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Abstract

With the availability of high dimensional genetic biomarkers, it is of interest to identify 

heterogeneous effects of these predictors on patients’ survival, along with proper statistical 

inference. Censored quantile regression has emerged as a powerful tool for detecting 

heterogeneous effects of covariates on survival outcomes. To our knowledge, there is little work 

available to draw inference on the effects of high dimensional predictors for censored quantile 

regression. This paper proposes a novel procedure to draw inference on all predictors within 

the framework of global censored quantile regression, which investigates covariate-response 

associations over an interval of quantile levels, instead of a few discrete values. The proposed 

estimator combines a sequence of low dimensional model estimates that are based on multi-

sample splittings and variable selection. We show that, under some regularity conditions, the 

estimator is consistent and asymptotically follows a Gaussian process indexed by the quantile 

level. Simulation studies indicate that our procedure can properly quantify the uncertainty of the 

estimates in high dimensional settings. We apply our method to analyze the heterogeneous effects 

of SNPs residing in lung cancer pathways on patients’ survival, using the Boston Lung Cancer 

Survivor Cohort, a cancer epidemiology study on the molecular mechanism of lung cancer.

Keywords

Conditional Quantiles; Fused-HDCQR; High Dimensional Predictors; Statistical Inference; 
Survival Analysis

1 Introduction

Lung cancer presents much heterogeneity in etiology (McKay et al., 2017; Dong et al., 

2012; Huang et al., 2009), and some genetic variants may insert different impacts on 

different quantile levels of survival time. For example, in the Boston Lung Cancer Survivor 

Cohort (Christiani, 2017), a cancer epidemiology cohort of over 11,000 lung cancer cases 

enrolled in the Boston area since 1992, it was found that SNP AX.37793583 (rs115952579), 

along with age, gender, cancer stage and smoking status, had heterogeneous effects on 

different quantiles of survival time. A total of 674 patients in the study were genotyped, 

with the goal of identifying lung cancer survival-predictive SNPs. Target gene approaches, 

which focus on SNPs residing in cancer-related gene pathways, are appealing for increased 
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statistical power in detecting significant SNPs (Moon et al., 2003; Risch and Plass, 2008; 

Ho et al., 2019), and the investigators have identified SNPs residing in 14 well-known lung 

cancer-related genes (Zhu et al., 2017; Korpanty et al., 2014; Yamamoto et al., 2008; Kelley 

et al., 2001). One goal was to investigate whether and how each SNP might play a different 

role among the high-risk (i.e. lower quantiles of overall survival) and low-risk (i.e. higher 

quantiles of overall survival) cancer survivors.

Quantile regression (QR) (Koenker and Bassett Jr, 1978) is a significant extension of classic 

linear regression. By permitting the effects of active variables to vary across quantile levels, 

quantile regression can naturally accommodate and examine the heterogeneous impacts of 

biomarkers on different segments of the response variable’s conditional distribution. As 

survival data are subject to censoring and may be incomplete, QR methods developed 

for complete data may be unsuitable. Efforts have been devoted to developing censored 

quantile regression (CQR) (Powell, 1986; Portnoy, 2003; Peng and Huang, 2008, among 

others), which has become a useful alternative strategy to traditional survival models, such 

as the Cox model and accelerated failure time model. QR has also been widely studied 

to accommodate high dimensional predictors. For example, Wang et al. (2012) dealt with 

variable selection using non-convex penalization; Zheng et al. (2013) proposed an adaptive 

penalized quantile regression estimator that can select the true sparse model with high 

probability; and Fan et al. (2014) studied the penalized quantile regression with a weighted 

L1 penalty in an ultra-high dimensional setting. As to high dimensional CQR (HDCQR), He 

et al. (2013) provided a model-free variable screening procedure for ultra-high dimensional 

covariates, and Zheng et al. (2018) proposed a penalized HDCQR built upon a stochastic 

integral based estimating equation. However, most of the existing works in HDCQR were 

designed to select a subset of predictors and estimate the effects of the selected variables, 

instead of drawing inference on high dimensional predictors.

Progress in high dimensional inferences has been made for linear and non-linear models 

(Zhang and Zhang, 2014; Bühlmann et al., 2014; Javanmard and Montanari, 2014; Ning and 

Liu, 2017; Fei et al., 2019, among others). For example, Meinshausen et al. (2009) proposed 

to aggregate p-values from multi-sample splittings for high dimensional linear regression. 

