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ABSTRACT OF THE DISSERTATION

Localization of a quiet moving source with modal-MUSIC and range-coherent matched field
processing

by

Franklin Hunter Akins

Doctor of Philosophy in Oceanography

University of California San Diego, 2023

Professor William Kuperman, Co-Chair
Professor Bruce Cornuelle, Co-Chair

Passive acoustic signal processing has the remarkable capacity to achieve traditional goals

of active sonar, such as detection and ranging, simply by listening. Matched field processing

(MFP) exploits the physics of wave propagation to design filters tailored to the underwater

acoustic environment and solve passive sonar problems of detection and localization. The second

chapter of this dissertation introduces range-coherent MFP to increase the coherent integration

time of the signal from a moving source. Range-coherent MFP searches over candidate source

tracks to compute time-dependent replicas that are then used to coherently combine data over

a vertical array and over multiple resolution cells. The method improves on existing methods

xiii



by extending the application of MFP to low signal-to-noise ratio (SNR) regimes. The third

chapter introduces modal-MUSIC to estimate waveguide properties by using the structure of

noise recorded on a vertical line array. Modal-MUSIC estimates the horizontal wavenumbers

of the modal field from noise on a partially-spanning array. It relaxes the requirement of state-

of-the art passive methods which require a full water column spanning array. In this chapter,

the modal field parameters estimated from noise with modal-MUSIC are successfully used to

localize a source at high SNR without an environmental model. In the fourth chapter, these two

developments are brought together to demonstrate the feasibility of MFP at low SNR in the

absence of extensive a priori information on the seabed properties. The fourth chapter improves

upon the model-free localization results with modal-MUSIC in chapter three by fitting the modal

wavenumbers to a geoacoustic model. This dissertation extends the application of MFP to the

passive localization of a low SNR moving source in the absence of knowledge of the seabed

properties.
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Chapter 1

Introduction

Passive sonar uses measurements of the acoustic field to detect, classify, localize, and

track sources of acoustic energy and to infer characteristics of the acoustic medium simply by

listening. Contrast this with an active sonar system, such as that used by a bat or a dolphin, that

uses the properties of the backscattered field of a controlled source to solve such problems. The

use of a controlled source “illuminates” any reflectors in the acoustic environment, but with the

undesirable consequence of broadcasting one’s presence. The ability to infer information by

simply listening has the attractive features of simpler hardware requirements (no transmitter), less

energy required, and of not impacting the system under observation. This dissertation addresses

limitations of matched field processing (MFP), a passive sonar paradigm, in situations with low

signal-to-noise ratio and limited environmental knowledge.

1.1 Matched field processing

MFP addresses the passive localization of a point source in an underwater acoustic

medium. It combines the physics of wave propagation in layered media with the signal processing

tools of filter design and parameter estimation. When applied to an array, MFP computes a bank

of spatial filters, or “replicas”, whose weights depend on both the source coordinates as well as

the characteristics of the environment. It therefore requires a numerical code that can model

sound in layered media for various candidate source positions, as well as accurate information

1



describing the environment.

In free space, far from any sources, the acoustic field is a sum of plane waves: one plane

wave from each source. An array of hydrophone receivers can use plane wave beamforming

to measure the angles of these sources simply by listening. The broad utility of beamforming,

with applications in radar, sonar, communications, geophysics and more, has resulted in the

rich development of signal processing methods to overcome challenges associated with its

implementation, such as array element position uncertainty and the estimation of a source signal

in the presence of loud interfering sources [1].

The underwater acoustic medium provides two additional complications with respect to

the free space problem: boundaries and heterogeneity within the medium itself. In this context,

a single source no longer produces a single plane wave, but rather a complicated interference

pattern dependent on the source-receiver locations and the medium properties. This presents

a significant increase in difficulty when compared with plane wave beamforming, since the

computation of weights for MFP filters adds the modeling problem as well as the challenge and

cost of environmental characterization.

The modeling problem is to numerically solve the wave equation for a given parameter-

ization of the acoustic environment and has been well-studied for the most useful underwater

acoustic applications [2, 3, 4, 5]. Once equipped with an accurate forward model, MFP com-

putes beamformer weights for an array at each candidate source position within the waveguide.

Compare this to plane wave beamforming, where there is a set of weights for each candidate

source angle θ , and the weights are trivial to compute.

Environmental characterization requires that acoustically important medium properties

such as index of refraction and boundary qualities be estimated using oceanographic measure-

ments such as temperature depth profiles and geological surveys, or via acoustic remote sensing

as in tomography [6, 7]. Environmental mismatch (inaccurate specification of the environment)

causes an error in the field prediction due to an inaccurate characterization of environmental

parameters, and has proven to be a serious limitation on the practical utility of MFP [8]. When

2



environmental mismatch is accounted for, MFP promises improved array resolution over plane

wave beamforming [9] as well as the ability to discriminate source depth, range, and azimuth

(rather than just direction-of-arrival) [10].

Chapters three and four of this dissertation address the challenge of environmental

characterization by estimating an acoustic model directly from ambient acoustic noise measured

on a vertical line array spanning roughly half of the water column.

1.2 Effect of source motion on narrowband underwater
acoustic signals

Chapter two of this dissertation presents a method to exploit signal coherence between

resolution cells by modeling source motion. Source motion must be considered when designing

passive acoustic systems due to its implications for the stationarity and bandwidth of the received

signal. Stationarity (or lack thereof) is important for the stability of covariance matrix estimation

required by adaptive methods that use estimates of the signal and noise statistics to optimize

system performance [11, 12, 13, 14].

1.2.1 Processing within a resolution cell

Due to the dependence of the acoustic field on source position, moving sources violate

the assumption of stationarity required to design constant filters. The general approach to dealing

with this problem is to restrict analysis to data collected while a source stays within a resolution

cell [14].

The resolution cell for a given array geometry and waveguide is a spatial region over

which the structure of samples on the array is approximately constant for a source located

anywhere within that region. In the context of MFP, a resolution cell can also be viewed as a

region over which a single fixed replica will provide a minimum amount of gain determined by

the parameter α .
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1.2.2 MFP for a moving narrowband source

In order to apply MFP to a moving narrowband source, pre-processing parameters and

covariance integration periods must be selected based on prior information of the source motion.

First, the FFT length is fixed to give optimal input SNR for an assumed source bandwidth. The

output of the FFT at a single frequency at all array elements is referred to as a “snapshot”. Once

the FFT length is fixed, the number of snapshots corresponding to a single resolution cell is

fixed based on a maximum prior source speed. Within each resolution cell, a single MFP replica

computed for a representative stationary source position will be a good match for each snapshot.

The power of each filter output (corresponding to each candidate source position) defines an

ambiguity surface.

Chapter two introduces range-coherent MFP, which then coherently combines the (com-

plex) filter outputs of each resolution cell according to a hypothesized source track. When the

hypothesized source track corresponds to the true track, the filter outputs are reinforced over

noise providing gain.

1.3 Environmental model description for MFP

The sensitivity of the acoustic field to the environmental parameters is dependent on both

source frequency as well as source-receiver geometry [15, 16, 17]. A “correct” environmental

specification for modeling purposes is therefore also frequency dependent. In particular, at low

frequency (say, less than 200 Hz) in shallow water, the field is sensitive to the properties of

the underlying seafloor in the top tens of meters [18, 19, 20, 21]. The success of MFP in this

frequency regime is thus dependent on accurate specification of the seabed near the interface

with the ocean.

Methods of acquiring the relevant seabed information include direct in situ sampling

with sediment cores and drilling [22] as well as inverse methods based on active or passive

acoustic measurements . Examples of acoustic remote sensing methods use modal group speed
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[23], noise correlation from surface noise [24], the power reflection coefficient measured from

ambient noise [25], complex pressure field measured at known ranges [26], and echosounder

measurements.

Chapter three of this dissertation presents a passive method for estimating the modal

wavenumbers from noise with a partially-spanning array using knowledge of the SSP from the

surface over the array, but no information regarding the properties of the seabed. This is an

improvement over existing passive modal estimation methods which require a fully-spanning

VLA [27]. The estimated wavenumbers provided sufficient accuracy to perform MFP at high-

SNR. Chapter four shows that using the wavenumber estimates to infer seabed properties

improves replica accuracy and permits source localization at low SNR.

1.4 Dissertation overview

This dissertation introduces two methods for extending the applicability of MFP to

the localization of a low-SNR source with limited environmental information. Chapter two

presents range-coherent MFP for low signal-to-noise ratio localization of a coherent source.

Range-coherent addresses the limitation on coherent gain imposed by the changing field with

source motion. Chapter three presents modal-MUSIC, a passive mode estimation method using

a partially-spanning VLA. Modal-MUSIC addresses the challenges associated with obtaining

seabed information required for accurate modeling of low-frequency sound in shallow water.

Chapter four improves the results of chapters two and three, performing low signal-to-noise ratio

localization with range-coherent MFP without a prior geoacoustic model.
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Chapter 2

Range-coherent matched field processing
for low signal-to-noise ratio localization

Range-coherent matched field processing (MFP) coherently combines snapshots to

localize a moving, narrowband source. This approach differs from existing MFP approaches that

treat each snapshot as having a random phase due to both unknown motion through the medium

and imprecise knowledge of the source frequency. Range-coherent MFP requires determination

of the source phase acquired between snapshots. With that information, MFP can be applied

to the cross-spectrum of snapshots acquired at different times, since relative phase between

snapshots is determined by the medium properties, source location, and source velocity. Viewed

another way, range-coherent MFP is simply MFP applied to a passive synthetic aperture formed

from a moving source. The synthetic aperture geometry depends on source velocity, which is

included in the MFP search space. Range-coherent MFP produces robust velocity estimates

at low signal-to-noise ratio (SNR), which permits the use of a longer FFT in pre-processing.

The synthetic aperture array gain plus the increased input SNR afforded by the enhanced pre-

processing significantly lower the required signal level for successful localization. In data from

the SWellEx-96 experiment, range-coherent MFP successfully localizes a source that is too quiet

for conventional methods to localize.
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2.1 Introduction

Matched field processing (MFP), a generalized beamforming method, correlates data

acquired on acoustic arrays with model outputs to localize sources [1]. For each candidate source

position, a physical model provides a prediction which is then compared with the data in either a

linear (e.g. the Bartlett beamformer) or nonlinear/adaptive (e.g. maximum-likelihood estimator)

fashion to estimate the likelihood of the candidate being the true position. MFP remains a topic

of largely theoretical interest because it requires a) high input signal-to-noise ratio (SNR) and b)

accurate environmental knowledge, both of which are rarely available in situations of practical

interest. In this paper, we confront the limitation due to SNR by applying MFP to a passive

synthetic aperture formed from a moving source.

Passive synthetic apertures are a method of increasing system gain and resolution [2,

3]. Several works demonstrate the formation of towed-array synthetic apertures for bearing

estimation [4, 3, 5], as well as for improving geoacoustic inversion results in shallow water

[6, 7]. The goal of this paper is to incorporate synthetic aperture theory directly into an MFP

algorithm in a simple and robust way, using the increased gain to lower the SNR regime in which

localization efforts can succeed.

