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Assessing the long-term consequences of sub-lethal anthropogenic disturbance on wildlife populations requires integrating
data on fine-scale individual behavior and physiology into spatially and temporally broader, population-level inference. A
typical behavioral response to disturbance is the cessation of foraging, which can be translated into a common metric of
energetic cost. However, this necessitates detailed empirical information on baseline movements, activity budgets, feeding
rates and energy intake, as well as the probability of an individual responding to the disturbance-inducing stressor within
different exposure contexts. Here, we integrated data from blue whales (Balaenoptera musculus) experimentally exposed to
military active sonar signals with fine-scale measurements of baseline behavior over multiple days or weeks obtained from
accelerometry loggers, telemetry tracking and prey sampling. Specifically, we developed daily simulations of movement,
feeding behavior and exposure to localized sonar events of increasing duration and intensity and predicted the effects of
this disturbance source on the daily energy intake of an individual. Activity budgets and movements were highly variable
in space and time and among individuals, resulting in large variability in predicted energetic intake and costs. In half of our
simulations, an individual’s energy intake was unaffected by the simulated source. However, some individuals lost their entire
daily energy intake under brief or weak exposure scenarios. Given this large variation, population-level models will have to
assess the consequences of the entire distribution of energetic costs, rather than only consider single summary statistics. The
shape of the exposure-response functions also strongly influenced predictions, reinforcing the need for contextually explicit
experiments and improved mechanistic understanding of the processes driving behavioral and physiological responses to
disturbance. This study presents a robust approach for integrating different types of empirical information to assess the effects
of disturbance at spatio-temporal and ecological scales that are relevant to management and conservation.
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Introduction
Exposure to human activities can cause changes in the behav-
ior and physiology of individual animals (Frid and Dill,
2002; Beale and Monaghan, 2004). These responses need to
be understood in the context of their long-term effects on
individual vital rates (such as survival or reproduction) and,
ultimately, population dynamics in order to most effectively
inform management actions (Gill et al., 2001; Pirotta et al.,
2018a; Ames et al., 2020).

In the past two decades, concerns over the effects of
military active sonar on marine mammals have stimulated an
extensive empirical and analytical effort. This has included
direct measurements of behavioral responses to sonar by
means of Controlled Exposure Experiments (CEEs) (Southall
et al., 2016; Harris et al., 2018). Most CEEs use animal-borne
electronic loggers and return detailed, high spatio-temporal
resolution (meters, seconds) information on 3D individual
movements following exposure, e.g. changes in diving behav-
ior, orientation, vocalizations and location (e.g. Goldbogen et
al., 2013; Friedlaender et al., 2016; Southall et al., 2019a).
Results are typically synthesized into functions describing the
relationship between a given level of exposure (e.g. received
levels of sonar) and the probability of response (Harris et
al., 2018). Parallel analytical developments have formalized
a suitable framework to model long-term, population-level
effects of these short-term responses (Pirotta et al., 2018a).
In contrast to CEEs, this framework operates over broader
spatio-temporal scales (e.g. tens of km, days), in part due to
the computational and empirical limitations associated with
modelling the entire lifetime of multiple individuals from
long-lived, wide-ranging species (e.g. Villegas-Amtmann et al.,
2017; Nabe-Nielsen et al., 2018; Hin et al., 2019; Pirotta et
al., 2019). Therefore, it has proven challenging to integrate
the detailed empirical information provided by CEEs into a
population-level model.

Cascading effects from behavior to vital rates are medi-
ated by an alteration of each individual’s overall health sta-
tus, for example via disruption of energy budgets (National
Academies, 2017; Pirotta et al., 2018a). For cetaceans, this
disruption is mostly driven by an interruption of feeding
activity (Noren et al., 2016). Energy can act as a common
currency to link the short-term costs of fine-scale behavioral

changes observed during CEEs to the longer-term effects on
survival and reproduction (Houston and McNamara, 2014),
thereby facilitating the integration of these responses into
population-level models.

The quantification of individual energy budgets requires
empirical information on the patterns of behavior animals
exhibit in the absence of disturbance, such as the time they
allocate to different activities within a day (i.e. their activity
budget), the rates at which they feed and their movements
within an area of interest (e.g. Boyd, 1999; Hamel and Côté,
2008; Louzao et al., 2014). Moreover, data on the prey they
are targeting (such as its patterns of availability, density and
distribution) are essential in order to quantify energy intake,
the energetic efficiency of foraging and the opportunity to
compensate for interrupted feeding (Bowen et al., 2002;
Grémillet et al., 2004; Goldbogen et al., 2019; Booth, 2020;
Friedlaender et al., 2020). These data are increasingly avail-
able as technology improves our ability to monitor animals’
activity over extended periods and to sample the environment
in which they move (Cade and Benoit-Bird, 2014; Hazen
et al., 2015; Calambokidis et al., 2019; Irvine et al., 2019).
However, behavior, body condition, reproductive state, home
range and resource availability will vary in space and time and
among individuals, resulting in large differences in individual
energy budgets.

