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Abstract 

LIDAR A*, An Online Visibility-Based Decomposition and Search Approach for 
Real-time Autonomous Vehicle Motion Planning 

by 

Po-Jen Wang 

Motion planning is the task of finding a sequence of feasible motions for a robot to 

transform from an initial state to a goal state avoiding collisions. Modern motion 

planner algorithms for non-holonomic vehicles typically rely on graph search or 

sampling-based techniques. However, graph search methods quickly become 

ineffective as the computational complexity scale exponentially to map size. 

Sampling-based methods have the shortcomings of creating highly suboptimal paths 

or having high run-times. This thesis introduces a new hierarchical motion planner, 

LIDAR A*, that features an online visibility-based decomposition and search process. 

It incrementally analyzes regional maps with locally simulated 2D LIDAR scans to 

search for the shortest opening gateway sequence toward the goal. These sequential 

gateways are used to guide the simulation of a robust local motion planner to generate 

a smooth and kinematic friendly path. Experiments show this method significantly 

reduces the number of nodes minimizing computation time while generating a near-

optimal path compared to the recently proposed RRT-based algorithms. 
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Chapter 1 

Introduction 

1.1 History of Autonomous Vehicles 

Grey Walter was a well-known robotics pioneer and the creator of some of the first 

ever electronic autonomous robots. He constructed his robot Tortoises (Figure 1, 2) in 

the late 1940s and described their abilities to sense light, hunger, touch, dance a jig, 

and feed themselves by returning to a charging station[1]. These mobile machines 

simulated the cognitive process of living creatures using only analog circuitries,  

demonstrating the first level of artificial intelligence. Grey Walter’s work was 

considered a milestone in the history of autonomous vehicles and has inspired 

numerous researchers in building more advanced robotics autonomy technologies[1]. 

 Today modern autonomous mobile robots are tasked with handling more 

complicated missions; for example, warehouse robots must autonomously transport 

materials to the designated area with high precision[2]. Planetary exploration rovers 

are tasked with safely traversing through rugged terrains avoiding dangers and 

collecting valuable information[3]. To further accelerate the developments of self-

driving technologies, United States’s Defense Advanced Research Projects Agency 

(DARPA) created the famous DARPA Grand Challenge in 2004, 2005, and the 

DARPA Urban Challenge in 2007. This was to challenge research organizations to 
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build vehicles capable of autonomous navigation through a 142-mile off-road route in 

the desert as well as self-driving in an urban environment following traffic 

regulations[4, 5]. According to the U.S. National Highway Traffic Safety 

Administration (NHTSA), motor vehicle crashes cost $836 billion in economic 

activity, loss of life, or injuries in 2010. 94% of these serious crashes were due to 

human errors which can be eliminated with automation[6]. Another study shows self-

driving can potentially save up to 50 minutes each day in work commute or accessing 

entertainment[7]. The advancement in self-driving technologies can bring significant 

benefits to the society in terms of safety, economy, and mobility[6]. 
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Figure 1.  Grey Walter’s Tortoises Robot. On 
display in the Science Museum, London 

Figure 2.  Tortoise return 
to recharge battery 



 The recent race to full-autonomy self-driving cars between auto-makers and 

tech giants has set timelines of delivering the self-driving systems. Some predict 

autonomous vehicles will be safe and reliable by 2025, while shared autonomous 

vehicles and rides may become common in the 2030s and 2040s[8]. 

1.2 Problem Statement 

One of the important topics in autonomous driving is the path and motion planning of 

the vehicle. Motion planning, in a broad sense, is the task of finding a sequential 

configuration that transforms a robotic system, such as robotic arm, mobile robot, or 

Unmanned Aerial Vehicle (UAVs), from a start state to a goal state in the 

workspace[9]. Motion planning for autonomous mobile robots has to deal with 

trajectory planning and obstacle avoidance in the configuration space. It is a classic 

and thoroughly researched topic in robotics, which a number of effective and diverse 

approaches have been proposed in the last few decades. The optimality and 

robustness of these motion planning methods can be evaluated based on three major 

metrics: path quality, intelligence level, and computational efficiency. 

3



1.2.1 Path Quality 

 Robotic systems can exhibit different levels of motion constraints based on 

the kinematic model of the system. For example, in the previously discussed non-

holonomic mobile robot applications, planetary rovers and self-driving cars must 

travel in segmented sequences of circular paths at varying radii in which motions 

toward the vehicles’ side directions cannot be performed. UAV systems, on the other 

hand, do not have such limitations thanks to extra degrees of freedom in the system. 

Therefore, the ideal mobile robot motion planner should generate an optimal path that 

is a smooth and continuous curved path that closely matches the reachable sequence 

of configurations based on the vehicle’s kinematic model, reducing control errors 

caused by kinematic constraints when following the path. This optimal path, at the 

same time, should also minimize path length to reduce the cost traversing toward the 

goal while maintaining safe clearances to surrounding obstacles. Paths built with 

segmented straight lines and sharp angles are less desirable for mobile robots to 

follow and are considered suboptimal for robotics motion planning. 

1.2.2  Intelligence Level 

 Another important metric in evaluating motion planning methods is the 

algorithm’s intelligence level in handling complex obstacle arrangements. A robust 

motion planning algorithm must be able to deal with a variety of obstacle 

arrangements at different levels of difficulty. Examples of simple obstacle avoidance 
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tasks may include lane following with lightly curved path or avoiding a small number 

of obstacles in open areas. At an intermediate level of difficulty, robots may be 

required to navigate through a large number of random obstacles, zigzag switchbacks, 

or avoid local minimum situations. In the most challenging scenarios, robots may be 

tasked to perform the following: finding a path within a large complicated maze with 

multiple passages lead to dead-ends; finding and entering a small choke point that 

leads to the goal; maneuvering through zigzag switchbacks with very limited obstacle 

clearance; or having a combination of the above troublesome scenarios mentioned 

above. 

1.2.3 Computational Efficiency 

 The last metric used in evaluating motion planning algorithms is their 

computational efficiency. Autonomous vehicles operating in dynamic environments 

such as self-driving cars can navigate at high speeds. Their abilities to correctly react 

to emergency situations not only depend on the intelligence of the system but also 

how fast a decision or an emergency maneuver can be executed. Therefore, it is 

crucial for a motion planning algorithm to be highly computationally efficient that 

allows real-time operation on the selected system platform. In most cases, the ideal 

computation time should be in the millisecond range. For local motion planners, the 

computational efficiency of the method will also affect the length of the calculated 

path which represents how far a robotic vehicle can foresee and plan ahead to handle 
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future problems. Frequently, trade-offs between speed and path quality are carefully 

considered and taken to satisfy their minimum requirements for the application. 

 In summary, this thesis aims to solve the classic motion planning problem 

which, given an autonomous vehicle’s kinematic model and start configuration of on 

a large obstacle map, finds a motion feasible path in real-time that can sequentially 

translate the vehicle to reach a goal destination avoiding obstacle collision on all parts 

of the vehicle. The proposed algorithm will be tested and compared to some of the 

recent notable motion planning algorithms based on their path qualities, intelligence 

levels, and computational efficiencies. 

1.3 Thesis Structure 

This thesis will begin with the introduction of the important robotics concepts related 

to autonomous robots such as map representation and configuration spaces, followed 

by literature review of the notable path and motion planning algorithms. The thesis 

then presents the proposed methodology of LIDAR A* and validates this method with 

experimental results. It finishes with a discussion of findings and proposes future 

work for improvements and possible extensions. 
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1.4 Map Representation 

Two major frameworks frequently used in map representation are metric and 

topological frameworks[10, 11]. In metric framework, environment objects are 

described with fine-grained precise coordinates. The commonly used two-

dimensional obstacle grid map is an example of using this framework. On the other 

hand, topological framework uses a graph to describe the relations between 

significant landmarks in the environment. In this representation, graph nodes are 

significant landmarks and edges indicate paths and distances between these 

landmarks[10]. 

1.5 Configuration Space 

Configuration space is a key concept in robotics motion planning. Perez established 

and extensively used this concept in solving spatial motion planning problems in the 

1980s[12, 13, 14]. A configuration q is defined to be a state of a system in the 

workspace. A configuration space C is a space or a subset of workspace that includes 

all possible configurations A(q) in the workspace based on the kinematic model of the 

robotic system. When obstacles are present, the configuration space C can be further 

divided into obstacle space Cobstacle and free space Cfree. Obstacle space Cobstacle is the 

region where parts of the robot would collide with obstacles, and free space Cfree is 

the region where the robot is free of collision which Cfree = C - Cobstacle.  