A few conclusions may be drawn from a review of passive synthetic aperture work in

underwater acoustics. First, coherence times for stable, low-frequency continuous wave (CW)

transmissions in the ocean may be quite long [8]. Second, the main limitation in synthetic

aperture implementations come from tow-path irregularities [8, 9, 10, 11]. Third, synthetic

aperture source localization efforts have been largely limited to processing data from towed

horizontal line arrays (HLAs) to obtain bearing estimates [3, 4, 12]. Range-coherent MFP takes

advantage of signal coherence at low frequencies to extend synthetic aperture methods to source

localization in multipath shallow water environments.

Range-coherent MFP also has much in common with coherent multi-frequency proces-

sors [13, 14, 15, 16]. Those processors form a synthetic array (or “supervector”) by stacking
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measurements made on an array at various frequencies. The proposed processor forms a synthetic

array by stacking measurements made on an array at various ranges. Those processors require

knowledge of the source spectrum at each frequency, either a priori or via an estimator. The

proposed narrowband processor uses the source phase accumulated between snapshots. In both

cases, additional gain comes at the price of additional knowledge or algorithm complexity.

It is worth distinguishing the proposed method from a third category of research: tech-

niques that use source motion to incoherently combine snapshots from different ranges. Explicit

target motion compensation (ETMC) [17, 18] addresses the “blurring” effect that source motion

has on sample covariance matrix (SCM) formation by using a velocity hypothesis to correct for

source motion. A recently developed method reformulates ETMC using waveguide invariant the-

ory [19], although source velocity still appears implicitly. Matched field tracking (MFT) [20, 21],

another incoherent approach, sums ambiguity surfaces from separate covariance integration

periods according to a velocity hypothesis.

Whereas ETMC improves estimation of the usual SCM, range-coherent MFP estimates a

larger SCM whose elements include the cross-spectrum of the synthetic aperture elements. In this

sense, it has more in common with coherent passive synthetic aperture methods and frequency-

coherent processors than with methods such as ETMC and incoherent tracking algorithms.

During data pre-processing, range-coherent MFP demonstrates an additional advantage

over traditional MFP. At low SNR, traditional MFP is constrained to use an FFT bin width that

encompasses the unknown Doppler shift. Range-coherent MFP’s capability to produce robust

velocity estimates at low SNR removes this constraint, permitting a longer FFT in pre-processing

and accordingly improved input SNR.

This paper formulates range-coherent MFP on a vertical line array (VLA) and compares

its performance to existing MFP approaches. Section 2.2 presents background theory for a

moving, narrowband source in shallow water and shows how to form a passive synthetic aperture.

Section 2.3 reviews relevant aspects of linear (Bartlett) and white noise constraint (WNC)

matched field processors and SCM estimation. Section 2.4 presents simulations and Cramèr-
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Rao lower bound (CRLB) calculations that compare range-coherent MFP and traditional MFP

performance. Section 2.5 discusses the SWellEx-96 experiment, along with pre-processing and

modeling considerations. Section 2.6 presents the results of applying range-coherent MFP to the

SWellEx-96 dataset. The range-coherent WNC processor localizes the source using a received

multi-tone signal 36 dB quieter than the pilot tones used for localization in previous studies. To

the best of the authors’ knowledge, this is the first study demonstrating successful localization

on any of the low-level tonal sets transmitted during SWellEx-96.

2.2 Constructing a passive synthetic aperture

This section shows how to form a synthetic aperture from a narrowband source moving

at constant range-rate and depth through shallow water. The material presented here will be

applied to data in Sec. 2.6.

2.2.1 Uniform range-rate source in shallow water

Modal doppler theory provides a description of the distant field radiated by a narrowband

source moving at constant depth zs and uniform range-rate (radial velocity) v (no acceleration)

through a range-independent shallow water waveguide [23, 24, 25]. Even though the source is

narrowband, the received signal has a finite bandwidth that is determined by v, along with the

waveguide properties. Wavenumbers computed for a stationary source will differ from those for

a moving source by a factor of the order of v/c where c is the sound speed. Here we assume the

source moves slowly enough that use of the stationary source wavenumbers introduces negligible

errors.

The position track of the source is given in cylindrical coordinates as

(r(t),z(t)) = (r0 + vt,zs) , (2.1)

and it radiates at angular frequency ω0.
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Figure 2.1. Environment used for modeling the SWellEx-96 S5 event. Consists of water column
with sound speed profile from a CTD cast during the experiment overlying the geoacoustic model
derived in Baxley et al. [22]. Recording system consists of a VLA with 21 elements spaced at
5.625 meters.
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For a stationary sensor at a depth z on the z-axis of a cylindrical coordinate system, the

received field from the moving source is

p(r,z, t) = e jω0tA(t)∑
i

ai(z,zs)e− jkir0e− jkivt . (2.2)

The ai are the modal amplitudes:

ai =
Φi(z)Φi(zs)√

ki
, (2.3)

where Φ is the ith modal eigenfunction and ki is its associated eigenvalue.

A(t) =
e− jπ/4+ jφ0√
8π(r0 + vt)

(2.4)

is a slowly varying envelope that contains the source phase term, e jφ0 , and the range spreading

term.

It is convenient to introduce the energy-averaged wavenumber k̄ ≡ ∑i a2
i ki/∑i a2

i , and the

received “carrier frequency” ωd ≡ ω0− k̄v. Then we can rewrite Eq. 2.2 as

p(r,z, t) = e jωdtA(t)∑
i

ai(z,zs)e− jkir0e− j(ki−k̄)vt . (2.5)

The bandwidth of the signal is largely determined by the terms of the sum and is well-

approximated by the Doppler spread between the highest and lowest order modes

B≈ 1
2
(max{ki}−min{ki})v/2π . (2.6)

The coherence time, τ , is defined as the inverse of B:

τ =
4π

v× (max{ki}−min{ki})
. (2.7)
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As a reference example, for a 100 Hz signal moving through the far-field at v = 2.5 m/s in a 100

meter deep Pekeris waveguide with bottom speed cb = 1600 m/s and density ρb = 1800 kg/m3,

τ is roughly 200 seconds.

If we denote the time at the beginning of a short snapshot window (duration T � τ) by

t0, the complex baseband pressure at the Doppler-shifted frequency ωd is well approximated by

p̃(z, t0) =We jωdt0A(t0)∑
i

ai(z,zs)e− jkir(t0) , (2.8)

which is the field due to a stationary source at r(t0) (W , a real number, accounts for the scaling

effect of the window on the signal amplitude).

Note the source phase term in front of the modal sum (2.8): e jωdt0 = e jω0t0+ jk̄vt0 . As

pointed out by Bucker in one of the earliest MFP papers [26], this phase term a) naturally rotates

with time if the reference frequency isn’t precisely matched to ω0 and b) rotates with (small)

changes in source location. This motivates the use of the cross-spectral density matrix in array

processing, which only emphasizes the relative phase between array elements. However, with a)

precise knowledge of the source frequency ω0 and b) an estimate of the range-rate v, the relative

phase between snapshots can be modeled and a synthetic aperture can be formed.

2.2.2 Forming a passive synthetic aperture

To form a synthetic array, take a set of snapshots at a single array element at depth z for

a sequence of initial times {tn}= {t0 +nTsyn} to obtain a corresponding sequence of complex

values {d̃n(z)} = {p̃(z, tn)+ ñ(z, tn)} that describes the evolution of the pressure field at that

sensor. p̃ represents the signal portion of the data, and ñ is additive noise. From 2.8, note that

the signal portion of each snapshot has a source phase component e jω0tn related to the source

frequency and the start of the snapshot time. Remove the source phase component from each
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Figure 2.2. (Color online) S5 event. The ship’s range from the VLA is shown in a). The three
segments of the track that are analyzed, labeled A, B, and C, are superimposed over the GPS
track. b) shows the water column depth at the source location over the course of the event.
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snapshot by multiplying by its conjugate:

d̃
′

n (z)≡ e− jω0tn d̃n(z) . (2.9)

From Eq. (2.5), the modified snapshots will then be described by

d̃
′

n (z) =WA(tn)∑
i

ai(z,zs)e− jkir(tn)+ ñ′n . (2.10)

The noise has been modified to ñ′n = ñne− jω0tn .

Now the difference between d̃
′

m and a later measurement d̃
′

n is only dependent on the

range traversed by the source from time tm to time tn. In other words, the modified {d̃ ′
n } are

identical to the signal received from a stationary source on a stationary HLA with element

spacing vTsyn.

If the original measurement system is an M-element VLA with sensors at depths z0+m∆z,

m = 0,1, ...,M−1, then the moving source generates a planar synthetic array oriented endfire

to a source. The array “elements” are indexed by l, with a column-major indexing. With this

indexing, the lth array element corresponds to a sensor at the (l mod M)th sensor depth and the

time sample corresponding to the integer part of l/M. Put more simply, the Nsyn column vectors

of modified VLA measurements are stacked into a “supervector” d̃ of length M ·Nsyn, which is

then fed into an MFP algorithm.

2.3 Matched Field Processing

As shown in the previous section, data from sequential times may be formed into a single

array of measurements, d̃. A sample covariance matrix (SCM), K̂ = 1
L ∑i d̃id̃†

i , can be formed

from L samples {d̃i} of d̃. Note that for range-coherent MFP, the SCM is formed from the

“supervectors” described in the previous section.

MFP algorithms compute a weighting vector w(θθθ) for each potential vector of source
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parameters θθθ and combine them with K̂ to produce an ambiguity surface

P(K̂,θθθ) = w†(θθθ)K̂w(θθθ) . (2.11)

In general, the weighting vector w(θθθ) is some function of the steering vector s(θθθ),

computed from an acoustic model for each search θθθ . In the absence of any mismatch, the

steering vector s(θθθ) will match the source signal p̃(θθθ T ) received on the array when θθθ matches

θθθ T , the true source parameter value. Steering vectors s are normalized to the number of array

elements M:
√

s†s = M.

In a range-independent environment, MFP uses the source position in cylindrical coordi-

nates as the source parameter vector: θθθ = (r z)T . Range-coherent MFP for a constant depth,

uniform range-rate source includes source range-rate v in the parameter vector: θθθ = (r z v)T .

2.3.1 Bartlett processor

The Bartlett (also called “linear” or “conventional”) processor [26] uses a scaled steering

vector as the weighting vector, w(θθθ) = s(θθθ)/M, so the Bartlett ambiguity surface is simply

PBART(K̂,θθθ) =
1

M2 s†(θθθ)K̂s(θθθ) . (2.12)

The Bartlett processor is cheap to compute and robust to model mismatch, but performs

poorly in the presence of interferers and significant sidelobe ambiguity structure.

2.3.2 White noise constraint processor

The white noise constraint (WNC) processor [27, 28] strives to balance the interference

rejection and sidelobe suppression of a minimum-variance (MV) beamformer (also called

Capon’s method and the maximum-likelihood method) with the robustness of the Bartlett

processor. To accomplish this, it seeks an adaptive weighting vector wa(θ) that minimizes total

output power, maintains a borehole constraint, and satisfies an inequality constraint on the white
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noise gain (defined below):

minw†
a(θθθ)K̂wa(θθθ)

subject to wa(θθθ)
†s(θθθ) = 1(

wa(θθθ)
†wa(θθθ)

)−1
≥ δ

2 .