Changes in behavior resulting from exposure to a
disturbance-inducing stressor can also depend on context (e.g.
Ellison et al., 2012). Internal factors (such as behavioral state,
body condition or previous experience), spatial relationships
of source and receiver and features of the surrounding
environment (e.g. prey quality) can affect the probability
of an animal altering its behavior (Ellison et al., 2012;
Houser et al., 2013; Friedlaender et al., 2016; DeRuiter
et al., 2017; Southall et al., 2019a). Due to the logistical
difficulties and high associated costs of CEEs, data from these
experiments often do not support the estimation of exposure-
response (ER) functions based on separate combinations
of environmental or behavioral conditions (Southall et al.,
2016).

In this study, we integrated diverse data sources to pre-
dict the daily energetic costs of simulated disturbance sce-
narios on individual blue whales (Balaenoptera musculus)
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from the Eastern North-Pacific (ENP) population. Because
its range overlaps with an area used by the US Navy for
military training and testing exercises (Calambokidis et al.,
2009), this population has been the subject of a large behav-
ioral response study, which has generated an extensive CEE
dataset (Southall et al., 2016, 2019a). Data from experimental
exposures were used to build state- and range-specific dis-
crete ER functions, as well as continuous functions for noise
received level (RL) and range from the source. Moreover,
we derived unprecedented information on baseline behavioral
states, activity budgets, feeding rates, feeding bouts and move-
ments over multiple days or weeks from the activity patterns
of individuals instrumented with electronic loggers and that
were not experimentally exposed to sonar (Szesciorka et al.,
2016; Calambokidis et al., 2019). Finally, we included mea-
surements of krill densities collected around feeding whales
(Goldbogen et al., 2015, 2019; Hazen et al., 2015) to quantify
expected energy intake in undisturbed conditions. These data
sources were combined to develop daily simulations of whale
movement, feeding behavior and exposure to localized noise
sources of increasing duration and intensity. A bioenergetic
model (Pirotta et al., 2018b, 2019) was used to estimate indi-
vidual daily net energy intake in disturbed and undisturbed
conditions, which provides the common metric needed for the
integration of experimental results into models of population-
level consequences. We also assessed the variation in predicted
costs as a function of the ER curve used, the spatio-temporal
subset of activity data that was used to inform whale behavior,
krill density distribution and whale size, and identified the
most important data gaps.

Materials and methods
Multi-day tag data collection and analysis
Between 2014 and 2019, individual blue whales were
instrumented with Wildlife Computers TDR10-F tags (n = 21)
and Acousonde acoustic tags (n = 6), returning GPS location,
depth and, in most configurations, 3D accelerometry data
for an average of 8 d (range, 1–32 d; Fig. 1a). Details of tag
configurations, deployment and field procedures are provided
in Supplementary Methods S1 and in Szesciorka et al. (2016)
and Calambokidis et al. (2019). Raw tag data were processed
following Cade et al. (2016) to identify feeding events, or
lunges. Data were summarized into hourly locations, number
of detected feeding lunges (representing hourly lunge rates)
and mean lunge depth, as detailed in Supplementary Methods
S1, where we also discuss differences between tags with and
without 3D accelerometry sensors. The hourly scale was used
to match the resolution of the simulations (see below), and
represented a trade-off between retaining sufficient detail
of an individual’s behavioral variation while keeping the
simulations tractable.

An individual was assumed to be in a feeding state in any
hour in which at least one lunge was detected (Goldbogen
et al., 2012). For simplicity, we did not distinguish among

hours based on the proportion of time spent lunging. Blue
whales in this population engage in two distinct feeding
modes, deep and shallow lunge feeding (Goldbogen et al.,
2015), which involve a different number of lunges per dive
and trade-off between oxygen access at the surface and food
resources at depth (Hazen et al., 2015). Mean lunge depth
in each hour was used to determine the predominant feeding
mode for that hour (shallow or deep feeding), using a Gaus-
sian mixture model with two components, fitted with pack-
age mixtools version 1.1.0 (Benaglia et al., 2009). The first
component had a mean of 33 m (SD = 20 m), corresponding
to shallow feeding, while the second component was centered
on 157 m (SD = 75 m), representing deep feeding. In addition,
we extracted the temporal gaps (in hours) between foraging
bouts, that is, the duration of any break (≥1 h) in a sequence
of consecutive hours spent in either feeding state (excluding
any non-foraging time at the start and at the end of each
deployment).

We used a Markov chain algorithm (package markovchain
version 0.6.9.7; Spedicato, 2017) to estimate the transition
probabilities between hourly states (deep feeding, shallow
feeding and not feeding) and the corresponding stationary
distribution (which represents the expected proportion of
time spent in each state, i.e. a whale’s daily activity budget).
Daily activity budgets could vary in space and time. Although
available data could not support a full exploration of spatio-
temporal behavioral differences, we wanted to verify whether
such variation existed. Therefore, in addition to including the
full dataset, we repeated the analysis using only data collected
in specific portions of the range or times of the year. Specif-
ically, we defined four subsets of the data, corresponding to
the two spatial and the two temporal subsets containing the
highest number of complete individual days (i.e. days with
24 hourly records for a given individual). Temporal subsets
were defined based on month, while spatial subsets were
defined using the latitudinal ranges used to model individual
movement in Pirotta et al. (2018b, 2019), to facilitate future
integration of these results in a population-level model. As a
result, the two spatial subsets included data in the latitudinal
ranges 33.8◦N–34.4◦N and 37.6◦N–38.4◦N, and the two
temporal subsets corresponded to data from July and October.