7



 In the following example (Figure 3), assume the robot has a rectangular shape 

and can move in horizontal and vertical directions (x, y) but can not perform rotation, 

obstacle space Cobstacle (gray and black areas) and free space Cfree (white areas) can be 

determined by wrapping the robot’s contour at static state around the obstacle’s 

contour. When the robot’s motion has a higher degree of freedom such as  

(x, y, Ɵ) or with accelerations, or when vehicle shape is complex, precise boundary of 

obstacle space Cobstacle and free space Cfree can be difficult to compute[13]. Using the 

static state of the robot to determine obstacle space Cobstacle and free space Cfree can 

significantly simplify the motion planning problem, though it is not a true 

representation of actual obstacle and free space regions[13]. 
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Figure 3. Configuration Spaces. Obstacle Space (Black and 
Gray) and Free Space (White Area)

Reference Point



Chapter 2 

Literature Review 

2.1 Notable Path and Motion Planning Methods 

Motion planning can be applicable to numerous domains such as robotic arms, mobile 

robots, UAVs, or video game agents. It is a widely researched topic which a variety of 

different approaches have already been proposed.  Each approach has its own 

strengths and weaknesses, and may perform better or worse in certain domains. This 

section is devoted to survey the popular and influential algorithms that are related to 

mobile robot motion planning, starting with the classic methods followed by more 

modern approaches. These methods are grouped into similar approaches. 

2.2 Geometric-Based Methods 

2.2.1 Visibility Graph 

Visibility graph was studied by Nilsson, Perez, and Wesley[14, 32]. It is an important 

property in solving computational geometry problems. When obstacles on a planar 

map are given in the forms of polygons, a visibility graph can be constructed by 

checking and adding edges between all possible pairs of obstacle polygon vertices 

and the start and goal vertices when these are directly insight with each other without 

getting blocked by obstacles. Perez applied graph search on visibility graphs to find 
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the shortest path between a start vertex and a goal vertex, and shifted the resulting 

shortest path vertex positions away from their obstacle positions to accommodate for 

the robot’s size[14]. This approach was used on the Shakey robot project at Stanford 

Research Institute (SRI) in the 1960s[15]. A more optimized Reduced Visibility 

Graph was later introduced that removes edges going toward instead of around 

obstacles which makes path planning more efficient than the original visibility 

graph[29]. 
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Figure 4. Path Planning with Visibility Graph



2.2.2 Voronoi Diagram 

A class of geometric motion planning algorithms is based on the generalized Voronoi 

diagram (GVD). Voronoi diagram has the property of subdividing a map into regions 

of Voronoi regions, where each point within a Voronoi region is closest to one of the 

given set of sites which the region encloses as shown in Figure 5[39]. Common 

boundaries of Voronoi regions are the sequential points that are equidistant to two 

sites on the map that maximize the obstacle distances. Path planning algorithms based 

on Voronoi diagrams construct a graph along the Voronoi region common boundaries 

and apply a search to determine an obstacle free path that maximizes obstacle 

distances[32]. 
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Figure 5. Voronoi Diagram. Voronoi diagram partitions the map 
into Voronoi regions given a set of sites. The common regional 
boundaries are constructed into a graph for path planning



2.2.3 Cell Decomposition 

Another class of geometric-based methods for motion planning can be generalized as 

a cell decomposition approach that can be traced back to Brooks and Perez in 

1985[32, 38]. When polygon obstacles are given on a planar map, the obstacle 

polygon vertices are used to subdivide the map into smaller obstacle free regions. 

These obstacle free regions are constructed into a graph which a graph search 

algorithm is applied for finding consecutive neighboring regions that contain the start 

and goal locations[32, 38]. An example of cell decomposition method is the 

Trapezoidal Cell Decomposition that extends horizontal or vertical lines on the 

obstacle vertices to form regional common boundaries as shown in Figure 6. This 

decomposition method is a type of exact cell decomposition. Hierarchical Path-

Finding A* or HPA* also uses cell decomposition for its map abstraction process and 

will be discussed in section 2.4.3. 
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Figure 6. Trapezoidal Cell Decomposition. A roadmap 
determined by Trapezoidal Cell Decomposition



2.3 Artificial Potential Field Methods 

Artificial Potential Field is a class of motion planning algorithm that is based on 

generating a potential field map. The map is built by inserting attractive forces at the 

goal location and repulsive forces at the obstacle locations in the workspace[42]. The 

potential field map can guide a robot toward its goal location by summing the 

attractive and repulsive forces at each cell of the grid map. The strength of attractive 

and repulsive forces are inversely proportional to its distances[42]. 

2.3.1 Vector Field Histogram 

Vector Field Histogram (VFH) is a fast online local obstacle avoidance algorithm 

introduced by Borenstein and Koren[16]. It finds a desired direction or vector to 

travel using real-time data collected from onboard ultrasonic or LIDAR sensors. The 

algorithm first constructs a high level two-dimensional Cartesian histogram grid map 

that is always centered at the robot’s position. The values of cells are continuously 

updated by adding repulsive forces to cells where an obstacle is present from sensor 

readings. At the same time, an attractive force is applied at the goal location. The 

algorithm then divides the two-dimensional Cartesian histogram grid map into a 

number of angular sectors whose obstacle densities are computed using the 

accumulated cell values inside the sector regions. Finally, an angular sector with low 

obstacle density is selected as the ideal heading vector for motion output. 
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Figure 7. Vector Field Histogram adds repulsive forces to the histogram grid 
cells when obstacle is present



2.4 Graph Search-Based Methods 

2.4.1 Dijkstra’s Shortest Path 

Dijkstra’s shortest path algorithm is a well known algorithm for finding the shortest 

path between two nodes in a weighted graph. It was invented and published by Dutch 

computer scientist Edsger Dijkstra in 1959[17]. Dijkstra’s algorithm is also known for 

being a single-source shortest path algorithm which simultaneously computes the 

shortest path to every other remaining vertex in the graph with a given source 

vertex[18]. Dijkstra’s algorithm will keep track of lists of visited and unvisited 

vertices in the graph; and for every vertex, it would also track the current shortest 

distance from the source vertex and last vertex it previously visited (parent vertex).  

 Dijkstra’s algorithm begins by assigning the distance of the source vertex to 0 

and distances of all other vertices to infinity. Then, starting from the source vertex, it 

selects and visits one of the unvisited neighboring vertices with the shortest known 

distance from the source vertex. This vertex is then moved from the unvisited vertex 

list to the visited vertex list and will not be visited again. At this current vertex, the 

algorithm calculates the distances of all of its unvisited neighbors from the source 

vertex. At every unvisited neighboring vertex, if the calculated distance is smaller 

than the known shortest distance, it updates the known shortest distance and the 

parent vertex. This process is repeated until all vertices are visited. 

15



2.4.2 A* Search and Heuristic 

A* or A-Star search algorithm is another popular shortest path search algorithm 

developed by Hard, Nilsson, and Raphael as part of the Shakey project at Stanford 

Research Institute (SRI) in 1968[15, 19]. A* search algorithm can be seen as an 

optimized version of the Dijkstra’s algorithm[20]. It also searches for the shortest 

path from a start vertex to a goal vertex in a weighted graph, but introduces heuristics 

to guide the search process that significantly reduces the number of vertices visited 

and improves computational performance[19, 20]. 

 Heuristic is a technique that is commonly used in solving self-exploratory 

problems such as graph search. By using known information or previous experience 

to perform informed search to find a solution, the search process intelligently avoids 

searching through the unfavorable regions in the search space, thus rapidly speeding 

up the search process[19]. Due to applying educated guesses, using heuristics in a 

search problem means that the algorithm can no longer guarantee an optimal solution 

but will likely generate a satisfactory solution at a lower run-time[21]. 

 Unlike Dijkstra’s shortest path algorithm that keeps track of the shortest 

distances from the source vertex to every remaining vertex in the graph, A* search 

algorithm calculates a total cost f(x) at each of the current neighboring vertex during 

the search process. The total cost f(x) is equal to the sum of the vertex cost g(x) and a 

heuristic cost h(x), which is an estimated future cost for reaching the goal. The 

euclidean (straight line) distance toward the goal is a commonly used heuristic for 

16



path planning problems. Other heuristics such as Manhattan distance is also a popular 

option. The total cost f(x) at neighboring vertices is then used to decide which vertex 

to traverse next in the search process.  

