
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
LIDAR A*, An Online Visibility-Based Decomposition and Search Approach for Real-time
Autonomous Vehicle Motion Planning

Permalink
https://escholarship.org/uc/item/23x924cx

Author
Wang, Po-Jen

Publication Date
2020

Supplemental Material
https://escholarship.org/uc/item/23x924cx#supplemental

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/23x924cx
https://escholarship.org/uc/item/23x924cx#supplemental
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

LIDAR A*
An Online Visibility-Based Decomposition and Search Approach

for Real-time Autonomous Vehicle Motion Planning

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Engineering

 by

Po-Jen Wang

June 2020

The Thesis of Po-Jen Wang
is approved:

Prof. Roberto Manduchi, chair

Prof. Michael Wehner

Prof. Narges Norouzi

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Copyright © by

Po-Jen Wang

2020

Table of Contents

Introduction

1.1 History of Autonomous Vehicles 1 ...

1.2 Problem Statement 3 ...

1.2.1 Path Quality 4 ..

1.2.2 Intelligence Level 4 ...

1.2.3 Computational Efficiency 5 ...

1.3 Thesis Structure 6 ...

1.4 Map Representation 7 ...

1.5 Configuration Space 7 ...

Literature Review

2.1 Notable Path and Motion Planning Methods 9 ...

2.2 Geometric-Based Methods 9 ...

2.2.1 Visibility Graph 9 ...

2.2.2 Voronoi Diagram 11 ...

2.2.3 Cell Decomposition 12 ..

2.3 Artificial Potential Field Methods 13 ..

2.3.1 Vector Field Histogram 13 ...

2.4 Graph Search-Based Methods 15 ..

iii

2.4.1 Dijkstra’s Shortest Path 15 ...

2.4.2 A* Search and Heuristic 16 ..

2.4.3 HPA* and Hierarchical Graph 18 ..

2.4.4 Hybrid A* 21 ..

2.5 Sampling-Based Methods 24 ..

2.5.1 Rapidly Exploring Random Tree (RRT) 24 ...

2.5.2 RRT* 25 ...

2.5.3 Informed RRT* 27 ...

2.6 Discussion 27 ..

Methodology

3.1 LIDAR A* and Hierarchical Path Planning 29 ...

3.2 Shortest Opening Gateway Sequence Search 30 ..

3.2.1 Cached Simulated LIDAR Scan 32 ...

3.2.2 Obstacle Data Clustering 35 ..

3.2.3 Opening Gateways 40 ..

3.3 Motion Simulation 43 ...

3.3.1 Kinematic Model 44 ..

3.3.2 Obstacle Avoidance 45 ...

3.3.3 Collision Check and Intermediate Opening Gateway 51

3.3.4 Dynamic LIDAR Detection Distance 53 ...

iv

Experiments and Results

4.1 Software Implementation 55 ...

4.2 Simulated LIDAR Scan, Clustering, Opening Gateways 55

4.3 Shortest Gateway Sequence Search and Motion Simulation 57

4.4 Comparison to RRT, RRT*, Informed RRT* 61 ...

4.5 Analysis 62 ..

4.6 Large Dynamic Map Test 68 ...

4.7 Discussion and Future Work 72 ..

Bibliography 74..

v

List of Figures

Figure 1: Grey Walter’s Tortoises .……………………..………………………….….2

Figure 2: Tortoise return to recharge battery..…………………………………….…..2

Figure 3. Configuration Spaces ………………………….…………………...………8

Figure 4. Path Planning with Visibility Graph ……………….………………….….10

Figure 5. Voronoi Diagram ……………………………………………………….…11

Figure 6. Trapezoidal Cell Decomposition…………………………………….……12

Figure 7. Vector Field Histogram..……………………………………………….….14

Figure 8. Two Examples of AH-graphs ..…………………………….………….….18

Figure 9. HPA* Map Abstraction into Clusters and Inter-Edges……….….………..20

Figure 10. State Representation of A* and Hybrid A*….……………………….….22

Figure 11. Hybrid A* Search Tree Expansion……….….…………………………..23

Figure 12. Smallest Bounding Box for Simulated LIDAR Scan .………….…….…33

Figure 13. Obstacle Clustering .…………………………………………….………37

Figure 14. Grouping Regions and Opening Gateway ………………………………38

Figure 15. Sideway Passage …..…………………………………………….………41

Figure 16. Unreachable Passage .……………………………..…………….………42

Figure 17. Car-Like Vehicle Kinematics .…………………………………….…….44

Figure 18. Motion Planning 1 ……….………………………………………..…….47

Figure 19. Motion Planning 2 ……….………………………………………..…….48

vi

Figure 20. Motion Planning 3.……….……………………………………….…….48

Figure 21. Motion Planning 4.……….……………………………………….…….49

Figure 22. Motion Planning 5.……….……………………………………….…….49

Figure 23. Motion Planning 6.……….……………………………………….…….50

Figure 24. Collision Detection and Intermediate Gateway .………………….…….52

Figure 25. Collision Detection ……….…………………………………………….52

Figure 26. LIDAR Scan, Obstacle Groups. Opening Gateways.……….……….….56

Figure 27. Shortest Opening Gateway Sequence Search 1-8 …..………………..…58

Figure 28. Shortest Opening Gateway Sequence Search 9-16 ..……………………59

Figure 29. Shortest Opening Gateway Sequence and Simulated Motion Path …..…60

Figure 30. RRT on Maze Test .……..…………………………………………….…64

Figure 31. RRT* on Maze Test …………………………………………………..…65

Figure 32. Informed RRT* on maze test..………………………………………..…66

Figure 33. LIDAR A* on maze test..………………………………………….….…67

Figure 34. Dynamic Map Test 1……………………………………………….……69

Figure 35. Dynamic Map Test 2…………..………………………………..….……70

Figure 36. Dynamic Map Test 3…………..…………………………………..….…71

vii

Abstract

LIDAR A*, An Online Visibility-Based Decomposition and Search Approach for
Real-time Autonomous Vehicle Motion Planning

by

Po-Jen Wang

Motion planning is the task of finding a sequence of feasible motions for a robot to

transform from an initial state to a goal state avoiding collisions. Modern motion

planner algorithms for non-holonomic vehicles typically rely on graph search or

sampling-based techniques. However, graph search methods quickly become

ineffective as the computational complexity scale exponentially to map size.

Sampling-based methods have the shortcomings of creating highly suboptimal paths

or having high run-times. This thesis introduces a new hierarchical motion planner,

LIDAR A*, that features an online visibility-based decomposition and search process.

It incrementally analyzes regional maps with locally simulated 2D LIDAR scans to

search for the shortest opening gateway sequence toward the goal. These sequential

gateways are used to guide the simulation of a robust local motion planner to generate

a smooth and kinematic friendly path. Experiments show this method significantly

reduces the number of nodes minimizing computation time while generating a near-

optimal path compared to the recently proposed RRT-based algorithms.

viii

Acknowledgments

It is my pleasure to acknowledge those individuals who made the completion of this

thesis possible. I would also like to recognize those who were instrumental to my

robotics journey. First of all, I would like to express my deepest appreciation to my

supervisor, Professor Roberto Manduchi at U.C. Santa Cruz, who gave me the

opportunity to pursue the topic and explore new innovative solutions to resolve the

challenging problems in robotics motion planning. His immense knowledge,

guidance, and insightful inputs has upscaled the quality of the research, and helped

overcoming obstacles and obtaining impactful results. In addition to the committee

chair, I would like to thank the committee members: Professor Michael Wehner and

Professor Narges Norouzi for helping me construct a strong foundation in robotics

and AI, and providing continuous support and generous assistance during the thesis

research.

 My deep gratitude also extends to my family ⎯ my parents, Yun-Long Wang

and Li-Hon Ko; my grandma Lan-Xin Fan; my sisters, Li-Jen Wang and Kuan-Jen

Wang; and my brothers-in-law, Sertac Cakici and Jack Lee. Their unconditional love,

commitment, and joint effort in supporting my education and helping the family,

especially in some of the most difficult times, has helped me physically and

spiritually through every step of my career. I wouldn’t be able to complete this thesis

without their hard work and dedication. Finally, I wish to sincerely acknowledge my

undergraduate advisor, Professor C.T. Lin, who previously taught robotics at

ix

California State University, Northridge. Professor Lin introduced me and sparked my

interest in autonomous driving technologies that later turned into an award-winning

project and shaped my career path. I’m extremely grateful for his inspiration and long

lasting influence in my life.

x

Chapter 1

Introduction

1.1 History of Autonomous Vehicles

Grey Walter was a well-known robotics pioneer and the creator of some of the first

ever electronic autonomous robots. He constructed his robot Tortoises (Figure 1, 2) in

the late 1940s and described their abilities to sense light, hunger, touch, dance a jig,

and feed themselves by returning to a charging station[1]. These mobile machines

simulated the cognitive process of living creatures using only analog circuitries,

demonstrating the first level of artificial intelligence. Grey Walter’s work was

considered a milestone in the history of autonomous vehicles and has inspired

numerous researchers in building more advanced robotics autonomy technologies[1].

 Today modern autonomous mobile robots are tasked with handling more

complicated missions; for example, warehouse robots must autonomously transport

materials to the designated area with high precision[2]. Planetary exploration rovers

are tasked with safely traversing through rugged terrains avoiding dangers and

collecting valuable information[3]. To further accelerate the developments of self-

driving technologies, United States’s Defense Advanced Research Projects Agency

(DARPA) created the famous DARPA Grand Challenge in 2004, 2005, and the

DARPA Urban Challenge in 2007. This was to challenge research organizations to

1

build vehicles capable of autonomous navigation through a 142-mile off-road route in

the desert as well as self-driving in an urban environment following traffic

regulations[4, 5]. According to the U.S. National Highway Traffic Safety

Administration (NHTSA), motor vehicle crashes cost $836 billion in economic

activity, loss of life, or injuries in 2010. 94% of these serious crashes were due to

human errors which can be eliminated with automation[6]. Another study shows self-

driving can potentially save up to 50 minutes each day in work commute or accessing

entertainment[7]. The advancement in self-driving technologies can bring significant

benefits to the society in terms of safety, economy, and mobility[6].