(2.13)

The white noise gain is defined as

GW =
|w†

as|2
w†

awa
. (2.14)

Its inverse SW = 1/GW is a measure of sensitivity to errors between the actual signal p̃ and the

steering vector s [27]. From the Cauchy-Schwarz inequality and the normalization of s,

GW ≤M (2.15)

with equality when w=αs for any α ∈R. Hence, the Bartlett weight vector w= s/M maximizes

white noise gain and minimizes sensitivity. Removing the white noise constraint entirely (or,

equivalently, setting δ 2 = 0) results in the MV processor, which maximizes sensitivity. The user’s

choice of δ 2 controls the tradeoff between robustness and sidelobe suppression/interference

rejection.

Solving the constrained optimization problem posed in Eq. 2.13 yields the corresponding

WNC weighting vector

wa(K̂,θθθ ,δ 2) =
(K̂+ εI)−1s(θθθ)

s(θθθ)(K̂+ εI)−1s(θθθ)
, (2.16)

where I is the identity matrix and ε(K̂,θθθ ,δ 2) is a regularization parameter. An eigenvector

decomposition of K̂ permits efficient calculation of 2.16 (see 10.3.4 of Jensen et al. [24]) to find,

for each search location, an ε that satisfies the white noise gain constraint.
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a) b)

Figure 2.3. (Color online) Performance comparison of a simple VLA, a five element planar
array, and a ten element planar array. a) shows the CRLB for range estimators as a function of
input SNR for the three arrays. In b) we show the RMSE for Bartlett range estimates from 1000
simulation runs for a range of input SNR. Note the different units between a) and b). For each
simulation, four snapshots are used to form the SCM (four realizations of noise + signal).

Often δ 2 is measured as some number of dB down from the maximum white noise gain, so

the expression “the white noise gain is constrained to X dB”, translates to 10log10(δ
2/M) = X .

Thus, 0 dB WNC processor is a Bartlett processor, and −∞ dB WNC processor is the MV

processor.

The output of the WNC processor is, from Eq. 2.11,

PWNC(K̂,θθθ ,δ 2) = wa(K̂,θθθ ,δ 2)K̂wa(K̂,θθθ ,δ 2) . (2.17)

2.3.3 Snapshot deficiency

Adaptive methods presuppose an accurate estimate of the SCM K̂. Snapshot deficiency

occurs when a limited number of snapshots available to form K̂ results in a poor, possibly singular

estimate of the SCM. For a moving source, the number of available snapshots is limited by the

amount of time spent by the source in a range cell (the “beamwidth” of a Bartlett range estimator

[18]). The synthetic array SCM dimension is a factor of Nsynth larger than the dimension of the
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simple VLA SCM, range-coherent MFP requires Nsynth times more snapshots than “traditional”

MFP. As a result, snapshot deficiency is likely to occur for all but the slowest moving sources.

There are a number of methods for mitigating snapshot deficiency. The simplest method

is diagonal loading [29]. This strategy will fail to null a loud interferer creating colored noise

along the array, but solves the singularity issue of a severely deficient K̂. To deal with a loud

interferer or colored environmental noise, a full-rank sample covariance matrix can be formed

by averaging over nearby frequency bins [30] or by averaging sequences of shorter snapshots

[31]. Alternatively, subspace methods can be applied to the snapshot-deficient SCM [32]. The

SWellEx-96 event analyzed in this paper has no loud interferers, so the simplest approach is

taken: the SCMs used are diagonally loaded

K̂′ ≡ K̂+ εI , (2.18)

with ε = 10−20 (around eight orders of magnitude lower than the noise power on a single

phone). However, in a more complicated noise environment, one of the above strategies would

be necessary.

2.3.4 Multi-tone MFP

When a source transmits at multiple frequencies, a single ambiguity surface may be

obtained by performing a geometric mean of the ambiguity surfaces from processing each

transmitted frequency [1]. The result is a single ambiguity surface:

P =
1

N f

N f

∑
k=1

10log10 P( fk) . (2.19)

More optimal approaches that compensate for the frequency-dependence of background noise

exist. However, the simplicity and effectiveness of the naive summation are deemed sufficient

for the present work. Whenever MFP results are presented in this paper, they will be formed
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from the incoherent frequency sum in Eq. 2.19.

2.4 Performance of range-coherent MFP

A synthetic array demonstrates two advantages over the simple array from which it is

formed: array gain and improved resolution. Both of these advantages follow from the near

equivalence between the passive synthetic array formed from a moving source and a VLA, and

a planar endfire array recording a stationary source. The only difference between these two

measurement scenarios is that a planar endfire array recording a stationary source doesn’t suffer

from Doppler broadening and limited covariance integration time.

The Cramèr-Rao lower bound (CRLB) provides a tool to quantify both the resolution

and threshold effect for both simple VLAs and synthetic planar arrays. The CRLB provides a

lower bound on the variance of any statistical estimator of a given parameter [33, 1]. The CRLB

shows that although there is an increase in resolution from adding synthetic array elements, the

main benefit of the synthetic aperture method is the lowered required input SNR.

We computed the CRLB for the case of a source transmitting at 100 Hz in an ideal

waveguide (pressure release surface and rigid bottom) with sound speed c = 1500 m/s and depth

D = 216 meters. The parameter vector to be estimated is aT = (rs,zs), the source range and

depth.

The data model consists of the signal from the source with uniformly distributed random

source phase e jφ0p(rs,zs) plus additive, white complex Gaussian noise received on the VLA

shown in Fig. 2.1. The simulated data follow a zero-mean, complex Gaussian distribution with

covariance matrix K(rs,zs) determined by the waveguide properties, source location and noise

power σ2
W :

K(rs,zs) = σ
2
W I+p(rs,zs)p†(rs,zs) . (2.20)

Input power is defined to be σ2
S = 1

N trace(pp†), and input SNR in dB is 10log10(σ
2
S/σ2

W ).
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From Kay [33] Eq. 15.52, the Fisher information matrix (FIM) is

Ji j = trace
(

K−1 ∂K
∂aTi

K−1 ∂K
∂aT j

)
. (2.21)

The resulting bounds on the variance of any estimator, âi, of aTi follow from the diagonal

elements of the inverse of the FIM:

E((âi−aTi)
2)≥ [J−1]ii . (2.22)

The results from applying the CRLB to three array geometries are shown in Fig. 2.3 a).

As expected, the array gain of additional VLA staves lowers the input SNR threshold required

for accurate localization.

CRLB calculations for SNR thresholds are also consistent with Monte Carlo simulations

of the (inefficient) Bartlett processor applied to a snapshot-deficient SCM. For each of the three

array geometries and input SNR values, we generated 1000 realizations of the SCM. The SCM

for each realization was formed from four independent snapshots (signal plus complex white

Gaussian noise). Applying the Bartlett range estimator to each realization generates an ensemble

of 1000 range estimates. From these we form an estimate of the root mean-squared error (RMSE).

The RMSE estimates are shown in the Fig. 2.3, and the SNR thresholds at which they degrade

match the CRLB-derived thresholds.

The CRLB and simulations show that range-coherent MFP can localize a source in SNR

regimes where traditional MFP cannot.

2.5 SWellEx-96 Experiment

Here we provide a brief orientation to the SWellEx-96 data set [34] (and more specifically

the S5 Event), as well as the pre-processing and modeling required to perform MFP and range-

coherent MFP.
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2.5.1 S5 Event

SWellEx-96 refers to a well-known shallow water MFP experiment that was conducted

off the coast of San Diego in 1996. The S5 event consists of a 75 minute source tow at roughly

2.5 m/s under a smooth sea state and over variable bathymetry. The S5 event has a number of

features which make it a good candidate for demonstrating our proposed method. It contains a

slowly moving source transmitting CW signals, so the model in Sec. 2.2 matches the scenario.

A geoacoustic model that optimizes the match between replicas and data was developed by

Bachman [35] et al. and later refined by Baxley et al. [22], so accurate replica calculation is not

an issue. It also contains low SNR data that have never been used successfully for localization.

The environment is shown in Fig. 2.1, and the range of the ship, which towed the two

acoustic sources, for the S5 event is shown in Fig. 2.2. The water column depth at the ship’s

location as a function of experiment time is also shown. The two sources consist of a shallow

source at 9 m depth and a deep source at around 55m depth.

The deep source simultaneously transmitted 5 sets of tonals, which are labeled here as

TSL (‘L’ for ‘loud’), TSQ1, TSQ2, TSQ3, and TSQ4 (‘Q’ for ‘quiet’). As shown in Table 2.1,

TSL is 26 dB above TSQ1, and each subsequent quiet tonal set is 4 dB below the previous set.

Each tonal set contains thirteen tones spaced between 49 and 400 Hz, and the tones of each set

differ from those of the adjacent sets by 3 Hz.

The data are received on a VLA with 64 elements spanning the water column from 100

to 200 meters with a sampling rate of 1500 Hz. Only every third element from the array was

included in the processing, resulting in a 21 element VLA with 5.625 meter spacing.

2.5.2 FFT Length, SNR and SCM formation

FFT length T simultaneously sets the input SNR to the matched field processor and

limits the number of snapshots available for forming the SCM. When processing data from a

narrowband source moving at unknown velocity, a wide bin width is required to account for
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Figure 2.4. (Color online) SNR estimates as a function of FFT length shown for four tones from
the loud tonal set. The dash-dot lines show the theoretical coherence times τ calculated from Eq.
2.7 for the SWellEx environment with v =−2.5 m/s. For a coherent source, doubling the FFT
length should increase SNR should 10log10 2 dB. Both 49 and 112 Hz SNR estimates follow
this trend quite accurately. The SNR for the higher frequencies follow a linear trend until they
exceed their coherence time, at which point they taper off.

the unknown Doppler shift. If the possible velocity is constrained to 2.5 m/s and the highest

frequency considered is 400 Hz, then from the maximum possible Doppler shift will be 0.66

Hz (as calculated from k̄v/2π). Calculations (not shown for brevity) show that for a Hamming

window longer than one second, the leakage loss for the 400 Hz band will exceed 3 dB. The lack

of source velocity knowledge limits FFT length, and, hence, input SNR. Since range-coherent

MFP includes velocity as a search parameter, the leakage constraint derived above no longer

applies. For each search range-rate the Doppler shift can be computed and the appropriate

bin can be selected for input to the matched field processor. Of course, one could add search

range-rate and implement this bin-selection algorithm in traditional MFP. However, we found

that simply using search range-rate to estimate the proper bins for traditional MFP completely

fails at low SNR. Therefore, this strategy is only available to the range-coherent method which

can accurately estimate range-rate at low SNR.

SNR estimations performed for TSL, shown in Fig. 2.4, demonstrate the received signal
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Figure 2.5. (Color online) Multi-tone Bartlett range-rate/time ambiguity surfaces for Segment C
for a five synthetic element array (Nsyn = 5). The results using TSL are shown in a), TSQ1 in b),
TSQ2 in c), and TSQ3 in d). In each figure, a blue star marks the location of the maximum of
the ambiguity surface for each time step. In a), range-rate estimates from Doppler shifts of TSL
are superimposed. In b) through d), the SNR is too low to estimate range-rate from Doppler, so
only vQi, estimates from range-coherent MFP applied to TSQi, are shown.

