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Improving rigor and reproducibility 
in western blot experiments 
with the blotRig analysis
Cleopa Omondi 1, Austin Chou 1, Kenneth A. Fond 1, Kazuhito Morioka 1, Nadine R. Joseph 1, 
Jeffrey A. Sacramento 1, Emma Iorio 1, Abel Torres‑Espin 1,3,4, Hannah L. Radabaugh 1, 
Jacob A. Davis 1, Jason H. Gumbel 1, J. Russell Huie 1,2* & Adam R. Ferguson 1,2*

Western blot is a popular biomolecular analysis method for measuring the relative quantities of 
independent proteins in complex biological samples. However, variability in quantitative western 
blot data analysis poses a challenge in designing reproducible experiments. The lack of rigorous 
quantitative approaches in current western blot statistical methodology may result in irreproducible 
inferences. Here we describe best practices for the design and analysis of western blot experiments, 
with examples and demonstrations of how different analytical approaches can lead to widely varying 
outcomes. To facilitate best practices, we have developed the blotRig tool for designing and analyzing 
western blot experiments to improve their rigor and reproducibility. The blotRig application includes 
functions for counterbalancing experimental design by lane position, batch management across gels, 
and analytics with covariates and random effects.

Keywords  Western blot, Analytical chemistry, Antibodies, Biostatistics, Computational biology, 
Computational chemistry

Abbreviations
AAALAC	� American association for accreditation of laboratory animal care
ARRIVE	� Animal research reporting of in vivo experiments
AVMA	� American veterinary medical association
IACUC​	� Institutional animal care and use committee
qWB	� Quantitative western blot
ELISA	� Enzyme linked immunosorbent assay
SARS-CoV2	� Severe acute respiratory syndrome coronavirus 2
ANCOVA	� Analysis of covariance
ANOVA	� Analysis of variance
SCI	� Spinal cord injury
SNI	� Spared nerve injury
AMPA	� α-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid
GluA1	� Glutamate receptor 1
GluA2	� Glutamate receptor 2
LMM	� Linear mixed models
TTBS	� Tris-buffered saline containing 0.1% Tween 20
PAGE	� Polyacrylamide gel electrophoresis
SEM	� Standard error of mean

Proteomic technologies such as protein measurement with folin phenol reagent were first introduced by Lowry 
et al. in 19511. The resulting qualitative data are typically confirmed by a second, independent method such 
as western blot (WB)2,3. The WB method, first described by Towbin et al.4 and Burnette5 in 1979 and 1981, 
respectively, uses specific antibody-antigen interactions to confirm the protein present in the sample mixture. 
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Quantitative WB (qWB assay) is a technique to measure protein concentrations in biological samples with four 
main steps: (1) protein separation by size, (2) protein transfer to a solid support, (3) marking a target protein 
using proper primary and secondary antibodies for visualization, and (4) semi-quantitative analysis6. Importantly, 
qWB data is considered semi-quantitative because methods to control for experimental variability ultimately 
yield relative comparisons of protein levels rather than absolute protein concentrations2,3, 7, 8. Similarly, western 
blotting applying ECL (enhanced chemiluminescence) is considered a semi-quantitative method because it lacks 
cumulative luminescence linearity and offers limited quantitative reproducibility9. However, the emergence of 
highly sensitive fluorescent labeling techniques, which exhibit a wider quantifiable linear range, greater sensitiv-
ity, and improved stability when compared to the conventional ECL detection method, now permits the legiti-
mate characterization of protein expression as linearly quantitative10. Current methodologies do not sufficiently 
account for diverse sources of variability, producing highly variable results between different laboratories and 
even within the same lab11–13. Indeed, qWB data exhibits more variability compared to other experimental tech-
niques such as enzyme linked immunosorbent assay (ELISA)14. For example, results have shown that qWB can 
produce significant variability in detecting host cell proteins and lead to researchers missing or overestimating 
true biological effects15. This in turn results in publication of irreproducible qWB interpretations, which leads 
to loss of its credibility13. In the serious cases, qWB results may even provide clinical misdiagnosis16 that could 
impact on a larger public health concern due to the prevalence of WB in biomedical research, such as diagnosis 
of SARS-CoV2 infection17.

The process of recognizing and accounting for variability in WB analyses will ultimately improve reproduc-
ibility between experiments. A growing body of studies has shown that this requires a fundamental shift in the 
experimental methodology across data acquisition, analysis, and interpretation to achieve precise and accurate 
results2,3,11–13.

Here we highlight experimental design practices that enable a statistics-driven approach to improve the 
reproducibility of qWBs. Specifically, we discuss major sources of variability in qWB including the non-linearity 
in antibody signal2,3; imbalanced experimental design13; lack of standardization in the treatment of technical 
replicates3,18; and variability between protein loading, lanes, and blots2,7,19. To address these issues, we provide 
new comprehensive suggestions for quantitative evaluation of protein expression by combining linear range 
characterization for antibodies, appropriate counterbalancing during gel loading, running technical replicates 
across multiple gels, and by taking careful consideration of the analysis method. By applying these experimental 
practices, we can then account for more sources of variability by running analysis of covariance (ANCOVA) or 
generalized linear mixed models (LMM). Such approaches have been shown to successfully improve reproduc-
ibility compared to other methods13.