2

Figure 1. Grey Walter’s Tortoises Robot. On
display in the Science Museum, London

Figure 2. Tortoise return
to recharge battery

 The recent race to full-autonomy self-driving cars between auto-makers and

tech giants has set timelines of delivering the self-driving systems. Some predict

autonomous vehicles will be safe and reliable by 2025, while shared autonomous

vehicles and rides may become common in the 2030s and 2040s[8].

1.2 Problem Statement

One of the important topics in autonomous driving is the path and motion planning of

the vehicle. Motion planning, in a broad sense, is the task of finding a sequential

configuration that transforms a robotic system, such as robotic arm, mobile robot, or

Unmanned Aerial Vehicle (UAVs), from a start state to a goal state in the

workspace[9]. Motion planning for autonomous mobile robots has to deal with

trajectory planning and obstacle avoidance in the configuration space. It is a classic

and thoroughly researched topic in robotics, which a number of effective and diverse

approaches have been proposed in the last few decades. The optimality and

robustness of these motion planning methods can be evaluated based on three major

metrics: path quality, intelligence level, and computational efficiency.

3

1.2.1 Path Quality

 Robotic systems can exhibit different levels of motion constraints based on

the kinematic model of the system. For example, in the previously discussed non-

holonomic mobile robot applications, planetary rovers and self-driving cars must

travel in segmented sequences of circular paths at varying radii in which motions

toward the vehicles’ side directions cannot be performed. UAV systems, on the other

hand, do not have such limitations thanks to extra degrees of freedom in the system.

Therefore, the ideal mobile robot motion planner should generate an optimal path that

is a smooth and continuous curved path that closely matches the reachable sequence

of configurations based on the vehicle’s kinematic model, reducing control errors

caused by kinematic constraints when following the path. This optimal path, at the

same time, should also minimize path length to reduce the cost traversing toward the

goal while maintaining safe clearances to surrounding obstacles. Paths built with

segmented straight lines and sharp angles are less desirable for mobile robots to

follow and are considered suboptimal for robotics motion planning.

1.2.2 Intelligence Level

 Another important metric in evaluating motion planning methods is the

algorithm’s intelligence level in handling complex obstacle arrangements. A robust

motion planning algorithm must be able to deal with a variety of obstacle

arrangements at different levels of difficulty. Examples of simple obstacle avoidance

4

tasks may include lane following with lightly curved path or avoiding a small number

of obstacles in open areas. At an intermediate level of difficulty, robots may be

required to navigate through a large number of random obstacles, zigzag switchbacks,

or avoid local minimum situations. In the most challenging scenarios, robots may be

tasked to perform the following: finding a path within a large complicated maze with

multiple passages lead to dead-ends; finding and entering a small choke point that

leads to the goal; maneuvering through zigzag switchbacks with very limited obstacle

clearance; or having a combination of the above troublesome scenarios mentioned

above.

1.2.3 Computational Efficiency

 The last metric used in evaluating motion planning algorithms is their

computational efficiency. Autonomous vehicles operating in dynamic environments

such as self-driving cars can navigate at high speeds. Their abilities to correctly react

to emergency situations not only depend on the intelligence of the system but also

how fast a decision or an emergency maneuver can be executed. Therefore, it is

crucial for a motion planning algorithm to be highly computationally efficient that

allows real-time operation on the selected system platform. In most cases, the ideal

computation time should be in the millisecond range. For local motion planners, the

computational efficiency of the method will also affect the length of the calculated

path which represents how far a robotic vehicle can foresee and plan ahead to handle

5

future problems. Frequently, trade-offs between speed and path quality are carefully

considered and taken to satisfy their minimum requirements for the application.

 In summary, this thesis aims to solve the classic motion planning problem

which, given an autonomous vehicle’s kinematic model and start configuration of on

a large obstacle map, finds a motion feasible path in real-time that can sequentially

translate the vehicle to reach a goal destination avoiding obstacle collision on all parts

of the vehicle. The proposed algorithm will be tested and compared to some of the

recent notable motion planning algorithms based on their path qualities, intelligence

levels, and computational efficiencies.

1.3 Thesis Structure

This thesis will begin with the introduction of the important robotics concepts related

to autonomous robots such as map representation and configuration spaces, followed

by literature review of the notable path and motion planning algorithms. The thesis

then presents the proposed methodology of LIDAR A* and validates this method with

experimental results. It finishes with a discussion of findings and proposes future

work for improvements and possible extensions.

6

1.4 Map Representation

Two major frameworks frequently used in map representation are metric and

topological frameworks[10, 11]. In metric framework, environment objects are

described with fine-grained precise coordinates. The commonly used two-

dimensional obstacle grid map is an example of using this framework. On the other

hand, topological framework uses a graph to describe the relations between

significant landmarks in the environment. In this representation, graph nodes are

significant landmarks and edges indicate paths and distances between these

landmarks[10].

1.5 Configuration Space

Configuration space is a key concept in robotics motion planning. Perez established

and extensively used this concept in solving spatial motion planning problems in the

1980s[12, 13, 14]. A configuration q is defined to be a state of a system in the

workspace. A configuration space C is a space or a subset of workspace that includes

all possible configurations A(q) in the workspace based on the kinematic model of the

robotic system. When obstacles are present, the configuration space C can be further

divided into obstacle space Cobstacle and free space Cfree. Obstacle space Cobstacle is the

region where parts of the robot would collide with obstacles, and free space Cfree is

the region where the robot is free of collision which Cfree = C - Cobstacle.

7

 In the following example (Figure 3), assume the robot has a rectangular shape

and can move in horizontal and vertical directions (x, y) but can not perform rotation,

obstacle space Cobstacle (gray and black areas) and free space Cfree (white areas) can be

determined by wrapping the robot’s contour at static state around the obstacle’s

contour. When the robot’s motion has a higher degree of freedom such as

(x, y, Ɵ) or with accelerations, or when vehicle shape is complex, precise boundary of

obstacle space Cobstacle and free space Cfree can be difficult to compute[13]. Using the

static state of the robot to determine obstacle space Cobstacle and free space Cfree can

significantly simplify the motion planning problem, though it is not a true

representation of actual obstacle and free space regions[13].

8

Figure 3. Configuration Spaces. Obstacle Space (Black and
Gray) and Free Space (White Area)

Reference Point

Chapter 2

Literature Review

2.1 Notable Path and Motion Planning Methods

Motion planning can be applicable to numerous domains such as robotic arms, mobile

robots, UAVs, or video game agents. It is a widely researched topic which a variety of

different approaches have already been proposed. Each approach has its own

strengths and weaknesses, and may perform better or worse in certain domains. This

section is devoted to survey the popular and influential algorithms that are related to

mobile robot motion planning, starting with the classic methods followed by more

modern approaches. These methods are grouped into similar approaches.

2.2 Geometric-Based Methods

2.2.1 Visibility Graph

Visibility graph was studied by Nilsson, Perez, and Wesley[14, 32]. It is an important

property in solving computational geometry problems. When obstacles on a planar

map are given in the forms of polygons, a visibility graph can be constructed by

checking and adding edges between all possible pairs of obstacle polygon vertices

and the start and goal vertices when these are directly insight with each other without

getting blocked by obstacles. Perez applied graph search on visibility graphs to find

9

the shortest path between a start vertex and a goal vertex, and shifted the resulting

shortest path vertex positions away from their obstacle positions to accommodate for

the robot’s size[14]. This approach was used on the Shakey robot project at Stanford

Research Institute (SRI) in the 1960s[15]. A more optimized Reduced Visibility

Graph was later introduced that removes edges going toward instead of around

obstacles which makes path planning more efficient than the original visibility

graph[29].

10

Figure 4. Path Planning with Visibility Graph

2.2.2 Voronoi Diagram

A class of geometric motion planning algorithms is based on the generalized Voronoi

diagram (GVD). Voronoi diagram has the property of subdividing a map into regions

of Voronoi regions, where each point within a Voronoi region is closest to one of the

given set of sites which the region encloses as shown in Figure 5[39]. Common

boundaries of Voronoi regions are the sequential points that are equidistant to two

sites on the map that maximize the obstacle distances. Path planning algorithms based

on Voronoi diagrams construct a graph along the Voronoi region common boundaries

and apply a search to determine an obstacle free path that maximizes obstacle

distances[32].

11

Figure 5. Voronoi Diagram. Voronoi diagram partitions the map
into Voronoi regions given a set of sites. The common regional
boundaries are constructed into a graph for path planning

2.2.3 Cell Decomposition

Another class of geometric-based methods for motion planning can be generalized as

a cell decomposition approach that can be traced back to Brooks and Perez in

1985[32, 38]. When polygon obstacles are given on a planar map, the obstacle

polygon vertices are used to subdivide the map into smaller obstacle free regions.

These obstacle free regions are constructed into a graph which a graph search

algorithm is applied for finding consecutive neighboring regions that contain the start

and goal locations[32, 38]. An example of cell decomposition method is the

Trapezoidal Cell Decomposition that extends horizontal or vertical lines on the

obstacle vertices to form regional common boundaries as shown in Figure 6. This

decomposition method is a type of exact cell decomposition. Hierarchical Path-

Finding A* or HPA* also uses cell decomposition for its map abstraction process and

will be discussed in section 2.4.3.

12

Figure 6. Trapezoidal Cell Decomposition. A roadmap
determined by Trapezoidal Cell Decomposition

2.3 Artificial Potential Field Methods

Artificial Potential Field is a class of motion planning algorithm that is based on

generating a potential field map. The map is built by inserting attractive forces at the

goal location and repulsive forces at the obstacle locations in the workspace[42]. The

potential field map can guide a robot toward its goal location by summing the

attractive and repulsive forces at each cell of the grid map. The strength of attractive

and repulsive forces are inversely proportional to its distances[42].