Another line of works referred to as post-selection inference includes Berk et al. (2013), 

Lee et al. (2016), and Belloni et al. (2019), which recently provided post-selection inference 

at fixed quantiles for complete data. However, these methods may not handle censored 

outcomes. For censored median regression, Shows et al. (2010) provided sparse estimation 

and inference, but it cannot handle high dimensional data.

We propose to draw inference on high dimensional HDCQR based on a splitting and fusing 

scheme, termed Fused-HDCQR. Utilizing a variable selection procedure for HDCQR such 

as Zheng et al. (2018), our method operates partial regression followed by smoothing. 

Specifically, partial regression allows us to estimate the effect of each predictor, regardless 

whether it is chosen by variable selection or not. The fused estimator aggregates the 

estimates based on multiple data-splittings and variable selection, with a variance estimator 

derived by the functional delta method (Efron, 2014; Wager and Athey, 2018). To 

comprehensively assess the covariate effects on the survival distribution, we adopt a “global” 

quantile model (Zheng et al., 2015) with the quantile level being over an interval, instead of 
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the local CQR that focuses only on a few pre-specified quantile levels. The global quantile 

model may indeed address the molecular mechanism of lung cancer, our motivating disease, 

that hypothesizes that some genetic variants may cause heterogeneous impacts on different 

but unspecified segments of survival distribution (McKay et al., 2017; Dong et al., 2012; 

Huang et al., 2009).

Our work presents several advantages. First, compared to high dimensional Cox models 

(Zhao and Li, 2012; Fang et al., 2017; Kong et al., 2018), the employed HDCQR stems from 

the accelerated failure time model (Wei, 1992) and offers straightforward interpretations 

(Hong et al., 2019). Second, utilizing the global conditional quantile regression, it uses 

various segments of the conditional survival distribution to improve the robustness of 

variable selection and capture global sparsity. Third, our splitting-and-averaging scheme 

avoids the technicalities of estimating the precision matrix by inverting the p × p Hessian 

matrix of the log likelihood, which is a major challenge for debiased-LASSO type methods 

(Zhang and Zhang, 2014; Van de Geer et al., 2014) and is even more so if we apply 

debiased-LASSO to the CQR setting. Finally, as opposed to post-selection inferences 

(Belloni et al., 2019, among others), Fused-HDCQR accounts for variations in model 

selection and draws inference for all of the predictors.

The rest of the paper is organized as follows. Section 2 introduces the method, and Section 

3 details the asymptotic properties. Section 4 derives a non-parametric variance estimator, 

Section 5 conducts simulation studies, and Section 6 applies the proposed method to analyze 

the BLCSC data. The technical details, such as proofs and additional lemmas, are relegated 

to the online Supplementary Material.

2 Model and Method

2.1 High dimensional censored quantile regression

Let T and C denote the survival outcome and censoring time, respectively. We assume that 

C is independent of T given Z, a (p − 1)-dimensional vector of covariates (p > 1). Let X = 

min{T, C}, Δ = 1{T ≤ C}, and Z = 1, ZT T
, where 1{·} is the binary indicator function. The 

observed data, D(n) = {(Xi,Δi,Zi), i = 1, . . . , n}, are n i.i.d. copies of (X,Δ,Z). With Y = log 

T, let QY (τ|Z) = inf{t : P(Y ≤ t|Z) ≥ τ} be the τ-th conditional quantile of Y given Z. A 

global censored quantile regression model stipulates

QY(τ ∣ Z) = ZTβ * (τ), τ ∈ (0, 1), (1)

where β*(τ) is a p-dimensional vector of coefficients at τ. We aim to draw inference on 

βj
*(τ) for each τ ∈ (0, τU] and for all j ∈ {1, . . . , p}, where 0 < τU < 1 is an upper bound 

for estimable quantiles subject to identifiability constraint caused by censoring (Peng and 

Huang, 2008).

Let N(t) = 1{logX ≤ t, Δ = 1}, ΛT (t|Z) = −log(1 − P(log T ≤ t|Z)), and H(u) = −log(1 − u). 

