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Abstract

Halogen substituents increase sydnone cycloaddition reactivities substantially. Fluoro-sydnones 

are superior to bromo- and chloro-sydnones, and can achieve extremely high second-order rate 

constants with strained alkynes. Computational studies have revealed the fluorine substituent 

increases the reactivity of sydnone mainly by lowering its distortion energy.

Sydnones are 1,3-dipolar azomethine imines bridged by a lactone, and react with 

dipolarophiles to give pyrazoles after carbon dioxide extrusion. Sydnone 1,3-dipolar 

cycloadditions were reviewed by Harrity,1 and more recently Taran.2 Sydnone chemistry has 

found application in organic synthesis, especially of natural products or drug molecules 

bearing pyrazole units,3 as well as in materials science and biology.4

Pioneering work by Taran on copper catalyzed sydnone cycloaddition (Fig. 1a) 

demonstrated its high efficiency and biocompatibility and opened up the area of sydnone 

bioorthogonal chemistry.5 Chin established a bioorthogonal sydnone cycloaddition with the 

use of a distorted bicyclononyne (BCN), and demonstrated its application in protein labeling 

(Fig. 1b).6 Taran observed that halogen substituents on sydnones generally enhance the 

reactivities of sydnones in cycloadditions (Fig. 1c, X = Br, Cl, and F) except for the 

pseudohalogen CN, which decreases the rate constant by one order of magnitude compared 

to the parent sydnone, and is comparable to trifluoromethyl substituted sydnone (Fig. 1c, X 

†Electronic Supplementary Information (ESI) available: computational details see DOI: 10.1039/x0xx00000x

Correspondence to: K. N. Houk; Yong Liang.
‡These authors contributed equally.

HHS Public Access
Author manuscript
Chem Commun (Camb). Author manuscript; available in PMC 2019 May 15.

Published in final edited form as:
Chem Commun (Camb). 2018 May 15; 54(40): 5082–5085. doi:10.1039/c8cc02128g.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= CN, CF3).7 Fluorine significantly enhances the effectiveness of sydnone cycloaddition. 

The reaction of 4-fluoro-3-tolylsydnone with BCN has a second-order rate constant as high 

as 42 M−1 s−1.7b If reacting with a much more distorted tetramethylthiacycloheptyne 

(TMTH), this fluorosydnone can achieve an extremely high second-order rate constant of 

1500 M−1 s−1 (Fig. 1d).7b

We report here a theoretical study of the origins of sydnone activation by halogen, using 

DFT calculations carried out at the M06-2X level of theory.8 It was showed earlier that this 

method gives relatively accurate energies for cycloadditions.9 Solvent effects in water were 

evaluated at the M06-2X/6-311+G(d,p) level with the CPCM model. Computational details 

are provided in the Supplementary Information (ESI).

Fig. 2 summarizes the calculated LUMO energies of sydnones 1-6, the activation free 

energies for their reactions with BCN 7, and the transition-state structures (TSs) for 

cycloadditions. The forming C-C and C-N bond distances in TSs are shown in Å. Our 

computational results are in good agreement with the experimentally measured rate 

constants (Fig. 1c). According to the frontier molecular orbital theory, the primary orbital 

interaction in sydnone cycloaddition with BCN involves the LUMO of sydnone and the 

HOMO of BCN. The decrease in LUMO energy of sydnone 6 compared to sydnone 1 is 

small (0.81 versus 0.99 eV), whereas the surge in the reactivity upon fluorination is obvious 

(42 M−1 s−1 versus 0.03 M−1 s−1, Fig. 1c). In comparison with sydnone 6, sydnone 3 has a 

low-lying LUMO (0.40 versus 0.81 eV) but a high reaction barrier (22.6 versus 16.7 kcal 

mol−1). Fig. 3 presents the inconsistent relationships between LUMO energies of sydnones 

and activation free energies, implying that the R substituents alter the cycloaddition 

reactivities of sydnones through a more sophisticated mechanism.

To better understand the halogen effects in sydnone cycloadditions, we used the Distortion/

Interaction Model (also known as the Activation Strain Model)10,11 developed by Houk and 

Bickelhaupt to identify the origins of reactivity differences, and the results are shown below 

each TS structure in Fig. 2. The black arrows represent the activation barriers. The blue and 

green arrows correspond to the distortion energies, which are the energies required to distort 

the ground-state sydnone (blue) and BCN (green) into the geometries that they take in the 

transition-state structure. The stabilizing interaction between the distorted reactants is the 

interaction energy (red arrows), and the sum of distortion energy and interaction energy 

gives the activation energy of the reaction. Since dipolarophile (BCN) is highly pre-

distorted, the BCN distortion energies (Fig. 2, green arrows) are only around 3 kcal mol−1 

and show minor fluctuations. Sydnone distortion energies (Fig. 2, blue arrows) and 

interaction energies (Fig. 2, red arrows) control the reactivity differences between 

substituted sydnones.