We used the Minimum Convex Polygon estimator in pack-
age adehabitatHR version 0.4.16 (Calenge, 2006) to estimate
the area over which an individual ranged in each day (here-
after, area covered per day). This estimation was limited to
complete individual days and days where there was some
feeding, i.e. where at least one hour contained feeding lunges.

CEEs
Between June and October 2010 to 2014, 42 individual
blue whales were tagged with archival electronic loggers in
the Southern California Bight and exposed to experimental
and operational sound sources. Details of the experimental
design, field protocols and permits are provided in Southall
et al. (2012, 2016, 2019a). The tags recorded fine-scale, 3D
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Figure 1: Data used to inform disturbance simulations. (a) Map of multi-day tag data, colored by deployment. (b) Pooled lower and upper krill
density distributions in California. Posterior exposure-response (ER) function for (c) SPL and (d) range from source. The solid line represents the
median, while shaded areas represent 95% credible intervals. (e) Discrete ER functions derived from key assumptions and the survival analysis in
Southall et al. (2019a) for individuals in deep-feeding (DF) or non-deep-feeding (Other) state, either near (within 1 km) or far from (beyond 1 km)
the source (columns). Functions were derived from the median and upper confidence interval (CI) of the moderate and high response severity
curves (rows).
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movements, which were analyzed using change-point meth-
ods and a standardized expert-scoring procedure to determine
the occurrence, time and severity of any behavioral change
following exposure, as described in detail in Miller et al.
(2012) and Southall et al. (2019a).

Development of ER probability functions
Using the CEE data, we developed three types of ER func-
tions (state- and range-specific discrete functions, a contin-
uous function for noise RL and a continuous function for
range from the source) and compared the resulting energetic
costs (see below), to investigate the influence of context-
dependency and of the metric used to represent the stressor.

Southall et al. (2019a) applied recurrent event survival
analysis (Harris et al., 2015) to the results of the CEEs to
derive blue whale response probability as a function of expo-
sure level in different exposure contexts (differentiated by
behavioral state and the range from the source to the whale),
for moderate and high response severity scores. Responses
were strongly context-dependent but sample sizes for certain
contexts were small or absent. First, we therefore derived
relatively coarse ER functions from the results in Southall
et al. (2019a). Distinct conditions were collapsed into three
contexts, representing decreasing relative sensitivity: (i) deep-
feeding, near (≤ 1 km from the source); (ii) deep-feeding, far
(> 1 km from the source), and other states, near; and (iii) other
states, far. Being in the most sensitive state (deep feeding) far
from the source was therefore assumed to be comparable to
being in another state but close to the source (Supplementary
Methods S2, Fig. S4).

For each context, we related noise exposure level to a
discrete set of response probabilities (1, 10, 50, 90, 99%)
or defined the level at which response probability reached
an asymptote. Across contexts, 1% response probability was
defined as the estimated ambient noise in MFAS band (3–
4 kHz) for sea state 3 conditions from Wenz (1962). Ten,
50 and 90% response probabilities were derived from the
functions in Southall et al. (2019a) where possible. Where
the corresponding curves reached an asymptote below these
probability values, RLs were determined at respective asymp-
totes. Because all functions reached an asymptote below 90%
probability, the RL corresponding to this probability was
determined using estimates of effective quiet from humans,
that is, 10 dB below estimates of temporary threshold shift
(TTS), as proposed by Ward et al. (1976). TTS onset esti-
mates for blue whales (as ‘low-frequency cetaceans’) were
derived from Southall et al. (2019b). Further, these TTS onset
estimates were used as the 99% response probability for all
functions. This procedure returned four step functions (cor-
responding to the median and upper confidence interval of
the survival analysis for moderate and high response severity
scores) for each of the three exposure contexts, defining the
probability of an individual in each state and range category

responding to different RLs (Fig. 1e; Supplementary Methods
S2).

In addition, we developed a continuous ER function
for received root-mean-square (RMS) sound pressure level
(hereafter, SPL), pooling the data from all individuals
irrespective of behavioral state and range from the source.
We used the expert scoring described in Southall et al.
(2019a) to determine whether an individual was deemed
to have responded with moderate or high response severity
within each experimental exposure, and extracted SPL at
the time of the identified behavioral change. If individuals
did not respond, we extracted the maximum SPL received
during the experiment. The data were then analyzed using
the Bayesian approach described in Miller et al. (2014)
(Supplementary Methods S2). Finally, we developed a second
continuous function, where range from the noise source was
used as the exposure term. We extracted the distance (in
km) between an individual and the source at the time of an
identified response or, for individuals that did not respond,
the minimum distance reached during the experiment,
and analyzed these data using a modified version of the
approach in Miller et al. (2014) (Supplementary Methods
S2).