Good options for qWB protein bands analysis using free, downloadable tools are available for researchers. 
Amongst others, LI-COR Image Studio Lite can be used to measure the intensity of protein bands in western 
blots and calculate their relative abundance. Likewise, ThermoFisher ImageQuant Lite offers features such as the 
ability to perform background subtraction and normalization. However, to date, no specific tools are freely avail-
able to provide a map to counterbalance samples, which overcome imperfect uniform protein electrophoresis/
transfer and perform statistical analysis. Here, we present blotRig, a tool for researchers with functionalities to 
counterbalance samples and perform statistical analysis.

To help improve WB rigor we developed the blotRig protocol and application harnessing a database of 
6000 + western blots from N = 281 subjects (rats and mice) collected by multiple UCSF labs on core equipment. 
To demonstrate blotRig best practices in a real-world experiment, we carried out prospective multiplexed WB 
analysis of protein lysate from lumbar cord in rodent models of spinal cord injury (SCI) (N = 29 rats) in 2 groups 
(experimental group & control group). In order to show that these experimental suggestions could improve 
qWB reproducibility, we compared different statistical approaches to handling loading controls and technical 
replicates. Specifically, we applied two strategies to integrate loading controls: (i) normalizing the target protein 
levels by dividing by the loading control or (ii) treating the loading control as a covariate in a LMM. Additionally, 
we analyzed technical replicates in four ways: (1) assume each sample was only run once without replication, 
(2) treat each technical replicate as an independent sample, (3) use the mean of the three technical replicate 
values, and 4) treat the replicate as a random effect in a LMM. Altogether, we found that the statistical power of 
the experiment was significantly increased when we used loading control as a covariate with technical replicates 
as a random effect during analysis. In addition, the effect size was increased, and the p-value of our analysis 
decreased when using this LMM, suggesting the potential for greater sensitivity in our WB experiment when 
using this approach20. Through rigorous experimental design and statistical analysis we show that we can account 
for greater variability in the data and more clearly identify underlying biological effects.

Materials and methods
Animals
All experiments protocol were approved by the University Laboratory Animal Care Committee at University 
of California, San Francisco (UCSF, CA, USA) and followed the animal guidelines of the National Institutes of 
Health Guide for the Care and Use of Laboratory animals (National Research Council (US) Committee for the 
Update of the Guide for the Care and Use of Laboratory Animals, 2011). We followed The ARRIVE guidelines 
(Animal Research: Reporting In Vivo Experiments) to describe our in vivo experiments.

Male Simonsen Long Evans rats (188–385 g; Gilroy (Santa Clara, CA, USA), (N = 29) aged 3 weeks were 
housed under standard conditions with a 12-h light–dark cycle (6:30 am to 6:30 pm) and were given food and 
water ad libitum. The animals were housed mostly in pairs in 30 × 30 × 19-cm isolator cages with solid floors 
covered with a 3 cm layer of wood chip bedding. The experimenters were blind to the identity of treatments 
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and experimental conditions, and all experiments were designed to minimize suffering and limit the number 
of animals required.

Anesthesia and surgery
We performed non-survival spinal cord injury and spared nerve injury surgeries on animals. Specifically, 3 week 
old female rats were anesthetized with continuous inhalation of isoflurane (1–5% mg/kg) while on oxygen 
(0.6–1 mg/kg) in accordance with the IACUC surgical and anesthesia guidelines. Preoperative 0.5% lidocaine 
local infiltration was applied once at surgical site, avoiding injection into muscle. Fur over the T7–T9 thoracic 
level was shaved. The dorsal skin was aseptically prepared with surgical iodine or chlorhexidine and 70% ethanol. 
A small longitudinal incision was made along the spine through the skin, fascia, and muscle to expose the T7-T9 
vertebrae. Animals undergoing sham procedure did not undergo laminectomy and immediately proceeded to 
wound closure. Overlying muscle and subcutaneous tissue was sutured closed using an absorbable suture in a 
layered fashion. External skin was reinforced using monofilament suture or tissue glue as needed. Animals were 
euthanized after 30 min to extract spinal cord tissue through fluid expulsion.

Experimental methodology
In accordance with established quality standards for preclinical neurological research21, experimenters were kept 
blind to experimental group conditions throughout the entire study. Western blot loading order was determined 
a priori by a third-party coder, who ensured that a representative sample from each condition was included on 
each gel in a randomized block design. The number of subjects per condition was kept consistent across groups 
for each experiment to ensure that proper counterbalancing could be achieved across independent western runs. 
All representative western images presented in the figures represent lanes from the same gel. Sometimes, the 
analytical comparisons of interest were not available on adjacent lanes even though they come from the same 
gel because of our randomized counterbalancing procedure.

Western blot
The example western blot data used in this paper are taken from a model of spared nerve injury in animals with 
spinal cord injury. The nerve injury model used is based on models from pain literature22, where two of the 
three branches of the sciatic nerve are transected, sparing the sural nerve (SNI)23. Two surgeons perform the 
procedure simultaneously, with injuries occurring 5 min apart. The spinal cord of animals was obtained based 
on fluid expulsion model24 and a 1 cm section of the lumbar region was excised at the lumbar enlargement 
section. The tissue was then preserved in a -80 degree freezer until it was needed for an experiment, at which 
point it was thawed and used to run a Western blot. We conducted a Western blot analysis on 29 samples from 
animals using standard biochemical methods. We measured the protein levels of the AMPA receptor subunit 
GluA2 and used beta-actin as a loading control. The data from these experiments was then aggregated and used 
for statistical analysis.

