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ABSTRACT

Heterogeneous Stock (HS) rats are a genetically di-
verse outbred rat population that is widely used
for studying genetics of behavioral and physiolog-
ical traits. Mapping Quantitative Trait Loci (QTL) as-
sociated with transcriptional changes would help
to identify mechanisms underlying these traits. We
generated genotype and transcriptome data for five
brain regions from 88 HS rats. We identified 21 392
cis-QTLs associated with expression and splicing
changes across all five brain regions and validated
their effects using allele specific expression data.
We identified 80 cases where eQTLs were colocal-
ized with genome-wide association study (GWAS) re-
sults from nine physiological traits. Comparing our
dataset to human data from the Genotype-Tissue Ex-
pression (GTEx) project, we found that the HS rat data
yields twice as many significant eQTLs as a similarly
sized human dataset. We also identified a modest but
highly significant correlation between genetic regu-
latory variation among orthologous genes. Surpris-
ingly, we found less genetic variation in gene regu-
lation in HS rats relative to humans, though we still
found eQTLs for the orthologs of many human genes
for which eQTLs had not been found. These data are
available from the RatGTEx data portal (RatGTEx.org)
and will enable new discoveries of the genetic influ-
ences of complex traits.

INTRODUCTION

Rats are used in a variety of fields including physiological
and behavioral research because of their similarities to hu-
mans and are preferred over mice for studying certain traits
(1–4). In particular, research into the genetic basis of com-
plex behavioral tasks such as measures of impulsivity and
complex models of substance abuse and other motivated
behavior has made extensive use of various inbred and out-
bred rat populations (5). Many associations with these traits
have been detected (6). However, similar to the situation in
human complex trait genetics, resolving implicated chromo-
somal regions to specific genes and underlying mechanisms
is a critically important step that remains challenging.

Identification of heritable differences in gene expression
via expression quantitative trait loci (eQTL) mapping offers
one way to identify the molecular mediators of loci impli-
cated by genome-wide association studies (GWAS) (7–10).
Mapping of eQTLs has been conducted at scale for dozens
of human tissues, most notably by the Genotype-Tissue Ex-
pression Consortium (GTEx) (7). In contrast, eQTL map-
ping in rats has been limited in terms of populations, tissues,
sample size, and number of genetic markers used (11–27).
Some eQTL mapping has been conducted in Heterogeneous
Stock (HS) rats (28,29), but to our knowledge this has not
yet been done transcriptome-wide.

HS rats were developed in the 1980s by interbreed-
ing eight inbred rat strains (ACI/N, BN/SsN, BUF/N,
F344/N, M520/N, MR/N, WKY/N and WN/N) (30) and
have been maintained as an outbred population ever since.
As a result, each HS rat chromosome is a mosaic of the
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eight possible founder haplotypes meaning that all alleles
are common. The relatively high minor allele frequency is
in stark contrast to humans, which have a preponderance
of rare variants, and provides greater power for mapping
eQTLs.

Because HS rats are being used for a variety of behav-
ioral and physiological studies, there is an urgent need for a
well-powered and complete library of QTLs. Here, we used
tissue from five brain regions that have been implicated in
addiction and other psychiatrically important traits to map
eQTLs and splicing QTLs (sQTLs) in HS rats. We explored
several important considerations for eQTL mapping in this
population. We also have compared the results of eQTL
mapping in HS rats to publicly available human data, iden-
tifying both similarities and important differences. Finally,
we have provided all the data generated here on an online
portal (RatGTEx.org) that provides a clearing house for
this and other eQTL datasets.

MATERIALS AND METHODS

Brain samples

Brains were extracted from 88 HS rats (43 male and 45 fe-
male). Mean age was 85.7 ± 2.2 for males and 87.0 ± 3.8 for
females. Rats were selected to try to avoid related individu-
als. All rats were group housed under standard laboratory
conditions and were naı̈ve to behavioral or drug treatment.

Rat brains were taken out of a –80◦C freezer and cryosec-
tioned into 60 �m sections, which were mounted onto
RNase-free glass slides. Slides were stored in -80◦C until
dissection. During dissection, slides were placed on a –20◦C
cold plate. One drop (approximately 50 �l) of RNAlater was
placed on the brain region of interest. Each brain region
then was dissected out under a dissecting video camera by
using a pair of fine-tipped forceps with the assistance of an
18 gauge needle with a bent tip. Bilateral tissue of the same
brain region from each rat was immediately transferred into
350 �l Buffer RLT (containing beta-mercaptoethanol) and
placed on dry ice. Tissue was stored in –80◦C before RNA
extraction.

Tissue was thawed on ice and homogenized by using
a clean stainless steel bead using Qiagen TissueLyser (40
Hz, 3 min). AllPrep DNA/RNA mini kit (Qiagen) was
used to extract RNA. Samples were processed by using
the QIAcube robot following standard protocols. The op-
tional DNase digestion step was included for RNA sam-
ples. The average RIN for PL, IL, OFC, NAcc and LHb
were 9.47 ± 0.58, 9.33 ± 0.63, 9.7 ± 0.53, 8.88 ± 0.79 and
8.94 ± 0.88, respectively.