Krill density data
Acoustic backscatter data targeting krill were collected using
Simrad EK60 or EK80 transceivers at 38 and 120 kHz in
the Southern California Bight and in Monterey Bay between
2011 and 2018, following the field protocols described in
Goldbogen et al. (2019). Hydroacoustic data were analyzed
according to the predator-scale method described in Cade
et al. (In press) and Cade (2019). The method generates krill
density distributions that represent how acoustic cells the
size of an average whale engulfment are distributed within
cells the size of an average whale’s horizontal and vertical
movement during a feeding dive. Two lognormal density
distributions were calculated for each sampling location:
one corresponding to the mean distribution, assuming a
randomly foraging whale (hereafter lower extreme), and
the other using the top 50% of data in each dive-sized cell
(hereafter upper extreme), assuming that a whale chooses
where to forage in a patch to maximize efficiency (Cade
et al., In press; Cade, 2019; Goldbogen et al., 2019). The
means and standard deviations of the distributions at each
location were then pooled to obtain two distributions of krill
density for the broader California region (lower and upper
extremes), which are representative of krill biomass available
to blue whales at a spatial scale matching their foraging
behavior (Cade et al., In press). We investigated differences in
krill density in shallow and deep patches (sensu Goldbogen
et al., 2015), but did not find any, possibly due to sampling
limitations (e.g. the small number of shallow samples, or the
difficulty of characterizing shallow patches using a downward
echosounder). Therefore, the same distributions were used for
all depths.
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Figure 2: Schematic representation of the simulations using one of
the discrete exposure-response functions. Shaded blue circles
provide examples of the areas covered per day by individual whales,
resulting in differential overlap with exposed areas. The other shaded
regions represent the areas exposed to different ranges of received
levels, where response probability corresponds to the probability at
the upper extreme of that range (warmer colors indicate higher
received levels). Relative ranges are not to scale.

Simulations
We developed daily simulations of whale behavior to esti-
mate the energetic costs of a disturbance-inducing event of
increasing duration and intensity, occurring at a fixed position
within a 100 km × 100 km rectangle (chosen to match the
spatial resolution of the model used by Pirotta et al. (2018b,
2019); Fig. 2). Given source level (SL), a simple, spherical
noise propagation model was used to determine the ranges at
which RLs of interest were reached (Au and Hastings, 2008).
For each replicate, we sampled a random day from the activity
data and calculated the proportional overlap between the area
covered on that day and the area between two defined RLs
of interest, taken to represent the proportion of a day an
individual was exposed to RLs in that range.

For the discrete ER functions, an individual could respond
every 6 minutes, matching the assumptions underpinning
their derivation (Supplementary Methods S2). The probabil-
ity of responding at each interval was independent of any
previous exposure or response to sonar. Six-minute intervals
over a day were thus randomly assigned to portions of the
covered area exposed to different RL ranges, based on the
proportional overlaps, and a behavioral state, based on the
activity budget on the sampled day. Given the time and
duration of the simulated source, we determined if each
interval was exposed and the corresponding range of RL
experienced. Response probability was then determined from
an ER function. Different functions were used depending on

the feeding state in each interval and whether the individual
was within 1 km of the source (‘near’) or further away (‘far’).

Using the continuous ER functions, an individual could
respond every 30 min, i.e. the typical experimental exposure
duration in Southall et al. (2019a). This temporal scale was
thus used to match the temporal scale underlying the devel-
opment of the continuous ER functions. For SPL, we used
bins of 10 dB and calculated the expected range at which
those RL were reached. For range from source, we considered
six distance bins (0–1,..., 4–5, > 5 km) and calculated the
proportion of a day an individual spent in each bin as the
proportional overlap between the area covered on that day
and the area in that distance bin. In both cases, response
probabilities associated with each bin were sampled from
a truncated normal distribution defined by the posterior
mean and standard deviation of the estimated ER curve. For
both the discrete and continuous functions, we conservatively
assumed that a foraging individual within the area exposed
to a given bin of RL or range from source responded with a
probability corresponding to the upper extreme of that bin
(Fig. 1e; Supplementary Methods S3).

For each potential response, we randomly sampled an
empirical gap between foraging bouts from the tag data,
providing a likely inflated (and thus appropriately precau-
tionary given the underlying uncertainty) estimate of the time
required to find a new krill patch after disturbance. All time
intervals corresponding to a behavioral response followed
by a gap were considered lost. However, if an animal had
responded in a previous interval and was still looking for a
new patch, it did not respond again or lose additional time.
For each day, we then tallied the total number of deep-feeding
and shallow-feeding hours lost, representing the total feeding
time loss.

Using the state-specific hourly lunge rates on that day,
we computed the total number of lunges lost. For each lost
lunge, we drew a value of krill density from the pooled
lognormal krill density distribution. Given the length of the
simulated individual (affecting buccal size, as per Pirotta et al.,
2018b, 2019), krill energy density in the California Cur-
rent (Chenoweth, 2018) and assimilation efficiency (Lockyer,
1981), lost lunges were translated into total (gross) energy
lost on a day, representing the daily energetic cost of that
disturbance scenario.

We estimated the theoretical gross energy acquired on that
day without disturbance, given the bioenergetics equations in
Pirotta et al. (2018b, 2019) (Supplementary Methods S3). We
divided the total energy loss by the gross energy acquired in
undisturbed conditions and obtained the proportional loss in
energy acquired. This metric could vary between 0 and 1 and
summarized the proportion of energy acquisition that was lost
following disturbance.

The bioenergetics equations in Pirotta et al. (2018b, 2019)
were also used to estimate daily energy expenditure, given

..........................................................................................................................................................

6

https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coaa137#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coaa137#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coaa137#supplementary-data


..........................................................................................................................................................
Conservation Physiology • Volume 00 2021 Research Article

the activity budget on each day (Supplementary Methods
S3). Net energy intake was then computed as acquired minus
expended energy for undisturbed and disturbed conditions,
adjusting energy expenditure following disturbance in light of
the altered activity budget. Whenever simulated krill densities
resulted in foraging costs exceeding energy acquired, we set
the net intake from foraging to 0; however, the daily net
intake could still be negative if maintenance costs exceeded
foraging gains. The daily costs of reproduction that females
could potentially incur were calculated for an individual in the
middle of pregnancy (for gestation), or assuming an individual
delivered the maximum daily amount of milk to the calf (for
lactation) (Pirotta et al., 2018b).