Protein assay
We assayed sample protein concentration using a bicinchoninic acid (BCA assay (Pierce) for reliable quantifica-
tion of total protein using a plate reader (Tecan; GeNios) with triplicate samples (technical replicates) detected 
against a Bradford Assay (BSA) standard curve. Technical replicates are multiple measurements that are per-
formed under the same conditions in order to quantify and correct for technical variability and improve the 
accuracy and precision of the results (48). We ran the same WB loading scheme three times (technical replicates 
of the entire gel) and measured the protein levels of AMPA receptors.

Polyacrylamide gel electrophoresis and multiplexed near‑infrared immunoblotting
The approach involved performing serial 1:2 dilutions with cold Laemmli sample buffer in room temperature; 
15 μg of total protein per sample was loaded into separate lanes on a precast 10–20% electrophoresis gel (Tris–HCl 
polyacrylamide, BioRad) to establish linear range (Fig. 1). The blotRig software helps counterbalance sample 
positions across the gel by treatment condition. (Fig. 2). A kaleidoscope ladder was loaded on the first lane of 
each gel to confirm molecular weight (Fig. 2). The gel was electrophoresed for 30 min at 200 V in SDS buffer 
(25 mm Tris, 192 mm glycine, 0.1% SDS, pH 8.3; BioRad). Protein was transferred to a nitrocellulose membrane 
in cold transfer buffer (25 mm Tris, 192 mm glycine, 20% ethanol, pH 8.3). Membrane transfer was confirmed 
using Ponceau S stain (67) followed by a quick rinse and blocking in Odyssey blocking buffer (Li-Cor) contain-
ing Tween-20.

The membrane was blocked for 1 h in Odyssey Blocking Buffer (Li-Cor) containing 0.1% Tween-20, followed 
by an overnight incubation in primary antibody solution at 4 °C. Membrane incubation was done in a primary 
antibody solution containing Odyssey blocking buffer, Tween-20, appropriate primary antibody receptor target-
ing1:2000 mouse PSD-95 (cat # MA1-046,Thermofisher), 1:200 rabbit GluA1 (cat # AB1504, Millipore), 1:200 
rabbit GluA2 (cat # AB1766, Millipore), 1:200 rabbit pS831(cat # 04–823, Millipore), 1:200 p880 (cat#07–294, 
Millipore) or 1:1,500 mouse actin loading control (cat # 612,857, BD Transduction)]. Following incubation, the 
membrane was washed 4 × 5 min with Tris-buffered saline containing 0.1% Tween 20 (TTBS) and incubated in 
fluorescent-labeled secondary antibody (1:30 K LiCor IRdye appropriate goat anti-rabbit in Odyssey blocking 
buffer plus 0.2% Tween 20) for 1 h in the dark. Subsequent to 4 × 5 min washes in TTBS, followed by a 5 min 
wash in TBS.

Membrane incubation was used to detect the presence of a specific protein or antigen on a membrane. In this 
case, the membrane was incubated with a fluorescently labeled secondary antibody solution that was specifically 
tuned to the emission spectra of the laser lines used by the Li-Cor Odyssey quantitative near-infrared molecular 
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imaging system instrument. This allows for specific detection of the protein of interest on the membrane. The 
sample is then imaged using an infrared imaging system that is optimized for detecting the specific wavelengths 
of light emitted by the fluorescent label. Additional rounds of incubation and imaging are performed to detect 
additional proteins using the multiplexing functionality of the Li-Cor instrument, with each round adding new 
bands at different molecular weight ranges. This allows for the detection of multiple proteins in the same sample, 
maximizing the proteomic detection.

Quantitative near‑IR densitometric analysis
Using techniques optimized in the our lab25,26, we established near-infrared labeling and detection techniques 
(Odyssey Infrared Imaging System, Li-Cor) to quantify linear intensity detection of fluorescently labeled protein 
bands. The biochemistry is performed in a blinded, counterbalanced fashion, and three independent replications 

Figure 1.   Determining linear range of antibodies to optimize parametric analysis of Western blot data. When 
small or large protein concentrations are loaded, there is often a possibility that their representation on western 
blot band density may become non-linear. If there is a disconnect between the observed and expected protein 
concentrations, results may be inaccurate. Thus determining the linear range wherein, a one-unit increase in 
protein is reflected in a linear increase in band density for each western blot antibody is a crucial initial step to 
ensure confidence in reproducibility of the linear models commonly applied to western blot data analysis.

Figure 2.   Counterbalancing to reduce bias. (A) Experimental design. A simple hypothetical experimental 
design for illustrating counterbalancing. Two experimental groups (Wild Type vs Transgenic), with two 
treatments (Drug vs Vehicle) analyzed within each individual. This 2 (Experimental Condition) by 2 (Tissue 
Area) design yields four groups. (B) Counter-balanced Gel Loading. The goal of appropriate counterbalancing 
is to optimize the sequence in which samples are loaded such that groups are represented equally across the gel. 
Those with red X have with the experimental groups and treatment condition grouped in the same area of the 
gel, and thus variability across the gel may be conflated with group differences. In contrast, those with the green 
check are organized so that experimental condition and treatment condition are better placed to reduce the 
possibility of any single group being over-represented in a particular area of the gel.
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of the assay are run on different days27. Fluorescent Western blotting utilizes fluorescent-labeled secondary 
antibodies to detect the target protein, which allows for more sensitive and specific detection compared to 
chemiluminescence11,28,29. Additionally, fluorescence imaging allows multiple detection of a target protein and 
internal loading control in the same blot, which enables more accurate correction of sample-to-sample and lane-
to-lane variation11,30,31. This provides a more accurate and reliable quantification of the target protein, making it 
a popular choice for quantitative analysis of WB data.