 The algorithm of A* search is summarized as follow: first, A* search 

algorithm will initialize two lists of open vertices and closed vertices and calculate 

the heuristic value of the start vertex. Beginning at the start vertex, its total cost f(x) is 

calculated with a distance cost g(x) equal to 0. Then for each neighboring vertex, if 

the vertex is neither in the open vertex list nor in the closed vertex list, it is added to 

the open vertex list. The total cost f(x) at each neighboring vertex is also calculated by 

summing the vertex distance cost and the heuristic cost.  

f(x) = g(x) + h(x) 

If the calculated total cost f(x) is smaller than the known vertex total cost f(x), the 

known total cost f(x) is updated and its parent vertex is set to the current vertex. After 

all neighboring vertices are analyzed, the current vertex is added to the closed vertex 

list and the algorithm traverses to the open vertex with the least total cost f(x) by 

setting this vertex to be the current vertex. This process is repeated until the current 

vertex is the goal vertex, which means the goal has been reached. 

17



2.4.3 HPA* and Hierarchical Graph 

When dealing with a large complicated graph, a technique to reduce graph 

complexity, improve graph clarity and efficiency is to perform hierarchical 

decomposition to get a hierarchical graph or AH-graph[22]. In a hierarchical graph, a 

group of elements in a lower hierarchical level graph are abstracted as an element of a 

graph at a higher hierarchical level maintaining element relationship[22]. A 

hierarchical graph can have multiple levels. It uses hierarchy to represent the same 

environment at different levels of details and can potentially reduce exponential 

complexity problems to linear ones[22, 23]. 
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Figure 8. Two Examples of Hierarchical Graph. Node 
abstraction on the left and edge abstraction on the right



 HPA* or Hierarchical Path-Finding A* is an algorithm developed by Botea 

and Muller that utilizes hierarchical approach to reduce search complexity in path 

planning problems on a grid-based map[24]. The algorithm decomposes the map and 

constructs a higher hierarchical level graph called abstract graph with the following 

process: it first abstracts the original grid map into a number of equally sized square 

sub-grid called clusters (Figure 7). The common boundary between two adjacent 

clusters is called boarder. Each cluster has four boarders at the top, right, bottom, and 

left positions. Within a common boarder, entrances are identified when there is an 

acceptable obstacle free segment that may be adjacent to an obstacle, or an obstacle 

free corner of the cluster. For each cluster, depending on the size of the entrance, one 

or two nodes per entrance are inserted into the abstract graph at their respective 

locations. Then they are connected to their respective pair of nodes which is on the 

adjacent cluster that shares the common boarder. These connections that link across 

adjacent clusters are called inter-edge and their lengths are set to 1.  For every 

possible pair of nodes at the four boarders within a cluster, the algorithm searches 

their optimal path inside the cluster. When a path is found, an edge called intra-edge 

is inserted to the abstract graph with a length equal to the path distance. When no path 

can be found, the pair of entrances remain unconnected. 

 The above procedures complete the construction of the abstract graph. This 

graph has fewer nodes compared to the original grid map and is usually pre-

processed. The online search for the shortest path is usually performed using 

19



Dijkstra’s or A* algorithms on the abstract graph to calculate the final shortest path. 

Hierarchical Path-Finding is popular in the video game community. It is likely due to 

its fast run-time on the simplified abstract graph and that in-game static map can be 

easily pre-processed. Its use on partially dynamic maps can be performed by 

reprocessing individual cluster connections when obstacle information inside the 

cluster is changed. The following images (Figure 9) show the construction and search 

of an abstract graph in HPA*[25]. 
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Figure 9. HPA* Map Abstraction into Clusters and Inter-Edges.  
Shortest Path Search on Abstract Graph



2.4.4 Hybrid A* 

Hybrid A* algorithm is another important variant of the original A* algorithm 

developed by Dolgov, Thrun, Montemerlo, and Diebel[26, 27]. It was specifically 

designed for path and motion planning of non-holonomic autonomous vehicles. The 

algorithm was the primary approach implemented on Stanford Racing Team’s self-

driving car Junior and was validated on their successful entry at the 2007 DARPA 

Urban Challenge. Hybrid A* follows the general concept of A* search algorithm that 

expands search tree by identifying open nodes and traversing to the one with the least 

total cost f(x). Major improvement over the original algorithm is that nodes in Hybrid 

A* are based on the robotic car’s reachable continuous states (x, y,Ɵ) simulated using 

the vehicle’s kinematic model. It avoids using discrete cell positions on a grid map as 

shown in Figure 10. The resulting path is a continuous curved path that matches the 

motion of the vehicle, compared to the segmented straight line path generated from 

A* search algorithm. Hybrid A* expands forward and backward nodes with varying 

steering angles with extra penalty for backward motion.  

 The search algorithm uses two heuristics. The first one is referred to as non-

holonomic-without-obstacles. It is a cost pre-computed offline by setting a goal state 

(x, y,Ɵ) of (0, 0, 0) and calculating the shortest path from every possible locations 

within a fixed neighboring region of this goal state assuming no obstacle is present. 

This heuristic will eliminate search branches that approach the goal with invalid 

angles. The second heuristic cost is based on a more traditional shortest path search 
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algorithm on a grid-based obstacle map ignoring vehicle’s kinematic constraints and 

guiding the vehicle toward the goal. This heuristic is computed in real-time and the 

method was not clearly identified in the paper. Possible options for the search 

algorithm are Dijkstra’s, A*, or flowfield. 

 Hybrid A* uses Voronoi diagram as the graph’s cost function which is defined 

as follows:  

Where dO and dV are the nearest obstacle distance and edge of the Generalized 

Voronoi Diagram (GVD). The Voronoi Field is computed online with an obstacle map 

as input. 
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Figure 10. State Representation of A* (Left) and Hybrid A* (Right)



 It was observed that a number of community’s implementations of Hybrid A* 

algorithm use only three possible forward steering angles, maximum left, straight, and 

maximum right, in generating forward nodes. After the search is completed, due to 

not using a high resolution of steering angles in generating the vehicle's subsequent 

state branches, the immediate resulting path of Hybrid A* is usually suboptimal that 

includes unnecessary steering. Stanford’s team applied post-smoothing using non-

linear optimization on the output nodes and used non-parametric interpolation to add 

new intermediate nodes to smooth out the path. 
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Figure 11. Hybrid A* Search Tree Expansion



2.5 Sampling-Based Methods 

Sampling-based algorithms is another class of solutions that is widely applied to solve 

robotic motion planning problems including robotic arm and mobile robot. This 

method characteristically finds a path by generating random sample nodes in the 

search space and attempts to connect it to the current built tree that leads to the 

goal[30]. In some methods of this type, such as informed RRT* discussed in section 

2.5.3, random node generation may be biased toward a region of the search space, 

similar to using a heuristic in A* search algorithm. 

2.5.1 Rapidly Exploring Random Tree (RRT) 

Rapidly Exploring Random Tree or RRT is a classic sampling-based path planning 

algorithm developed by LaValle and Kuffner in 1998[28, 34]. RRT grows a tree by 

generating a random node, which is a state q of configuration, from the search space 

and finds the nearest node from the current built tree. A possible new node is 

calculated at a position that moves the nearest node toward the random node’s 

direction by a set distance. If no obstacle obstruction is found in between the two 

nodes, the new node is inserted (with an edge) to the current built tree. This process is 

repeated until a tree branch reaches the goal. Though RRT can rapidly explore the 

search space and converge to a path, the solution is usually not optimal[34]. The 
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resulting solution paths may also be inconsistent between calculations because of the 

algorithm’s random nature. 