2.3.1 Vector Field Histogram

Vector Field Histogram (VFH) is a fast online local obstacle avoidance algorithm

introduced by Borenstein and Koren[16]. It finds a desired direction or vector to

travel using real-time data collected from onboard ultrasonic or LIDAR sensors. The

algorithm first constructs a high level two-dimensional Cartesian histogram grid map

that is always centered at the robot’s position. The values of cells are continuously

updated by adding repulsive forces to cells where an obstacle is present from sensor

readings. At the same time, an attractive force is applied at the goal location. The

algorithm then divides the two-dimensional Cartesian histogram grid map into a

number of angular sectors whose obstacle densities are computed using the

accumulated cell values inside the sector regions. Finally, an angular sector with low

obstacle density is selected as the ideal heading vector for motion output.

13

14

Figure 7. Vector Field Histogram adds repulsive forces to the histogram grid
cells when obstacle is present

2.4 Graph Search-Based Methods

2.4.1 Dijkstra’s Shortest Path

Dijkstra’s shortest path algorithm is a well known algorithm for finding the shortest

path between two nodes in a weighted graph. It was invented and published by Dutch

computer scientist Edsger Dijkstra in 1959[17]. Dijkstra’s algorithm is also known for

being a single-source shortest path algorithm which simultaneously computes the

shortest path to every other remaining vertex in the graph with a given source

vertex[18]. Dijkstra’s algorithm will keep track of lists of visited and unvisited

vertices in the graph; and for every vertex, it would also track the current shortest

distance from the source vertex and last vertex it previously visited (parent vertex).

 Dijkstra’s algorithm begins by assigning the distance of the source vertex to 0

and distances of all other vertices to infinity. Then, starting from the source vertex, it

selects and visits one of the unvisited neighboring vertices with the shortest known

distance from the source vertex. This vertex is then moved from the unvisited vertex

list to the visited vertex list and will not be visited again. At this current vertex, the

algorithm calculates the distances of all of its unvisited neighbors from the source

vertex. At every unvisited neighboring vertex, if the calculated distance is smaller

than the known shortest distance, it updates the known shortest distance and the

parent vertex. This process is repeated until all vertices are visited.

15

2.4.2 A* Search and Heuristic

A* or A-Star search algorithm is another popular shortest path search algorithm

developed by Hard, Nilsson, and Raphael as part of the Shakey project at Stanford

Research Institute (SRI) in 1968[15, 19]. A* search algorithm can be seen as an

optimized version of the Dijkstra’s algorithm[20]. It also searches for the shortest

path from a start vertex to a goal vertex in a weighted graph, but introduces heuristics

to guide the search process that significantly reduces the number of vertices visited

and improves computational performance[19, 20].

 Heuristic is a technique that is commonly used in solving self-exploratory

problems such as graph search. By using known information or previous experience

to perform informed search to find a solution, the search process intelligently avoids

searching through the unfavorable regions in the search space, thus rapidly speeding

up the search process[19]. Due to applying educated guesses, using heuristics in a

search problem means that the algorithm can no longer guarantee an optimal solution

but will likely generate a satisfactory solution at a lower run-time[21].

 Unlike Dijkstra’s shortest path algorithm that keeps track of the shortest

distances from the source vertex to every remaining vertex in the graph, A* search

algorithm calculates a total cost f(x) at each of the current neighboring vertex during

the search process. The total cost f(x) is equal to the sum of the vertex cost g(x) and a

heuristic cost h(x), which is an estimated future cost for reaching the goal. The

euclidean (straight line) distance toward the goal is a commonly used heuristic for

16

path planning problems. Other heuristics such as Manhattan distance is also a popular

option. The total cost f(x) at neighboring vertices is then used to decide which vertex

to traverse next in the search process.

 The algorithm of A* search is summarized as follow: first, A* search

algorithm will initialize two lists of open vertices and closed vertices and calculate

the heuristic value of the start vertex. Beginning at the start vertex, its total cost f(x) is

calculated with a distance cost g(x) equal to 0. Then for each neighboring vertex, if

the vertex is neither in the open vertex list nor in the closed vertex list, it is added to

the open vertex list. The total cost f(x) at each neighboring vertex is also calculated by

summing the vertex distance cost and the heuristic cost.

f(x) = g(x) + h(x)

If the calculated total cost f(x) is smaller than the known vertex total cost f(x), the

known total cost f(x) is updated and its parent vertex is set to the current vertex. After

all neighboring vertices are analyzed, the current vertex is added to the closed vertex

list and the algorithm traverses to the open vertex with the least total cost f(x) by

setting this vertex to be the current vertex. This process is repeated until the current

vertex is the goal vertex, which means the goal has been reached.

17

2.4.3 HPA* and Hierarchical Graph

When dealing with a large complicated graph, a technique to reduce graph

complexity, improve graph clarity and efficiency is to perform hierarchical

decomposition to get a hierarchical graph or AH-graph[22]. In a hierarchical graph, a

group of elements in a lower hierarchical level graph are abstracted as an element of a

graph at a higher hierarchical level maintaining element relationship[22]. A

hierarchical graph can have multiple levels. It uses hierarchy to represent the same

environment at different levels of details and can potentially reduce exponential

complexity problems to linear ones[22, 23].

18

Figure 8. Two Examples of Hierarchical Graph. Node
abstraction on the left and edge abstraction on the right

 HPA* or Hierarchical Path-Finding A* is an algorithm developed by Botea

and Muller that utilizes hierarchical approach to reduce search complexity in path

planning problems on a grid-based map[24]. The algorithm decomposes the map and

constructs a higher hierarchical level graph called abstract graph with the following

process: it first abstracts the original grid map into a number of equally sized square

sub-grid called clusters (Figure 7). The common boundary between two adjacent

clusters is called boarder. Each cluster has four boarders at the top, right, bottom, and

left positions. Within a common boarder, entrances are identified when there is an

acceptable obstacle free segment that may be adjacent to an obstacle, or an obstacle

free corner of the cluster. For each cluster, depending on the size of the entrance, one

or two nodes per entrance are inserted into the abstract graph at their respective

locations. Then they are connected to their respective pair of nodes which is on the

adjacent cluster that shares the common boarder. These connections that link across

adjacent clusters are called inter-edge and their lengths are set to 1. For every

possible pair of nodes at the four boarders within a cluster, the algorithm searches

their optimal path inside the cluster. When a path is found, an edge called intra-edge

is inserted to the abstract graph with a length equal to the path distance. When no path

can be found, the pair of entrances remain unconnected.

 The above procedures complete the construction of the abstract graph. This

graph has fewer nodes compared to the original grid map and is usually pre-

processed. The online search for the shortest path is usually performed using

19

Dijkstra’s or A* algorithms on the abstract graph to calculate the final shortest path.

Hierarchical Path-Finding is popular in the video game community. It is likely due to

its fast run-time on the simplified abstract graph and that in-game static map can be

easily pre-processed. Its use on partially dynamic maps can be performed by

reprocessing individual cluster connections when obstacle information inside the

cluster is changed. The following images (Figure 9) show the construction and search

of an abstract graph in HPA*[25].

20

Figure 9. HPA* Map Abstraction into Clusters and Inter-Edges.
Shortest Path Search on Abstract Graph

2.4.4 Hybrid A*

Hybrid A* algorithm is another important variant of the original A* algorithm

developed by Dolgov, Thrun, Montemerlo, and Diebel[26, 27]. It was specifically

designed for path and motion planning of non-holonomic autonomous vehicles. The

algorithm was the primary approach implemented on Stanford Racing Team’s self-

driving car Junior and was validated on their successful entry at the 2007 DARPA

Urban Challenge. Hybrid A* follows the general concept of A* search algorithm that

expands search tree by identifying open nodes and traversing to the one with the least

total cost f(x). Major improvement over the original algorithm is that nodes in Hybrid

A* are based on the robotic car’s reachable continuous states (x, y,Ɵ) simulated using

the vehicle’s kinematic model. It avoids using discrete cell positions on a grid map as

shown in Figure 10. The resulting path is a continuous curved path that matches the

motion of the vehicle, compared to the segmented straight line path generated from

A* search algorithm. Hybrid A* expands forward and backward nodes with varying

steering angles with extra penalty for backward motion.

 The search algorithm uses two heuristics. The first one is referred to as non-

holonomic-without-obstacles. It is a cost pre-computed offline by setting a goal state

(x, y,Ɵ) of (0, 0, 0) and calculating the shortest path from every possible locations

within a fixed neighboring region of this goal state assuming no obstacle is present.

This heuristic will eliminate search branches that approach the goal with invalid

angles. The second heuristic cost is based on a more traditional shortest path search

21

algorithm on a grid-based obstacle map ignoring vehicle’s kinematic constraints and

guiding the vehicle toward the goal. This heuristic is computed in real-time and the

method was not clearly identified in the paper. Possible options for the search

algorithm are Dijkstra’s, A*, or flowfield.

 Hybrid A* uses Voronoi diagram as the graph’s cost function which is defined

as follows:

Where dO and dV are the nearest obstacle distance and edge of the Generalized

Voronoi Diagram (GVD). The Voronoi Field is computed online with an obstacle map

as input.

22

Figure 10. State Representation of A* (Left) and Hybrid A* (Right)

 It was observed that a number of community’s implementations of Hybrid A*

algorithm use only three possible forward steering angles, maximum left, straight, and

maximum right, in generating forward nodes. After the search is completed, due to

not using a high resolution of steering angles in generating the vehicle's subsequent

state branches, the immediate resulting path of Hybrid A* is usually suboptimal that

includes unnecessary steering. Stanford’s team applied post-smoothing using non-

linear optimization on the output nodes and used non-parametric interpolation to add

new intermediate nodes to smooth out the path.