Simulations were repeated for: 1) five SL (235 dB re 1 μPa,
i.e. the nominal intensity of 53C sonar; 210 dB re 1 μPa,
i.e. the highest SL achieved during CEEs, comparable to the
intensity of other Navy MFAS systems, including helicopter-
dipping (AN/AQS-22) sonar; 200, 180 and 160 dB re 1 μPa,
covering the full range of transmitted source levels associated
with the wide variety of military activities occurring in the
study area); 2) seven durations of the disturbance-inducing
event (6 min, i.e. the average duration of 10 sonar pings at
maximum level; 30 min, i.e. the average CEE duration; 60,
120, 360, 720 and 1440 min); 3) three source positions (at
the center, in a corner or at the center of one side of the
100 km x 100 km rectangle); 4) three whale lengths (22, 25
and 27 m); 5) two krill density distributions (corresponding
to the lower and upper extremes for the pooled distribution);
6) six ER functions (four discrete and two continuous). Each
scenario resulting from the combination of these conditions
was replicated 1000 times. Simulations were also repeated
using only subsets of the multi-day tag data, corresponding
to the two locations and the two months encompassing
most data. For simplicity, simulation results are presented
for a 22-m-long individual (the average asymptotic length of
ENP blue whales; Gilpatrick and Perryman, 2008), feeding
on krill densities drawn from the lower pooled distribution
and assuming a discrete ER function corresponding to the
median result of the survival analysis for moderate response
severity scores. Results from the other simulated scenarios are
discussed in comparison to these reference conditions.

Simulations were coded in R version 3.6.2 (R Core Team,
2019). The data and code to run these analyses are available
via the Open Science Framework (https://osf.io/q5nbf/?view_
only=f7bda77903594328a9ff30cc26b62b78). A list of all abbre-
viations is reported in Supplementary Methods S4.

Results
After processing, the multi-day tags provided 5281 hourly
records of activity and 134 complete days during which the
animals engaged in some foraging activity (Fig. 1a). Deploy-
ments spanned from May to November, from Baja California
Peninsula (Mexico) to northern California (25◦N–40◦N), but

most data were collected between July and October, with
animals concentrating in the Southern California Bight and
in waters off San Francisco and Monterey. The area covered
by individuals over the course of a day (with some foraging)
varied between 12 and 1647 km2 (mean = 294 km2; standard
deviation (SD) = 343 km2). The stationary distribution of the
Markov chain suggested individuals spent a variable amount
of time in different behavioral states. Different stationary
distributions were also obtained when the algorithm was run
on subsets of the data collected in the two most represented
locations and months (Table 1). In contrast, state-specific
lunge rates did not vary (Table 1; Supplementary Methods
S3, Fig. S5). The temporal gaps between bouts of consecutive
hours with feeding activity ranged between 1 and 226 h
(mean = 10 h; SD = 20 h).

The lower and upper pooled krill density lognormal dis-
tributions taken to represent the broader California ecosys-
tem had geometric means 0.513 kg/m3 and 0.757 kg/m3,
and geometric SDs 1.917 kg/m3 and 1.468 kg/m3, respec-
tively (Fig. 1b). The four discrete (median and upper confi-
dence interval of the survival analysis for moderate and high
response severity) and two continuous (for SPL and range
from source) ER functions are represented in Fig. 1c-e. Gibbs
Variable Selection excluded the effects of previous exposure
and source type on response probability in the latter two
functions.

Given the empirical activity budgets and lunge rates, a
body length of 22 m and the lower pooled krill density dis-
tribution, an individual was predicted to acquire 27 663 MJ/d
(range: 0–82 593 MJ/d) and expend 6592 MJ/d (range: 2555–
10 628 MJ/d), on average. When we simulated a disturbance-
inducing source, the mean feeding time, number of lunges,
gross energy and proportion of acquired energy that were lost
as a result of exposure and any associated behavioral changes
all progressively increased for increasing intensity (SL) and
duration of the source (Fig. 3). However, even in scenarios
involving a weak or brief source, the distribution of these
variables had long tails (Fig. 4). In 51% of simulations under
reference conditions, there was no change in the net energy
intake for the day, either because individuals did not overlap
with the source in space or time, or were exposed but did not
respond. In contrast, in 49% of simulations the net energy
intake decreased and in 11% of all simulations it went from
positive to negative (Fig. 5). Gestation costs could increase
energy expended per day by an average of 7% (range: 4–
15%), while lactation costs represented a mean increase of
77% (range: 41–166%).