Blinding
It is good practice for the pipetting experimenter to remain blind to experimental conditions during gel load-
ing, transfer, and densitometric quantification. We achieved this using de-identified tube codes and a priori 
gel loading sequences that were developed by an outside experimenter using the method implemented in the 
blotRig software.

Statistical analyses
Statistical analyses were performed using the R statistical software. Our WB data was analyzed using parametric 
statistics. The WB was run using three independent replications and covariance corrected by beta-actin loading 
control, with replication statistically controlled as a random factor. Significance was assessed at p < 0.0525,26,32,33,34. 
We report estimated statistical power and standardized regression coefficient effect sizes in the results section.

All ANOVAs were run using the stats R package; standardized effect size was calculated using the parameters 
R package35. Linear mixed models were run using the lme4 R package. Observed power was calculated by Monte 
Carlo simulation (1000x) run on the fitted model (either ANOVA or LMM) using the simR package36. For the 
development of the blotRig interface, the R packages used included: shiny, tidyverse, DT, shinythemes, shinyjs, 
and sortable)37–42. You can access the blotRig analysis software, which includes code for inputting experimental 
parameters for all Western blot analysis, through the following link: https://​atpsp​in.​shiny​apps.​io/​BlotR​ig/.

Results
Designing reproducible western blot experiments
Determining linear range for each primary antibody
Most WB analyses assume semi-quantitatively that the relationship between qWB assay optical density data 
(i.e. western band signal) and protein abundance is linear2,3,11,18. Accordingly, most qWB analyses use statistical 
tests (t-test; ANOVA) that assume a linear effect. However, recent studies have shown that the relationship can 
potentially be highly non-linear19 As Fig. 1 illustrates, the WB band signal can become non-linearly correlated 
with protein concentrations at low and high values. This may result in inaccurate quantification of relative 
target protein amount in the experiment and violates the assumptions for linear model which can lead to false 
inferences. To address the assumption of linearity, it is important to first determine the optimal linear range for 
each protein of interest so that one can be confident that a unit change in band density reflects a linear change 
in protein concentration. This enables an experimenter to accurately quantify the protein of interest and apply 
linear statistical methods appropriately for hypothesis testing.

Counterbalancing during experimental design
Counterbalancing is the practice of having each experimental condition represented on each gel and evenly dis-
tributing them to prevent overrepresentation of the same experimental groups in consecutive lanes. For example, 
imagine an experimental design in which we are studying two experimental groups (wild type and transgenic 
animals) and are also looking at two treatment conditions (Drug and Vehicle). The best way to determine the 
effects and interactions between our experimental and treatment groups would be to create a balanced facto-
rial design. A factorial design is one in which all combinations of levels across factors are represented. For the 
current example, a balanced factorial design would produce four groups, covering each possible combination 
(Drug-treated Wild Type, Vehicle-treated Wild Type, Drug-Treated Transgenic and Vehicle-treated Transgenic) 
(Fig. 2A). During WB gel loading, experimenters often distribute their samples unevenly such that certain experi-
mental conditions may be missing on some gels or samples from the same experimental condition are loaded 
adjacently on a gel. This is problematic because we know that polyacrylamide gel electrophoresis (PAGE) gels 
are not perfectly uniform, reflecting a source of technical variability43; in the worst case, if we have only loaded a 
single experimental group on a gel and found a significant effect of the group, we cannot conclude if the effect is 
due to the experimental condition or a technical problem of the gel. At minimum, experimenters should ensure 
that every group in a factorial design is represented on each gel to avoid confounding technical gel effects with 
experimental differences. If the number of combinations is too large to represent on a single gel because of the 
number of factors or the number of levels of the factors, then a smaller "fractional factorial" design will provide 
maximal counterbalancing to ensure unbiased estimates of all factor effects and the most important interactions.

In addition, experimenters can further counter technical variability by arranging experimental groups on 
each gel to ensure adequately counterbalanced design assuming the uniformed protein concentration and fluid 
volume of all samples. This importantly addresses the variability due to physical effects within an individual 
gel. In our example, this means alternating the tissue areas and experimental conditions as much as possible 
to minimize similar samples from being loaded next to one another (Fig. 2B). By spreading the possibility of 
technical variability across all samples by counterbalancing across and within gels, we can mitigate potential 
technical effects that can bias our results. Proper counterbalancing also enables us to implement more rigorous 
statistical analysis to account for and remove more technical variability25,26,32,33. Overall, this will help to ensure 
that experimenters can find the same result in the future and improve reproducibility.