23

Figure 11. Hybrid A* Search Tree Expansion

2.5 Sampling-Based Methods

Sampling-based algorithms is another class of solutions that is widely applied to solve

robotic motion planning problems including robotic arm and mobile robot. This

method characteristically finds a path by generating random sample nodes in the

search space and attempts to connect it to the current built tree that leads to the

goal[30]. In some methods of this type, such as informed RRT* discussed in section

2.5.3, random node generation may be biased toward a region of the search space,

similar to using a heuristic in A* search algorithm.

2.5.1 Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree or RRT is a classic sampling-based path planning

algorithm developed by LaValle and Kuffner in 1998[28, 34]. RRT grows a tree by

generating a random node, which is a state q of configuration, from the search space

and finds the nearest node from the current built tree. A possible new node is

calculated at a position that moves the nearest node toward the random node’s

direction by a set distance. If no obstacle obstruction is found in between the two

nodes, the new node is inserted (with an edge) to the current built tree. This process is

repeated until a tree branch reaches the goal. Though RRT can rapidly explore the

search space and converge to a path, the solution is usually not optimal[34]. The

24

resulting solution paths may also be inconsistent between calculations because of the

algorithm’s random nature.

__
Algorithm RRT
—————————————————————————————
 1: function RRT (qinit, qgoal)
 2: G.init(qinit)
 3: while qnew ≠ qgoal do
 4: qrand ← randomNode()
 5: qnear ← neartestNode(qrand)
 6: qnew ← newNodePos(qnear qrand)
 7:
 8: if collisionCheck(qnew) is false
 9: G.addNode(qnew)
10: G.addEdge(qnear, qnew)
11: end if
12: return G

—————————————————————————————

2.5.2 RRT*

RRT* is a powerful improved variant of RRT developed and popularized by Karaman

and Emilio in 2011 that converges toward a more optimal path compared to the

original RRT algorithm[30, 34]. RRT* inherits the concept of RRT with addition of

two new features that simplify the tree structure while growing tree nodes. First,

RRT* records the distance from the root to each node on the tree and this distance is

considered as the cost of the node. When a new node is determined from the nearest

tree node, neighboring nodes within a circular radius of the new node are analyzed to

determine the new node’s potential parent. RRT* calculates and picks the node with

the least cost as the parent and connects the new node to the parent. The next step will

25

again examine the neighboring nodes. Neighboring nodes are checked whether they

would have a lower cost when reconnected to the new node instead of their original

parents. When lower cost is found, the nodes are rewired to the new node. The select

parent and rewire processes reorganize the tree nodes every time a new node is

sampled and inserted, ensuring shortest paths while growing the tree. RRT* generates

smoother tree branches and finds a more optimal path toward the goal compared to

the original RRT though it takes longer time to converge[30, 34]. Once an initial

solution is found, continuing to run the algorithm will add more nodes filling out the

search space. It gradually optimizes the path and theoretically reaches the shortest

possible path if the run-time is infinite[30, 34].

__
Algorithm RRT*
—————————————————————————————
 1: function RRT (qinit, qgoal)
 2: G.init(qinit)
 3: while qnew ≠ qgoal do
 4: qrand ← randomNode()
 5: qnear ← neartestNode(qrand)
 6: qnew ← newNodePos(qnear, qrand)
 7: if collisionCheck(qnew) is false
 8: Qneighbors ← findNeighbors(G, qnew, RAD)
 9: qminCost ← findParent(Qneighbors)
10: G.addNode(qnew)
11: G.addEdge(qminCost, qnew)
12: G.rewire(Qneighbors, qnew)
13: end if
14: return G

—————————————————————————————

26

2.5.3 Informed RRT*

Informed RRT* was developed by Gammell in 2014 and it further improves the speed

of RRT*[31]. Informed RRT* defines an elliptical region which is a prolate

hyperspheroid informed subset of the search space that has a higher probability of

containing better or shorter solution paths. New samples will be created within this

region reducing the search space thus improving the convergence time.

2.6 Discussion

This chapter presents various popular motion planning algorithms and they were

divided into four major categories: geometric-based methods, artificial potential field,

graph search, and sampling-based methods. This section discusses the algorithms’

strengths and weaknesses in different scenarios. One major drawback of using the

classic visibility graph is that it is computationally expansive in a complex and large

obstacle environment[32]. Similar to many geometric-based methods, it also requires

prior knowledge of the obstacle polygonal information which may not be suitable for

real-time applications that rely on discrete obstacle sensor data[30]. Voronoi diagram

is another geometric-based approach and it can be generated efficiently. Nevertheless,

the path is less efficient as it maximizes obstacle distances and cannot be easily

travelled by non-holonomic vehicles[27]. Artificial potential field algorithms are

straightforward and provide fast run-time. However, they have difficulties avoiding

27

local minimums situation, proceeding into narrow passages, and only restricted to

local obstacle avoidance[33, 42]. The graph search algorithms are efficient in solving

low dimensional problems but scale poorly to problem size[24]. Sampling based

methods such as the variants of RRTs are recently emerging techniques. They scale

well to high dimensional problem but suffer from low convergence time[34]. When

comparing the algorithms’ path qualities, the majority of the above algorithms

produce segmented straight line paths which are suboptimal for non-holonomic

vehicles to travel. The exceptions are the variants of curvature-based A* or RRT*

which have further trade-offs for speed. Despite post-smoothing may be performed to

tackle this problem, it poses new potential problems since a great portion of the

smoothing functions do not consider the presence of the surrounding obstacle. The

resulting smoothed path may no longer guarantee collision free, especially in obstacle

clustered areas.

28

Chapter 3

Methodology

3.1 LIDAR A* and Hierarchical Path Planning

To create a robust motion planner, one should improve upon the issues discussed

above. Given a two dimensional obstacle grip map, the algorithm’s objective is to

create a kinematically friendly, intelligent, and computationally efficient real-time

motion planner that determines a path from a start to a goal location without collision.

This thesis presents a new method, LIDAR A*, that utilizes a two level hierarchical

architecture that divides the tasks into high level global trajectory planning and low

level simulation-based motion generation. At high level, LIDAR A* incrementally

explores the map from the start region and searches the consecutive neighboring

regions for the shortest sequence of opening gateways that leads to the goal region. At

low level, a sequence of vehicle motions is simulated using the robot’s kinematic

model and gateway information to produce a final simulated path toward the goal

position.

29

3.2 Shortest Opening Gateway Sequence Search

Dijkstra’s and A* are two commonly used global path planners. However, their

computational complexity scales exponentially with map size, resulting in

unacceptable run-time in large maps. One common solution is to reduce map

resolution (increase map decomposition cell size) that has the trade-off of losing map

details. Another solution is through hierarchical map abstraction and decomposition

as previously discussed in section 2.4.3. HPA* has to pre-process the high level

abstract graph before a search can take place. Unlike HPA*, LIDAR A* introduces a

new novel technique that the map abstraction and decomposition processes are done

concurrently as the search in the high level abstract graph is in progress. LIDAR A*

uses A* search with euclidean distance toward the goal as the heuristic function h(x),

though similar technique can be applied to Dijkstra’s algorithm when optimal

gateway sequence must be guaranteed.

 Beginning at a robot’s start configuration q(x, y, Ɵ), LIDAR A* abstracts and

decomposes and its local regional map into an abstract graph node. The region is

identified by simulating a 181 degree 2D LIDAR scan (referred as scan) at a scan

configuration of map position, orientation, and a variable LIDAR detection distance

(x, y, Ɵ, k). The simulated scan data is analyzed to determine the local opening

gateways’ positions and orientations used to enter neighboring unscanned regions

where subsequent scans are performed. This process represents the identification of

neighboring open nodes in high level A* abstract graph search. When no neighboring

30

opening gateway can be identified, the node is closed. Because of the visibility

feature of LIDAR and design of scan data clustering process, opening gateways in

LIDAR A* are guaranteed traversable and visible from local scan configuration.

Contrasting to HPA* which the shortest path searches must be performed on all

possible pairs of entrances within a cluster to construct its abstract graph, LIDAR A*

completely eliminates those in-cluster searches simplifying the process. The

euclidean distance between two neighboring gateway locations is used as the cost g(x)

between the two nodes. Once the total costs f(x) = g(x) + h(x) of all neighboring

gateways or adjacent abstract graph nodes are determined from a scanned region, the

gateway node with the least cost is selected to proceed A* search process. The old

node is then closed, and an imaginary boundary is drawn at the old gateway location

on the map to block and prevent the search from getting trapped in a cycle. A new

scan is then performed at the selected gateway’s configuration. A* search process on

the abstract graph will continue to expand and explore the map until the goal is within

the current scanned region. The shortest opening gateway sequence is therefore

determined.

 The process of finding opening gateways within a scanned region requires

three steps: simulating LIDAR data with cache optimization, clustering obstacle data

into groups, and generating opening gateways from the obstacle group edges.

31

3.2.1 Cached Simulated LIDAR Scan

The purpose of simulating a LIDAR scan to represent a grid map region is to first,

reduce the data size from a 2 dimensional area to a small fixed number of polar

coordinates, and second, utilize the visibility property of LIDAR. In the experiment

setup, a scan contains 181 data points in the form of (Ɵ, d) that reports the nearest

visible obstacle distance d at an incrementing angular scanning direction Ɵ with

respect to the local LIDAR’s frame. It has an angular resolution of 1 data per 1 degree

angular increment (from 0 to 180 degree). This map format conversion technique

greatly lowers the map data size while retaining a satisfactorily detailed view of the

obstacle contour looking from the LIDAR’s configuration. The reduced number of

map data is favorable for more efficient analysis of the obstacle map, as long as the

processing time for the format conversion justify the trade-off.