__________________________________________________________ 
Algorithm  RRT 
————————————————————————————— 
  1:  function RRT (qinit, qgoal) 
  2:  G.init(qinit) 
  3:  while  qnew ≠ qgoal  do 
  4:   qrand ← randomNode() 
  5:    qnear ← neartestNode(qrand) 
  6:   qnew ← newNodePos(qnear qrand) 
  7:    
  8:   if collisionCheck(qnew) is false  
  9:    G.addNode(qnew) 
10:    G.addEdge(qnear, qnew) 
11:   end if 
12:  return G      

————————————————————————————— 

2.5.2 RRT* 

RRT* is a powerful improved variant of RRT developed and popularized by Karaman 

and Emilio in 2011 that converges toward a more optimal path compared to the 

original RRT algorithm[30, 34]. RRT* inherits the concept of RRT with addition of 

two new features that simplify the tree structure while growing tree nodes. First, 

RRT* records the distance from the root to each node on the tree and this distance is 

considered as the cost of the node. When a new node is determined from the nearest 

tree node, neighboring nodes within a circular radius of the new node are analyzed to 

determine the new node’s potential parent. RRT* calculates and picks the node with 

the least cost as the parent and connects the new node to the parent. The next step will 
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again examine the neighboring nodes. Neighboring nodes are checked whether they 

would have a lower cost when reconnected to the new node instead of their original 

parents. When lower cost is found, the nodes are rewired to the new node. The select 

parent and rewire processes reorganize the tree nodes every time a new node is 

sampled and inserted, ensuring shortest paths while growing the tree. RRT* generates 

smoother tree branches and finds a more optimal path toward the goal compared to 

the original RRT though it takes longer time to converge[30, 34]. Once an initial 

solution is found, continuing to run the algorithm will add more nodes filling out the 

search space. It gradually optimizes the path and theoretically reaches the shortest 

possible path if the run-time is infinite[30, 34]. 

__________________________________________________________ 
Algorithm  RRT* 
————————————————————————————— 
  1:  function RRT (qinit, qgoal) 
  2:  G.init(qinit) 
  3:  while  qnew ≠ qgoal  do 
  4:   qrand ← randomNode() 
  5:    qnear ← neartestNode(qrand) 
  6:   qnew ← newNodePos(qnear, qrand) 
  7:   if collisionCheck(qnew) is false 
  8:    Qneighbors ← findNeighbors(G, qnew, RAD) 
  9:    qminCost ← findParent(Qneighbors) 
10:    G.addNode(qnew) 
11:    G.addEdge(qminCost, qnew) 
12:    G.rewire(Qneighbors, qnew)    
13:   end if 
14:  return G      

————————————————————————————— 
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2.5.3 Informed RRT*  

Informed RRT* was developed by Gammell in 2014 and it further improves the speed 

of RRT*[31]. Informed RRT* defines an elliptical region which is a prolate 

hyperspheroid informed subset of the search space that has a higher probability of 

containing better or shorter solution paths. New samples will be created within this 

region reducing the search space thus improving the convergence time. 

2.6 Discussion 

This chapter presents various popular motion planning algorithms and they were 

divided into four major categories: geometric-based methods, artificial potential field, 

graph search, and sampling-based methods. This section discusses the algorithms’ 

strengths and weaknesses in different scenarios. One major drawback of using the 

classic visibility graph is that it is computationally expansive in a complex and large 

obstacle environment[32]. Similar to many geometric-based methods, it also requires 

prior knowledge of the obstacle polygonal information which may not be suitable for 

real-time applications that rely on discrete obstacle sensor data[30]. Voronoi diagram 

is another geometric-based approach and it can be generated efficiently. Nevertheless, 

the path is less efficient as it maximizes obstacle distances and cannot be easily 

travelled by non-holonomic vehicles[27].  Artificial potential field algorithms are 

straightforward and provide fast run-time. However, they have difficulties avoiding 
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local minimums situation, proceeding into narrow passages, and only restricted to 

local obstacle avoidance[33, 42]. The graph search algorithms are efficient in solving 

low dimensional problems but scale poorly to problem size[24]. Sampling based 

methods such as the variants of RRTs are recently emerging techniques. They scale 

well to high dimensional problem but suffer from low convergence time[34]. When 

comparing the algorithms’ path qualities, the majority of the above algorithms 

produce segmented straight line paths which are suboptimal for non-holonomic 

vehicles to travel. The exceptions are the variants of curvature-based A* or RRT* 

which have further trade-offs for speed. Despite post-smoothing may be performed to 

tackle this problem, it poses new potential problems since a great portion of the 

smoothing functions do not consider the presence of the surrounding obstacle. The 

resulting smoothed path may no longer guarantee collision free, especially in obstacle 

clustered areas. 
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Chapter 3 

Methodology 

3.1 LIDAR A* and Hierarchical Path Planning 

To create a robust motion planner, one should improve upon the issues discussed 

above. Given a two dimensional obstacle grip map, the algorithm’s objective is to 

create a kinematically friendly, intelligent, and computationally efficient real-time 

motion planner that determines a path from a start to a goal location without collision. 

This thesis presents a new method, LIDAR A*, that utilizes a two level hierarchical 

architecture that divides the tasks into high level global trajectory planning and low 

level simulation-based motion generation. At high level,  LIDAR A* incrementally 

explores the map from the start region and searches the consecutive neighboring 

regions for the shortest sequence of opening gateways that leads to the goal region. At 

low level, a sequence of vehicle motions is simulated using the robot’s kinematic 

model and gateway information to produce a final simulated path toward the goal 

position. 
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3.2 Shortest Opening Gateway Sequence Search 

Dijkstra’s and A* are two commonly used global path planners. However, their 

computational complexity scales exponentially with map size, resulting in 

unacceptable run-time in large maps. One common solution is to reduce map 

resolution (increase map decomposition cell size) that has the trade-off of losing map 

details. Another solution is through hierarchical map abstraction and decomposition 

as previously discussed in section 2.4.3. HPA* has to pre-process the high level 

abstract graph before a search can take place. Unlike HPA*, LIDAR A* introduces a 

new novel technique that the map abstraction and decomposition processes are done 

concurrently as the search in the high level abstract graph is in progress. LIDAR A* 

uses A* search with euclidean distance toward the goal as the heuristic function h(x), 

though similar technique can be applied to Dijkstra’s algorithm when optimal 

gateway sequence must be guaranteed. 

 Beginning at a robot’s start configuration q(x, y, Ɵ), LIDAR A* abstracts and 

decomposes and its local regional map into an abstract graph node. The region is 

identified by simulating a 181 degree 2D LIDAR scan (referred as scan) at a scan 

configuration of map position, orientation, and a variable LIDAR detection distance 

(x, y, Ɵ, k). The simulated scan data is analyzed to determine the local opening 

gateways’ positions and orientations used to enter neighboring unscanned regions 

where subsequent scans are performed. This process represents the identification of 

neighboring open nodes in high level A* abstract graph search. When no neighboring 
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opening gateway can be identified, the node is closed. Because of the visibility 

feature of LIDAR and design of scan data clustering process, opening gateways in 

LIDAR A* are guaranteed traversable and visible from local scan configuration. 

Contrasting to HPA* which the shortest path searches must be performed on all 

possible pairs of entrances within a cluster to construct its abstract graph, LIDAR A* 

completely eliminates those in-cluster searches simplifying the process. The 

euclidean distance between two neighboring gateway locations is used as the cost g(x) 

between the two nodes. Once the total costs f(x) = g(x) + h(x) of all neighboring 

gateways or adjacent abstract graph nodes are determined from a scanned region, the 

gateway node with the least cost is selected to proceed A* search process. The old 

node is then closed, and an imaginary boundary is drawn at the old gateway location 

on the map to block and prevent the search from getting trapped in a cycle. A new 

scan is then performed at the selected gateway’s configuration. A* search process on 

the abstract graph will continue to expand and explore the map until the goal is within 

the current scanned region. The shortest opening gateway sequence is therefore 

determined.  

 The process of finding opening gateways within a scanned region requires 

three steps: simulating LIDAR data with cache optimization, clustering obstacle data 

into groups, and generating opening gateways from the obstacle group edges. 
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3.2.1 Cached Simulated LIDAR Scan 

The purpose of simulating a LIDAR scan to represent a grid map region is to first, 

reduce the data size from a 2 dimensional area to a small fixed number of polar 

coordinates, and second, utilize the visibility property of LIDAR. In the experiment 

setup, a scan contains 181 data points in the form of (Ɵ, d ) that reports the nearest 

visible obstacle distance d  at an incrementing angular scanning direction Ɵ with 

respect to the local LIDAR’s frame. It has an angular resolution of 1 data per 1 degree 

angular increment (from 0 to 180 degree). This map format conversion technique 

greatly lowers the map data size while retaining a satisfactorily detailed view of the 

obstacle contour looking from the LIDAR’s configuration. The reduced number of 

map data is favorable for more efficient analysis of the obstacle map, as long as the 

processing time for the format conversion justify the trade-off. 