RNA sequencing

We performed RNA-Seq on mRNA from each brain region
sample using Illumina HiSeq 4000 to obtain 100 bp single-
end reads for 435 samples, with 26.7 million raw reads per
sample on average (Supplementary Table S1).

To quantify gene expression, reads were first trimmed for
adapter and poor-quality base calls using cutadapt (31).
Reads were then aligned to the Ensembl Rat Transcriptome
using RSEM (32). Upper quartile adjustment was applied
to estimated gene read counts using DESeq2 (33). Samples

were filtered based on low reads counts, mismatched geno-
types (as described in the paragraph below), and expression
principal component analysis (PCA) outliers. For two rats,
all samples were removed by these filters, yielding processed
data for 397 samples in 86 rats. Genes were eliminated if
<25% of libraries had more than one read or if the total
number of reads among all libraries for the gene was <100.
Read counts were log2 transformed after adding a pseudo-
count of one to each read count. We used those values for
calculating allelic fold change, and for eQTL mapping we
applied rank-based inverse normal transformation to the
values per gene.

Separately, to quantify allele specific expres-
sion and splicing, RNA-Seq reads were aligned to
the Rnor 6.0 (rn6) genome from Ensembl (http:
//ftp.ensembl.org/pub/release-99/fasta/rattus norvegicus/
dna/Rattus norvegicus.Rnor 6.0.dna.toplevel.fa.gz) using
STAR v2.7.3a (34). STAR was run in two passes per
sample, where novel splice junctions identified in the first
pass were used to align additional reads in the second pass.
The second pass used WASP to reduce mapping bias due
to polymorphisms (35). Duplicate reads were then marked
with the Picard MarkDuplicates function.

To check for mismatched RNA-Seq/genotype samples,
we counted reads containing each allele for each exonic SNP
using GATK ASEReadCounter (36) and compared counts
to the genotypes at those SNPs. We identified 13 samples in
which the RNA-Seq sample did not correspond to the label-
associated genotype. Two of these samples matched each
other’s genotypes, and their rat IDs were swapped and the
samples were kept. Of the remaining 11, three matched with
genotypes for which samples already existed for the same
brain region, and the other eight matched with none of the
88 genotypes, so these 11 samples were removed from the
study.

Genotyping

We used genotyping-by-sequencing as described previ-
ously (37) to genotype the 88 rats, yielding 125 686 high-
quality observed autosomal SNPs in Rnor 6.0 coordi-
nates. We used SHAPEIT (38) followed by IMPUTE2 (39)
to impute additional SNPs based on the genotypes of
the eight HS founder strains (ACI/N, BN/SsN, BUF/N,
F344/N, M520/N, MR/N, WKY/N and WN/N), result-
ing in phased genotypes for 3 511 003 SNPs.

Founder haplotypes

Regions of the 88 rat genomes were mapped to the eight
HS founders using the calc genoprob function of R/qtl2
with the cohort and founder strain genotypes (40). Diploid
haplotype pair probabilities were collapsed to probabil-
ities per strain per locus per animal using the geno-
prob to alleleprob function. These inferred haplotype map-
pings were used solely to examine genetic diversity in the
cohort, and were not utilized in QTL mapping.

Haplotype probabilities were compared to the results of
breeding simulations. For one simulated locus, one of eight
haplotype labels was randomly chosen for each of the two
copies per individual, for 100 individuals grouped into 50
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female-male pairs. To progress one generation, individuals
were rearranged into new pairs either by rotating the males
by one in the sequence of pairs (circular mating), or by shuf-
fling the pair assignment of the males (random mating). For
each new pair, the locus is inherited in an offspring by ran-
domly selecting one of the two alleles from the female and
another from the male. This was done twice per pair to pro-
duce a new set of 50 female-male pairs. This was repeated
for 80 generations. This full locus simulation was repeated
200 times using circular mating and 200 times using random
mating.

eQTL mapping

We performed cis-eQTL mapping using single-SNP linear
regression implemented in tensorQTL (41), testing variants
within 1 Mb upstream and downstream of each gene’s tran-
scription start site (cis-window). We included 28 covariates:
the first 20 principal components of the brain region’s ex-
pression matrix, and the genotype similarity to each of the
eight HS founder strains to control for unequal relatedness.
Empirical beta-approximated P-values were computed us-
ing data permutations (42) and were then used to calcu-
late gene-level q-values and nominal P-value significance
thresholds. A q-value cutoff of 0.05 was used to determine
the genes for which at least one significant cis-eQTL was
found. We then ran tensorQTL in cis independent mode to
find additional, conditionally independent cis-eQTLs per
cis-eQTL gene (eGene) using a stepwise regression proce-
dure (43). Finally, we ran tensorQTL in trans mode with-
out excluding cis-window SNPs to identify all associations
genome-wide with nominal P-value < 10−5.

sQTL mapping

We quantified splice phenotypes by first identifying
splice junctions using regtools (44). Using the clus-
ter prepare fastqtl.py script provided by the GTEx pipeline,
we clustered introns using LeafCutter (45), mapped clusters
to genes, and applied filtering and normalization. We then
mapped cis-sQTLs using tensorQTL, using genes as pheno-
type groups when doing permutations to compute empirical
P-values. As with cis-eQTLs, a q-value cutoff of 0.05 com-
puted across genes was used to determine significant cis-
sQTLs, and used stepwise regression to find additional con-
ditionally independent cis-sQTLs for each gene. We used the
same eight genotype covariates as for eQTL mapping, plus
the first ten principal components of the splice phenotypes.

eQTL effect size

We define cis-eQTL effect size as allelic fold change (aFC)
and computed it in two independent ways. Primarily, we
computed aFC from total gene expression based on the ad-
ditive cis-regulatory model (46), with the same covariates
as were used for eQTL mapping. For validation, we com-
puted haplotype-level allele specific expression (ASE) us-
ing phASER (47), which we then used to compute aFC for
genes with sufficient ASE information (48). This method re-
lies on phased genotypes and the SNPs detected in RNA-
Seq reads.