 One way to simulate LIDAR scan data is to replicate LIDAR’s detection

mechanism. Starting from the minimum scanning direction or 0 degree cartesian

direction of the local LIDAR’s scanning frame, it checks the map cell outward

incrementally until it detects an obstacle cell or reaches the maximum detection

distance. It reports the distance, then moves on to the next detection direction by

incrementing the detection angle by a step of the angular resolution or 1 degree.

Although this method may be useful in generating a more realistic LIDAR data when

noise can be more accurately simulated and inserted, it is less efficient because map

cells are accessed out of order from memory which causes frequent CPU cache

32

misses. Notice that the input 2 dimensional obstacle map may either be a

predetermined static map or a single frame of a real-time dynamic map that already

contains sensor noise. In the second case, adding additional noise might add

unnecessary complications.

 The second proposed LIDAR simulation method is more optimized for cache

hits with speed improvement but does not mimic LIDAR’s detection mechanism.

Since a scan in LIDAR A* has an angular scanning range of 181 degree, it forms a

maximum scanning region of a half circle with a radius equal to detection distance.

The goal is to find the limits of the smallest possible bounding box on the map that

tightly encloses this half circle which can be in any global orientation from 0 to 359

degree on the map as shown in the green rectangle box in Figure 12. This bounding

box is determined by first calculating the maximum scan detection positions A and B

on the map, which are at LIDAR’s 0 and 180 degree angular scanning directions.

33

Figure 12. Smallest Bounding Box (Green Rectangle) for Simulated LIDAR Scan

LIDAR

LIDAR

Scan Region

Scan Region

Depending on what quadrant the scan’s orientation lies in, the global position values

(x, y) of A and B and the LIDAR’s detection distance are used to set up the respective

top, right, bottom, and left limits of the smallest bounding box. Compared to using a

bounding box that encloses the entire full circle based on only the LIDAR’s detection

distance, this method improves the speed by 27% to 50% because the region is

reduced from a full square to a smaller rectangle.

 Once the bounding limits are identified, the map cells within the bounding

box limits are accessed in row-major order (for C++), which is best for CPU cache

hits since data is accessed in order from memory. If an obstacle cell is detected while

looping through the bounding box region, LIDAR A* finds the cell’s local distance

and global direction with respect to the scan’s position. Then it updates the known

minimum obstacle distance at that direction when the current detected obstacle

distance is smaller. Since the cell distances and directions with respect to a scan’s

position are independent of obstacle information, a table of cell distances and

directions is predetermined offline and is directly accessed when an obstacle cell is

detected, which further enhances the speed of the algorithm. The local simulated

LIDAR scan can be obtained once all cells within the bounding box are analyzed and

global directions that are outside of the LIDAR’s angular scanning range based on the

current scan orientation are cropped out.

34

3.2.2 Obstacle Data Clustering

The next step is to cluster these scan data into groups and label each individual

obstacle data point with a group number. Notice that the cluster used in this and

following sections refers to the process of grouping data together instead of the sub-

grid map cluster used in HPA*. Using clustered LIDAR data to achieve local obstacle

avoidance was studied by Wang and Peng[35, 36, 37]. The objective is to cluster the

scan’s polar coordinate data into groups using a grouping radius such that:

Rule: An obstacle data can be apart from its nearest obstacle data within the

same obstacle group by a maximum distance of grouping radius.

Since the 2D scan data are collected by incrementing the scan direction and report the

nearest obstacle distance at each scan direction, this rule guarantees that:

1. There is no obstacle free passage that is greater than the size of grouping

radius in between the directions of the right edge and the left edge of an

obstacle group.

2. There is an obstacle free passage that is greater than the size of grouping

radius between the directions of the left edge of one obstacle group and the

right edge of the next (angular) obstacle group, and the opening to this free

passage is always visible from LIDAR’s configuration

The second property is the general rule for identifying opening gateways within a

scanned region using a grouping radius of robot width plus additional clearance.

However, there are some exceptions and will be discussed in the next section 3.2.3.

35

 Peng proposed a clustering method that checks the distance between every

two consecutive LIDAR scan data. If the distance is smaller than the grouping radius,

the data are clustered together[37]. This method has potential flaws for ensuring

obstacle clearance. The reason is that it is possible for a data point P2 to have a larger

scanning direction, Ɵ2 > Ɵ1 , while having a closer distance to data point P0 compared

to P1 when P1 is the next consecutively scanned data point of P0 as illustrated in

Figure 13. When P1 and P0 have a distance equal to robot width, the robot assumes

there’s a safe opening when the gap between P0 and P2 does not provide sufficient

obstacle clearance.

 An improved method is described as follows: Every obstacle datapoint On in a

scan S has obstacle direction, distance, and label of On (Ɵn , dn , ln) ∈ S, a minimum

and a maximum angular scan directions of Ɵmin and Ɵmax where Ɵmin ≤ Ɵn ≤ Ɵmax , and a

grouping radius of r. The algorithm first initializes the label ln for every data point On

in S to 0 or unknown and initializes a newLabel variable to 1. Then, for every data

point On in S, if ln is unknown, it sets data label ln to newLabel and increments

newLabel. Then it identifies a group of obstacle data Oc (Ɵc , dc , lc) based on their

directions that need to be checked for distance Dc, which is the distance between On to

Oc. When obstacle distance Dc is less than grouping radius dn < r, it will select Oc (Ɵc ,

dc , lc) where Ɵn < Ɵc ≤ Ɵmax which is the remaining obstacle data from On in S. When

obstacle distance is greater than grouping radius dn > r , it will select Oc (Ɵc , dc , lc)

where Ɵn < Ɵc ≤ Ɵn + asin(r /dc) which is an angular range that contains all possible Oc

36

that can have a distance less than grouping radius, Dc < r . The upper limit Ɵn + asin(r

/ dc) is the tangent line of a circle centered at Oc with a radius r as shown in Figure 13.

When Dc is found to be less than r and the group label lc is unknown, lc is set to ln . If

Dc < r but the group label lc is known and lc ≠ ln , an inner loop is applied on S to

iteratively merge all obstacle data in S that has label lc to ln .

37

Figure 13. Obstacle Clustering. Failure condition for checking consecutive data
point distance. Proposed method uses a grouping radius on every data point and
check distances to data points between directions from Ɵn+1 to Ɵn + asin(r / d)

 The number of Oc is inversely proportional to the obstacle distance dc which

can be seen in the upper limit of the angular direction check range Ɵn + asin(r / dc).

The run-time of this algorithm is dynamic. When a scan returns a more clustered

obstacle data, the algorithm takes a longer time to cluster data because more distance

checks are required on obstacle data with shorter distance.

 A grouping region is formed by overlapping the areas of the grouping radii

within an obstacle group. A grouping region of an obstacle group does not overlap

38

Figure 14. Grouping Regions and Opening Gateway. Grouping Region does not
overlap with data in other obstacle group. Passage (Opening Gateway) is
identified between the obstacle edges of the two consecutive obstacle groups

with any obstacle data in another obstacle group creating obstacle clearance that is

greater than or equal to the grouping radius as shown in Figure 14. A passage

(Opening Gateway1) is determined between the left edge of Obstacle Group1 and the

right edge of Obstacle Group2 that guarantees obstacle clearance and is always

visible from LIDAR’s point of view.

__
Algorithm ClusterData
——————————————————————————————————
 1: function Cluster (scan, groupRad, maxRange)
 2: initLabel(label, 0) //0 means “unknown”
 3: newLabel = 1
 4: for i = 0 to 180 //On
 5: if scan[i] < maxRange //distance filter
 6: if label[i] is 0
 7: label[i] ← newLabel
 8: newLabel++
 9: end
10: if distance[i] < groupRad
11: checklimit ← 180
12: else
13: checklimit ← i + asin(groupRad/distance[i])
14: end
15: for j = i+1 to checklimit //Oc
16: if label[i] ≠ label[j] and dis(scan[i], scan[j]) < groupRad
17: if label[j] is 0
18: label[j] ← label[i]
19: else
20: mergeGroup(label, i ,j)
21: end
22: end
23:
24: end
25: return label
——————————————————————————————————

39

3.2.3 Opening Gateways

Passages are located between the left edge of one obstacle group and the right edge of

the next obstacle group and LIDAR A*’s clustering algorithm can help ensure

minimum obstacle clearance. Nevertheless, not all passages identified are actually

traversable because of the passages’ positions and orientations. This part of the

process aims to remove the non-traversable passages to determine the final set of

opening gateways for exploring and traversing the map.

 There are two types of passages that are non-traversable. The first one is

sideway passage. Sideway passage is identified when an obstacle group’s side (Left

and Right) edges are entirely enclosed by another obstacle group’s side edges. This

condition occurs when a pair of obstacle groups have one placed in front of the other

as shown in Figure 15. These passages are either non-traversable or entering/exiting

within its own region which defeat the purpose of connecting to neighboring regions.

In this case the obstacle group in the back is removed leaving the front obstacle group

to create possible passages with other adjacent obstacle groups. The possible passages

using the rear obstacle group will be identified in subsequent scans.

40

 The second type of non-traversable passage has the following general

orientation as in Figure 16. These passages are unreachable because parts of its

adjacent obstacles are blocking its path toward the passage. These passages are

identified and filtered out by making sure when a passage’s left edge is near the 0

degree heading or when the passage’s right edge is near the 180 degree heading, there

must be sufficient clearance in the vertical direction.

 After these types of invalid passages are successfully filtered out, the

remaining passages are considered valid opening gateways for entering the

neighboring unscanned regions. The global coordinates of the adjacent left and right

41

Figure 15. Sideway Passage. Obstacle group3 is in front of Obstacle group2
creating a sideway passage. Obstacle group2 is removed at the current scan
location to determine valid Opening Gateway1 and Opening Gateway2

obstacle edges, as well as their mid points are recorded and used for motion

simulation of the robotic vehicle. A new scan will take place at an orientation

perpendicular to the line connecting the two adjacent obstacle edges of the selected

opening gateway, facing toward the unscanned region.