Figure 2.6. (Color online) Comparison of benchmark and range-coherent ambiguity surfaces
for a sample interval for TSQ3. a) and c) show the Bartlett and WNC results on a simple VLA.
b) and d) show the Bartlett and WNC range-coherent MFP for a five synthetic element array
(Nsyn = 5). The cross shows the ship range from GPS and nominal source depth of 55 meters.
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Figure 2.7. (Color online) Comparing “traditional” WNC to range-coherent WNC. Tracks are
shown for Segment C for TSL (left panel) and TSQ3 (right panel) tonal sets. Top row a), b),
e), and f) show depth/time ambiguity surfaces. Bottom row c), d), g) and h) show range/time
ambiguity surfaces. a), c) and e), g) show “traditional” WNC. b), d) and f) and h) show range-
coherent WNC with five synthetic elements. Both methods localize the source over the whole
segment on TSL. Only range-coherent WNC localizes the source using TSQ3.

coherence properties and inform FFT length selection when the Doppler shift is known. For a

coherent signal in white noise, doubling FFT length T should increase SNR by around 3 dB until

T approaches the coherence time τ (the time at which the source leaves its range cell). Once T

reaches τ , modal leakage out of the FFT bin cancels out the coherent gain, and the SNR reaches

a plateau.

With these considerations in mind, the data were processed in two ways: one with a

2048 point FFT (T = 1.4 s) with 50% overlap, and another with a 16384 point FFT (T = 10.9

s) with 50% overlap. Table 2.1 shows the resulting input SNR for these two settings for each

tonal set. Bins corresponding to the nominal source frequency are selected from the 2048-point

FFT to feed into traditional, “velocity-ignorant” matched-field processors. For range-coherent

processing, the bin is selected by estimating the Doppler shift from the known source frequency

f0 and the given search range-rate v. For example, the signal from source frequency f0 will be

associated with the bin closest to f0(1− v/c) for each search range-rate v (c is average modal

group velocity). Range-coherent MFP’s capacity to estimate source range-rate therefore adds

27



Table 2.1. Signal level and maximum input SNR, averaged over tones in each set, for processed
segments of S5 event for two different FFT lengths. The maximum SNR occurs at the closest
range analyzed, around 1.3 km. As the source moves away, SNR drops approximately by the
cylindrical spreading law 10log10(r/rmin). For example, 8 km range, the SNR will be 8 dB
lower than the max value shown here.

Tonal Source Max. SNR (dB) Max. SNR (dB)
set Level NFFT = 2048 NFFT = 16384

(dB ref. 1µPa) (dB) (dB)
TSL 158 11 21.5

TSQ1 132 -15 -4.5
TSQ2 128 -19 -8.5
TSQ3 124 -23 -12.5
TSQ4 120 -27 -16.5

gain at the outset by simply increasing the input SNR.

The covariance integration time is set to the time spent in a range cell of a 2.5 m/s source

transmitting at the maximum frequency of 400 Hz: around 25 seconds [36]. For the 2048 point

FFT sequence, 36 snapshots are used to form the SCM. For the 16384 point FFT sequence,

four snapshots are used to form the SCM. The synthetic element spacing Tsyn is chosen to equal

the covariance integration time. The result is two sequences of covariance matrices for each

frequency, {K̂i( f )}2048 formed from simple snapshots, and {K̂i( f ,Nsyn)}16384 formed from

“supervectors” of Nsyn stacked snapshots.

An explicit example for computing K̂0( f ,3) follows. Let {d̃i( f )}, denote the sequence

of snapshots that results from applying the 16384 point FFT to the VLA and selecting the bin

corresponding to frequency f . First form a sequence of supervectors {d̃(3)
i ( f )}:

d̃(3)
i ( f ) = [d̃T

i ( f ) d̃T
i+4( f ) d̃T

i+8( f )]T . (2.23)

Note that the supervector is formed by stacking every fourth snapshot. Then,

K̂0( f ,3) =
1
4

3

∑
i=0

d̃(3)
i ( f )d̃(3)

i ( f )† . (2.24)
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Figure 2.8. (Color online) Range-coherent WNC depth/time and range/time ambiguity surfaces
for TSQ1 for all three data segments. Segment C, shown in c) and f), uses a five-element synthetic
array. Segments A and B, shown in a) and d) and b) and e) use an eight-element synthetic array.
Further from the closest-point of approach (CPA), constant velocity translates to a nearly uniform
range-rate. This permits formation of a longer synthetic aperture in Segment A and B than in
Segment C.
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2.5.3 Modeling

The KRAKENC normal mode program [37] is used to compute the steering vectors

s(r,z) for the simple VLA. The steering vectors account for the known array tilt of 1 degree[34].

For a synthetic array with Nsyn synthetic elements, the steering “supervector” ssyn is formed by

stacking a collection of VLA replicas that depend on the search parameters r, z, v, and the time

Tsyn between snapshots stacked into the data supervector:

ssyn(r,z,v) =



s(r,z)

s(r+ vTsyn,z)
...

s(r+(Nsyn−1)vTsyn,z)


. (2.25)

As shown in Fig. 2.1, the bathymetry varies by almost 100 meters over S5. Range-

dependent modeling can account for this. However, the results of D’Spain et al. on mirages

in shallow water [38] show that a range independent model will still produce a significant

correlation maximum, but with the location (range and depth) of maximum correlation shifted

by an amount related to the error in assumed source depth. By modeling the bottom as a simple

linear segment between the receiver and source, the range and depth of the correlation maximum

will be distorted from the true source range and depth by a factor of γ ≡ D/ds where ds is the

true depth at the source location and D is the depth at the receiver. Therefore the receiver depth

is used as the depth of a range-independent normal mode model, and the factor γ is computed

from the known bathymetry and used to correct the ambiguity surfaces (this same method is

used by Booth et al. [39]).

2.6 MFP Results

Traditional MFP and range-coherent MFP were applied to three segments, labeled A, B,

and C of the approaching track (see Fig. 2.2). We restrict our analysis to these segments to avoid
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portions of the track during which the deep source was turned off. The ship approaches the VLA

over the three segments, so segment A is the most distant segment and segment C is the closest

segment.

For each tonal set, the ambiguity surfaces from each tone are summed incoherently as in

Eq. 2.19. None of the implementations managed to consistently localize TSQ4, so we focus on

TSL, TSQ1, TSQ2, and TSQ3 (see Table 2.1 for a review of the source level and SNR of the

tonal sets).

To provide an example of “traditional” MFP, Bartlett and WNC processors were applied

to the SCM sequences {Ki( f )}2048. The result for each tonal set is a three-dimensional ambiguity

surface over range, depth, and time for each of the two processors. After varying δ 2 for the

WNC, we settled on using white noise gain of −2 dB for the “traditional” method.

Then, Bartlett and WNC processors were applied to the range-coherent SCM sequences

{Ki( f ,Nsyn)}16384 for various values of Nsyn to investigate range-coherent MFP performance. For

the range-coherent results, a four-dimensional Bartlett ambiguity surface over source parameter

vector θθθ = (r z v)T and time ti was formed for each tonal set

PB(θθθ , ti) =
1
13

13

∑
k=1

10log10 PBART

(
K̂i( f ′k,Nsyn),θθθ

)
, (2.26)

where f ′k = fk(1− v/c) is the received frequency of the kth source tone fk in the tonal set. The

range-coherent Bartlett estimate is θ̂θθ(t) = argmaxθθθ PB(θθθ , t). The range-rate/time ambiguity

surfaces for the different tonal sets are shown in Fig. 2.5.

Then, for various choices of the white noise gain δ 2, a three-dimensional WNC surface

is formed over θθθ = (r z v̂(ti))T and time ti

PW(θθθ , ti) =
1

13

13

∑
k=1

10log10 PWNC

(
K̂i( f ′k,Nsyn),θθθ

)
. (2.27)

The search range-rate is constrained to the Bartlett estimate v̂. All presented results for range-
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coherent processing use a white noise gain of −0.5 dB, which seemed to work best.

The number of synthetic elements Nsyn that produced the best results depended on the

experimental segment. In Segment C, the proximity to the CPA created a non-uniform range-rate

that limited the synthetic aperture length to around 300 meters (Nsyn = 5). In Segment A and

Segment B, the range-rate is more uniform. As such, range-coherent MFP worked on synthetic

aperture lengths up to 600 meters (Nsyn = 10).

A representative comparison of ambiguity surfaces for the four implementations is shown

in Fig. 2.6 for TSQ3. The signal level is too low for the simple Bartlett or WNC to localize the

source. In contrast, range-coherent WNC accurately estimates the source range and depth while

also providing an accurate range-rate estimate.

To present comparisons over time graphically, we form two-dimensional ambiguity

surfaces by holding time and a single parameter fixed and take the max over the remaining

parameters. For example, to form the range-rate/time ambiguity surface shown in Fig. 2.5,

take the max over range and depth for each range-rate and time value. Doppler shift range-rate

estimates from TSL agree with the range-coherent Bartlett range-rate estimates for each tonal set.

The quiet tonal sets are too quiet for Doppler shift estimation, so the only estimates of range-rate

come from range-coherent MFP.

We also compare range/time and depth/time ambiguity surfaces to assess the relative

performance of the four implementations over the segments of the experiment. A comparison

between range/time and depth/time ambiguity surfaces over Segment C for traditional WNC

and the range-coherent WNC with five synthetic elements are shown for TSL and TSQ3 in Fig.

2.7. Both processors easily localize the source over the full segment using TSL. For TSQ3,

traditional WNC completely breaks down, but range-coherent WNC produces a nice track. In

fact, traditional WNC fails on all three segments using any of the quiet tonal sets. We show the

range-coherent result for TSQ3 because it was the lowest set that produced a clear source track.

Range-coherent WNC range/time and depth/time ambiguity surfaces for all three seg-

ments for TSQ1 are shown in Fig. 2.8. For Segments A and B, the synthetic array consists of
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eight elements, whereas for Segment C the synthetic array had only five elements. The ship track

in Fig. 2.2 shows the slight curvature of Segment C. The curvature manifests as a non-uniform

range-rate. The assumption of uniform range-rate limits the synthetic array length to intervals

over which the acceleration creates minimal mismatch. The uniform range-rate at greater range

permitted the longer synthetic aperture used in Segments A and B.

Range-coherent MFP demonstrates superior performance to the benchmark MFP imple-

mentations on the quiet tonal sets. Using a 500 meter synthetic aperture, range-coherent WNC

localizes TSQ1 out to a range of 8 km and TSQ2 out to a range of 5 km.

2.7 Conclusion

Range-coherent MFP can localize quieter sources than traditional methods. It does this

by combining MFP with a passive synthetic aperture that provides both spatial array gain and

gain from increased integration time. In the presented application to the SWellEx-96 data, these

two features result in a total gain of roughly 16 dB over previous MFP results.

The assumption of uniform source motion limits the maximum synthetic aperture length.

Future work could incorporate a higher order motion model, for example by applying the array

shape matched field inversion of Hodgkiss et al. [40] to the synthetic array, or could minimize

the penalty for mismatch by incorporating an array geometry robustness constraint like that used

in Byun et al. [41]. Fusing velocity, range, and depth measurements produced by range-coherent

MFP in a tracking algorithm could further improve results.
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Chapter 3

Modal-MUSIC: A passive mode estima-
tion algorithm for partially spanning ar-
rays

State-of-the-art mode estimation methods either utilize active source transmissions or rely

on a full-spanning array to extract normal modes from noise radiated by a ship-of-opportunity.

Modal-MUSIC, an adaptation of the MUSIC algorithm (best-known for direction-of-arrival

estimation), extracts normal modes from a moving source of unknown range recorded on a

partially-spanning vertical line array (VLA), given knowledge of the water column sound speed

profile. The method is demonstrated on simulations, as well as on data from the SWellEx-

96 experiment. Extracted normal modes from ship noise during the experiment are used to

successfully localize a multitone source without any geoacoustic information.