Effect sizes for GTEx eQTLs were obtained from ta-
bles downloaded from https://gtexportal.org. Human-rat
ortholog pairs were obtained from Ensembl BioMart.

GEMMA

To assess the impact of using a linear mixed model (LMM)
for mapping cis-eQTLs, the leave one chromosome out
(LOCO) method was used, so GEMMA (49) was run in gk
mode to create 20 kinship matrices, each based on all geno-
types except those on the same chromosome as the genes
for which it would be used. GEMMA was run on the nu-
cleus accumbens core samples in lmm mode using the Wald
test. It was run separately for each gene, testing only the
gene’s cis-window variants with minimum minor allele fre-
quency (MAF) = 5%. As with the tensorQTL mapping,
the first 20 expression PCs were used as covariates, but the
eight genotype-based covariates were omitted so as not to
interfere with the random effect term. Percent variance ex-
plained (PVE) by the kinship matrix for each gene was com-
puted by running GEMMA in vc mode, supplying a kinship
matrix but not genotypes. The lmm mode mapping was re-
peated in lm mode for comparison, identically aside from
not supplying a kinship matrix. These results were used only
for the analysis on LMM impact, while results from ten-
sorQTL described earlier were used for the remainder of the
study.

Heritability estimates

The cis-heritability (h2) for rat genes were calculated with
GEMMA by first computing a kinship matrix for each gene
using only cis-window variants. GEMMA was then run in
vc mode, supplying the gene-specific kinship matrix and the
same covariates used for eQTL mapping, and recording the
PVE from the output log. Human cis-heritability estimates
were previously computed (50).

VG estimates

VG (the expected variance in the gene dosage due to in-
terindividual genetic differences observed in allele specific
expression) was estimated for each gene in each rat brain re-
gion by running ANEVA (51) using the phased, gene-level
allele specific expression counts. VG estimates for human
genes were similarly obtained using GTEx v8 data, and VG

estimates calculated with at least 5000 ASE counts were in-
cluded.

The human gene sets used to subset human-rat ortholog
pairs for VG comparison were based on those previously
collected by Mohammadi et al. (51–53). We removed sets
that overlapped with fewer than 20 ortholog pairs, and
replaced the GWAS-derived sets with sets of all author-
reported genes for traits in the GWAS Catalog v1.0.2 (54),
choosing the 10 traits with the most author-reported genes
while avoiding redundant traits.

Variant annotation

SNPs were annotated with functional categories using the
Ensembl Variant Effect Predictor (55). The background

https://gtexportal.org
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SNP set for enrichment was all cis-window SNPs for all
tested genes. The test sets for enrichment were the cis-eQTL
SNPs (eSNPs) with lowest P-value per eGene in each brain
region, including multiple SNPs in the case of tied P-values.

Colocalization

We collected linear association statistics from eQTL map-
ping in the five brain regions and from the nine traits from
a published GWAS in HS rats (56). GWAS scores were
available for a set of pruned SNPs (r2 < 0.95), so for each
brain region we selected the top cis-eSNP per gene that was
present in the pruned GWAS dataset to test for colocaliza-
tion. We computed z-scores for eQTL and GWAS associa-
tions by dividing the slope by its standard error for each se-
lected SNP. Using the summary data-based Mendelian ran-
domization (SMR) method (57) we computed the approx-
imate � 2 test statistic and computed a P-value using the
upper tail of the chi-squared distribution with one degree
of freedom. We computed SMR P-values for each selected
SNP and used a Bonferroni threshold to determine SNPs
with significant colocalization. We repeated this for each of
the 45 tissue-trait combinations.

RESULTS

We obtained gene expression profiles from five brain re-
gions from 88 HS rats using RNA-Seq with an average li-
brary size of 26.7 million raw reads (Supplementary Table
S1). The regions examined were: nucleus accumbens core
(NAcc), infralimbic cortex (IL), prelimbic cortex (PL), or-
bitofrontal cortex (OFC) and lateral habenula (LHb) (Fig-
ure 1A). These brain regions were selected because of their
relevance to a variety of behavior traits, including but not
limited to substance abuse-related traits.

We determined genotypes at 3 511 003 SNPs across all
autosomes using genotyping by sequencing (37). Consis-
tent with our expectations based on their population his-
tory (Figure 1B), linkage disequilibrium (LD) decayed over
much longer distances in this population as compared to
humans (Figure 1C). Minor allele frequencies were fairly
uniform, with a mean of 24% and the first and third quar-
tiles of 11% and 36%; importantly the spike of rare alleles
typically observed in human populations was not present
(Figure 1D).