42

Figure 16. Unreachable Passage. Unreachable passages may occur
when they are near the 0 or 180 degree of the LIDAR’s frame

3.3 Motion Simulation

LIDAR A* utilizes a hierarchical architecture that divides the tasks into high level

shortest opening gateway sequence search and low level motion planning. The

generated gateway sequence is constructed with seamless transition between

simulated LIDAR scans with scan configurations close to the ideal robot

configurations when traversing the gateways. Low level motion planning is tasked

with building a path that smoothly maneuvers within each local region and transitions

to neighboring regions using the given gateway information.

 Motion planner algorithms worked in the lower level hierarchical architecture

are often given a suboptimal path or a sequence of waypoints from the high level path

planner to determine obstacle free motions. Picture skiing down a slope with

surrounding obstacles and trying to follow a suboptimal path. The task of smoothing

out a suboptimal path under motion constraints while ensuring obstacle clearance can

be challenging. Imagine instead of a path, a sequence of marked gateways with ideal

traversing orientations given to follow. With better knowledge of the drivable regions

that provide additional room for path optimization, the task of maneuvering around

clustered obstacles becomes considerably easier. Similar to Hybrid A* that ensures

motion feasibility, LIDAR A* uses online simulation with vehicle kinematics to plan

a path based on sequential states of a non-holomonic car-like vehicle. When a

collision is identified during the simulation process, a replanning technique is

proposed in section 3.3.3.

43

3.3.1 Kinematic Model

The kinematic model used on the non-holonomic car-like vehicle simulation is

specified in LaValle’s Motion Planning book[41]. No dynamic model was used to

avoid over-complicating the system. A configuration of a car is denoted q = (x, y, Ɵ),

the distance between the front and rear axles is denoted L, the steering angle of the

front wheel is denoted ϕ, and speed of the vehicle is denoted us. The configuration

transition equations of a car-like vehicle are:

·x = us cos θ
·y = us sin θ

·θ =
us

L
tan ϕ

44

Figure 17. Car-Like Vehicle Kinematics

 The simulation was completed with a constant speed in terms of map cell

distance over time, a dt of 0.2 second, and a steering angle limit of -40 and +40

degrees.

3.3.2 Obstacle Avoidance

The calculated opening gateways sequence contains position information about the

adjacent left obstacle edge, the adjacent right obstacle edges, and their midpoints

between the two obstacle edges. A simple but effective motion planning algorithm

which is the simplified version of Wang’s motion planner algorithm was used to

control the vehicle[35, 36]. This algorithm considers the current approaching gateway

and the next follow-up gateway and converts their global map coordinates to the local

coordinates of the current vehicle’s frame in direction and distance format.

Let GL (ƟL , dL), GM (ƟM , dM), GR (ƟR , dR) denote the current left edge, mid point, and

right edge of an opening gateway, and GLN (ƟLN , dLN), GMN (ƟMN , dMN), GRN (ƟRN, dRN),

for the next opening gateway respectively.

 Traversing a gateway has an important property that the angle between the left

and right obstacle edges, ƟL and ƟR , will gradually increase to 180 degree as it

approaches and passes through the gateway. The speed of increase depends on the

orientation of the gateway as well as the vehicle's orientation when it approaches the

gateway. In Nilsson’s visibility graph, Perez shifts away and traverses toward the

shifted obstacle polygonal vertex position that is visible from the current vertex.

45

Since opening gateways are generated with similar visibility property, LIDAR A*

first shifts the current obstacle edge directions, ƟL and ƟR , away from the obstacle

edge locations to create necessary clearance to accommodate the size of the vehicle. It

then checks for multiple thresholds on the value of ƟL - ƟR to identify the relative

position and orientation between the vehicle and the gateway within the current

scanned region and apply policies for motion generation.

 When ƟL - ƟR ≦ 0, this indicates a front obstacle is partially blocking the view

of another rear obstacle and a path maneuvering around the front obstacle is expected.

The algorithm outputs ƟL or ƟR that has the respective smaller obstacle distance dL or dR

as the output steering angle. It helps the vehicle take the shortest path around the

corner of the front obstacle.

 When 0 < ƟL - ƟR ≦ MidThreshold, this indicates the vehicle is still away from

the opening gateway that causes a small difference between the two gateway edge

directions. In this case, the algorithm outputs ƟM as steering angle that aims toward

the center of the opening gateway. The vehicle will tend to stay in the safer center

path of the current scanned region.

 When MidThreshold < ƟL - ƟR ≦ CheckOffThreshold, this indicates the vehicle

is near the current opening gateway. It can begin steering toward the next opening

gateway without going out of the angular range limits of the current opening gateway

to explore a more efficient path toward the next region. The algorithm outputs the

46

next mid gateway ƟMN as steering angle if ƟR ≦ ƟMN ≦ ƟL . If ƟMN < ƟR or ƟMN > ƟL ,

the algorithm outputs either ƟL or ƟR whichever is closer to ƟMN .

 When ƟL - ƟR > CheckOffThreshold, this indicates the vehicle is at the current

opening gateway. It checks-off the current gateway and moves on to the next two

consecutive opening gateways.

 Figure 18 demonstrates the partially blocking view condition when

ƟL - ƟR ≦ 0. Figure 19 to Figure 23 show the motion generation of a car-like vehicle

traversing through three sequential opening gateways. The steering angle of the

vehicle is determined by thresholding the value of ƟL - ƟR .

47

Figure 18. Motion Planning: when ƟL - ƟR ≦ 0, the algorithm outputs ƟL or ƟR that
has the respectively smaller obstacle distance dL or dR as the output steering angle

 ƟL - ƟR < 0
Output: ƟL since dL < dR

dR dL

48

0 < ƟL - ƟR ≦ MidThreshold
Output: ƟM

ƟL

ƟR

GL

GR

GRNƟM

GLN

Figure 19. Motion Planning: when 0 < ƟL - ƟR ≦ MidThreshold, The algorithm
outputs ƟM that aims toward the center of the opening gateway

MidThreshold < ƟL - ƟR ≦ CheckOffThreshold
Output: ƟMN, since ƟR ≦ ƟMN ≦ ƟL

GL

GRN

ƟMN

ƟL

ƟR

GR

GLN

Figure 20. Motion Planning: when MidThreshold < ƟL - ƟR ≦ CheckOffThreshold,
the algorithm outputs the next mid gateway ƟMN to generate a more efficient path
toward the next gateway

49

ƟL - ƟR > CheckOffThreshold
Check off and move on to next two Gateways

GL

GRN

ƟMN

ƟL

ƟR

GR

GLN

Figure 21. Motion Planning: when ƟL - ƟR > CheckOffThreshold, the algorithm
checks-off the current gateway and moves on to the subsequent two opening gateways

GRN

ƟM

ƟR

GR

GL ƟL
GLN

Figure 22. Motion Planning: Upon checking off the old gateway, the algorithm
again outputs ƟM that aims toward the center of the new current opening gateway

 At the end of the gateway sequence, LIDAR A* outputs the goal direction as

the vehicle steering angle when the goal is directly in sight. Then it reaches the goal

and completes the simulation. Since motion control of the vehicle is based on its

continuous local feedback of the stationary opening gateway edges, the above policies

generate a continuous and smooth path that is near optimal from the start to goal

locations on the map.

50

ƟL - ƟR > CheckOffThreshold
Check off and move on to next two Gateways

GR

ƟR

ƟL
GL

Figure 23. Motion Planning: The vehicle finished traversing a sequence of three
opening gateways

3.3.3 Collision Check and Intermediate Opening Gateway

The proposed local motion planner strictly uses the opening gateways’ obstacle edge

information to simulate a motion path ignoring the rest of obstacle information. It

greatly simplifies the motion planning processes but comes with side-effects. Even

though obstacle avoidance based on maneuvering around obstacle edges is an

effective approach, in certain obstacle settings, there is still a possibility that the

algorithm simulates a path that grazes against other parts of the obstacle before

reaching the current gateway location as shown in Figure 24.

 A simple solution to this problem is to perform collision check through each

time step of the simulation process within the current region while traversing toward

the current gateway location. When a collision is detected, a new opening gateway

analysis is performed at the original scan location using a reduced scan detection

distance that is slightly larger than the detected collision distance. Using this reduced

detection distance will determine a new intermediate opening gateway that has one of

the adjacent obstacle edges causing the previously detected collision. This

intermediate opening gateway is inserted into the gateway sequence and a new path is

simulated avoiding the original collision.

 There are several approaches for detecting collisions. Since LIDAR A*

already has the ability to simulate local LIDAR scan data, collision check can be

easily accomplished by simulating a scan at the vehicle’s configuration on the map

using a detection distance that is just enough to cover the entire local contour of the

51

vehicle. This scan data is compared to a predetermined vehicle contour mask which is

also a simulated LIDAR scan to check for any interference.

52

Figure 24. Collision Detection and Intermediate Gateway. When a collision is detected
while traversing toward the current gateway, an intermediate gateway is identified
using a smaller LIDAR detection distance. This gateway is inserted to replan a
collision-free path

Figure 25. Collision Detection. Collision can be detected by checking
for interference between the scan region and the vehicle contour mask

3.3.4 Dynamic LIDAR Detection Distance

It is crucial to select an appropriate LIDAR detection distance in LIDAR A* that best

works for the obstacle setting at the current scan location, as it will affect the

accuracy and efficiency of the algorithm. Because of the visibility property of LIDAR

scan, using a larger than ideal detection distance may waste computational resources

scanning regions that are not visible at the LIDAR configuration, making the

algorithm less efficient. Using a larger than ideal detection distance may also generate

opening gateways that are further away from the scan location increasing the risk of

creating a collision path in low level motion planning in a clustered environment.

This condition can be observed in the previously discussed collision path example

(Figure 24). The added collision check and replanning technique is a fail-safe for not

using an appropriate detection distance.

 The LIDAR detection distance can not be too short either, especially in more

open areas. LIDAR A* strictly relies on obstacle edges for path and motion planning.