3.1 Introduction

The normal modes of a waveguide are determined by the sound speed profile (SSP)

and boundary conditions. In underwater acoustics, the surface boundary condition is always

pressure-release, and the SSP in the water column is easy to measure. The set of all possible

modes that satisfy the surface condition and the water-column SSP can be explored via the

shooting method [1], which re-frames the boundary value problem (BVP) as an initial value

problem (IVP). The true modes for a given waveguide are the subset of IVP solutions that
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also satisfy the bottom geoacoustic parameters. This paper presents a mode extraction method,

modal-MUSIC, that picks the true modes from the set of IVP solutions by comparison with data

from noise, thus replacing the need for a geoacoustic model. As a result, modal-MUSIC allows

matched field processing (MFP) to be performed without any information below the sea floor.

Mode estimation methods can be divided into two categories: active methods that

require the use of a controlled source; and passive methods, that rely on ambient acoustic noise

to perform the extraction. Active source methods fall into two subcategories: wavenumber

estimation based methods applied to a horizontal line array/synthetic aperture [2, 3, 4, 5, 6] and

modal group/phase speed estimation from broadband impulsive source transmissions [7, 8, 9].

Passive mode extraction on a VLA has thus-far been limited to the special case where the

receiving array fully spans and sufficiently samples the water column (in which case the singular

value decomposition (SVD) provides mode estimates) [10, 11]. An effective passive mode

extraction method for more general experimental configurations would be beneficial; the present

work extends passive mode estimation to partially-spanning arrays.

This paper presents modal-MUSIC, a method for extracting normal modes in an under-

water waveguide using noise from a moving source of unknown range received on a partially-

spanning array, and further demonstrates its application to model-free MFP without needing

knowledge of the bottom properties.

3.2 MUSIC for DOA estimation

MUSIC, which stands for “Multiple Signal Classification”, is a general algorithm for the

estimation of the parameters of multiple sources radiating within the vicinity of an array [12]. In

the most common MUSIC presentation, it is used to estimate the angles associated with sources

radiating plane waves.

Measurements on an array, written as a vector xxx, obey the signal model

xxx = AAAsss+www , (3.1)
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where the N columns of AAA are the incident plane waves

AAA = [aaa(θ1) aaa(θ2) . . . aaa(θN)] (3.2)

received on the array from N sources with amplitudes

sss = [s1 s2 . . . sN ]
T . (3.3)

The noise www contains anything uncorrelated with the source signals. The data covariance matrix

can be written as

XXX = AAASSSAAA† +λWWW , (3.4)

where, with E(·) denoting expectation, SSS = E(ssssss†) is the source covariance matrix, λWWW =

E(wwwwww†) is the covariance matrix of the noise, and λ is a scaling parameter that is relevant for the

general derivation of the MUSIC algorithm.

As shown by Schmidt [12], whenever the matrix AAASSSAAA† is singular (i.e. there are fewer

sources N than there are number of sensors L), the covariance matrix can be written as

XXX = AAASSSAAA† +λminWWW , (3.5)

where λmin is the smallest solution to |XXX − λWWW | = 0 (i.e. λmin is the smallest generalized

eigenvalue of XXX and WWW ).

As long as the sources are not fully correlated with one another, the Vandermonde

structure of AAA guarantees that the rank of AAASSSAAA† is the number of sources N. Schmidt shows

that λmin must have multiplicity L−N, and the (L−N)-dimensional associated eigenspace is

orthogonal to the space spanned by the columns of AAASSSAAA†.

Therefore, given a) the matrix EEEN whose columns are the generalized eigenvectors

associated with λmin(XXX ,WWW ) and b) a parameterization aaa(θ) of all possible columns of AAA, the
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MUSIC spectrum can be computed as

PMU(θ) =
[
aaa†(θ)EEENEEE†

Naaa(θ)
]−1

(3.6)

and will have peaks at the parameter values θ excited by the sources.

With respect to a): in theory, knowledge of WWW permits one to estimate EEEN by computing

the generalized eigenvalues λ (XXX ,WWW ). However, under the stronger assumption that the noise

is uncorrelated white noise, the matrix EEEN can be estimated directly from the eigenvectors of

the covariance matrix XXX (since the generalized eigenvectors λ (XXX ,aIII) for identity matrix III are

simply the eigenvectors of XXX). At high SNR, estimation of the noise subspace can be made by

choosing a cutoff eigenvalue from the spectrum of the covariance matrix. A practical way to

automate this is to find the peak in the “difference spectrum”, defined as {λi+1−λi}. Then, the

eigenvectors that fall to the right of this peak (assuming eigenvectors sorted into a descending

order) span the noise space and form the columns of EEEN .

With respect to b): the possible columns of AAA form the “array manifold”, which for a

plane wave signal model is comprised of the set of all possible arriving plane waves evaluated

for the array. In this case it is parameterized by source angle θ and is trivially computed given

the positions of the array elements.

3.3 Modal-MUSIC for mode extraction from noise

Here it is shown that by viewing each excited mode in a waveguide as a virtual source

(whose waveform on the array is a normal mode rather than a plane wave), the mode estimation

problem has the same form as the source estimation problem that MUSIC solves. The field

produced by a moving source produces the necessary covariance matrix structure.

We can express the covariance matrix for a VLA, built up from snapshots of a single

moving source over a set of ranges {ri}, in the familiar matrix form XXX = AAASSSAAA† +λWWW , where
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now the N columns of AAA are the normal modes evaluated at the array depths,

AAA = [ΦΦΦ1 ΦΦΦ2 . . . ΦΦΦN ] (3.7)

and the source covariance matrix is

(SSS)mn = S(ω)2 Φm(zs)Φn(zs)√
knkm

1
Nr

Nr

∑
i=0

e j(kn−km)ri

ri
. (3.8)

Here S(ω) is the source’s amplitude at frequency ω , zs is the depth of the source, Φi(z) is

the ith normal mode depth function that solves the depth-separated Helmholtz equation and ki

is the corresponding wavenumber. SSS is the modal correlation matrix. Although any amount

of partial source correlation is theoretically permissible in the derivation of MUSIC, source

correlations can significantly degrade the performance of MUSIC in the presence of noise [13].

Therefore, a requirement for the use of modal-MUSIC for a moving source is that the source

transits a significant range (see Neilson (2002) for details [10]) in which case SSS in Eq. 3.8 will

be approximately diagonal.

The discussion in Section 3.2 showed that we can express the field due to a moving

source in the multiple source matrix form XXX = AAASSSAAA† +WWW . The source parameters determine the

columns of AAA: in this case the parameters are the horizontal wavenumbers of the excited modes

and the columns of AAA are the corresponding modes {ΦΦΦi} evaluated at the array depths.

Recall that MUSIC also requires a means of exploring the array manifold. This is trivial

for a plane wave signal model, where for each possible source angle the array response is

simply the steering vector aaa(θ) = e−ik sinθzzz. For the normal mode problem, the waveforms of the

“signals” are the normal modes sampled at the array depths. For each candidate wavenumber kr,

the associated normal mode sampled at the array depths, ΦΦΦ(kr), is computed using the shooting

method [1]. This requires knowledge of the SSP from the surface down to the bottom of the array.

Now that we are equipped with the means of exploring the array manifold, the modal-MUSIC
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a) b)

Figure 3.1. (Color online). Simulation results for a) varying SNR and b) array size. For both,
all 50 realizations are shown faintly, with the mean spectrum shown darkly. The modeled
wavenumbers are shown as dashed lines. a) Normalized modal-MUSIC spectra are shown for
SNR of 10, 20, and 30 dB. b) Normalized modal-MUSIC spectra are shown for arrays with 50,
30, and 20 elements spaced at 2 meters and with shallowest element at 100 meter depth. The
SNR is fixed at 30 dB for all of the array lengths.

spectrum can be computed as

PmoMU(kr) =
[
ΦΦΦ

†(kr)EEENEEE†
NΦΦΦ(kr)

]−1
(3.9)

and will have peaks at the wavenumbers supported by the waveguide.

3.4 Simulations

Simulations demonstrate the performance of modal-MUSIC under conditions of varying

signal-to-noise ratio (SNR) and array length. It is seen that the quality of the estimates is

always better for the higher order modes, which are better sampled by the array. This effect is

accentuated because we use a surface source that emphasizes the high order modes.

We simulate an 8 meter deep, 50 Hz source moving through a 216.5 meter deep Pekeris

waveguide with water column sound speed c = 1500 m/s, bottom sound speed cb = 1600 m/s,

and bottom density ρb = 2.0 g/cm3. The source has 5 excited modes in this waveguide. For each

44



simulation setup, we generate a sequence of pressure field values [ppp1, ppp2, . . . , pppNr] by sampling

the field received on the array from the source as it moves from 5 km range to 8 km range every

5 meters (for a total of 301 snapshots). The normal modes and wavenumbers are computed using

the Sturm sequence eigenvalue method [14].

An ensemble of data is generated by adding realizations of white gaussian noise to the

sequence of pressure field values. The noise variance σ2
N required to produce a desired SNR in dB

is given by σ2
N = σ2

s /10SNR/10, where σ2
s is the average received power from the source over all

ranges and array elements. For each realization, uncorrelated complex Gaussian noise with real

and imaginary variance of σ2
N/2 is added to each element in the pressure field sequence. Then

the sample covariance matrix is formed from the 301 noise-corrupted pressure field snapshots.

The signal subspace rank is estimated from the eigenvalue difference spectrum, and that estimate

is used to compute the modal-MUSIC spectrum.

To look at the effect of SNR on modal-MUSIC performance, we use a half-spanning VLA

similar to the VLA deployed in the SWellEx-96 experiment. It consists of 50 elements spaced

at 2 meters, and starts 100 meters deep in the 216.5 meter deep waveguide. For SNR values

from 10 dB to 30 dB, 50 realizations of data are generated and the modal-MUSIC spectrum is

computed (shown in Figure 3.1). At 30 dB SNR, modal-MUSIC resolves all five modes of the

waveguide. At 10 dB and 20 dB SNR, modal-MUSIC can no longer resolve mode 1 (which has

a vertical wavenumber of X), and the estimate of mode 2 becomes biased.

We also demonstrate the effect of shortening the array from 50 elements (100 meters) to

20 elements (40 meters), keeping the SNR at 30 dB for all of the data realizations. Note that

the wavelength of the 50 Hz source is around 30 meters. The ability to estimate the low-angle

modes quickly drops off with array length, though the ability to estimate the highest mode is

consistent even as the array length drops close to the wavelength of the sound.
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a) b)

Figure 3.2. (Color online). a) SWellEx-96 experiment region. The two tracks of the ship during
the half-hour segment of data used for mode estimation are shown to the right of the Coronado
Bank and south of the VLA. Segments A and B, used for localization are also shown. b) Ranges
from the ship to the VLA during noise 1 and noise 2 (segments used for mode extraction) and
segment A and segment B (used for localization). The full ship track during the S5 event is also
shown.