Clusters of expression profiles for the three cortical re-
gions were relatively close along their first two princi-
pal components, while nucleus accumbens core and lateral
habenula profiles formed separate clusters (Figure 1E). Fur-
ther separation between the cortical regions was apparent in
the fourth principal component (Figure 1F).

HS founder haplotype diversity

Since the HS rats have been maintained as an outbred pop-
ulation for many generations (73–80 for this cohort), the
chromosomes are expected to be random mosaics of the
eight founder haplotypes. In addition to the accumulation
of recombinations, which improves mapping resolution,
genetic drift inevitably erodes haplotype diversity (Figure
2). We inferred ancestral haplotypes across each animal’s

genome, which showed that at many loci the founder haplo-
types had deviated substantially from their initially uniform
proportions (Figure 2A, Supplementary Figure S1). To de-
termine if the observed loss of haplotype diversity was con-
sistent with genetic drift versus other possibilities such as
genotyping errors, breeding errors, or inadvertent selection
for fitness and fecundity, we simulated the breeding history.
In particular, since the HS population has undergone peri-
ods of both circular and random pair mating, we simulated
both strategies separately. We found that the distribution
of observed haplotype diversity, as measured by Shannon
entropy, lies between that of the two simulated strategies
at generation 80 (Figure 2B), suggesting that the changes
in haplotype frequency are broadly consistent with random
genetic drift.

Mapping eQTLs

We tested for associations between gene expression and
each SNP across the genome (Figure 3A). As observed
in other organisms (7,9), associations with SNPs near the
gene’s location in the genome, which we presumed to be
cis-eQTLs, were prevalent. While we observed some as-
sociations with distant SNPs, which may represent trans-
eQTLs, we primarily focused on putatively cis-acting eQTLs
within ±1 Mb of each gene’s transcription start site (TSS) to
retain statistical power and limit false positives (see Materi-
als and Methods). Unless otherwise noted, ‘eQTL’ hereafter
refers to a cis-eQTL.

Plotting all P-values in the cis-windows revealed blocks
of SNPs in full LD with identical P-values, or with multiple
overlapping sets of such SNPs, depending on the founder
haplotypes involved (Figure 3B). The cis-window of 96.6%
of the genes contained at least 10 SNPs that were not in full
LD, and 28.1% contained at least 100 such SNPs. The TSS
of 73% of genes were in high LD (r2 > 0.99) with at least
one other gene’s TSS. In instances where multiple top SNPs
in perfect LD were associated with the same gene, a single
SNP was selected randomly for downstream analyses and
visualization. We estimated the effect sizes for the cis-eQTLs
using allelic fold change (aFC) and found that 87% of the
cis-eQTLs alter the gene expression by up to two fold (|log2
aFC| ≤ 1), and 96% did so up to four fold (|log2 aFC| ≤ 2)
(Figure 3C). Consistent with their higher statistical power,
minor allele frequencies of eQTLs were higher on average
than the set of all measured SNPs (Figure 3D). eQTLs were
enriched close to the associated gene’s TSS, occurring up-
stream and downstream of the TSS at similar frequencies
(Figure 3E).

We identified cis-eQTLs for between 3339 and 4003 genes
for each of the brain regions at a 5% false discovery rate
(Figure 4A), a consistent amount that represented 20% to
24% of the 16 456 to 16 814 expressed genes in each brain
region. A total of 7,788 genes were affected by a cis-eQTL
in at least one brain region, many of which (3,234, 42%)
were identified in only one brain region and 1170 (15%) of
which were identified in all five brain regions (Figure 4B). To
validate the mapped cis-eQTLs, we measured their regula-
tory effect size from total gene expression and allele specific
expression (ASE) data independently using aFC (46). We
could obtain ASE counts for 70.8% of expressed genes on
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Figure 1. Overview of genotypes and expression data. (A) Diagram of the rat brain showing the five regions sampled in this study. (B) Diagram of the
genetic outcome of heterogeneous stock rat breeding. The maternal and paternal chromosomes of a hypothetical autosome is depicted for each founder
strain and for multiple HS rats. (C) LD decay in the HS rats in the present study and in humans in the GTEx project. LD was calculated using frequency-
matched SNPs with MAF >20%. (D) Distribution of SNP minor allele frequency in HS rats and in the humans in GTEx. (E, F) First two (e) and next
two (f) components from principal component analysis applied to log-count expression data for all samples. IL, infralimbic cortex; LHb, lateral habenula;
NAcc, nucleus accumbens core; OFC, orbitofrontal cortex; Vo, ventral orbital area; Lo, lateral orbital area; PL, prelimbic cortex; PC, principal component.

average per brain region, and from those counts estimated
aFC from ASE for 52.4% cis-eQTLs on average. These two
independent aFC measurements were consistent for each
brain region (mean Pearson’s r = 0.58 ± SD 0.02, Deming
regression � = 1.26 ± 0.10, Supplementary Figure S2). We
used a stepwise regression procedure to identify condition-
ally independent cis-eQTLs beyond the strongest cis-eQTL
per gene, and found an average of 174 genes with two eQTLs
and 4 genes with three eQTLs in each brain region, resulting
in an average of 4.9% additional eQTLs per brain region.
In total, we found 19 588 cis-eQTLs across the five brain
regions (Supplementary Table S2).