 One way to simulate LIDAR scan data is to replicate LIDAR’s detection 

mechanism. Starting from the minimum scanning direction or 0 degree cartesian 

direction of the local LIDAR’s scanning frame, it checks the map cell outward 

incrementally until it detects an obstacle cell or reaches the maximum detection 

distance. It reports the distance, then moves on to the next detection direction by 

incrementing the detection angle by a step of the angular resolution or 1 degree. 

Although this method may be useful in generating a more realistic LIDAR data when 

noise can be more accurately simulated and inserted, it is less efficient because map 

cells are accessed out of order from memory which causes frequent CPU cache 
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misses. Notice that the input 2 dimensional obstacle map may either be a 

predetermined static map or a single frame of a real-time dynamic map that already 

contains sensor noise. In the second case, adding additional noise might add 

unnecessary complications. 

 The second proposed LIDAR simulation method is more optimized for cache 

hits with speed improvement but does not mimic LIDAR’s detection mechanism. 

Since a scan in LIDAR A* has an angular scanning range of 181 degree, it forms a 

maximum scanning region of a half circle with a radius equal to detection distance. 

The goal is to find the limits of the smallest possible bounding box on the map that 

tightly encloses this half circle which can be in any global orientation from 0 to 359 

degree on the map as shown in the green rectangle box in Figure 12. This bounding 

box is determined by first calculating the maximum scan detection positions A and B 

on the map, which are at LIDAR’s 0 and 180 degree angular scanning directions. 
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Figure 12. Smallest Bounding Box (Green Rectangle) for Simulated LIDAR Scan

LIDAR

LIDAR

Scan Region

Scan Region



Depending on what quadrant the scan’s orientation lies in, the global position values 

(x, y) of A and B and the LIDAR’s detection distance are used to set up the respective 

top, right, bottom, and left limits of the smallest bounding box. Compared to using a 

bounding box that encloses the entire full circle based on only the LIDAR’s detection 

distance, this method improves the speed by 27% to 50% because the region is 

reduced from a full square to a smaller rectangle. 

 Once the bounding limits are identified, the map cells within the bounding 

box limits are accessed in row-major order (for C++), which is best for CPU cache 

hits since data is accessed in order from memory. If an obstacle cell is detected while 

looping through the bounding box region, LIDAR A* finds the cell’s local distance 

and global direction with respect to the scan’s position. Then it updates the known 

minimum obstacle distance at that direction when the current detected obstacle 

distance is smaller. Since the cell distances and directions with respect to a scan’s 

position are independent of obstacle information, a table of cell distances and 

directions is predetermined offline and is directly accessed when an obstacle cell is 

detected, which further enhances the speed of the algorithm. The local simulated 

LIDAR scan can be obtained once all cells within the bounding box are analyzed and 

global directions that are outside of the LIDAR’s angular scanning range based on the 

current scan orientation are cropped out. 
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3.2.2 Obstacle Data Clustering 

The next step is to cluster these scan data into groups and label each individual 

obstacle data point with a group number. Notice that the cluster used in this and 

following sections refers to the process of grouping data together instead of the sub-

grid map cluster used in HPA*. Using clustered LIDAR data to achieve local obstacle 

avoidance was studied by Wang and Peng[35, 36, 37]. The objective is to cluster the 

scan’s polar coordinate data into groups using a grouping radius such that: 

Rule: An obstacle data can be apart from its nearest obstacle data within the 

same obstacle group by a maximum distance of grouping radius.  

Since the 2D scan data are collected by incrementing the scan direction and report the 

nearest obstacle distance at each scan direction, this rule guarantees that: 

1. There is no obstacle free passage that is greater than the size of grouping 

radius in between the directions of the right edge and the left edge of an 

obstacle group.  

2. There is an obstacle free passage that is greater than the size of grouping 

radius between the directions of the left edge of one obstacle group and the 

right edge of the next (angular) obstacle group, and the opening to this free 

passage is always visible from LIDAR’s configuration 

The second property is the general rule for identifying opening gateways within a 

scanned region using a grouping radius of robot width plus additional clearance. 

However, there are some exceptions and will be discussed in the next section 3.2.3.   
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 Peng proposed a clustering method that checks the distance between every 

two consecutive LIDAR scan data. If the distance is smaller than the grouping radius, 

the data are clustered together[37]. This method has potential flaws for ensuring 

obstacle clearance. The reason is that it is possible for a data point P2 to have a larger 

scanning direction, Ɵ2 > Ɵ1 , while having a closer distance to data point P0  compared 

to P1  when P1 is the next consecutively scanned data point of P0  as illustrated in 

Figure 13. When P1 and P0 have a distance equal to robot width, the robot assumes 

there’s a safe opening when the gap between P0 and P2 does not provide sufficient  

obstacle clearance. 

 An improved method is described as follows: Every obstacle datapoint On in a 

scan S has obstacle direction, distance, and label of On (Ɵn , dn , ln) ∈ S, a minimum 

and a maximum angular scan directions of Ɵmin  and Ɵmax where Ɵmin ≤ Ɵn  ≤ Ɵmax , and a 

grouping radius of r. The algorithm first initializes the label ln for every data point On 

in S to 0 or unknown and initializes a newLabel variable to 1. Then, for every data 

point On in S, if ln  is unknown, it sets data label ln  to newLabel and increments 

newLabel. Then it identifies a group of obstacle data Oc (Ɵc , dc , lc) based on their 

directions that need to be checked for distance Dc, which is the distance between On to 

Oc. When obstacle distance Dc is less than grouping radius dn < r, it will select Oc (Ɵc , 

dc , lc)  where Ɵn < Ɵc  ≤ Ɵmax which is the remaining obstacle data from On in S. When 

obstacle distance is greater than grouping radius dn > r , it will select Oc (Ɵc , dc , lc)  

where Ɵn < Ɵc  ≤ Ɵn + asin(r /dc) which is an angular range that contains all possible Oc 
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that can have a distance less than grouping radius, Dc < r . The upper limit Ɵn + asin(r 

/ dc) is the tangent line of a circle centered at Oc with a radius r as shown in Figure 13. 

When Dc is found to be less than r and the group label lc is unknown, lc is set to ln . If 

Dc < r but the group label lc is known and lc ≠ ln , an inner loop is applied on S to 

iteratively merge all obstacle data in S that has label lc to ln . 
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Figure 13. Obstacle Clustering. Failure condition for checking consecutive data 
point distance. Proposed method uses a grouping radius on every data point and 
check distances to data points between directions from Ɵn+1  to  Ɵn + asin(r / d)



 The number of Oc is inversely proportional to the obstacle distance dc which 

can be seen in the upper limit of the angular direction check range Ɵn + asin(r / dc). 

The run-time of this algorithm is dynamic. When a scan returns a more clustered 

obstacle data, the algorithm takes a longer time to cluster data because more distance 

checks are required on obstacle data with shorter distance. 

 A grouping region is formed by overlapping the areas of the grouping radii 

within an obstacle group. A grouping region of an obstacle group does not overlap 

38

Figure 14. Grouping Regions and Opening Gateway. Grouping Region does not 
overlap with data in other obstacle group. Passage (Opening Gateway) is 
identified between the obstacle edges of the two consecutive obstacle groups



with any obstacle data in another obstacle group creating obstacle clearance that is 

greater than or equal to the grouping radius as shown in Figure 14. A passage 

(Opening Gateway1) is determined between the left edge of Obstacle Group1 and the 

right edge of Obstacle Group2 that guarantees obstacle clearance and is always 

visible from LIDAR’s point of view. 