3.5 Matched Field Processing

MFP [15] is a source localization method used in underwater acoustics. For each potential

source position, which in a range-independent environment consists of range and depth (r,z), a

model is used to compute a replica rrr(r,z) which is compared with the received field xxx. Using a

simple linear processor (the Bartlett), the ambiguity surface is computed as

P(r,z) = |www†xxx|2 = www†XXXwww , (3.10)

where the weight vector www = rrr/||rrr|| is the normalized replica vector and the sample covariance

matrix of the data XXX is used when multiple snapshots are available. Assuming the model is correct,

the ambiguity surface will show a peak at the true source location. When a source transmits at

multiple frequencies, a single ambiguity surface is formed by summing the normalized ambiguity

surfaces from each frequency in dB[15].

As mentioned, a full acoustic model (water column SSP plus geoacoustic model) is
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typically used to compute the replica rrr(r,z). Here, we will use the normal modes extracted from

noise to calculate the replica vectors, thus sidestepping the use of a geoacoustic model.

3.6 Data details

Noise from the R/V Sproul during the SWellEx-96 experiment is used to extract normal

modes using data from a VLA. Then, matched field processing using the extracted normal modes

is used to demonstrate the source localization capability on the S5 event.

SWellEx-96 is a well-known shallow-water MFP experiment performed off the coast of

San Diego [16]. This work uses recordings from the experiment made by a 64-element VLA

with element spacing 1.875 meters that spans the bottom half of the water column. The array is

cut for 400 Hz, and the sampling rate of the sensors is 1500 Hz.

For normal mode extraction, two thirty-minute segments, labeled ‘noise 1’ and ‘noise

2’, of data were selected from the recording during which sound from the ship driving in the

experiment region is received on the VLA. For localization, two ten-minute segments, labeled

‘segment A’ and ‘segment B’ were selected from the S5 event, which was a 75-minute source

tow. During the source tow, both a shallow and a deep source were towed, although we focus on

the deep source which was towed at a depth of 60 meters and transmitted 13 tonals between 49

Hz and 388 Hz. The ship’s position in the experiment during these four segments is shown in

Figure 3.2a, and the source-receiver range is shown in Figure 3.2b.

To obtain covariance matrices for modal-MUSIC, a short time Fourier transform (STFT)

with a 2048 point Hamming-windowed FFT and no overlap was applied to both noise 1 and noise

2 to obtain snapshots with a time step of 1.36 seconds and a frequency spacing around 0.73 Hz.

The roughly 1300 snapshots at each frequency between 30 and 400 Hz were then used to build

the roughly 500 sample covariance matrices (one for each frequency) used in modal-MUSIC.

Similarly for the MFP application, tones were extracted from a 2048 point, Hamming

windowed STFT with a 50% overlap between snapshots, resulting in snapshots spaced at 0.68
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c)

Figure 3.3. (Color online). a) Normalized modal-MUSIC spectrum at 50.54 Hz, shown for both
noise 1 and noise 2 and compared to modeled wavenumbers. b) Normalized modal-MUSIC
spectra and mode curves extracted from noise 2 data segment. The peaks are shown as black
lines, and their polynomial fits are shown in blue. c) Smoothed wavenumber curves extracted
from both segments noise 1 and noise 2, shown in blue and red. The wavenumbers computed
from the model are shown in black. The model and data agree fairly well up to mode 15.
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seconds. The signal bins were selected as those closest to the Doppler-shifted frequency, as

estimated from mean range-rates for the source over the segments (−2.45 m/s for segment A

and −2.1 m/s for segment B) and a nominal soundspeed of 1500 m/s. Then, covariance matrices

were formed using sets of 100 snapshots, corresponding to a covariance integration time of 68

seconds. By overlapping each covariance integration interval by 50 snapshots, the final sequence

of covariance matrices have a time step of 34 seconds. These covariance matrix sequences are

then used for multi-tone MFP.

3.7 Modal-MUSIC mode extraction and localization

3.7.1 Modal-MUSIC results

Estimation of the noise subspace EEEN required by modal-MUSIC requires estimates of

the rank q̂( f ) of the signal subspace for each frequency. This was estimated using the peak in

the eigenvalue difference spectrum. The resulting rank estimates q̂( f ) are then fit to a curve

over frequency to remove outliers and noise from the subspace dimension estimates. These

smoothed rank estimates are used to build up ÊEEN( f ) at each frequency by taking the 64− q̂( f )

smallest eigenvectors (64 is the number of array elements). Once the noise subspace is estimated,

a conductivity-temperature-depth (CTD) cast from the experiment is used to generate an SSP

for shooting candidate modes, and the modal-MUSIC spectrum is computed using Eq. 3.9. The

single modal-MUSIC spectrum from ship noise at 50.54 Hz during both noise 1 and noise 2

is compared to wavenumbers computed using an established geoacoustic model [17] in Figure

3.3b.

In order to compare the spectra across frequency, the modes are parameterized by an

“angle” θ(kr) = arccos(kr/k), where k = ω/minz c(z) is the maximum wavenumber for the

waveguide. The normalized spectra for every processed frequency are shown in Figure 3.3b for

noise 2.

The mode estimates at each frequency are obtained by picking peaks from each fre-
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Figure 3.4. (Color online). Results for localization on segments A and B from S5 data use
data-derived normal modes. In each of the two plots, segment A is shown on the left and segment
B is shown on the right. The range and depth are well-estimated out to around 5 km. No
geoacoustic model was used for these results.

quency’s modal-MUSIC spectrum. The spectra are smooth enough that picking peaks based

on local optima is sufficient. Peaks are thresholded at 10% of the peak-maximum to limit the

selection to well-excited normal modes.

As seen in Figure 3.3b, the wavenumber estimates are noisy. To obtain denoised estimates

of the modes, the estimates from all 506 frequencies can be combined using a smoothness

constraint. To enforce smoothness of the normal mode curves in frequency, a polynomial fit

is made for each measured mode. Polynomials of increasing degree are fit through each mode

curve until the change in the residuals with increasing degree falls below a threshold value (we

selected 0.1), or the maximum degree of 14 is reached. These polynomial curves provide the

final product of normal modes as a function of frequency, and are compared to modes computed

with an established geoacoustic model for the SWellEx environment [17] in Figure 3.3c for both

noise 1 and noise 2.
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3.7.2 MFP localization results

Typically MFP uses a geoacoustic model to compute the replica vectors. Here, we rely

on the wavenumbers extracted from data to compute the replica vectors for each candidate source

position (r,z). These replicas are combined with the covariance matrix sequences (described

in Section 3.6) to compute a sequence of ambiguity surfaces using Eq. 3.10. By taking the

maximum over depth, a range-time ambiguity surface can be formed (and similarly taking the

maximum over range yields a depth-time ambiguity surface), which is useful for visualizing

the three-dimensional range-depth-time ambiguity surfaced produced by MFP. These two two-d

surfaces are shown in Figure 3.4. It can be seen that the extracted normal modes allow for

accurate source range and depth estimation out to a range of around 5 kilometers, although the

quality of estimation decreases with range.

3.8 Conclusion

Knowledge of the water column SSP is sufficient to explore the array manifold of an

array measuring a normal mode acoustic field. This opens up the use of the high resolution

estimator MUSIC to then find the excited modes in the waveguide, provided a suitable source of

acoustic energy. A moving source transiting a sufficient (unknown) range is a suitable source for

normal mode extraction.

The estimated excited modes can be related to the environment properties for a geoacous-

tic inversion (not explored here), or be used directly for performing source localization without

any knowledge of the bottom properties of the environment. It was shown that normal mode

wavenumbers extracted from ship noise and smoothed over frequency had sufficient accuracy to

perform localization using broadband MFP.
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Chapter 4

Experimental demonstration of low signal-
to-noise ratio matched field processing
without prior geoacoustic information

Passive localization of a low signal-to-noise ratio (SNR) source in a shallow water

waveguide without prior geoacoustic information is accomplished by combining the mode-

extraction method modal-MUSIC with range-coherent matched field processing (MFP). Range-

coherent MFP [J. Acoust. Soc. Am. 150(1), 270-280] coherently combines snapshots from

different resolution cells to obtain gain over noise. Modal-MUSIC [JASA EL 2(7), 074802] uses

knowledge of the water column sound speed profile (no bottom information) to extract noisy

estimates of modal wavenumbers from ship noise recorded on a partially-spanning vertical line

array (VLA). A geoacoustic model is then fit to the wavenumber estimates extracted from noise

with modal-MUSIC and used to compute replicas for range-coherent MFP. The combination of

these two methods applied to a 21-element VLA achieves successful source localization at SNR

levels as low as -20 dB using ten tonals transmitted during the SWellEx96 experiment.

4.1 Introduction

Matched field processing (MFP) passively localizes a source by comparing the acoustic

field measured on an array to modeled fields for various candidate source positions. To success-

fully localize a source, MFP requires an accurate environmental model, which, at low frequency
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in shallow water, includes information about propagation characteristics in the seabed. The

challenges of obtaining such a model limit the applicability of MFP. By passively extracting

the geoacoustic portion of the environmental model from ambient noise, this work successfully

applies MFP in the absence of comprehensive a priori environmental knowledge.

Geoacoustic parameters can be extracted from various acoustic observables, such as:

modal group speed [1], noise correlations between vertically-separated sensors [2], the power

reflection coefficient [3], complex pressure field measured at known ranges [4], echosounder

measurements, and so on. This work is concerned with passive localization in a (partially)

unknown environment. Therefore, estimation of an unknown environment from acoustic data

must be carried out without the benefit of an active source. For the experimental scenario of

interest, the real parts of the wavenumbers of the modal field are extracted from the covariance

matrix of noise in the band from 50 Hz to 250 Hz on a partially-spanning vertical line array

(VLA) using modal-MUSIC [5]. The estimated wavenumbers yield information on the sediment

compressional sound speed, density, and layer thickness, but do not contain direct information

on sediment attenuation. However, modal-MUSIC also estimates the number of modes present

in the field, which can be used for accurate replica calculation in the absence of sediment

attenuation [6]. Geoacoustic parameters could also be included in the MFP search space such as

in focalization [7, 8, 9]. However, focalization greatly increases the computational demands of

MFP and has never been experimentally demonstrated at low-SNR. Therefore, passive acquisition

of a geoacoustic model from shipping noise is a useful step towards successful localization of a

quiet source with MFP.

Once equipped with a sufficiently accurate model to perform MFP, localization of a quiet

moving signal is still limited by coherent integration time and array gain. A moving source

remains within a resolution cell for a finite time, which limits covariance matrix estimation.

A recent method, “range-coherent MFP” [10], coherently compares snapshots from separate

resolution cells by modeling the effect of candidate source motions on the snapshots and

comparing them with the data, with the caveat that the source frequency is known. Range-
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coherent MFP essentially allows one to add additional synthetic array staves to obtain array gain

at the price of additional computation.

In this work, range-coherent MFP is used to localize a quiet source (frequency averaged

SNR of -20 dB over ten tonals) at ranges out to 8 kilometers using a 21-element vertical line

array (VLA). The replicas used for MFP are computed using a geoacoustic model extracted from

shipping noise using modal-MUSIC. Therefore, no prior geoacoustic information was necessary

for the localization.

4.2 Modal-MUSIC

Modal-MUSIC is an array processing method that combines the MUltiple SIgnal Classi-

fication (MUSIC) algorithm [11] with the shooting method [12] to extract normal modes from

shipping noise using a VLA [5].