Next we looked at the tissue specificity of the eQTLs that
may reflect biological differences across brain regions. The
three cortical regions (IL, PL, and OFC) shared a greater
overlap of cis-eQTL genes (eGenes) than any other tissue
trio, with 349 eGenes shared exclusively among them, com-
pared to only 104 eGenes for the next-highest trio (Figure
4C). This observation is broadly consistent with our expec-
tation that cortical tissues should have similar expression
patterns. However, there were a number of eQTLs that were
only detected in a single tissue (Supplementary Table S3). In
some cases, this may reflect real biological differences that
give rise to tissue specific eQTLs. In other cases, this appar-
ent tissue specificity could be also caused by noise in associ-
ations that are close to the significance threshold, such that
only one tissue reached the significance threshold, or by low
expression of the gene in question in other tissues (Supple-
mentary Table S4).

We quantified splicing in terms of intron excision ratios
and used these phenotypes to map cis-sQTLs (7). Because
these measurements are based on a smaller number of reads,
power to detect sQTLs is likely lower than for eQTLs. We
found cis-sQTLs in 4.1–5.4% of the 6918 to 7676 genes

in which we detected alternative splicing per brain region.
Over all splice junctions per gene and using stepwise regres-
sion, we found 305 to 403 independent cis-sQTLs per brain
region, impacting a total of 764 genes (Figure 4D, Supple-
mentary Table S5). This included 404 genes for which cis-
sQTLs were identified in only one brain region and 117 for
which cis-sQTLs were found in all five brain regions (Fig-
ure 4E, F). Importantly, 47% of the genes with an sQTL in
a brain region did not have an eQTL in that brain region,
demonstrating the added benefit of mapping sQTLs.

We annotated top associated SNPs (eSNPs) per eQTL
and found enrichment in all protein-coding gene-associated
categories, both exonic and intronic (Figure 4G). However,
these enrichments may also reflect the tendency for both eS-
NPs and gene-associated features to occur near the gene’s
transcription start site relative to the full cis-window. While
there were too few sQTLs to reliably measure sQTL SNP
(sSNP) annotation enrichment, especially for smaller cat-
egories such as ‘Splice region’, the proportions of anno-
tations among the sSNPs were similar to the proportions
among eSNPs. Given that there were often blocks of multi-
ple eSNPs with identical P-values, the level of eSNP resolu-
tion in HS rats is limited by LD structure.

Because of the complex familial relationships among
members of an outbred population like the HS, several prior
eQTL mapping studies in similar mouse populations em-
ployed a linear mixed model (LMM) that includes a kin-
ship matrix that accounts for relatedness (9,58,59). How-
ever, LMMs are more computationally intensive, and given
the large number of genes being examined, we questioned
the need for an LMM. We examined genetic relatedness
between the rats and found several outliers that appear to
be closely related pairs (Supplementary Figure S3a). We
repeated cis-eQTL mapping for one brain region, NAcc,
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Figure 2. HS founder haplotype diversity. (A) Estimated haplotype proportions across three chromosomes in the 88 HS rats. The total proportions over
all autosomes are shown in the legend. (B) Simulated and observed haplotype diversity in the HS population. Diversity (Shannon entropy of mean strain
probabilities at each locus) is shown for every tenth generation for the simulated data. Each simulation type was run 200 times, representing 200 independent
loci, and 200 real loci were sampled from the real cohort from HS generations 73–80.

using GEMMA (49) in linear model (LM) mode and in
LMM mode, run with identical parameters aside from
the inclusion of a leave-one-chromosome-out kinship ma-
trix for LMM. The absolute values of Z-scores for the
top association per gene were highly correlated (Spear-
man’s rho = 0.991, Supplementary Figure S3b). The sets
of eGenes below a wide range of P-value thresholds had
strong overlap between the modes (97%, 97% and 95% for
10−9, 10−6 and 10−3, respectively, Supplementary Figure
S3c). This is in stark contrast to the scenario of GWAS in
a panel of inbred mouse or rat strains, where use of LMM
is critical to avoid false positive results (60). In our dataset,
P-values for LMM tended to be slightly more significant
(Supplementary Figure S3d).

Comparison to human

The GTEx Consortium recently released a comprehensive
map of eQTLs in 49 human tissues including 13 brain re-
gions (7). The number of eGenes in our data was lower
(mean of 3736 over five tissues) than for the human brain

tissues in GTEx data (mean of 6870 over 13 tissues) where
the authors used 114 to 209 donor samples to map eQTLs,
using a similar testing procedure and the same false dis-
covery rate (5%) as the present study. We sought to com-
pare these counts in light of the correlation between sam-
ple size and eGene count among the GTEx tissues (Pear-
son’s r = 0.86, Figure 5A). We subsampled each GTEx
brain tissue dataset to 81 samples, the largest sample size
in the present study. Mapping eQTLs with these subsam-
pled datasets resulted in fewer eGenes (mean: 1900, SD:
473) than the rat brain tissues (mean: 3736, SD: 304). While
this comparison pertains to human datasets with artifi-
cially reduced sample sizes, and the human and HS rat
datasets differed in multiple biological and technical ways
that could influence statistical power, it suggests that on a
per subject basis we had greater power to map eQTLs in
HS rats.

