algorithms to

maximize the observed likelihood function when data are missing. The algo-

rithms discussed can also be extended to estimate parameters of mean and

covariance structure models with grouped incomplete data. The key is to

obtain S ∗ and x̄∗ for each group separately using Equations (5) and (6).

These quantities then can be utilized in formulation of a GEM algorithm or

in obtaining the gradient, using the Fisher’s identity (10), to formulate an

FS or FP algorithm much the same way as we did for the single group case

in Section 2.

The method of Jamshidian and Jennrich (1997b) to computing the ob-

served information for standard errors, described in Section 3, is simple and

produces very accurate results. Two points of caution, however, about the

observed information standard errors are as follows: (i) if data are NMAR,

these standard errors seem to underestimate the variability of ML estimates.

(ii) These standard errors are not valid for the MI method, as they do not

take into account the variability of the imputed means.

Our brief investigation of bias in Section 5.2 showed that ML estimates

may be biased for data that are NMAR. MI estimates are generally biased

and LD estimates are not biased for the MCAR data, but are biased for

MAR and NMAR missing data mechanisms.

With regard to test of hypothesis we discussed the likelihood ratio test in

Section 4 and gave examples in Section 2.4. Satorra (1989) has reviewed a

number of other statistics for the complete data problem. Computationally
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these statistics can be obtained using the methods discussed here. For exam-

ple, if �̃ is an estimate of the parameters obtained under a set of restrictions

a(�) = 0 then the statistic associated with the score test in our context is

S = ngT
y (�̃)H−1(�̃)gy(�̃).

gy(�̃) can be obtained from a complete data program using Fisher’s identity

(10), and H( �̃) can be obtained using the Jamshidian and Jennrich (1997b)

method. What is of interest and requires further research is to determine

the asymptotic distribution of S and possibly the other statistics discussed

in Sattora (1989) in presence of missing data.

Finally note that in addition to the assumptions of MCAR and MAR,

the assumption of multivariate normality of the data made here is needed for

the ML estimates to be asymptotically most efficient. The effect of depar-

tures from normality on the ML estimates discussed may be another topic

of research. We think, however, that this effect should not be any different

than that for the complete data case.
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