https://atpspin.shinyapps.io/BlotRig/
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Technical replication
Technical replicates are used to measure the precision of an assay or method by repeating the measurement of 
the same sample multiple times. The results of these replicates can then be used to calculate the variability and 
error of the assay or method13. This is important to establish the reliability and accuracy of the results. Most 
experimenters acknowledge the importance of running technical replicates to avoid false positives and negatives 
due to technical error13. Even beyond extreme results, technical replicates can account for the differences in gel 
makeup, human variability in gel loading, and potential procedural discrepancies. In fact, most studies run at 
least duplicates; however, the experimental implementation of replicates (e.g., running replicates on the same 
gel or separate gels) as well as the statistical analysis of replicates (e.g., dropping “odd-man-out” or taking the 
mean or standard deviation) can differ greatly44,45. This experimental variability ultimately impedes our ability 
to meaningfully compare results. For experimenters to establish accuracy and advance reproducibility in WB 
experiments, it is important to implement standardized and rigorous protocols to handle technical replicates11,13. 
In doing so, we can further reduce the technical variability with statistical methods during analysis.

As underscored previously, we recommend that technical replicates are counterbalanced on separate gels to 
mitigate any possible gel effect. Additionally, by running triplicates, we can treat replicates as a random effect 
in a LMM during statistical analysis. Importantly, triplicates provide more values to measure the distribution 
of technical variance to ensure the robustness of the LMM than only running duplicates. This approach isolates 
and removes technical variance from biological variation which ultimately improves our sensitivity for true 
experimental effects46.

In the following demonstration of statistical methods, we replicated all WB analyses in triplicate with a 
randomized counterbalanced design. We then explore how the way in which technical replicates and loading 
controls are incorporated into analysis can have a significant impact on both the sensitivity of our results and the 
interpretation of the findings. An example mockup of a dataset illustrating the various ways in which western 
blot data are typically prepared for analysis can be found in Fig. 3.

Statistical methodology to improve western blot analysis
Loading control as a covariate
Most qWB assay studies use loading controls (either a housekeeping protein or total protein within lane) to 
ensure that there are no biases in total protein loaded in a particular lane2,11,27. The most common way that 
loading controls are used to account for variability between lanes is by normalizing the target protein expression 
values by dividing it by the loading control values (Fig. 3), resulting in a ratio between target protein to loading 
control2,47,48. However, ratios may violate assumptions of common statistical test used to analyze qWB (e.g., t-test, 
ANOVA, etc.)49 This ultimately hinders the ability to statistically account for the variance in qWB outcomes and 
have a reliable estimate of the statistics. An alternative approach to improve the parametric properties would be 
to include loading control values as a covariate—a variable that is not our experimental factors but that may affect 
the outcome of interest and presents a source of variance that we may account for50. For instance, we know the 
amount of protein loaded is a source of variability in WB quantification, so we can use the loading control as a 
covariate to adjust for that variance. In doing so, we extend the method of ANOVA into that of ANCOVA51. This 
approach accounts for the technical variability present between lanes while meeting the necessary assumptions 
for parametric statistics which helps curb bias and averts false discoveries.

Replication and subject as a random effect
Most WB studies use ANOVA, a test that allows comparison of the means of three or more independent samples, 
for quantitative analysis of WB data49. One of the assumptions in ANOVA is the independence of observations49. 
This is problematic because we often collect multiple observations from the same analytical unit, for example 
different tissue samples from a single subject, or technical replicates. As a result, those observations don’t qualify 
as independent and should be analyzed using models controlling for variability within units of observations 
(e.g., the animal) to mitigate inferential errors (false positives and negatives)52 caused by what is known as pseu-
doreplication. This arises when the quantity of measured values or data points surpasses the number of actual 
replicates, and the statistical analysis treats all data points as independent, resulting in their full contribution 
to the final result53.

In addition, when conducting experiments, it is important to consider the randomness of the conditions 
being observed. Treating both subjects and conditions as fixed effects can lead to inaccurate p-values. Instead, 
subjects/ animals should be treated as random effects and the conditions should be considered as a sample from 
a larger population54. This is especially important when collecting data from different replicates or gels, as the 
separate technical replicate runs should be considered as random.

In Fig. 4 we use a simple experimental design comparing the difference in a target protein between two 
experimental groups to demonstrate four of the most common ways researchers tend to analyze western blot 
data: (1) running each sample once without replication, (2) treating each technical replicate as an independent 
sample, (3) taking the mean of technical replicate values, and (4) treating subject and replication as a random 
effect (Fig. 4). We then tested how effect size, power, and p value are affected by each of these strategies to get 
a sense of how much these estimates vary between analyses. For each of these strategies, we also tested the dif-
ference between using the ratio of target protein to loading controls versus using loading control as a statistical 
covariate. For further exploration of the way these data are prepared and analyzed, see the data workup in Sup-
plementary Figs. 1 and 2.

In the first scenario, we imagined that no technical replication was run at all (by using only the first replica-
tion). With this strategy, we found that standardized effect size is weak, power is low, and the p value was high 
(Fig. 4). Second, we demonstrate how analytical output would be different if we did run three technical replicates, 
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but treated each as independent. As discussed above, this strategy does not take into account the fact that each 
sample is being run three times, and consequently the overall n of your experiment is artificially tripled! As one 
might expect, observed power is quite high, and our p value is low (< 0.05). Power is increased by an increase in 
sample size, so it is not surprising that the power is much higher if we erroneously report that we have a 3X larger 
sample size (i.e., pseudoreplication)53. In this case, the observed power is inflated and an artifact of inappropri-
ate statistics, and the probability of a false positive is considerably increased with respect to the expected 5%.