The distances between each eGene’s top eSNP and TSS
were much greater for rat brain (median 271 kb) than for hu-
man brain (median 35 kb, Figure 5B). In many cases a rat
brain eQTL had a cluster of eSNPs in perfect LD (r2 = 1),



10888 Nucleic Acids Research, 2022, Vol. 50, No. 19

Figure 3. Overview of eQTLs for nucleus accumbens core. (A) Full-genome eQTL scans. Results are shown for nucleus accumbens core but were similar
for all five brain regions. Each 20 Mb by 20 Mb bin is colored by its highest -log10(P-value), values below five are white. (B) Left: nominal –log10(P-values)
for all cis-window SNPs for the top six NAcc cis-eQTLs, ranked by permutation-derived P-values. Vertical solid lines show each gene’s TSS, and horizontal
dotted lines show each eQTL’s nominal P-value threshold as determined by permutations. The gene symbol and chromosome of each eQTL are labeled.
LD values refer to each eQTL’s most significant eSNP(s). Right: effect plots for the representative eSNP per eQTL. Expression values are inverse normal
transformed as used for eQTL mapping. Sample counts per genotype are shown in parentheses. (C) Allelic fold change of NAcc cis-eQTLs. (D) Minor
allele frequency of top NAcc cis-eSNPs shown as solid gray bars. The red outline shows the histogram of minor allele frequency for all genotyped SNPs for
comparison. (E) Top eSNP distance from TSS, oriented along the eGene strand. Each NAcc cis-eQTL is represented by one top eSNP, randomly chosen
in the case of variants with identical P-values. TSS, transcription start site.

which therefore had identical P-values. In these cases a sin-
gle SNP was randomly chosen, which is one reason for the
greater distances between the top eSNP and the TSS ob-
served in HS rats.

Colocalization analysis and other transcriptome-
informed functional population genomic analyses rely on
presence of common regulatory variation in a population
such as eQTLs to interpret GWAS signal. Next, we focused
on genes that do not have an eQTL mapped in any brain
tissues in the GTEx data. Out of 11 686 orthologous
genes that are well expressed (median TPM > 1 in at
least one tissue) in both GTEx human and HS rat data,
we found that 85% have an eQTL in at least one GTEx
brain tissue, leaving 1717 genes with no mapped eQTLs.
As previously reported, the genes with no eQTLs are
enriched for critical genes that are intolerant to loss of
function coding genetic variation (46). We found that for
44% (n = 749) of these genes we identified an eQTL in at
least one rat brain region. Indeed, the orthologous genes
associated with these eGenes that are exclusive to the rat
eQTL data are significantly more likely to be intolerant of
loss-of-function mutations than those genes with eQTLs in
GTEx data (Figure 5C). These results suggest that the HS
rat population may be a valuable resource for characteriz-
ing phenotypic consequences of genetic variation in genes
that are highly depleted for functional variation in human
populations.

Conservation of genetic regulatory constraint between human
and rat

Genetic regulatory variation present in a population is neg-
atively correlated with the coding constraint of the genes
(46,51,62). We compared the amount of genetic variation
present in the HS rat population to human data using differ-
ent approaches, each affected by a different set of confound-
ing factors. Effect sizes (|log2 aFC|) of the cis-eQTLs in rat
brain regions were smaller overall than those measured in 13
human brain tissues in GTEx (7). We looked at eQTL effect
sizes for ortholog pairs to detect correspondence in toler-
ance to regulatory variation between similar human and rat
genes. For each gene, we averaged the absolute effect size per
top eQTL across tissues, and then paired up these values for
every ortholog pair with any eQTL in rat brain tissues and
any eQTL in human brain tissues (n = 6079 pairs). Effect
sizes correlated significantly (Pearson’s r = 0.24, P = 1.3e–
79, Figure 5D). This suggests that some degree of variance
in tolerance to regulatory variation is conserved between rat
and human.

For each gene in each tissue, we estimated cis-heritability
(h2) of expression. Since h2 is another measure pertaining to
genetic regulatory constraint, we expected some correlation
in h2 between orthologous genes due to their similarity in
function and therefore correlation in their degree of evolu-
tionary constraint. We averaged h2 across tissues per gene
and compared to h2 estimates for human genes averaged
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Figure 4. eQTLs and sQTLs across brain regions. (A) For each brain region, the number of genes for which at least one significant cis-eQTL was found.
(B) The unique genes in panel (a), grouped by the number of tissues in which a cis-eQTL was found for the gene. (C) Overlap of eGene sets across tissues.
Size of intersection is given for each combination of tissues, colored by the number of tissues in the combination. (D) For each tissue, the number of
genes for which at least one significant cis-sQTL was found. (E) The unique genes in panel (d), grouped by the number of tissues in which a cis-sQTL was
found for the gene. (F) Overlap of sQTL gene (sGene) sets across tissues. (G) Left: Enrichment of functional annotations in eSNPs (top associated SNP
per cis-eQTL). Right: Proportion of eSNPs and sSNPs (top associated SNP per cis-sQTL) with each annotation. Representative eSNPs and sSNPs were
randomly chosen among the top associations per e/sQTL in case of ties. Some SNPs have more than one annotation. Enrichment is with respect to all
tested (cis-window) SNPs. Points and bars show mean across the five brain regions, and lines show standard deviations.
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Figure 5. Comparisons to human eQTLs. (A) Scatter plot showing the relationship between sample size and number of detected eGenes for the five rat brain
tissues in the present study and for all GTEx tissues. The boxplot summarizes the 13 counts for the human brain tissues after subsampling each dataset
to 81 samples. Both axes are square-root-scaled. (B) Distributions of distances to transcription start site for each top eSNP in HS rat and GTEx brain
tissues. (C) Probability of loss-of-function intolerance (pLI) (61) for expressed ortholog pairs in which one, both, or neither gene had an eQTL in any brain
tissue. Ortholog pairs counts are shown in parentheses. (D) Pearson correlation of eQTL effect size in ortholog pairs in which eQTLs were found for both
genes. For each gene, |log2(aFC)| for significant eQTLs were averaged across rat and across human brain tissues. (E) Pearson correlation of cis-heritability
estimates in ortholog pairs. For each gene, h2 was averaged across all rat and all human brain tissues where it could be computed. (F) Pearson Correlation
of SDG (