Mean gross energy loss was higher for larger individuals
and when krill density was sampled from the upper pooled
distribution. Because undisturbed energy acquisition was also
higher in these cases, the proportion of daily acquisition that
was lost was not affected by these variables (Supplementary
Methods S3, Fig. S6). With equal SL and duration, a source
positioned at the center of the location had a greater chance
of overlapping with the area covered by an individual within
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Table 1: Daily activity budget across data subsets

Data subset % time
not

feeding

% time
deep

feeding

% time
shallow
feeding

Mean hours
deep feeding

[range]

Mean hours
shallow feeding

[range]

Median
lunge rate

deep
feeding

(SD);
lunges/h

Median
lunge rate

shallow
feeding

(SD);
lunges/h

Overall dataset 61 29 10 9 [0–17] 3 [0–18] 19 (8) 15 (10)

Latitude range
33.8◦N–34.4◦N

42 50 8 13 [0–17] 2 [0–11]

Latitude range
37.6◦N–38.4◦N

46 29 25 7 [0–15] 6 [0–18]

July 45 48 7 12 [0–17] 2 [0–9]

October 65 32 3 9 [0–15] 1 [0–4]

Figure 3: Predicted effects of disturbance for increasing source intensity and duration, under reference conditions (that is, assuming the
discrete exposure-response function for median values under moderate response severity, the lower krill density distribution and a 22-m-long
individual).

a day, increasing overall exposure (Supplementary Methods
S3, Fig. S7).

Using activity data from specific locations affected predic-
tions: in latitude range 33.8◦N–34.4◦N, animals spent more

time in deep-feeding state and covered smaller areas per day,
leading to a mean 27% increase in time loss, which, in turn,
led to a mean 45% increase in energy loss, compared to pre-
dictions from the entire dataset. Differences were less marked
in latitude range 37.6◦N–38.4◦N due to a combination of
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Figure 4: Boxplots of the predicted proportion of acquired energy
lost due to disturbance, for increasing source intensity (rows) and
duration. The plot shows the long tails of the corresponding
distributions.

more time not feeding or in shallow-feeding state and larger
areas covered per day, resulting in a mean 7% higher time loss
and 5% higher energy loss. Similarly, predictions using only
activity data from July, when individuals engaged in more
deep feeding, indicated a 21% higher time loss and a 29%
higher energy loss, on average. In contrast, using data from
October, when feeding was reduced, led to a mean 19% lower
time loss and a 27% lower energy loss.

Under reference conditions, predicted effects varied
depending on what discrete ER function was used. Using the
function derived from the upper confidence interval of the
survival analysis for moderate response severity caused a 9%
higher time and energy loss, compared to using the median.
Predicted mean effects were 10% lower when median values
from the curve for high response severity were used, whereas
they were 1% higher when using the upper confidence
interval of the high curve.

Predictions differed more substantially when the two con-
tinuous ER functions were used to assess the probability of a
behavioral response. Using the continuous function for SPL,
mean time and energy loss was 63% lower than predicted
using the discrete ER function under reference conditions
(Supplementary Methods S3, Fig. S8). Because the probability
of responding at a given range from the source declined to
0 within ∼ 5 km (i.e. resulting in a much smaller impacted
area, irrespective of source level), mean effects using this ER
function were 98% lower than predicted using the discrete
ER function.

Figure 5: Daily net energy intake (energy acquired-energy
expended) in undisturbed and disturbed conditions, assuming the
discrete exposure-response function for median values under
moderate response severity, the lower krill density distribution and a
22-m long individual. Net energy intake was negative when
maintenance costs exceeded the net energy acquired through
feeding. The third color on the graph represents the overlap between
the histograms.

Discussion
We have demonstrated that diverse data sources obtained
on different spatial and temporal scales, including high-
resolution experimental exposures to disturbance-inducing
stressors, activity monitoring over multiple days or weeks,
telemetry tracking and prey sampling, can be effectively
integrated with a bioenergetic model to predict the effects
of disturbance on an individual’s daily net energy intake. We
showed that these effects were heterogeneous and depended
on the context of exposure. Our approach can be used to
inform population-level inference, thus bridging the gap
between fine-scale, experimental studies and the assessment
of the long-term consequences of disturbance.

Daily energetic costs of disturbance: large
variability and context-dependency
We found that the daily energetic costs of disturbance on
individual blue whales were highly variable. Source intensity
and duration were obvious drivers of such variation, but
the distribution of predicted costs had long tails, indicating
that consequences could be dramatic across scenarios: some
simulated individuals, on some days, lost all daily energy
acquisition, even under brief (e.g. 6–30 min) or weak (e.g.
160–180 dB re 1 μPa source level) disturbance events (Fig. 4).
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In approximately 50% of simulations, net energy intake
decreased and in 11% of simulations it became negative,
indicating an individual would not be able to cover energy
expenditure with the energy acquired on that day. In contrast,
in the other 50% of simulations, no change in daily net
energy intake was predicted, because feeding whales either
were not exposed to the source or did not respond. The
variability in predicted costs for animals that were disturbed
resulted from the large behavioral variation recorded in the
tag data, i.e. the differences in activity budget, lunging rates
and ranging pattern among individuals and days. Observed
behavioral patterns, in turn, likely reflected differences in the
prey patches targeted by tagged animals (Goldbogen et al.,
2015; Hazen et al., 2015). Similarly, large variability also
emerged when activity data were restricted to a specific
location or month: more intense feeding activity, concentrated
in smaller areas, as observed in southern California and in
summer, resulted in considerably higher predicted costs (up to
45% greater energy loss) (Pirotta et al., 2018b, 2019). Repro-
ductive costs, especially during the lactation phase (ranging
approximately between December and July for this popula-
tion), would exacerbate the effect of disturbance on the daily
energy intake (Gittleman and Thompson, 1988).