____________________________________________________________________ 
Algorithm  ClusterData 
—————————————————————————————————— 
  1: function Cluster (scan, groupRad, maxRange) 
  2: initLabel(label, 0) //0 means “unknown” 
  3: newLabel = 1 
  4: for i = 0 to 180  //On 
  5:  if  scan[i] < maxRange //distance filter 
  6:   if label[i] is 0 
  7:    label[i] ← newLabel 
  8:    newLabel++ 
  9:   end 
10:   if distance[i] < groupRad 
11:     checklimit ← 180 
12:   else 
13:    checklimit ← i + asin(groupRad/distance[i]) 
14:   end   
15:   for j = i+1 to checklimit  //Oc  
16:    if  label[i] ≠ label[j] and dis(scan[i], scan[j]) < groupRad  
17:     if label[j] is 0 
18:      label[j] ← label[i] 
19:     else 
20:      mergeGroup(label, i ,j)   
21:     end 
22:    end 
23: 
24:  end 
25: return  label 
—————————————————————————————————— 

39



3.2.3 Opening Gateways 

Passages are located between the left edge of one obstacle group and the right edge of 

the next obstacle group and LIDAR A*’s clustering algorithm can help ensure 

minimum obstacle clearance. Nevertheless, not all passages identified are actually 

traversable because of the passages’ positions and orientations. This part of the 

process aims to remove the non-traversable passages to determine the final set of 

opening gateways for exploring and traversing the map. 

 There are two types of passages that are non-traversable. The first one is 

sideway passage. Sideway passage is identified when an obstacle group’s side (Left 

and Right) edges are entirely enclosed by another obstacle group’s side edges. This 

condition occurs when a pair of obstacle groups have one placed in front of the other 

as shown in Figure 15. These passages are either non-traversable or entering/exiting 

within its own region which defeat the purpose of connecting to neighboring regions. 

In this case the obstacle group in the back is removed leaving the front obstacle group 

to create possible passages with other adjacent obstacle groups. The possible passages 

using the rear obstacle group will be identified in subsequent scans. 
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 The second type of non-traversable passage has the following general 

orientation as in Figure 16. These passages are unreachable because parts of its 

adjacent obstacles are blocking its path toward the passage. These passages are 

identified and filtered out by making sure when a passage’s left edge is near the 0 

degree heading or when the passage’s right edge is near the 180 degree heading, there 

must be sufficient clearance in the vertical direction.  

 After these types of invalid passages are successfully filtered out, the 

remaining passages are considered valid opening gateways for entering the 

neighboring unscanned regions. The global coordinates of the adjacent left and right 
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Figure 15. Sideway Passage. Obstacle group3 is in front of Obstacle group2 
creating a sideway passage. Obstacle group2 is removed at the current scan 
location to determine valid Opening Gateway1 and Opening Gateway2



obstacle edges, as well as their mid points are recorded and used for motion 

simulation of the robotic vehicle. A new scan will take place at an orientation 

perpendicular to the line connecting the two adjacent obstacle edges of the selected 

opening gateway, facing toward the unscanned region. 
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Figure 16. Unreachable Passage. Unreachable passages may occur 
when they are near the 0 or 180 degree of the LIDAR’s frame



3.3 Motion Simulation 

LIDAR A* utilizes a hierarchical architecture that divides the tasks into high level 

shortest opening gateway sequence search and low level motion planning. The 

generated gateway sequence is constructed with seamless transition between 

simulated LIDAR scans with scan configurations close to the ideal robot 

configurations when traversing the gateways. Low level motion planning is tasked 

with building a path that smoothly maneuvers within each local region and transitions 

to neighboring regions using the given gateway information. 

 Motion planner algorithms worked in the lower level hierarchical architecture 

are often given a suboptimal path or a sequence of waypoints from the high level path 

planner to determine obstacle free motions. Picture skiing down a slope with 

surrounding obstacles and trying to follow a suboptimal path. The task of smoothing 

out a suboptimal path under motion constraints while ensuring obstacle clearance can 

be challenging. Imagine instead of a path, a sequence of marked gateways with ideal 

traversing orientations given to follow. With better knowledge of the drivable regions 

that provide additional room for path optimization, the task of maneuvering around 

clustered obstacles becomes considerably easier. Similar to Hybrid A* that ensures 

motion feasibility, LIDAR A* uses online simulation with vehicle kinematics to plan 

a path based on sequential states of a non-holomonic car-like vehicle. When a 

collision is identified during the simulation process, a replanning technique is 

proposed in section 3.3.3. 
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3.3.1 Kinematic Model 

The kinematic model used on the non-holonomic car-like vehicle simulation is 

specified in LaValle’s Motion Planning book[41]. No dynamic model was used to 

avoid over-complicating the system. A configuration of a car is denoted q = (x, y, Ɵ), 

the distance between the front and rear axles is denoted L, the steering angle of the 

front wheel is denoted ϕ, and speed of the vehicle is denoted us. The configuration 

transition equations of a car-like vehicle are: 

 

·x = us cos θ
·y = us sin θ

·θ =
us

L
tan ϕ
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Figure 17. Car-Like Vehicle Kinematics



 The simulation was completed with a constant speed in terms of map cell 

distance over time, a dt of 0.2 second, and a steering angle limit of -40 and +40 

degrees. 

3.3.2 Obstacle Avoidance 

The calculated opening gateways sequence contains position information about the 

adjacent left obstacle edge, the adjacent right obstacle edges, and their midpoints 

between the two obstacle edges. A simple but effective motion planning algorithm 

which is the simplified version of Wang’s motion planner algorithm was used to 

control the vehicle[35, 36]. This algorithm considers the current approaching gateway 

and the next follow-up gateway and converts their global map coordinates to the local 

coordinates of the current vehicle’s frame in direction and distance format.  

Let GL (ƟL , dL), GM (ƟM , dM), GR (ƟR , dR) denote the current left edge, mid point, and 

right edge of an opening gateway, and GLN (ƟLN , dLN), GMN (ƟMN , dMN), GRN (ƟRN, dRN), 

for the next opening gateway respectively. 

 Traversing a gateway has an important property that the angle between the left 

and right obstacle edges, ƟL and ƟR , will gradually increase to 180 degree as it 

approaches and passes through the gateway. The speed of increase depends on the 

orientation of the gateway as well as the vehicle's orientation when it approaches the 

gateway. In Nilsson’s visibility graph, Perez shifts away and traverses toward the 

shifted obstacle polygonal vertex position that is visible from the current vertex. 

45



Since opening gateways are generated with similar visibility property, LIDAR A* 

first shifts the current obstacle edge directions, ƟL and ƟR , away from the obstacle 

edge locations to create necessary clearance to accommodate the size of the vehicle. It 

then checks for multiple thresholds on the value of ƟL - ƟR to identify the relative 

position and orientation between the vehicle and the gateway within the current 

scanned region and apply policies for motion generation. 

 When ƟL - ƟR ≦ 0, this indicates a front obstacle is partially blocking the view 

of another rear obstacle and a path maneuvering around the front obstacle is expected. 

The algorithm outputs ƟL or ƟR that has the respective smaller obstacle distance dL or dR 

as the output steering angle. It helps the vehicle take the shortest path around the 

corner of the front obstacle. 

 When 0 < ƟL - ƟR ≦ MidThreshold, this indicates the vehicle is still away from 

the opening gateway that causes a small difference between the two gateway edge 

directions. In this case, the algorithm outputs ƟM as steering angle that aims toward 

the center of the opening gateway. The vehicle will tend to stay in the safer center 

path of the current scanned region. 

 When MidThreshold < ƟL - ƟR ≦ CheckOffThreshold, this indicates the vehicle 

is near the current opening gateway. It can begin steering toward the next opening 

gateway without going out of the angular range limits of the current opening gateway 

to explore a more efficient path toward the next region. The algorithm outputs the 
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next mid gateway ƟMN  as steering angle if  ƟR ≦ ƟMN ≦ ƟL . If ƟMN < ƟR  or  ƟMN > ƟL , 

the algorithm outputs either ƟL or ƟR  whichever is closer to ƟMN .  

 When ƟL - ƟR > CheckOffThreshold, this indicates the vehicle is at the current 

opening gateway. It checks-off the current gateway and moves on to the next two 

consecutive opening gateways.  