√
VG ) estimates in ortholog pairs. For each gene, SDG was averaged across all rat and all human brain tissues where it could be computed. (G)

For each set in a collection of human gene sets, averaged SDG values from (f) subsetted to gene ortholog pairs in which the human gene is in the set. Points
are medians, vertical segments are 95% confidence intervals of the medians, and horizontal lines show medians of all human or rat values from (f). Sets are
sorted by human gene median, and set sizes, considering only the genes with SDG data, are indicated in parentheses. DD, developmental disorder; LoF,
loss-of-function; BMI, body mass index; ECG, electrocardiogram.
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over 13 GTEx brain tissues. Mean h2 between orthologs cor-
related modestly but was highly significant due to the large
number of observations (Pearson’s r = 0.096, P = 4.5e–31,
Figure 5E).

We then estimated VG, the expected variance in the gene
dosage due to interindividual genetic differences observed
in allele specific expression using ANEVA (51). We com-
pared the SDG (standard deviation,

√
VG) values per gene

to those estimated for GTEx brain tissues. As expected, VG

correlated much more highly between tissues from the same
species than did VG between orthologs in cross-species tis-
sue pairs (Supplementary Figure S4). When averaged across
tissues per rat gene and human gene, SDG values for or-
tholog pairs were weakly but significantly correlated (Pear-
son’s r = 0.14, P = 9.9e–15, Figure 5F). SDG tended to be
lower (i.e. lower genetic dosage variance) for the rat gene
in ortholog pairs, including the orthologs for a wide range
of human gene sets representing both essential and non-
essential genes (Figure 5G).

Colocalization

Due to the longer-range LD in HS rats compared to hu-
mans, particularly the blocks of SNPs in complete LD
within the cohort, colocalization methods that model colo-
calization as the overlap of single causal SNPs are less in-
formative because colocalization probabilities are divided
among the group of SNPs that are in LD with one another.
To address this limitation, we tested colocalization of cis-
eQTLs with GWAS results for a set of nine traits related to
body morphology and adiposity obtained from an indepen-
dent cohort of HS rats (56) using the summary data-based
Mendelian randomization (SMR) method, which only eval-
uates consistency of effect for the top eQTL (57). We found
80 significant colocalizations among the 45 tissue-trait
pairs using tissue-trait-specific Bonferroni P-value thresh-
olds ranging from 1.3e–5 to 1.6e–5 (Supplementary Table
S6), with the most colocalizations found for prelimbic cor-
tex eQTLs and the RetroFat trait (Figure 6A). Eight eGenes
were involved in at least four colocalizations: Apip, Cacul1,
Drc1, Gpn1, Mrpl45, Nudt4, Pnpo and Rbks. Colocaliza-
tions for multiple tissues and traits generally clustered to-
gether in or near the QTL regions of the original GWAS
(Figure 6B, Supplementary Figure S5).

Data portal

All gene expression, eQTL, and sQTL data are available at
RatGTEx.org, for which we have adapted code and API
design from the GTEx Portal to host rat eQTL data. This
portal also includes interactive visualizations, derived from
those in the GTEx portal, that can display results for any
queried genes and variants. These five datasets initiate the
RatGTEx portal, with datasets for additional tissues to be
added as they become available.

DISCUSSION

We used RNA-Seq to map eQTLs and sQTLs in five brain
regions in a cohort of 88 outbred HS rats. We also explored
the unique genetic characteristics of the HS rat population.

We focused on cis-eQTLs and sQTLs and characterized the
degree of tissue specificity. We compared our results to hu-
man eQTL data from the GTEx project. We also used colo-
calization to demonstrate the utility of these eQTLs for in-
terpreting GWAS results from HS rats. We have made all of
the data generated here including the eQTL and sQTL map-
ping results available through a new portal (RatGTEx.org)
to facilitate the application of these data to rat genetic and
genomic research.