So, what would be a more appropriate way to handle technical replicates? One method that researchers often 
use is to take the mean of their technical replicates. This does ensure that we are not artificially inflating our 
sample size, which is certainly an improvement over the previous strategy. With this strategy, we do find that 
our p value is less than 0.05 (when loading control is treated as a covariate). But we also see that our power is 
still low. We have effectively taken our replicates into account by collapsing across them within each sample, but 
this can be dangerous. If there is wide variation across replicates of a particular sample, then taking the mean of 
three replicates could produce an inaccurate estimate of the ‘true’ sample value. Ideally, we want to find a solution 
where instead of collapsing this variation, we add it to our statistical model so that we can better understand what 
amount of variation is randomly coming from within technical replicates, and in turn what amount of variation 
is actually due to potential differences in our experimental groups.

To achieve this, we need to model both the fixed effect of all groups in a full factorial design, and the random 
effect of replication across western blot gels. When we use both fixed and random effects, this is referred to as a 
linear mixed model (LMM). When using this strategy, we find that our effect size remains strong, and our p value 

Figure 3.   Western Blot Gel and Replication Strategies. (A) Illustration of Western Blot Gel. This depiction of 
a typical multiplexed western blot gel highlights the antibody-labeled target protein bands of interest (green/
yellow) and housekeeping protein loading control that is always run and quantified in the same sample and lane 
as the target of interest. Total protein stain (fluorescent ponceau stain) is shown in red can can be used as an 
alternative loading control. Specific, quantification is typically executed on a single antibody-labeled channel for 
the target protein and housekeeping protein loading control (gray scale image). (B) Balanced Factorial Technical 
Replicate Strategy. Here we show the western blot data for the first 3 subjects from an example dataset. In a 
balanced factorial design, an equal number of samples from all possible experimental groups are represented 
on each gel. This table shows the subject number, the technical replicate, experimental group, and the band 
quantifications for both the target protein and the loading control. A ratio of target protein and loading control 
is also calculated. (C) Other Common Technical Replicate Strategies. In this example table are two of the other 
ways western blot data are typically formatted. Some experimenters choose to not include technical replicates, 
with only one sample from each subject quantified. In another replication strategy, technical replicates are 
averaged. Averaging may bias or skew the data. We recommend running technical replicates on separate gels or 
batches, and using gel/batch as a random factor when analyzing western blot data.
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is low. But importantly, we now have strong observed power (Fig. 4). This suggests that we can achieve greater 
sensitivity in our WB experiment when using this approach. Specifically, if we implement careful counterbal-
ancing while designing our experiments, then we can use the variability between gels to our advantage during 
analysis using linear mixed effects model55.

LMM is recommended because it takes into account both the multiple observations within a single subject/
animal in a given condition and differences across subjects observed in multiple conditions. This reduces chances 
of inaccurate p-values and improves reliability56. Further, treating both subjects and replication as random effects 
generalizes the results to the population of subjects and also to the population of conditions57.

Real world application of blotRig software for western blot experimental design, technical 
replication, and statistical analysis
We have designed a user interface that is designed to facilitate appropriate counterbalancing and technical 
replication for western blot experimental design. The ‘blotRig’ application is run through RStudio, and can be 
found here: https://​atpsp​in.​shiny​apps.​io/​BlotR​ig/ Upon starting the blotRig application, the user is prompted 
to upload a comma separated values (CSV) spreadsheet. This spreadsheet should include separate columns for 
subject ID and experimental group. The user is then prompted to enter the total number of lanes that are available 
on their particular western blot gel apparatus. The blotRig software will first run a quality check to confirm that 
each subject ID (unique sample or subject) is only found in one experimental group. If duplicates are found, a 
warning will be shown that specifies which subjects are repeated across groups. If no errors are found, a centered 
gel map will be generated that illustrates the western blot gel lanes into which each subject should be loaded 
(Fig. 5A). The decision for each lane loading is based on two main principles outlined above: (1) each western 
blot gel should hold a representative sample of each experimental group (2) samples from the same experimental 
group are not loaded in adjacent lanes whenever possible. This ensures that proper counterbalancing is achieved 
so that we can limit the chances that the inherent variability within and across western blot gels is confounded 
with the experimental groups that we are interested in experimentally testing.

Once the gel map has been generated, the user can then select to export this gel map to a CSV spreadsheet. 
This sheet is designed to clearly show which gel each sample is on, which lane on each gel a sample is found, 
what experimental group each sample belongs to, and importantly, a repetition of each of these values for three 
technical replicates (Fig. 5B). User will also see columns for Target Protein and Loading Control. These are the 
cells where the user can then input their densitometry values upon completing their western blot runs. Once 
this spreadsheet is filled out, it is then ready to go for blotRig analysis.