Under certain conditions [5], 1) the eigenvectors of the covariance matrix of the array can

be partitioned into signal and noise subspaces and 2) candidate normal modes that are orthogonal

to the noise subspace are the true modes of the waveguide. The modal-MUSIC spectrum is then

defined as

PmoMU(kr) =
[
ΦΦΦ(kr)EEENEEE†

NΦΦΦ(kr)
]−1

(4.1)

where ΦΦΦ(kr) is the mode shape associated with candidate wavenumber kr, sampled at the array

elements, obtained by the shooting method using the water column sound speed profile (SSP).

The columns of the matrix EEEN are the eigenvectors of the sample covariance matrix (SCM)

associated with the noise subspace.

In order to compare the spectra at different frequencies, it is convenient to introduce a

“mode angle”, which is defined as

θ ≡ arccos(kr/(ω/cmin)) , (4.2)

57



Figure 4.1. Array and environmental model used for Monte Carlo simulations. The SSP comes
from a CTD cast during the SWellEx96 experiment, and is also used for modal-MUSIC in
data processing. The array geometry is also representative of that used during the SWellEx96-
experiment, consisting of a 21 element array spanning approximately 120 meters. The geoa-
coustic model is due to Bachman [13] and is used for conventional MFP in this work. The CTD
shown is also used for the shooting method for modal-MUSIC.

where ω = 2π f is the frequency under consideration, and cmin is the minimum value of the SSP.

4.3 Geoacoustic information in the modal-MUSIC spectrum

This section discusses the extraction of a geoacoustic model from modal-MUSIC

wavenumber estimates and presents relevant uncertainty analysis for the model fit. In pre-

vious work [5], wavenumber estimates were de-noised by fitting polynomials to the identified

modes in the dispersion curve. These polynomials produced sufficiently accurate wavenumber

estimates to localize a loud source to around five kilometers, but failed to localize at greater range

or to localize a quiet source. The failure is believed to be due to poor estimation of low-order

modes, which will be improved by fitting a geoacoustic model to high order modes. In particular,

simulations demonstrate that the high-order modes will be estimated with lower variance than

low order modes. This is fortuitous for geoacoustic model fit, as the high-order modes contain

more geoacoustic information than low-order modes.
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Figure 4.2. (Color online) Monte Carlo simulation results demonstrating uncertainty in the
modal-MUSIC spectrum. One standard deviation is shown as blue dashed lines bracketing the
real modes shown as black lines from 100 realizations of the SCM for a modal matrix with a
source at 10 meters depth and no correlation between modes. The red box emphasizes a region
of the dispersion curve that a) is well-estimated by modal-MUSIC and b) is sensitive to the
geoacoustic properties.

Once modes have been identified in the modal-MUSIC dispersion curve, a misfit function

between model and data may be defined as follows:

J(xxx) =
N f

∑
i=1

∑
j∈Mi

(k̂ j( fi)− k j( fi;xxx))2/σ
2
i j , (4.3)

where k̂ j( fi) is the estimate of the jth mode wavenumber at frequency fi with error variance σ2
i j,

Mi is the set of well-estimated modes at frequency fi, N f is the number of frequencies at which

modal-MUSIC was performed, and k j( fi;xxx) is the forward model calculation of the jth mode at

frequency fi for bottom parameters xxx. The minimum of this function xxx∗ corresponds to the best

model fit.

In addition to mode-dependent estimate error variance σ2
i j, there is also a mode-specific

model sensitivity. Modes with a phase speed less than the sediment sound speed have an

exponentially decaying tail in the bottom, and the horizontal wavenumber is relatively insensitive

to bottom parameters [14] compared to modes that are oscillating in the sediment. In the next

section, Monte Carlo simulations will show that the modes which are most sensitive to the
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properties of the sediment are also the modes that can be estimated with the least variance.

4.3.1 Monte-Carlo simulations for uncertainty demonstration

Monte Carlo simulations are carried out to demonstrate modal-MUSIC uncertainty under

ideal conditions over a range of frequencies. The simulations use the environmental model and

array geometry shown in Figure 4.1, which parallel the SWellEx-96 experiment setup.

Each snapshot realization, expressed as a vector, is

pppi =
M

∑
m=1

xi
mΦm(zzz)+nnni , (4.4)

where xi
m ∼N (0,Φm(zs)

2) is a random Gaussian amplitude with variance equal to the mode

excitation strength for a source depth at 10 meters (chosen to be characteristic of a ship), Φm(zzz)

is the mth mode evaluated at the array depths in vector zzz, M is the number of modes, and

ni ∼N (0,σ2
n I) is zero-mean Gaussian noise. The diagonal value σ2

n of the noise covariance is

selected to give an average single-sensor “SNR” of 20 dB. Here, SNR refers to the ratio of the

variance of the modal component of the noise to the variance of the white noise component.

Then, an ensemble of 1000 snapshot realizations was used to form a single realization of

the array sample covariance matrix (SCM)

K̂ =
1

1000

1000

∑
i=1

(pppi− µ̂µµ)(pppi− µ̂µµ)† (4.5)

where µ̂µµ is the sample mean and (·)† denotes the conjugate transpose. For simulation, the number

of modes is assumed to be known and is used to partition the eigenvectors of the SCM into the

signal and noise subspaces. Finally, the noise subspace estimated this way is used to compute a

modal-MUSIC spectrum using Equation (3.9).

100 SCM realizations are used to obtain 100 realizations of the modal-MUSIC spectrum.

From this ensemble, means and variances are estimated for each mode at each frequency. The
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Figure 4.3. (Color online) Normalized modal dispersion curve from modal-MUSIC with
identified modes superimposed as black dashed lines and labeled with white text.

results are shown in Figure 4.2 and demonstrate that, for the SWellEx-96 experiment at 20 dB

SNR with 1000 snapshots, modal-MUSIC will estimate the low-order modes with high error

variance but will estimate the higher-order modes accurately. Figure 4.2 also includes a red

box indicating the modes that are both sensitive to bottom properties and estimated with low

variance.

4.3.2 Number of propagating modes: cutoff modal angle

Attenuation is an important geoacoustic parameter for low-frequency shallow water MFP

replicas. Baxley et al. [6] show that, within a certain source radius, the main effect of bottom

attenuation on MFP replicas is the determination of the effective mode cutoff in the modal

sum. That is, the attenuation determines the number of propagating modes, while the effect of

attenuation on relative modal amplitudes within the set of propagating modes is relatively small.

For example, consider the Bachman geoacoustic model (Figure 4.1) for the SWellEx

experimental region [13]. It has a halfspace compressional speed of 5200 m/s, meaning that, in

the absence of attenuation, there are propagating modes with a modal angle up to 73 degrees. The

presence of sediment attenuation adds a significant imaginary part to the modal wavenumbers
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ĥ = 19.5 m ĉ0 = 1576 ms−1 d̂c
dz = 0.0 s−1

ρ̂ = 1.23gcm−3

chs = 1800m/s, ρhs = 2.0 gcm−3

Figure 4.4. (Color online) Single layer model (not to scale) fit to the modal-MUSIC dispersion
curve. This model, along with the modal cutoff angle shown in Figure 4.5, is used for range-
coherent MFP results.

above a certain frequency-dependent cutoff mode angle θc( f ) (an effective “modal critical

angle”), so the modes with θ(kr)> θc( f ) are stripped from the waveguide after a short range.

However, the sediment attenuation is still low enough to allow modes below this modal critical

angle to significantly affect the replicas out to a range of ten kilometers. An approximation to

the replicas that uses the real part of the wavenumbers and an accurate, frequency-dependent

modal critical angle will provide good agreement with data from within a certain radius.

Modal-MUSIC only produces estimates of the real part of the wavenumbers, and therefore

carries no precise information on the sediment attenuation. Examination of the modal-MUSIC

spectrum on data (for example, see Figure 4.3) suggests that modal-MUSIC may provide a

good estimate θ̂c( f ) of the modal cutoff angle. The compressional speed, density, and layer

properties of the geoacoustic model can be fit to the modal-MUSIC spectrum, and then this

model can be augmented with θ̂c( f ). Together, these provide a reasonably accurate description

of sound propagation in the shallow water waveguide without the need to explicitly include

model attenuation.
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4.4 Range-coherent matched field processing

By modeling source motion, range-coherent MFP [10] coherently combines snapshots

from a moving source crossing multiple resolution cells. This section introduces notation

necessary to present results in the following sections.

Consider a sequence of L snapshots taken at a frequency f . At each time ti, the source

range and depth are ri and zi. Then the snapshot at time ti is written as

dddi = Si( f )ppp(ri,zi)+nnni , (4.6)

where nnni is noise from the sensors, interferers, etc., ppp is the pressure field due to the source

and Si( f ) is the complex source spectrum at frequency f . For a perfectly narrowband source,

Si( f ) = Ae j2π f ti , with A equal to the complex value S0( f ) at t = 0.

Range-coherent MFP first removes the source phase from each snapshot to get a new

sequence of measurements

ddd′i = dddie− j2π f ti = Appp(ri,zi)+nnn′′′i . (4.7)

If the source is truly coherent and the frequency f is correctly specified, the effect of this

correction is to a) add a phase shift to the noise and b) remove the effect of time on the phase

of the pressure field due to the source. The leftover change in the pressure field is due only to

change in source position, and can therefore be modeled.

For a candidate source track {ri,zi}, the model produces a sequence {ppp(ri,zi)}. Both the

snapshot set {ddd′i} and modeled set {ppp(ri,zi)} are stacked into “supervectors”

dddsup = [ddd′T0 ddd′T1 . . . ddd′TL−1]
T (4.8)
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and

pppsup({ri,zi}) = [pppT
0 (r0,z0) . . . pppT

L−1(rL−1,zL−1)]
T , (4.9)

with L denoting the number of snapshots to be coherently combined.

In the case of a source moving at a constant depth and a constant range-rate, source

position can be modeled using three parameters: constant depth z, initial range r0 at initial

time t = 0, and constant range-rate ṙ. Multiple realizations of dddsup can be used to form a

“super-covariance matrix” :

K̂KK =
1
Ns

Ns

∑
i=1

(ddd(i)
sup− µ̂µµ)(ddd(i)

sup− µ̂µµ)† (4.10)

(µ̂µµ is the sample mean). The Bartlett ambiguity surface is then computed as

B(r0,z, ṙ, f ) =
pppsup(r0,z, ṙ, f )†K̂KK pppsup(r0,z, ṙ, f )∥∥pppsup(r0,z, ṙ, f )

∥∥2 tr
(
K̂KK
) (4.11)

where tr(·) is the trace operation.

When multiple tonals are available, the ambiguity surfaces from each frequency are

averaged in decibels [15]

B(r0,z, ṙ) =
1

N f

N f

∑
k=1

10log10 B(r0,z, ṙ, fk) . (4.12)

Finally, the source depth, range and range-rate are estimated as the values r0,z, and ṙ that

maximize the function (4.12).

For purposes of comparison, the range-coherent processor in Equation (4.12) can be

computed without applying the source phase correction in Equation (4.7), yielding a range-

“incoherent” matched field processor which performs similarly to matched field tracking [16].