It can be problematic when no obstacle can be identified at the current scanned

region. The most effective solution is to increase the detection distance until some

obstacles are detected or until the detection distance can cover and reach the goal

location. In the second case there is no obstruction in between the current and goal

locations and the vehicle can simply travel toward the goal. Using a shorter than ideal

detection distance may also reduce the algorithm's efficiency. When a shorter

detection distance is used in decomposing a map, a scan covers a smaller region,

53

resulting in more scans and more clustering processes required to complete the high

level gateway search which penalizes the algorithm's efficiency. To best optimize the

accuracy and efficiency of LIDAR A*, a dynamic detection distance shall be

implemented that vary depending on obstacle complexity at each gateway region. The

general rule is to use a larger detection distance in a more open area and a shorter

detection distance in a clustered area that produces ideal opening gateways without

causing a collision path.

54

Chapter 4

Experiments and Results

4.1 Software Implementation

To evaluate the accuracy and efficiency of LIDAR A*, the algorithm was coded in

C++ with OpenCV for map and decision visualization. The program ran on a 2019

MacBook Pro with a i7-8850H CPU clocked at 2.60GHz. The input map is a regular

BMP image that can vary in sizes. Black pixels in the image represent obstacle free

areas and white pixels represent obstacle areas. To maintain sufficient map detail,

there is no minimum size for obstacle size and an obstacle can be as tiny as a single

obstacle pixel. The experiments first tested the shortest opening gateway sequence

search followed by low level motion simulation. The computation times are recorded

excluding the time spent on graphing the decisions. Collision detection is turned off

to examine the potential collision path condition in low level motion planning.

4.2 Simulated LIDAR Scan, Clustering, Opening Gateways

Figure 26 shows the result of a typical abstraction and decomposition process on a

regional map. The blue contour at the bottom center shows the robotic vehicle and the

LIDAR’s configuration which has a scanning orientation pointing toward the up

direction in the regional map. With a LIDAR detection distance about half the width

55

of this image, the algorithm correctly generated simulated LIDAR scan data at the

closer edge of obstacle contour observed from LIDAR’s position. These data are

being clustered into two obstacle groups, Obs1 and Obs2, and the individual obstacle

data in the same group is labeled and drawn using the same group color. The opening

gateways G1 and G2 are then identified between the left and right obstacle edges of

two consecutive obstacle groups. They may also be formed between the LIDAR’s

maximum detection position at 0 or 180 degree direction and the nearest obstacle

edge. Notice because there is an immediate follow-up dead-end at G2 opening

gateway, G2’s search branch will quickly be terminated as there is no neighboring

region to be further explored. The search will proceed on G1 because it provides a

subsequent neighboring region.

56

Figure 26. LIDAR Scan, Obstacle Groups, Opening Gateways

4.3 Shortest Gateway Sequence Search and Motion Simulation

Figure 27, 28, 29 show the complete search process of the shortest opening gateway

sequence search and the final result from low level motion simulation. During the

search process, neighboring regions of the current scanned location or neighboring

abstract graph node were added to open list and their total costs in A* search were

determined. The neighboring region in the open list with the least cost was selected to

proceed where a new scan was performed at the selected opening gateway location

pointing toward the unscanned region. The bright blue line in the image demonstrates

the opening gateway's selection process in the high level A* abstract graph search.

The bottom image of Figure 29 shows the complete low level simulated motion path

which is based on the vehicle’s kinematic model. This simulated path is drawn using

dark blue color and is the sequential configuration of the vehicle's contour from the

start location to goal location. As shown in this Figure, the proposed local motion

planner calculated a near-optimal path using obstacle edge information from the

predetermined sequential gateways. The search was completed with 17 simulated

LIDAR scans that represent 17 decomposed regions or 17 abstract graph nodes. It

took an impressively low run-time of 16ms to compute the final simulated path,

which has a path distance of 792 pixels.

57

58

Figure 27. Shortest Opening Gateway Sequence Search 1-8

59

Figure 28. Shortest Opening Gateway Sequence Search 9-16

60

Figure 29. Shortest Opening Gateway Sequence and Simulated Motion Path

4.4 Comparison to RRT, RRT*, Informed RRT*

LIDAR A*’s performance was compared to some of the recently proposed algorithms

for robotics path and motion planning, RRT, RRT*, and Informed RRT*. The

algorithms were tested on a square maze map that has a size of 1000 pixels * 1000

pixels. Because the produced paths in sampling-based algorithms may vary between

each calculation, a total of 10 experiments were conducted and their average

performances were calculated. The RRT-based algorithms tested were based on

kyk0910’s implementation of the algorithms[40]. The results are summarized in the

following path length and computation time tables.

Path Length
(Pixels)

RRT RRT* Informed RRT* Lidar A*

1 4548 3648 3716 4164

2 4851 3612 3804 4164

3 4842 3611 3789 4164

4 4723 3625 3811 4164

5 4704 3605 3762 4164

6 4738 3629 3738 4164

7 4768 3623 3783 4164

8 4398 3649 3721 4164

9 4882 3643 3773 4164

10 4679 3617 3731 4164

Avg. Length 4713.3 3626.2 3762.8 4164

61

4.5 Analysis

Three metrics of path quality, intelligence level, and computation efficiency are used

to evaluate the performances of LIDAR A*, RRT, RRT*, and Informed RRT*.

Results are shown in Figure 30, 31, 32, 33. When analyzing the results of RRT, RRT

is very computationally efficient and can determine a path in less than 40ms.

However, it generated low quality paths that feature inefficient paths averaging 4713

pixels in length with frequent unnecessary sharp turns that can be difficult for non-

holonomic car-like vehicles to follow. RRT* algorithm, with the added select parent

and rewire processes, produced much more efficient paths than the original RRT,

Computation
Time (ms)

RRT RRT* Informed RRT* Lidar A*

1 43.4 1098 719 57.9

2 38.8 1025 584 56.2

3 39.3 931 684 54.4

4 47.7 961 661 57.3

5 31.5 1158 626 55.9

6 31.4 865 455 57.2

7 35.2 1109 616 55.1

8 33.9 845 639 59.1

9 45.3 1053 539 53.8

10 35.5 1010 670 55.1

Avg. Time 38.2 1005.5 619.3 56.2

62

averaging 3626 pixels in length which is near the shortest possible path toward the

goal. However, it took an average of 1 second to compute, which can be too slow for

applications that require real-time operation at this map size. Informed RRT* output

slightly longer paths with close to 40% reduction in computation time which is a

worthy trade-off and an improvement over RRT*.

 The paths from RRT* and Informed RRT* tend to stay very close to obstacles.

This issue can be addressed by pre-processing the map and finding the free space Cfree

to add necessary clearance for the vehicle. When dealing with the classic local

minimum problem, RRT based algorithms should experience no difficulties because

this obstacle arrangement would not prevent the tree from eventually growing out of

the minimum region to find a solution. However, RRT based algorithms may have a

difficult time efficiently finding smaller passages due to its reduced probability of

adding samples in the specific passage region within the search space.

 When comparing RRT based algorithms to LIDAR A*, the proposed LIDAR

A* method has the smoothest path of the four algorithms with a slightly longer but

safer average path length of 4164 pixels. Online motion simulation that follows the

vehicle’s kinematic model contributes to this result. It also has a very efficient

planning time of 56.2ms that is sufficient for real-time operation. When encountering

local minimum problems, LIDAR A* will eventually terminate the search branch in

the minimum region when there’s no neighboring region to be explored and start

finding alternate branches that lead to the goal. The algorithm shouldn’t have an

63

issue finding small passages either as long as the passages have enough obstacle

clearance to be considered opening gateways. They will be added and treated as any

other open nodes in A* search algorithm and be explored when they have the least

cost. The proposed method of LIDAR A* has the best all rounded performance in

path quality, intelligence level, and computation efficiency.

64

Figure 30. RRT on Maze Test. Average path length of 4713.3
pixels, Average computation time of 38.2ms

65

Figure 31. RRT* on Maze Test. Average path length of 3626.2 pixels,
Average computation time of 1005.5ms

66

Figure 32. Informed RRT* on maze test. Average path length of 3762.8 pixels,
Average computation time of 619.3ms

67

Figure 33. LIDAR A* on maze test. Path length of 4164 pixels,
Average computation time of 56.2ms

4.6 Large Dynamic Map Test

LIDAR A* was also put into an extreme test of a large 1280*1024 pixels complex

and dynamic maze to examine its ability to deal with difficult scenarios and to react to

dynamic obstacle information. The program was coded to be able to add new

obstacles in real-time using mouse cursor. Obstacles were intentionally added to

actively close opening gateways and create narrow passages as shown in Figure 34,

35, 36. LIDAR A* was able to handle the change in map information and recalculate

a smooth path in real-time. In the end, it took 56 ms to calculate a path of 5700 pixels

in length. The trade-off for using a heuristic can also be observed in this experiment.

Since LIDAR A* uses A* with euclidean distance toward the goal as heuristic, the

algorithm attempted to find a path toward the goal (up) direction when there is a

shorter path to the right of the vehicle’s starting position. It shows that A* doesn’t

guarantee the shortest path as a trade-off for speed.

68

69

Figure 34. Dynamic Map Test 1. LIDAR A* updates the path in real-
time as new obstacles were added to the map using the mouse cursor

70

Figure 35. Dynamic Map Test 2

71

Figure 36. Dynamic Map Test 3

4.7 Discussion and Future Work

When designing the LIDAR A* algorithm, significant effort was put into maximizing

the efficiency of the algorithm while maintaining a good quality of drivable path. The

algorithm first divides a 2 dimensional map into local regions of simulated LIDAR

scans with reduced data size of 181 polar coordinates. The scanned data are analyzed

to find its possible transitions to neighboring regions. Through levels of abstractions,

a regional map is abstracted and decomposed into a single node on an abstract graph

where the search actually takes place. The significant reduction in the number of

nodes helps the algorithm drastically improve its computational efficiency, overcome

the curse of problem size in large graph search problems, and achieve long distance

motion planning on a large high resolution map.