Then, M(t) = N(t) − ΛT (t ∧ logX|Z) is a Martingale process under model (1) (Fleming and 

Fei et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2023 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Harrington, 2011) and hence E(M(t)|Z) = 0. We use Ni(t) and Mi(t), i = 1, . . . , n, to denote 

the sample analogs of N(t) and M(t). Let θi(τ) = Zi
Tβ(τ) and

Un(β, τ) = n−1 ∑
i = 1

n
Zi Ni θi(τ) − ∫

0

τ
1 logXi ≥ θi(u) dH(u) .

We denote the expectation of Un(β, τ) by u(β, τ).

The Martingale property implies u(β*, τ) = 0 with τ ∈ [0, τU], entailing the estimating 

equation with τ ∈ (0, τU]:

n1/2Un(β, τ) = n−1/2 ∑
i = 1

n
Zi Ni θi(τ) − ∫

0

τ

1 logXi ≥ θi(u) dH(u) = 0. (2)

The stochastic integral in (2) naturally suggests sequential estimation with respect to τ. We 

define a grid of quantile values Γm = {τ0, τ1, . . . , τm} to cover the interval [ν, τU], where 

τ0 = ν and τm = τU. The assumption on the lower bound ν > 0 is made to circumvent 

the singularity problem with CQR at τ = 0, as detailed in assumption (A1). In practice, ν 
is chosen such that only a small proportion of observations are censored below the ν-th 

quantile.

Then, β′ τk ’s, the estimates of β(τk)’s, τk ∈ Γm can be sequentially obtained by solving

n−1/2 ∑
i = 1

n
Zi Ni θi τk − ∑

r = 0

k − 1∫
τr

τr + 1
1 logXi ≥ θ′ i τr dH(u) = 0,

where θ′ i τk = Zi
Tβ′ τk . Due to the monotonicity of θi(τ) in τ, β′ τk  can be solved efficiently 

via L1-minimization. And β′ τ , τ ∈ [ν, τU] is defined as a right-continuous piece-wise 

constant function that only jumps at the grid points. It can be shown that β′ τ  is uniformly 

consistent and converges weakly to a mean zero Gaussian process for τ ∈ [ν, τU] when p = 

o(n). More importantly, β′ τ  provides a comprehensive understanding of the covariate effects 

on the conditional survival distribution over the quantile interval [ν, τU]. We incorporate 

this sequential estimating procedure for low dimensional CQR estimation in our proposed 

method.

In addition, our method requires dimension reduction, which can be accomplished by 

existing methods, including the screening method proposed by He et al. (2013) and 

the penalized estimation and selection procedure developed by Zheng et al. (2018). 

Specifically, Zheng et al. (2018) incorporated an L1 penalty into the stochastic integral 

based estimating equation in (2) to obtain an L-HDCQR estimator, which achieves a uniform 

convergence rate of q log(p ∨ n)/n, and results in “sure screening” variable selection with 

high probability, where q is defined in condition (A4). Zheng et al. (2018) also proposed an 

AL-HDCQR estimator by employing the Adaptive Lasso penalties, which attains a uniform 

convergence rate of q log(n)/n and selection consistency.
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2.2 Fused-HDCQR estimator

Our proposed Fused-HDCQR procedure consists of multiple data splitting, selecting 

variables, fitting low dimensional CQRs with partitioned data, applying append-and-estimate 
to all predictors, and aggregating those estimates.

1. With the full data D(n), determine via cross-validation the tuning parameter(s) λn 

of S, an HDCQR variable selection method.

2. Let B be a large positive number. For each b = 1, . . . ,B,

i. randomly split the data into equal halves D1
b and D2

b;

ii. on D1
b, apply the selection procedure S with λn on [ν, τU], to select a 

subset of predictors, denoted by Sλn
b
, or Sb for short;

iii. on D2
b, for each j = 1, . . . , p, fit the partial CQR using the subset of 

covariates S+j
b = j ∪ Sb, and denote the estimator by βS+j

b (τ), τ ∈ [ν, 

τU]. βS+j
b (τ) is a right-continuous piecewise-constant function that only 

jumps at the grid points at τk ∈ Γm;

iv. denote the entry in βS+j
b (τ) corresponding to Zj by βj

b(τ) = βS+j
b (τ) j.

3. Fusing: the final estimator of βj
*(τ), τ ∈ [ν, τU], j = 1, . . . , p is

β j(τ) = 1
B ∑

b = 1

B
βj

b(τ) . (3)

Remark 1.—We could select different tuning parameters for S in each data split, but with 

much added computation. Our numerical evidence seemed to suggest that a globally chosen 

λn work well.