 Figure 18 demonstrates the partially blocking view condition when  

ƟL - ƟR ≦ 0. Figure 19 to Figure 23 show the motion generation of a car-like vehicle 

traversing through three sequential opening gateways. The steering angle of the 

vehicle is determined by thresholding the value of ƟL - ƟR . 
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Figure 18. Motion Planning: when ƟL - ƟR ≦ 0, the algorithm outputs ƟL or ƟR that 
has the respectively smaller obstacle distance dL or dR as the output steering angle

          ƟL - ƟR < 0 
Output: ƟL  since dL < dR

dR dL
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0 < ƟL - ƟR ≦ MidThreshold 
Output: ƟM

ƟL

ƟR

GL

GR

GRNƟM

GLN

Figure 19. Motion Planning: when 0 < ƟL - ƟR ≦ MidThreshold, The algorithm 
outputs ƟM that aims toward the center of the opening gateway

MidThreshold < ƟL - ƟR ≦ CheckOffThreshold 
Output: ƟMN,  since ƟR ≦ ƟMN ≦ ƟL

GL

GRN

ƟMN

ƟL

ƟR

GR

GLN

Figure 20. Motion Planning: when MidThreshold < ƟL - ƟR ≦ CheckOffThreshold, 
the algorithm outputs the next mid gateway ƟMN  to generate a more efficient path 
toward the next gateway
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ƟL - ƟR > CheckOffThreshold 
Check off and move on to next two Gateways 

GL

GRN

ƟMN

ƟL

ƟR

GR

GLN

Figure 21. Motion Planning: when ƟL - ƟR > CheckOffThreshold, the algorithm  
checks-off the current gateway and moves on to the subsequent two opening gateways

GRN

ƟM

ƟR

GR

GL ƟL
GLN

Figure 22. Motion Planning: Upon checking off the old gateway, the algorithm 
again outputs ƟM  that aims toward the center of the new current opening gateway



 At the end of the gateway sequence, LIDAR A* outputs the goal direction as 

the vehicle steering angle when the goal is directly in sight. Then it reaches the goal 

and completes the simulation. Since motion control of the vehicle is based on its 

continuous local feedback of the stationary opening gateway edges, the above policies 

generate a continuous and smooth path that is near optimal from the start to goal 

locations on the map. 
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ƟL - ƟR > CheckOffThreshold 
Check off and move on to next two Gateways 

GR

ƟR

ƟL
GL

Figure 23. Motion Planning: The vehicle finished traversing a sequence of three 
opening gateways



3.3.3 Collision Check and Intermediate Opening Gateway 

The proposed local motion planner strictly uses the opening gateways’ obstacle edge 

information to simulate a motion path ignoring the rest of obstacle information. It 

greatly simplifies the motion planning processes but comes with side-effects. Even 

though obstacle avoidance based on maneuvering around obstacle edges is an 

effective approach, in certain obstacle settings, there is still a possibility that the 

algorithm simulates a path that grazes against other parts of the obstacle before 

reaching the current gateway location as shown in Figure 24.  

 A simple solution to this problem is to perform collision check through each 

time step of the simulation process within the current region while traversing toward 

the current gateway location. When a collision is detected, a new opening gateway 

analysis is performed at the original scan location using a reduced scan detection 

distance that is slightly larger than the detected collision distance. Using this reduced 

detection distance will determine a new intermediate opening gateway that has one of 

the adjacent obstacle edges causing the previously detected collision. This 

intermediate opening gateway is inserted into the gateway sequence and a new path is 

simulated avoiding the original collision. 

 There are several approaches for detecting collisions. Since LIDAR A* 

already has the ability to simulate local LIDAR scan data, collision check can be 

easily accomplished by simulating a scan at the vehicle’s configuration on the map 

using a detection distance that is just enough to cover the entire local contour of the 

51



vehicle. This scan data is compared to a predetermined vehicle contour mask which is 

also a simulated LIDAR scan to check for any interference. 
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Figure 24. Collision Detection and Intermediate Gateway. When a collision is detected 
while traversing toward the current gateway, an intermediate gateway is identified 
using a smaller LIDAR detection distance.  This gateway is inserted to replan a 
collision-free path 

Figure 25. Collision Detection. Collision can be detected by checking 
for interference between the scan region and the vehicle contour mask



3.3.4 Dynamic LIDAR Detection Distance 

It is crucial to select an appropriate LIDAR detection distance in LIDAR A* that best 

works for the obstacle setting at the current scan location, as it will affect the 

accuracy and efficiency of the algorithm. Because of the visibility property of LIDAR 

scan, using a larger than ideal detection distance may waste computational resources 

scanning regions that are not visible at the LIDAR configuration, making the 

algorithm less efficient. Using a larger than ideal detection distance may also generate 

opening gateways that are further away from the scan location increasing the risk of 

creating a collision path in low level motion planning in a clustered environment. 

This condition can be observed in the previously discussed collision path example 

(Figure 24). The added collision check and replanning technique is a fail-safe for not 

using an appropriate detection distance. 

 The LIDAR detection distance can not be too short either, especially in more 

open areas. LIDAR A* strictly relies on obstacle edges for path and motion planning. 

It can be problematic when no obstacle can be identified at the current scanned 

region. The most effective solution is to increase the detection distance until some 

obstacles are detected or until the detection distance can cover and reach the goal 

location. In the second case there is no obstruction in between the current and goal 

locations and the vehicle can simply travel toward the goal. Using a shorter than ideal 

detection distance may also reduce the algorithm's efficiency. When a shorter 

detection distance is used in decomposing a map, a scan covers a smaller region, 
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resulting in more scans and more clustering processes required to complete the high 

level gateway search which penalizes the algorithm's efficiency. To best optimize the 

accuracy and efficiency of LIDAR A*, a dynamic detection distance shall be 

implemented that vary depending on obstacle complexity at each gateway region. The 

general rule is to use a larger detection distance in a more open area and a shorter 

detection distance in a clustered area that produces ideal opening gateways without 

causing a collision path. 
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Chapter 4 

Experiments and Results 

4.1 Software Implementation 

To evaluate the accuracy and efficiency of LIDAR A*, the algorithm was coded in  

C++ with OpenCV for map and decision visualization. The program ran on a 2019 

MacBook Pro with a i7-8850H CPU clocked at 2.60GHz. The input map is a regular 

BMP image that can vary in sizes. Black pixels in the image represent obstacle free 

areas and white pixels represent obstacle areas. To maintain sufficient map detail, 

there is no minimum size for obstacle size and an obstacle can be as tiny as a single 

obstacle pixel. The experiments first tested the shortest opening gateway sequence 

search followed by low level motion simulation. The computation times are recorded 

excluding the time spent on graphing the decisions. Collision detection is turned off 

to examine the potential collision path condition in low level motion planning. 

4.2 Simulated LIDAR Scan, Clustering, Opening Gateways 

Figure 26 shows the result of a typical abstraction and decomposition process on a 

regional map. The blue contour at the bottom center shows the robotic vehicle and the 

LIDAR’s configuration which has a scanning orientation pointing toward the up 

direction in the regional map. With a LIDAR detection distance about half the width 
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of this image, the algorithm correctly generated simulated LIDAR scan data at the 

closer edge of obstacle contour observed from LIDAR’s position. These data are 

being clustered into two obstacle groups, Obs1 and Obs2, and the individual obstacle 

data in the same group is labeled and drawn using the same group color. The opening 

gateways G1 and G2 are then identified between the left and right obstacle edges of 

two consecutive obstacle groups. They may also be formed between the LIDAR’s 

maximum detection position at 0 or 180 degree direction and the nearest obstacle 

edge. Notice because there is an immediate follow-up dead-end at G2 opening 

gateway, G2’s search branch will quickly be terminated as there is no neighboring 

region to be further explored. The search will proceed on G1 because it provides a 

subsequent neighboring region. 
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Figure 26. LIDAR Scan, Obstacle Groups, Opening Gateways



4.3 Shortest Gateway Sequence Search and Motion Simulation 

Figure 27, 28, 29 show the complete search process of the shortest opening gateway 

sequence search and the final result from low level motion simulation. During the 

search process, neighboring regions of the current scanned location or neighboring 

abstract graph node were added to open list and their total costs in A* search were 

determined. The neighboring region in the open list with the least cost was selected to 

proceed where a new scan was performed at the selected opening gateway location 

pointing toward the unscanned region. The bright blue line in the image demonstrates 

the opening gateway's selection process in the high level A* abstract graph search. 