 LIDAR A* has other advantages. First, the online decomposition and search

process requires explorations to only a portion of the map necessary to complete the

gateway search to reach the goal. It avoids decomposition on the entire map

compared to HPA* and many other decomposition-based algorithms. Second, when

the entire map is being abstracted and decomposed with static obstacles, the opening

gateway graph may potentially be reused as an offline map which makes the online

decomposition and search process unnecessary for some applications. Third, the

generated opening gateway sequence can easily be utilized by other local motion

planners not restricted to the one presented in this thesis. For example, one can use

machine learning to train a model that specializes in traversing sequential opening

72

gateways and use it for low level motion planning. Finally, when using a small

grouping radius, the clustering algorithm becomes a segmentation tool for 2D LIDAR

data that can be used to identify and track dynamic objects and make predictions.

 LIDAR A* also has some shortcomings. The most challenging part of LIDAR

A* is to correctly identify the valid traversable passages (opening gateways) in

regions that are near the edge of the LIDAR’s angular visible range (0 and 180 degree

directions) where parts of the map are out of sight. The algorithm must ensure the

passages to these opening gateways are reachable based on the vehicle’s kinematic

model and deal with possible corner cases.

 In conclusion, LIDAR A* is a powerful global motion planner that features a

hierarchical structure that efficiently performs online decomposition and search of

consecutive neighboring regions to produce sequential gateways. The gateways guide

the simulation of a simple yet robust local motion planner to generate a kinematic

friendly path. Its highly optimized hierarchical approach significantly reduces the

number of nodes required by the high level search, allowing the algorithm to produce

a near optimal path on a highly complex large obstacle map and achieve real-time

operation.

73

Bibliography

[1] Owen Holland. Exploration and high adventure: The legacy of Grey Walter.
Philosophical Transactions of The Royal Society A Mathematical Physical and
Engineering Sciences 361, October 2003

[2] Ronald C. Arkin, Robin R. Murphy. Autonomous Navigation in a Manufacturing
Environment. IEEE Transactions on Robotics and Automation Vol6. No. 4 August
1990

[3] Eric Krotkov, Reid Simmons. Perception, Planning, and Control for Autonomous
Walking With the Ambler Planetary Rover. Intl. Journal of Robotics Research, Vol.
15, No. 2, pp. 155-180, April, 1996

[4] Sebastian Thrun, Michael Montemerlo, Hendril Dahlkamp. Stanley: The robot
that won the DARPA Grand Challenge. Journal of Field Robotics 23(9), 661-692,
2006

[5] Martin Buehler, Karl Iagnemma, Sanjiv Singh. The DARPA Urban Challenge,
Autonomous Vehicles in City Traffic. Springer 2009

[6] Automated Vehicles for Safety. National Highway Traffic Safety Administration

[7] Michele Bertoncello, Dominik Wee. Ten ways autonomous driving could redefine
the automotive world. McKinsey&Company

[8] Todd Litman, Autonomous Vehicle Implementation Predictions. Implications for
Transport Planning, Victoria Transport Policy Institute. June 5, 2020

[9] Gregor Klančar, Andrej Zdešar, Sašo Blažič, Igor Škrjanc. Wheeled Mobile
Robotics, From Fundamentals Towards Autonomous Systems. Page 161-206. 2017

[10] Sebastian Thrun, Jens-Steffen Gutmann, Dieter Fox, Wolfram Burgard, Benjamin
J. Kuipers. Integrating Topological and Metric Maps for Mobile Robot Navigation: A
Statistical Approach AAAI-98 Proceedings 1998

[11] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot
navigation Artificial Intelligence, Volume 99, Issue 1, Page 21-71, Feb 1998

74

[12] Tomas Lozano-Perez. Spatial Planning: A Configuration Space Approach, IEEE
Transactions on Computers, Vol. C-32, No. 2, Feb 1983

[13] Karl Kurzer. Path Planning in Unstructured Environments. A Real-time Hybrid
A* Implementation for Fast and Deterministic Path Generation for the KTH Research
Concept Vehicle. KTH Royal Institute of Engineering Sciences. 2016

[14] Tomas Lozano-Perez and Michael A. Wesley. An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles. IBM Thomas J. Watson Research
Center. 1979

[15] Nilsson, N.J. A Mobile Automaton: An Application of Artificial Intelligence
Techniques. Stanford Research Institute. Jan 1969

[16] J. Borenstein, Y. Koren, The Vector Field Histogram - Fast Obstacle Avoidance
For Mobile Robots. IEEE Journal of Robotics and Automation Vol 7, No 3, pp.
278-288, June 1991

[17] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959

[18] Deep Medhi, Karthik Ramasamy. Routing Algorithms: Shortest Path, Widest
Path, and Spanning Tree. Network Routing, Algorithms, Protocols, and Architectures.
A volume in The Morgan Kaufmann Series In Networking, 2018

[19] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions of Systems
Science and Cybernetics, Vol. SSC-4 No.2, July 1968

[20] Steven M. LaValle. Searching for Feasible Plans. Planning Algorithms.
Cambridge University Press, 2006

[21] E. A. Silver. An Overview of Heuristic Solution Methods. The Journal of the
Operational Research Society Vol. 55, No. 9 pp. 936-956, Sep., 2004

[22] Cipriano Galindo, Juan-Antonio Fernandez-Madrigal, Javier Gonzalez,
Improving Efficiency in Mobile Robot Task Planning through World Abstraction,
IEEE Trans. On Robotics, Vol. 20, No. 4, 2004

75

[23] Juan-Antonio, Fernandez-Madrigal, Javier Gonzalez, Multihierarchical Graph
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No.
1. January 2002

[24] Adi Botea, Martin Muller, Jonathan Schaeffer. Near Optimal Hierarchical Path-
Finding. Department of Computer Science, University of Alberta Edmonton. 2004

[25] Le Minh Duc,1 Amandeep Singh Sidhu,1 and Narendra S. Chaudhari.
Hierarchical Pathfinding and AI-Based Learning Approach in Strategy Game Design.
International Journal of Computer Games Technology, Cyber Games and Interactive
Entertainment. 2006

[26] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, James Diebel. Practical
Search Techniques in Path Planning for Autonomous Driving. Stanford University.
2008

[27] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo and James Diebel. Path
Planning for Autonomous Vehicles in Unknown Semi-structured Environments. The
International Journal of Robotics Research. 2010

[28] LaValle, Steven M. Rapidly-exploring random trees: A new tool for path
planning. Technical Report. Computer Science Department, Iowa State University.
October 1998

[29] Howie M. Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram
Burgard, Lydia E. Kavraki, Sebastian Thrun. 5.1 Visibility Maps: The Visibility
Graph, Principles of Robot Motion: Theory, Algorithms, and Implementation. The
MIT Press. 2005

[30] Sertac Karaman, Emilio Frazzoli. Sampling-based Algorithms for Optimal
Motion Planning. International Journal of Robotics Research. 2011

[31] Jonathan D. Gammell. Siddhartha S. Srinivasa, Timothy D. Barfoot. Informed
RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an
Admissible Ellipsodal Heuristic. 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014), pp. 2997-3004, 14-18. Sept. 2014

[32] Oded Maron, Tomas Lozano-Perez, Visible Decomposition: Real-Time Path
Planning in Large Planar Environments. Artificial Intelligence Lab. NE43-755. 1996

76

[33] Qidan Zhu, Yongjie Yan, Zhuoyi Xing. Robot Path Planning Based on Artificial
Potential Field Approach with Simulated Annealing, Sixth International Conference
on Intelligent Systems Design and Applications

[34] Iram Noreen, Amna Khan , Zulfiqar Habib, A Comparison of RRT, RRT* and
RRT*-Smart Path Planning Algorithms, IJCSNS International Journal of Computer
Science and Network Security, VOL.16 No.10, October 2016

[35] Po-Jen Wang, Nicholas R. Keyawa, and Craig Euler. Radial polar histogram:
obstacle avoidance and path planning for robotic cognition and motion control, Proc.
SPIE 8301, Intelligent Robots and Computer Vision XXIX: Algorithms and
Techniques, 83010Y, January 23, 2012

[36] Nicholas R. Keyawa, Po-Jen Wang, RED RAVEN, RED Robotic Autonomous
Vehicle Engineered at Northridge, IGVC Design Report, 2011
http://www.igvc.org/design/2011/CSU-Northridge%20-%20Red%20Raven.pdf

[37] Yan Peng, Dong Qu , Yuxuan Zhong, Shaorong Xie, Jun Luo. The Obstacle
Detection and Obstacle Avoidance Algorithm Based on 2-D Lidar, Proceeding of the
2015 IEEE International Conference on Information and Automation. Lijiang, China,
August 2015

[38] Rodney Brooks, Tomas Lozano-Perez. A Subdivision Algorithm in Configuration
Space For Find-path With Rotation. IEEE Transactions on Systems, Man and
Cybernetics, SMC-15(2):224-233, 1985

[39] Howie M. Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram
Burgard, Lydia E. Kavraki, Sebastian Thrun. 5.2.1 GVD Definition, Principles of
Robot Motion: Theory, Algorithms, and Implementation. The MIT Press, 2005

[40] ky0910, sampling-based-planners. GitHub repository. https://github.com/
kyk0910/sampling-based-planners

[41] Steven M. LaValle. 13.1.2.1 A simple car. Planning Algorithms. Cambridge
University Press, 2006.

[42] Rymsha Siddiqui. Path Planning Using Potential Field Algorithm. Medium. July
2018

77

http://www.igvc.org/design/2011/CSU-Northridge%20-%20Red%20Raven.pdf
https://github.com/kyk0910/sampling-based-planners
https://github.com/kyk0910/sampling-based-planners