Across taxa, including in pinnipeds (Boyd, 1999; Williams
et al., 2007; Dalton et al., 2015; Russell et al., 2015), other
mammals (Hamel and Côté, 2008; Studd et al., 2020) and
birds (Vézina et al., 2006; Louzao et al., 2014) the time
allocated to foraging and the resulting activity and energy
budgets, is known to be affected by resource availability,
seasonality, body condition and reproductive state. In parallel,
movement behavior and home range size also vary within
and among populations as a function of resource abundance
and season, for example in ungulates (Morellet et al., 2013).
The large variability in daily behavioral patterns of baleen
whales could emerge from their foraging strategy, whereby
the high costs associated with lunge feeding must be balanced
with large intake from dense, but patchily distributed prey
(Goldbogen et al., 2019).

The marked differences among the predicted effects of
disturbance on individual blue whales underline the impor-
tance of a spatially and temporally explicit evaluation of
these effects. Marine spatial planning can be used to minimize
the overlap of disturbance-inducing activities with key areas
or times for foraging (Foley et al., 2010). More generally,
our results reinforce the idea that context modulates the
predicted costs of disturbance (Gill et al., 2001; Tablado
and Jenni, 2017). Further data collection is therefore advised
to fully characterize movement, foraging patterns and prey
availability and density across the population’s range, partic-
ularly around the under-sampled geographical extremes and
in winter (Table 2).

The influence of exposure context on response probability
(e.g. Ellison et al., 2012) was directly addressed here in the
derivation of state- and range-dependent ER functions: while
these functions relied on several assumptions and a mecha-

nistic understanding of whale hearing processes to remedy
the paucity of empirical data, they allowed these contextual
variables to be explicitly incorporated in the simulation of
responses (Goldbogen et al., 2013; DeRuiter et al., 2017;
Southall et al., 2019a). These functions were explicitly pre-
cautionary; for example, we assumed that animals exposed
to a range of RL responded with a probability corresponding
to the higher extreme of the range (thus inflating the effects
of disturbance). Nonetheless, predicted costs were notably
higher compared to the continuous functions. The continuous
function for SPL predicted a higher response probability
for intermediate noise levels, but lower probabilities around
160–170 dB re 1 μPa; in the discrete functions, these noise
levels were assumed to cause a response in most individuals,
based on considerations for levels near or exceeding those
required to induce TTS. RLs above 170 dB re 1 μPa are rarely
achieved in CEEs, due to permit limitations on exposure levels
and difficulties in coordinating sources with mobile target
animals. Thus, this discrepancy remains unresolved. Gener-
ally, while recent efforts have engaged operational sources,
many CEEs will continue to rely on weaker signals compared
to real sonar sources, with potential implications for the
characterisation of cetacean responses, but studies based on
opportunistic exposures to real Navy activities could be useful
(Joyce et al., 2020). The continuous function for distance,
on the other hand, predicted a relatively small footprint of
each disturbance event because there were few experimental
exposures beyond 5 km. The lower SL used in the CEEs and
the small number of distant exposures thus impose caution
on the interpretation of this function.

Krill density distribution and whale body size affected
gross energetic loss, but had little influence on the propor-
tional costs at a daily scale, which were mostly driven by
behavioral variability. However, as noted above, observed
behavioral patterns depend on the characteristics of the prey
patches on which tagged whales were feeding (Goldbogen
et al., 2015; Hazen et al., 2015); therefore, prey availability
and abundance likely played an indirect role. Moreover, patch
characteristics are known to vary with depth, with resulting
consequences for whale feeding strategies (Goldbogen et al.,
2015; Hazen et al., 2015). Unfortunately, we were unable
to explore the effects of this variability on the predicted
costs because of sampling limitations, but future data col-
lection should address this critical knowledge gap (Table 2).
Krill density and whale size can also change the probability
of animals responding to the source (Friedlaender et al.,
2016; Tablado and Jenni, 2017). More broadly, for long-
lived species with large energy storage and fasting abilities,
like the blue whale, it is the energy budget at a longer time
scale that ultimately affects survival and reproduction (Pirotta
et al., 2019). In this sense, the variability of krill density at
broader spatio-temporal scales, the number of days without
any feeding and the energy storage capacity of an individual
whale are critical in determining compensation after distur-
bance, the ability to maintain a positive energy intake over
longer periods and the accumulation of sufficient reserves
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Table 2: Knowledge gaps and associated data requirements

Knowledge gap Data requirements Study component highlighting the gap

Variation in whale behavior Activity budgets, feeding rates and daily ranging
patterns across latitudes and seasons

Table 1; Fig. 4

Variation in prey Prey density measurements in different latitudes,
seasons, and depth strata; prey length
distributions; prey energy density

Supplementary Methods S3, Fig. S6; prey density
and energy content affect an individual’s long-term
energy budget and ability to compensate for
predicted daily energy loss; depth-dependent
densities would change predicted costs of
disturbance when shallow and deep feeding

Whale sensory ecology Identification of cues used to locate patches and
assess their quality

Simulated responses require information on how
quickly and efficiently an individual can resume
foraging after disturbance

Context-dependency in
probability of response

More CEEs for combinations of contextual variables
(e.g. exposures at larger distances and lower
received levels, targeting animals in different states
or feeding on different prey densities)

Figs 1, 3; Supplementary Methods S3, Fig. S8

Realistic exposure scenarios Noise propagation modelling and characterization
of disturbance-inducing sources

Fig. 3; source intensity and noise propagation
determine an individual’s exposure rate and level

Pathways for adverse effects Measurement of physiological responses to
disturbance (e.g. stress hormones)

Simulations only included behavioral responses;
the effects of prolonged exposure were only
additive

during the feeding season (Table 2). For example, long-term
consequences will depend on whether disturbance occurs in
a year where resource availability is favorable or unfavorable
across the population’s range and on whether an individual is
in good or bad nutritional status when it arrives on the feeding
grounds (Hin et al., 2019; Pirotta et al., 2019).