We mapped both cis-eQTLs and trans-eQTLs. The trans-
eQTLs were much less prevalent. The biological significance
of trans-eQTL signals is generally harder to ascertain as the
analysis suffers from limited statistical power and can be
confounded by batch effects. Furthermore, the rat genome
assembly is not as thoroughly characterized as the human
genome. Thus, some trans-eQTLs may reflect mismapping
of reads from RNA-Seq such that a cis-eQTL appears to be
a trans-eQTL or the information about a SNP’s location can
also be incorrect due to an error in the genome assembly,
which also creates an apparent trans-eQTL that is actually
a cis-eQTL, as has been observed in human eQTL studies
(63). For all of these reasons, we focused most of our efforts
on cis-eQTLs. Future work with large sample sizes and a
focus on trans-eQTLs could yield interesting results, for ex-
ample, pertaining to colocalization analysis to understand
pleiotropic GWAS QTLs.

We compared HS rat data presented here with human
data from the GTEx project. We found fewer cis-eQTLs
in rats compared to humans. This difference is consistent
with our smaller sample size. Indeed, when we downsam-
pled GTEx brain datasets so that the number of individuals
matched our study, we only identified half as many eQTLs
compared to our rat data. One reason that HS rats had
more power than humans on a per-sample basis might be
the longer-range LD in HS rats, which reduces the effective
number of tests being performed (64). Another advantage
of HS rats is the higher MAF as compared to humans. The
greater power in HS rats could also reflect the much more
controlled environment of laboratory rats.

The greater LD in HS rats compared to humans increases
power but does so at the expense of precision since there
are often large LD blocks that increase uncertainty about
which SNP causes a given eQTL. Another consequence of
this causal SNP uncertainty is that the eSNP annotation
enrichments reported here are less indicative of the specific
regulatory mechanisms driving the effect compared to those
obtained in humans. For example, the distances between the
eSNP and the TSS in rats is much wider in HS rats as com-
pared to humans (Figure 5B).

We found ten times fewer cis-sQTLs compared to cis-
eQTLs. The GTEx project reported about four fold fewer
cis-sQTLs compared to cis-eQTLs. The larger difference be-
tween sQTLs and eQTLs in our dataset may be due to both
our use of single-end sequencing and our lower sequenc-
ing depth, both of which reduce the number of junction-
spanning reads, which are essential for sQTL detection.
Therefore, we do not believe this difference reflects a true
biological difference between the two species.

Our study is similar to several previous studies that have
mapped eQTLs or similar features in mice and rats. Prior
mouse and rat studies have used inbred, recombinant in-
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Figure 6. Colocalization of eQTLs and GWAS. (A) Colocalization for one tissue-trait pair, prelimbic cortex and RetroFat. Top, P-values from the RetroFat
GWAS, with P-values for significant SMR tests overlaid. Bottom, P-values for significant eSNPs in PL. (B) SMR P-values for all tissue-trait pairs overlaid.
Only significant SNPs are colored by tissue, and the remainder are gray. The traits involved in each cluster of significant colocalizations are labeled.
Bonferroni P-value thresholds for each tissue-trait pair are shown as horizontal lines colored by tissue.

bred, and outbred populations, with microarrays or RNA-
Seq (9,11–29,58,65–70). While some of these previous stud-
ies have used more computationally intensive linear mixed
models to account for population structure effects, we did
not find appreciable difference between the results from the
linear regression and linear mixed model, which is consis-
tent with Parker et al. (9). This may be explained by the
fact that we avoided sampling multiple individuals from
the same family. Had the breeding scheme been less care-
fully designed, there may have been isolated clusters of more
closely related individuals within the population, and an
LMM might have been necessary.

Genes that are intolerant to loss of function mutations
tend to have lower levels of regulatory variation as well (46).
We found cis-eQTLs in the rat orthologs of many of the hu-
man genes with no cis-eQTLs in the GTEx brain tissue data.
Indeed, these genes with eQTLs in only rats had relatively
high intolerance scores in humans. Given the lower statisti-

cal power in our study versus the GTEx brain dataset, these
rat exclusive eQTLs are likely a result of relaxed selection
pressure against eQTLs in these genes in rats. Presence of
common regulatory variants in these genes presents an op-
portunity to study the downstream dosage effects in some
of these variation-intolerant human gene orthologs.

Comparing the amount of genetic variation in gene ex-
pression in rats and humans, we found that this quantity is
only moderately correlated between the populations. This
low correlation level is likely a combined effect of low sta-
tistical power and the artificial nature of the rat popula-
tion that relaxes selection constraints on genes. However,
surprisingly, we found that the rat population shows lower
levels of genetic regulatory variation across a diverse set of
genes as measured by eQTL effect sizes, cis-heritability of
gene expression, and the ASE-derived estimates of genetic
variance in gene expression. Notably, these results cannot
be explained by the difference in statistical power and the
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sample sizes. Future investigation could uncover the cause,
in particular whether it relates to biological differences be-
tween humans and rats, consequences of the HS rat popu-
lation design, environmental conditions, or other factors.

We were able to use eQTLs from brain tissue to show
colocalization with nine body morphology and adiposity
traits. The success of this approach may reflect the idea
that eQTLs are shared across many tissues, not just among
brain regions. Furthermore, adiposity is heavily influenced
by consummatory behavior and energy expenditure, both of
which are controlled by the brain.

The results of this study offer practical guidance for fu-
ture HS rat eQTL studies. For example, the degree of eQTL
overlap across brain regions was very high, especially for
the three cortical regions. Had we sampled the fewer brain
regions from a larger number of individuals, we would have
obtained greater statistical power.
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