The bottom image of Figure 29 shows the complete low level simulated motion path 

which is based on the vehicle’s kinematic model. This simulated path is drawn using 

dark blue color and is the sequential configuration of the vehicle's contour from the 

start location to goal location. As shown in this Figure, the proposed local motion 

planner calculated a near-optimal path using obstacle edge information from the 

predetermined sequential gateways. The search was completed with 17 simulated 

LIDAR scans that represent 17 decomposed regions or 17 abstract graph nodes. It 

took an impressively low run-time of 16ms to compute the final simulated path, 

which has a path distance of 792 pixels. 
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Figure 27. Shortest Opening Gateway Sequence Search 1-8
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Figure 28. Shortest Opening Gateway Sequence Search 9-16
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Figure 29. Shortest Opening Gateway Sequence and Simulated Motion Path



4.4 Comparison to RRT, RRT*, Informed RRT* 

LIDAR A*’s performance was compared to some of the recently proposed algorithms 

for robotics path and motion planning, RRT, RRT*, and Informed RRT*. The 

algorithms were tested on a square maze map that has a size of 1000 pixels * 1000 

pixels. Because the produced paths in sampling-based algorithms may vary between 

each calculation, a total of 10 experiments were conducted and their average 

performances were calculated. The RRT-based algorithms tested were based on 

kyk0910’s implementation of the algorithms[40]. The results are summarized in the 

following path length and computation time tables. 

Path Length 
(Pixels)

RRT RRT* Informed RRT* Lidar A*

1 4548 3648 3716 4164

2 4851 3612 3804 4164

3 4842 3611 3789 4164

4 4723 3625 3811 4164

5 4704 3605 3762 4164

6 4738 3629 3738 4164

7 4768 3623 3783 4164

8 4398 3649 3721 4164

9 4882 3643 3773 4164

10 4679 3617 3731 4164

Avg. Length 4713.3 3626.2 3762.8 4164
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4.5 Analysis 

Three metrics of path quality, intelligence level, and computation efficiency are used 

to evaluate the performances of LIDAR A*, RRT, RRT*, and Informed RRT*. 

Results are shown in Figure 30, 31, 32, 33. When analyzing the results of RRT, RRT 

is very computationally efficient and can determine a path in less than 40ms. 

However, it generated low quality paths that feature inefficient paths averaging 4713 

pixels in length with frequent unnecessary sharp turns that can be difficult for non-

holonomic car-like vehicles to follow. RRT* algorithm, with the added select parent 

and rewire processes, produced much more efficient paths than the original RRT, 

Computation 
Time (ms)

RRT RRT* Informed RRT* Lidar A*

1 43.4 1098 719 57.9

2 38.8 1025 584 56.2

3 39.3 931 684 54.4

4 47.7 961 661 57.3

5 31.5 1158 626 55.9

6 31.4 865 455 57.2

7 35.2 1109 616 55.1

8 33.9 845 639 59.1

9 45.3 1053 539 53.8

10 35.5 1010 670 55.1

Avg. Time 38.2 1005.5 619.3 56.2
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averaging 3626 pixels in length which is near the shortest possible path toward the 

goal. However, it took an average of 1 second to compute, which can be too slow for 

applications that require real-time operation at this map size. Informed RRT* output 

slightly longer paths with close to 40% reduction in computation time which is a 

worthy trade-off and an improvement over RRT*.  

 The paths from RRT* and Informed RRT* tend to stay very close to obstacles. 

This issue can be addressed by pre-processing the map and finding the free space Cfree 

to add necessary clearance for the vehicle. When dealing with the classic local 

minimum problem, RRT based algorithms should experience no difficulties because 

this obstacle arrangement would not prevent the tree from eventually growing out of 

the minimum region to find a solution. However, RRT based algorithms may have a 

difficult time efficiently finding smaller passages due to its reduced probability of 

adding samples in the specific passage region within the search space.  

 When comparing RRT based algorithms to LIDAR A*, the proposed LIDAR 

A* method has the smoothest path of the four algorithms with a slightly longer but 

safer average path length of 4164 pixels. Online motion simulation that follows the 

vehicle’s kinematic model contributes to this result. It also has a very efficient 

planning time of 56.2ms that is sufficient for real-time operation. When encountering 

local minimum problems, LIDAR A* will eventually terminate the search branch in 

the minimum region when there’s no neighboring region to be explored and start 

finding alternate branches that lead to the goal.  The algorithm shouldn’t have an 

63



issue finding small passages either as long as the passages have enough obstacle 

clearance to be considered opening gateways. They will be added and treated as any 

other open nodes in A* search algorithm and be explored when they have the least 

cost. The proposed method of LIDAR A* has the best all rounded performance in 

path quality, intelligence level, and computation efficiency. 
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Figure 30. RRT on Maze Test. Average path length of 4713.3 
pixels, Average computation time of 38.2ms
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Figure 31. RRT* on Maze Test. Average path length of 3626.2 pixels, 
Average computation time of 1005.5ms
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Figure 32. Informed RRT* on maze test. Average path length of 3762.8 pixels, 
Average computation time of 619.3ms
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Figure 33. LIDAR A* on maze test. Path length of 4164 pixels, 
Average computation time of 56.2ms



4.6 Large Dynamic Map Test 

LIDAR A* was also put into an extreme test of a large 1280*1024 pixels complex 

and dynamic maze to examine its ability to deal with difficult scenarios and to react to 

dynamic obstacle information. The program was coded to be able to add new 

obstacles in real-time using mouse cursor. Obstacles were intentionally added to 

actively close opening gateways and create narrow passages as shown in Figure 34, 

35, 36. LIDAR A* was able to handle the change in map information and recalculate 

a smooth path in real-time. In the end, it took 56 ms to calculate a path of 5700 pixels 

in length. The trade-off for using a heuristic can also be observed in this experiment. 

Since LIDAR A* uses A* with euclidean distance toward the goal as heuristic, the 

algorithm attempted to find a path toward the goal (up) direction when there is a 

shorter path to the right of the vehicle’s starting position. It shows that A* doesn’t 

guarantee the shortest path as a trade-off for speed. 
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Figure 34. Dynamic Map Test 1. LIDAR A* updates the path in real-
time as new obstacles were added to the map using the mouse cursor
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Figure 35. Dynamic Map Test 2
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Figure 36. Dynamic Map Test 3



4.7 Discussion and Future Work 

When designing the LIDAR A* algorithm, significant effort was put into maximizing 

the efficiency of the algorithm while maintaining a good quality of drivable path. The 

algorithm first divides a 2 dimensional map into local regions of simulated LIDAR 

scans with reduced data size of 181 polar coordinates. The scanned data are analyzed 

to find its possible transitions to neighboring regions. Through levels of abstractions, 

a regional map is abstracted and decomposed into a single node on an abstract graph 

where the search actually takes place. The significant reduction in the number of 

nodes helps the algorithm drastically improve its computational efficiency, overcome 

the curse of problem size in large graph search problems, and achieve long distance 

motion planning on a large high resolution map. 

 LIDAR A* has other advantages. First, the online decomposition and search 

process requires explorations to only a portion of the map necessary to complete the 

gateway search to reach the goal. It avoids decomposition on the entire map 

compared to HPA* and many other decomposition-based algorithms. Second, when 

the entire map is being abstracted and decomposed with static obstacles, the opening 

gateway graph may potentially be reused as an offline map which makes the online 

decomposition and search process unnecessary for some applications. Third, the 

generated opening gateway sequence can easily be utilized by other local motion 

planners not restricted to the one presented in this thesis. For example, one can use 

machine learning to train a model that specializes in traversing sequential opening 

72



gateways and use it for low level motion planning. Finally, when using a small 

grouping radius, the clustering algorithm becomes a segmentation tool for 2D LIDAR 

data that can be used to identify and track dynamic objects and make predictions. 

 LIDAR A* also has some shortcomings. The most challenging part of LIDAR 

A* is to correctly identify the valid traversable passages (opening gateways) in 

regions that are near the edge of the LIDAR’s angular visible range (0 and 180 degree 

directions) where parts of the map are out of sight. The algorithm must ensure the 

passages to these opening gateways are reachable based on the vehicle’s kinematic 

model and deal with possible corner cases. 

 In conclusion, LIDAR A* is a powerful global motion planner that features a 

hierarchical structure that efficiently performs online decomposition and search of 

consecutive neighboring regions to produce sequential gateways. The gateways guide 

the simulation of a simple yet robust local motion planner to generate a kinematic 

friendly path. Its highly optimized hierarchical approach significantly reduces the 

number of nodes required by the high level search, allowing the algorithm to produce 

a near optimal path on a highly complex large obstacle map and achieve real-time 

operation. 
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