The improvement of range-coherent over range-“incoherent” MFP is then attributable to coherent

gain from combining snapshots from separate resolution cells, as opposed to tracking gain from

64



50 75 100 125 150 175 200 225 250

Freq (Hz)

0

5

10

15

20

25

30

θ

Model fit

θ̂c(f)

0.2

0.4

0.6

0.8

1.0

Figure 4.5. (Color online) Results of performing the geoacoustic fit to modal-MUSIC spectrum.
Wavenumbers used for geoacoustic model fit are shown in the red box. The blue lines show the
forward model with the optimized dispersion curve. Data points from modal-MUSIC are shown
as black dots superimposed over the normalized modal-MUSIC spectrum. The green dashed line
shows the mode angle cutoff used in replica calculation for MFP as a function of frequency. The
color scale shows the value of the modal-MUSIC spectrum, normalized to the maximum value at
each frequency.

incoherently combining conventional MFP surfaces.

4.5 Experimental results: Modal-MUSIC and model fit

This section details the application of modal-MUSIC and geoacoustic model fitting to

experimental data collected during the SWellEx96 experiment [17]. These results are shown in

Figure 4.5.

4.5.1 Modal-MUSIC dispersion curve

Modal-MUSIC is applied to a 30 minute segment of data from JD131 2232 GMT to 2302

GMT, collected on 21 elements with a 5.625 meter spacing. The first element is at a depth of 96
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Figure 4.6. (Color online). Bathymetry and source position during the S5 event of the SWellEx96
experiment.

meters, and the total array length is around 120 meters. The dominant source of noise during this

portion of data is thought to be from the research vessel transiting at ranges from approximately

eight to ten kilometers.

Each element samples the pressure field at a 1500 Hz sampling rate. To extract the

modal-MUSIC dispersion curve, snapshots at frequencies from 50 to 250 Hz are formed using

a 2048 point FFT (1.36 second length) with a Hamming window, with no overlap between

snapshots. This results in 1318 snapshots used to form each frequency SCM (frequency spacing

of 0.73 Hz).

To compute the modal-MUSIC spectrum (Equation 4.1), the eigenvector decomposition

of each SCM is computed, and the signal subspace rank at each frequency is estimated by
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ṙ
(m

/s
)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

f)

Figure 4.7. (Color online) Comparison between a), b) conventional MFP c), d) range-‘incoherent’
MFP and e), f) range-coherent MFP. White crosses denote maximum of the marginal ambiguity
surface. The left column a), c) and e) correspond to Track 1. The right column b), d) and f)
correspond to Track 2. Color scale is the value of Bartlett processor (Equation 4.12) in decibels,
normalized to maximum beamformer output at each covariance integration period. Color range
is from 0 dB to −3 dB. Range-“incoherent” and range-coherent MFP also include a range-rate
vs. time ambiguity surface.
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looking for the maximum change in the eigenvalue difference. Specifically, for eigenvalues

sorted in decreasing order, the signal subspace dimension is defined as argmax{(λi−λi+1)}

for i = 1,2, . . . ,20. Outliers from these subspace estimates are removed, and then the subspace

estimates are smoothed over frequency by fitting them to a quadratic function. The smoothed

subspace estimates are used to estimate the noise subspace matrix EEEN . A CTD from a nearby

time in the experiment (depicted in Figure 4.1) is used for shooting candidate modes over the

array.

Modes are then manually identified as smooth lines over frequency connecting the peaks

in the dispersion curve. Figure 4.3 shows the modal-MUSIC spectrum as a function of frequency

and mode angle θm with the identified modes, labeled. As seen in the figure, modes up to mode

number 17 are identified in the dispersion curve.

4.5.2 Geoacoustic model fit

The emphasis here is to find a model that fits the modal-MUSIC curve well enough

to perform MFP, rather than to find accurate estimates of the geoacoustic parameters with

uncertainty quantification.

Precise mode estimate uncertainty cannot be known a priori since it depends on the

(unknown) geoacoustic properties of the waveguide. However, the uncertainty analysis detailed

in Section 4.3.1 shows that the estimate error variance is roughly constant for estimated modes

with a phase speed greater than or equal to 1550 m/s (≈ 16 degree mode angle), independent of

frequency and mode number (see red box in Fig. 4.5). Furthermore, the objective function in Eq.

4.3 is insensitive to modes below this phase speed cutoff. Therefore the geoacoustic fit is carried

out using the wavenumber estimates of modes above this phase speed cutoff. The presented

results are insensitive to the precise choice of this cutoff phase speed.

The geoacoustic model consists of a single layer with constant density and linear SSP

overlying a halfspace, as shown in Figure 4.4. The four parameters in the layer include the layer

width h, the compressional speed at the top of the layer c0, the sound speed gradient in the layer
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s = dc
dz , and the layer density ρ assumed to be constant. The dispersion curve is insensitive to

the halfspace parameters, as long as the compressional speed in the halfspace is high enough

to support all the estimated modes. The maximum observed phase speed is 1750 m/s in Figure

4.3, so the halfspace speed is fixed arbitrarily at 1800 m/s and the density at 2 g·cm−3 for the

optimization.

Equipped with this model parameterization, the optimal parameter vector xxx = [h c0 s ρ]T

is found by minimizing the objective function in Equation 4.3. The layer thickness is constrained

to lie between 5 and 100 meters, the compressional speed between 1540 and 1800 m/s, the

gradient between 0 and 4 s−1, and density between 1.2 and 2.0 g cm−3. Wavenumbers for each

candidate parameter vector xxx were computed using the Sturm sequence eigenvalue search [18]

(the method used in KRAKEN [19]). The objective function is minimized by performing a

sequential 1-d global optimization over each parameter, holding the others fixed at their latest

optimized value. Six iterations were seen to provide good convergence. The optimal value is

xxx∗ = [19.5 m,1576 m/s,0 s−1,1.23 g cm−3]T .

The wavenumbers from the optimized model are shown superimposed over the modal-

MUSIC spectrum in Figure 4.5. The phase speed of the highest angle estimated mode is used as

a phase speed cutoff for each frequency when calculating replicas.

4.6 Experimental results: Range-coherent matched field
processing

This section details the localization of a quiet towed source using range-coherent MFP

with the modal-MUSIC-derived model replicas described in the previous section. These results

are compared to traditional MFP using replicas computed from the geoacoustic model shown in

Figure 4.1. An additional comparison is made to range-“incoherent” MFP, where range-coherent

MFP is carried out without correcting the source phase as in Equation 4.7. The incoherent

approach will average down sidelobes that move at a different speed from the candidate search
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speed, but will not get the coherent gain over noise from coherent snapshot comparison.

4.6.1 S5 event

The S5 event of the SWellEx96-experiment consists of a roughly straight source tow

during a 75 minute period. During this time, a source towed at roughly 60 meters depth played

five tonal sets each consisting of 13 tonals between 49 Hz and 400 Hz. Ten tones from the second

tonal set, from 52 Hz to 238 Hz, are used for testing localization results. From the 75 minute

event, two segments labeled “Track 1” and “Track 2” are selected for analysis. The source track

during the event and these segments is shown in Figure 4.6, and includes source ranges from

eight kilometers to four kilometers.

Snapshots are formed by taking a 16384-point Hamming-windowed FFT with a 50%

overlap (5.46 second spacing). To simplify the presentation, prior knowledge of source range-rate

was used to calculate the approximate Doppler-shifted signal bin from nominal frequency. Note

that bin selection can be easily incorporated into range-coherent MFP since it searches over

range-rate. The snapshot length results in an estimated mean SNR of -20 dB over the first ten

quiet source tones at a source range of 8 km and -12 dB at 5 km source range.

Resolution cell size is roughly 60 meters for a 400 Hz source, corresponding to a 25

second integration time for a source moving 2.5 m/s. For a traditional MFP benchmark, five

snapshots are used to form covariance matrices at the ten frequencies. Supervectors for range-

“incoherent” and range-coherent MFP are formed by stacking ten snapshots, each separated by

27 seconds. This draws each snapshot in the supervector from a separate resolution cell. Then,

five realizations of the supervector are formed by using five consecutive snapshots for the first

snapshot in the supervector. These five realizations are averaged to form a “super” covariance

matrix of dimension 210 by 210 (21 real vertical array elements times 10 synthetic horizontal

elements).

The covariance matrices are then used to evaluate the Bartlett ambiguity surface on

a grid of source range, depth and, for range-coherent and range-“incoherent” MFP, range-
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rate. For traditional MFP, this yields a 3-d surface over time, range, and depth. For range-

coherent/“incoherent” MFP, it yields a 4-d surface over time, range, depth, and range-rate. To

visualize these results, 2-d marginal surfaces are formed by holding two axes fixed and taking

the maximum over the other axis/axes. For example, a depth-time ambiguity surface for range-

coherent MFP results can be formed by taking the maximum over all ranges and range-rates for

each fixed covariance time and depth.

The results are shown in Figure 4.7. For the quiet tonal set, conventional MFP is unable

to localize the source for either of the two segments. Range-“incoherent” MFP produces some

weak estimates out to a range of around 5 kilometers before breaking down. Range-coherent

MFP with the modal-MUSIC derived replicas successfully localizes the source out to a range of

8 kilometers (estimated SNR of -20 dB).

4.7 Conclusion

This work presents an approach for localizing a quiet coherent source without prior

geoacoustic knowledge. This method requires knowledge of the water-column SSP down to the

bottom of the array. Relevant geoacoustic information is extracted from acoustic measurements

of a ship of opportunity using modal-MUSIC. This information is used to compute replicas for

range-coherent MFP, which successfully localizes a multi-tone source at -20 dB SNR.

In this work, range-coherent MFP manages to extract gain by coherently comparing

data from resolution cells that are separated by five minutes, or more than 800 meters in range.

This is perhaps surprising, given that the source motion is not perfectly uniform during this

interval and the replicas are not perfectly matched to the environment. This suggests that the

phase evolution in range of the modal field is a quantity robust to both non-uniform motion and

replica mismatch. One consequence of this is that range-rate estimates using range-coherent

MFP should be successful, even in the event of insufficient SNR/replica accuracy to perform full

source position localization. Importantly, this range-rate estimation takes advantage of vertical

71



array gain as well as coherent gain by comparing phase across many resolution cells.

The contribution of modal-MUSIC is to provide both parameter estimates for a simple

geoacoustic model, as well as estimates of a frequency-dependent, modal cutoff angle θ̂c( f ).

The use of a model improves localization results over the purely data-based approach used in

previous work [5]. This improvement is likely due to the reduction of error in the low-order

modes, which should be well constrained by the SSP (which is presumed known) but are poorly

estimated by modal-MUSIC. Therefore, the model fit ensures a physically consistent set of

modes, which improves the replica accuracy.
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Chapter 5

Conclusion

This dissertation presents two new passive acoustic methods to extend MFP to the

localization of a low SNR source with limited prior environmental information. MFP has

previously been applied to the localization of high SNR sources in the presence of limited

environmental information [1, 2, 3]. Chapter two of this dissertation demonstrated successful

passive localization of a low SNR source by exploiting signal coherence between multiple

resolution cells. Chapter three of this dissertation presented a method called modal-MUSIC

for estimating modal wavenumbers from noise on a partially-spanning array. The estimated

modal wavenumbers and mode shapes are used in place of a full environmental model to perform

localization at high SNR. Chapter four fit a seabed model to the modal-MUSIC estimated

wavenumbers of chapter three to obtain a sufficiently accurate model for low-SNR MFP using

the range-coherent MFP method of chapter two.

Taken together, the studies in this dissertation indicate that passive acoustic measurements

with a drifting VLA may compose a sufficient standalone system for detection and ranging in

shallow water. To fully realize this goal, further work must address the need for a water column

SSP to estimate bottom parameters with modal-MUSIC.
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