To analyze western blot data, users can upload the completed template that was exported in the blotRig experi-
mental design phase or their own CSV file under the ‘Analysis’ tab (Fig. 6). The blotRig software will first ask the 
user to identify which columns from the spreadsheet represent Subject/SampleID, Experimental Group, Protein 
Target, Loading Control, and Replication. The blotRig software will again run a quality check to confirm that 
there are no subject/sample IDs that are duplicated across experimental groups. If no errors are found, the data 
will then be ready to analyze. The blotRig analysis will then be run, using the principles discussed above. Specifi-
cally, a linear mixed-model runs using the lmer R package, with Experimental Group as a fixed effect, Loading 
Control as a covariate, and Replication (nested within Subject/Sample ID) as a random factor. Analytical output 
is then displayed, giving a variety of statistical results from the linear mixed model output table, including fixed 
and random effects and associated p values (Fig. 6). A bar graph of group means and 95% confidence interval 
error bars will also be generated, along with a summary of the group means, standard error of the mean, and 
upper/lower 95% confidence intervals. These outputs can be directly reported in the results sections of papers, 
improve the statistical rigor of published WB reports. In addition, since the entire pipeline is opensource, the 
blotRig code itself can be reported to support transparency and reproducibility.

Discussion
Although the western blot technique has proven to be a workhorse for biological research, the need to enhance 
its reproducibility is critical13,19,27. Current qWB assay methods are still lacking for reproducibly identifying true 
biological effects13. We provide a systematic approach to generate quantitative data from western blot experiments 
that incorporates key technical and statistical recommendations which minimize sources of error and variability 

Figure 4.   Effect of different replication and loading control strategies on statistical outcomes. Eight possible 
strategies are shown, representing the most common ways in which replication and loading controls are treated 
in a typical Western blot analysis. Four replication strategies: either no replication at all, 3 technical replicate 
gels treated as independent, mean of three replicates, or replicate treated as a random effect in a linear mixed 
model. These are crossed with two loading control strategies: either target protein is divided by loading control, 
or loading control is treated as a covariate in a linear mixed model. (A) Effect Size: Standardized effect size 
coefficient is generally improved when loading control is treated as a covariate, compared to using a ratio of the 
target protein and loading control values. (B) Power: By treating each replication as independent the statistical 
power is increased (due to the inaccurate assumption that technical replicates are not related, thus artificially 
tripling the n). Conversely, including the variability inherent in technical replicates as a part of the statistical 
model, we work to identify and account for a major source of variability, thus improving power in a more 
appropriate way. (C) P value: As expected, when each replication is inaccurately treated as independent the p 
value is low (due to artificially inflated n). We found that using the mean of replications and loading controls as 
covariates also resulted in a p value below 0.05. The smallest p value was found when including replication as a 
random factor. Across each of these statistical measures, only when replication is included as a random factor 
and loading control as a covariate do we see a strong effect size, high power, and low p value.

▸

https://atpspin.shinyapps.io/BlotRig/
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throughout the western blot process. First, our study shows that experimenters can improve the reproducibility of 
western blots by applying the experimental recommendations of determining the linear range for each primary 
antibody, counterbalancing during experimental design, and running technical triplicates13,27. Furthermore, these 
experimental implementations allow for application of the statistical recommendations of incorporating loading 
controls as covariates and analyzing gel and subject as random effects58,59. Altogether, these enable more rigorous 
statistical analysis that accounts for more technical variability which can improve the effect size, observed power, 
and p-value of our experiments and ultimately better identify true biological effects.

Biomedical research has continued to rely on p-values for determining and reporting differences between 
experimental groups, despite calls to retire the p-value60. Power (sensitivity) calculations have also become 
increasingly common. In brief, p-values and the related alpha value are associated with Type I error rate—the 
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probability of rejecting the null hypothesis (i.e., claiming there is an effect) when there is no true effect61. On 
the other hand, power effectively measures the probability of rejecting the null hypothesis (i.e. stating there is 
not effect) when there is indeed a true underlying effect—a concept that is closely related to reducing the Type 
II error rate59,62. Critically, empirical evidence estimates that the median statistical power of studies in neurosci-
ence is between ∼8% and ∼31%, yet best practices suggest that an experimenter should aim to achieve a power 
of 80% with an alpha of 0.0520. By being underpowered, experiments are at higher likelihood of producing a 
false inference. If an underpowered experiment is seeking to reproduce a previous observation, the resulting 
false negative may throw into question the original findings and directly exacerbate the reproducibility crisis59. 
Even more alarmingly, a low power also increases the likelihood that a statistically significant result is actually 
a false positive due to small sample size problems61. In our analyses, we show that our technical and statistical 
recommendations lower the p-value (indicating that the observed relationship between variables is less likely to 
be due to chance) as well as observed power of our experiments. This translates into the ability to better avoid 
false negatives when there is a true effect as well as reduce the likelihood of false positives when there is not a 
true experimental effect, both of which will ultimately improve the reproducibility of qWB assay experiments.

Another useful component of statistical analyses that is not as commonly reported but is critically related 
to p-value and power is effect size. Effect size is a statistical measure that describes the magnitude of the differ-
ence between two groups in an experiment63. It is used to quantify the strength of the relationship between the 
variables being studied63. The estimated effect size is important because it answers the most frequent question 
that researchers ask: how big is the difference between experimental groups, or how strong is the relationship or 
association?63. The combination of standardized effect size, p-value and power reflect crucial experimental results 
that can be broadly understood and compared with findings from other studies62, thus improving comparability 
of qWB experiments49,63. In particular, studies with large effect sizes have more power: we are more likely to detect 
a true positive experimental effect and avoid the false negative if the underlying difference between experimental 
groups is large46. In some cases, the calculated effect size is greatly influenced by how sources of variance are han-
dled during analysis13. Our results demonstrate that by reducing the residual variance (by modeling the random 
effect of replication) the estimated effect size of our experiment increases. This could mean that the magnitude 
of the difference between the groups in our experiment is larger than it was originally thought to be. This could 
be due to a variety of factors such as improving the experimental design, sample size, or the measurement of 
the variables13. Likewise, conducting a power analysis is an essential step in experimental design that should be 
done before collecting data to ensure that the study is adequately powered to detect an effect of a certain size64.