Fig. 4 shows that the activation energies correlate well with the distortion energies (both 

sydnone distortion and total distortion energies) for all six reactions of sydnones 1-6. 

Cyanosydnone 3 has the highest activation barrier, an overall result of favorable interaction 

exceeded by the greatest distortion energy due to its extremely late transition state. The 

reaction of fluorosydnone 6 involves a much earlier transition state compared to the parent 
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sydnone 1, and therefore has a much smaller distortion energy and less favorable interaction 

energy, with the overall effect causing it to be the most reactive substituted sydnone.

We evaluated the thermodynamic consequence of the R substituents on the sydnone nucleus 

(Fig. 5). The hydrogenation reaction of sydnone shown in Fig. 5 resembles the 

transformation from sp2 to sp3 hybridization involved in the sydnone cycloaddition. In 

comparison to the parent sydnone, a less negative hydrogenation enthalpy implies 

stabilization (cyanosydnone 3), while a more negative hydrogenation enthalpy suggests 

destabilization (fluorosydnone 6). Sydnone distortion energies correlate with the 

hydrogenation enthalpies, revealing the fact that stabilization (or destabilization) prevents 

(or assist) the distortion of sydnone toward its geometry in transition-state structure during 

cycloaddition.

To compare directly how R substituents alter the distortion energies of sydnones, a scan of 

the out-of-plane distortion (Fig. 6, top left), a prominent distortion in the transition state, was 

carried out. For each substituted sydnone, the out-of-plane dihedral angle ω, which is nearly 

1° for ground-state structures and 23-27° for transition-state structures, was gradually 

increased to 30° at intervals of 2.5°. The remaining geometrical parameters were optimized 

with ω fixed. Fig. 6 shows the plots of ΔEdist versus the dihedral angle ω. The distortion 

energy increases as the dihedral angle increases. At a certain angle within the transition zone 

(highlighted with a yellow box in Fig. 6 with ω = 23-27°), the distortion energy ofsydnone 6 
(R = F) is significantly lower than that of 3 (R = CN). The out-of-plane distortion converts 

an sp2 C into an sp3 C; this is unfavorable for CN, which provide better conjugation for the 

planar system. The strongly electronegative F prefers to be attached to the sp3 hybridized 

carbon, which better releases electron density (Bent’s Rule).12 Chlorine and bromine, which 

are less electronegative compared to fluorine, have less significant effects on lowering the 

out-of-plane distortion of sydnones 4 and 5 (Fig. 6).

In conclusion, we have computed activation free energies and analyzed them with the 

Distortion/Interaction model to explore the origins of halogen effects on the cycloaddition 

reactivities of sydnones. Fluorine substituent at the sydnone C4 position lowers the LUMO 

energy, and more importantly, makes it much easier to distort, decreasing the activation 

barrier dramatically. Our results provide new understandings of the role of halogens in 

cycloadditions. The distortion-assisted acceleration in reactivity will inspire the future 

design of new bioorthogonal reactions.
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Fig 1. 
Sydnone cycloaddition in bioorthogonal chemistry.
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Fig. 2. 
Transition-state structures and D/I analysis of the cycloadditions of sydnones 1-6 with BCN 

7. Computed LUMO energies of sydnones and activation free energies are shown above each 

TS structure. D/I analysis is shown below each TS structure, in which the black arrows 

represent activation energies, the blue and green arrows represent the distortion energies for 

sydnones and BCN, respectively, and the red arrows represent the interaction energies. The 

activation energy is the sum of distortion energy and interaction energy.
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Fig. 3. 
Plot of activation free energies versus LUMO energies of sydnones 1-6.
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Fig. 4. 
Plots of activation energies versus distortion energies (blue: sydnone distortion energies; 

black: total distortion energies) for reactions of sydnones 1-6.
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Fig. 5. 
Plot of sydnone distortion energies versus sydnone hydrogenation enthalpies.

Tao et al. Page 9

Chem Commun (Camb). Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Sydnone distortion energies as a function of out-of-plane bending angle.
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