Data integration and the population
consequences of disturbance
Understanding the long-term consequences of behavioral dis-
ruption is challenging, because extensive knowledge of base-
line behavior and of the characteristics of the environment is
required (Pirotta et al., 2018a). In this study, the integration of
multiple data sources allowed translating observed behavioral
changes into a potential loss of foraging time and associated
energy, which will provide a common metric to evaluate
the implications of these short-term responses for individ-
ual fitness using models for the population consequences of
disturbance. This reinforces the results of previous work on
other marine mammal (Noren et al., 2016; Farmer et al.,
2018; Guilpin et al., 2020), mammal (Bradshaw et al., 1998;
Houston et al., 2012) and bird species (West et al., 2002;
Masden et al., 2010). Importantly, we were able to partially
reconcile the mismatch between the scale of data collection
(detailed individual movement and diving behavior, collected
in specific locations and times, at extremely high resolu-
tion) and the scale of a corresponding model (Pirotta et al.,
2019) for population-level effects (dealing with the popu-
lation, modelled across the entire year and range, at daily
temporal resolution and in large spatial units), thereby con-
densing the data into a compatible input for the model. Given

the large individual, temporal and spatial variability in the
predicted energetic costs of disturbance, our results underline
that modelling population consequences will require sampling
from the distribution of costs, rather than using mean predic-
tions. Ignoring this heterogeneity would be misleading, since
few individuals incur average costs and some may incur much
higher ones (Biggs et al., 2009).

Some simplifications to the simulation approach were
required in order to integrate data collected at different
scales and resolutions. For example, our simple propagation
model does not capture the effects of specific bathymetry
and oceanography on noise propagation (Au and Hastings,
2008). Ideally, we would have used information on the
realized footprints of real sonar sources in realistic training
operations (Table 2), but such data are not generally
available due to security restrictions. Other simplifying
choices were made with regard to individual movements:
a realistic movement model derived from telemetry data
could be used instead (Donovan et al., 2017), but fast
computation will remain an important feature for real-
world applications of any simulation exercise. Moreover,
we used the intervals between foraging bouts to represent
the time to find a new patch, similarly to Boyd (1996):
in undisturbed conditions, these gaps in feeding activity
probably arise from patch depletion or changes in the
oceanographic processes supporting krill aggregations (Cade
et al., In press; Santora et al., 2017). However, blue whales
appear unlikely to completely leave a foraging area when
disturbed, often returning to foraging rapidly following
the abatement of disturbance (Southall et al., 2019a).
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A better empirical characterization of the cues used to
locate foraging patches, the distribution of patches in
the environment and the factors affecting the severity of
behavioral responses is therefore needed to inform this
component of the simulations (Table 2). In general, we have
followed the precautionary principle when addressing these
limitations, which has likely led to overestimating the effects
of disturbance.

The use of discrete, state- and range-specific ER func-
tions relied on several assumptions. Future CEEs should be
designed to quantitatively assess the influence of these, and
other, contextual factors (Table 2), given the strong influence
they had on our results (Harris et al., 2018). For example,
it will be important to run experiments involving multiple
exposures and at larger ranges from the source (>5 km).
However, the sample size required to ensure sufficient power
to test complex combinations of conditions and the asso-
ciated high costs of these operations are limiting factors
(National Academies, 2017; Harris et al., 2018). An indi-
vidual’s ability or willingness to change its behavior may
also depend on when exposure occurs within the dive cycle
and any associated physiological constraint. Importantly, the
probability of responding to a repeated or prolonged dis-
turbance source could change over time, as a result of sen-
sitization or habituation. This would be more accurately
represented by an ER function for the aggregate exposure
to noise (National Academies, 2017). Similarly, some empir-
ical evidence suggests that animals may be responding to
the total noise energy they receive, rather than the ampli-
tude of any one stimulus (Isojunno et al., 2020). Uncer-
tainty around source characteristics and propagation, and
the spatio-temporal scale of animal movements imposed by
the model, made it unfeasible to use sound energy in this
study. Finally, we have focused on behavioral responses, but
increases in stress levels and other physiological effects of
disturbance could also affect an individual’s health status
on the long-term (National Academies, 2017; Pirotta et al.,
2018a).

In conclusion, by building on a knowledge base accrued
over the last two decades across numerous empirical
and analytical studies, this work demonstrates both the
strengths and challenges of combining heterogeneous sources
of information. These ongoing efforts will continue to
collectively advance our mechanistic understanding of
the behavioral and physiological pathways that underpin
animals’ responses, health and life history. Ultimately, this
will contribute to robust assessments of the population-
level effects of anthropogenic disturbance at spatio-temporal
and ecological scales that are relevant to management and
conservation.

Supplementary material
Supplementary material is available at Conservation Physiol-
ogy online.
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