Increasingly, power analysis is becoming a requirement for publications and grant proposals65. This is because 
a study with low statistical power is more likely to produce false negative results, which means that the study may 
fail to detect a real effect that actually exists. This can lead to the rejection of true hypotheses, wasted resources, 
and potentially harmful conclusions. In brief, given an experimental effect size and variance, we can calculate the 
sample size needed to achieve an alpha of 0.05 and power of 0.8; an increased sample size reduces the standard 
error of mean (SEM), which is the measured spread of sample means and consequently increases the power of 
the experiment66. We have demonstrated that our experimental and statistical recommendations lead to a lower 
p value (Fig. 3C) and effect size (Fig. 3B) without changing the sample size. This may be of greatest interest 

Figure 5.   Example of the blotRig Gel Creator interface. (A) Illustration of the blotRig interface. User has 
entered their sample IDs, experimental groups, and the number of lanes per western blot gel. (B) The blotRig 
system then creates a counterbalanced gel map that ensures each gel contains a representative from each 
experimental group. This illustration shows the exact lane for each gel in which each sample should be run.
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Figure 6.   Workflow for running statistical analysis of replicate western blot data using blotRig. First, fill out 
spreadsheet with subject ID, experimental group assignment, number of technical replication, the densitometry 
values for your target proteins and loading controls. After saving this spreadsheet as a.csv file, the file can be 
uploaded to blotRig. Tell blotRig the exact names of each of your variables, then click ‘Run Analysis’. This will 
produce a statistical output using linear mixed model testing for group differences using loading control as 
a covariate and replication as a random effect. Bar graph with error bars and summary statistics can then be 
exported.
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to researchers: more rigorous analytics ultimately improves experimental sensitivity without relying solely on 
increasing the sample size.

Reducing the sample size of an experiment can be beneficial for several reasons, one of which is cost-effective-
ness. A smaller sample size can lead to a reduction in the number of animals or other resources that are needed 
for the study, which can result in lower costs. Additionally, it can also save time and reduce the duration of the 
experiment, as fewer subjects need to be recruited, and the data collection process can be completed more quickly. 
However, it is important to note that reducing the sample size can also lead to decreased statistical power. As a 
result, reducing sample size too much can increase the risk of a type II error, failing to detect significance when 
there is a true effect62.Therefore, it is important to consider the trade-off between sample size and power when 
designing an experiment, and to use statistical techniques like power analysis to ensure that the sample size is 
sufficient to detect an effect of a certain size. Moreover, when using animals in research, it’s always important to 
consider the ethical aspect and the 3Rs principles of reduction, refinement, and replacement55.

Despite our best efforts in creating a balanced, full factorial experimental design, there will always be ran-
dom variation in biological experiments. Fixed effects such as experimental group differences are expected to 
be generalizable if the experiment is replicated. Random effects (such as gel variation) on the other hand are 
unpredictable across experiments. Western blot analyses are particularly susceptible to this random gel variation, 
as different values may be observed for technical replicates run on different gels. By using a linear mixed model 
paired with rigorous full factorial design, we can ensure that we account for as much of that random variation as 
possible. When we acknowledge, identify, and model random effects we enhance the possibility of discovering 
our fixed effect of experimental treatment, if one exists.

The linear mixed model framework discussed above assumes that our western blot outcome measures are on a 
linear scale. As described above, parametric work to identify the linear range of a protein of interest is critical for 
ensuring that the results of a LMM (or ANOVA and t-test) are accurate and interpretable. While we recommend 
using loading control (or total protein control) as a covariate in a linear mixed model, many bench researchers 
may prefer to use the within-lane loading control (or total protein) to normalize target protein values. It is impor-
tant to consider that in doing so, one creates a ratio value that is multiplicative instead of linear. This property 
has the side effect of artificially distorting the variance. To account for this non-linearity, we recommend that 
one uses semi-parametric mixed models such as generalized estimating equations with a gamma distribution 
link function that appropriately represents ratio data.

There has been recent recognition that an appropriate study design can be achieved by balancing sample size 
(n), effect size, and power31. The experimental and statistical approach presented in this study provide insight 
into how more rigorous planning for western blot experimental design and corresponding statistical analysis 
without depending on p-values only can acquire precise data resulting in true biological effects. Using blotRig as 
a standardized, integrated western blot methodology, quantitative western blot may become highly reproducible, 
reliable, and a less controversial protein measurement technique18,28,67.

Study reporting
This study is reported in accordance with ARRIVE guidelines.

Supporting information
This article contains supporting information. You can access the blotRig analysis software, which includes code 
for inputting experimental parameters for all Western blot analysis, through the following link: https://​atpsp​in.​
shiny​apps.​io/​BlotR​ig/

Data availability
The datasets and computer code generated or used in this study are accessible in a public, open-access repository 
at https://​doi.​org/​10.​34945/​F51C7B and https://​github.​com/​ucsf-​fergu​son-​lab/​blotR​ig/ respectively.
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