Remark 2.—Our procedure needs a variable selection procedure to reduce dimension. For 

example, L-HDCQR selects the subset j ∈ 2, ⋯, p :maxk γ j τk > a0, τk ∈ Γm , where γ j τk ‘s 

are the L-HDCQR estimates, and a0 > 0 is a predetermined threshold. We start j with 2 as 

the intercept term (corresponding to j = 1) is always included in the model. In regards to the 

choice of variable selection methods, based on our experience, we can adopt the screening 

method in He et al. (2013) for fast computation, use L-HDCQR for detecting any non-zero 

effects in the quantile interval [ν, τU], and choose AL-HDCQR if we opt to select fewer 

predictors.

Remark 3.—With the censored outcomes, we have used the deviance residual to define the 

K-fold cross-validation criterion as in Zheng et al. (2018) and selected λn by minimizing 

it. Specifically, we partition the data to K folds, and let βλ
( − k)(τ) be the penalized estimate of 

β(τ) using all of the data excluding the k-th fold with a tuning parameter λ and τ ∈ [ν, τU], 

where k = 1, . . . ,K. Under the global CQR model (1), we define the cross-validation error as
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CV Error(λ) = ∑
k = 1

K
∑

i ∈ fold k
∫

ν

τU

|Di[β λ
( − k)(τ)]|dτ, (4)

where

Di[β(τ)] = sign Mi(β(τ)) −2Mi(β(τ)) + Δilog Δi − Mi(β(τ))

with Mi(β(τ)) = Ni Zi
Tβ(τ) − ∫ν

τ1 logXi ≥ Ni Zi
Tβ(u) dH(u) − ν. Here, H(u) = −log(1 − u), 

Ni(·) is the counting process, and Mi(β(τ)) is the Martingale residual under model (1) 

(Zheng et al., 2018).

3 Theoretical Studies

3.1 Notation and regularity conditions

For any vector δ ∈ Rp and a subset S ⊂ {1, . . . , p}, denote by SC the complementary set 

and define ‖δ‖r,S = ‖δS‖r, the lr-norm of the sub-vector δS, in which δjS = δj if j ∈ S and δjS = 

0 if j ∉ S. We set the following conditions.

(A1) There exists a quantile ν and some constant c > 0 such that

n−1 ∑
i = 1

n
1 logCi ≤ Zi

Tβ * (ν) 1 − Δi ≤ cn−1/2

holds for sufficiently large n.

(A2) (Bounded observations) ‖Z‖∞ ≤ C0. Without loss of generality, we assume C0 = 1. In 

addition, E|logX| < ∞.

(A3) (Bounded densities) Let FT (t|Z) = P(log T ≤ t|Z), ΛT (t|Z) = −log(1 − FT (t|Z)), F(t|Z) 

= P(logX ≤ t|Z), and G(t|Z) = P(logX ≤ t,Δ = 1|Z). Also, define f(t|Z) = dF(t|Z)/dt, and g(t|Z) 

= dG(t|Z)/dt.

a. There exist constants f, f, g and g such that

f ≤ inf
z, τ ∈ ν, τU

f zTβ * (τ) ∣ z ≤ sup
z, τ ∈ ν, τU

f zTβ * (τ) ∣ z ≤ f,

g ≤ inf
z, τ ∈ ν, τU

g zTβ * (τ) ∣ z ≤ sup
z, τ ∈ ν, τU

g zTβ * (τ) ∣ z ≤ g .

b. There exist constant κ > 0 and A such that ∀|t| ≤ κ,
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sup
z, τ ∈ ν, τU

|f zTβ * (τ) + t ∣ z − f zTβ * (τ) ∣ z | ≤ A | t | ,

sup
z, τ ∈ ν, τU

|g zTβ * (τ) + t ∣ z − g zTβ * (τ) ∣ z | ≤ A | t | .

(A4) (Sparsity) Assume log p = o(n1/2), let

Sτ = j:βj
*(τ) ≠ 0 , S * = ∪

τ ∈ ν, τU
Sτ = j: sup

τ ∈ ν, τU
βj

*(τ) > 0 , and q = S * .

Let S be the index set of covariates selected by S with a tuning parameter λn. There exist 

constants 0 ≤ c1 < 1/3, c2, K1, K2 > 0 such that q ≤ K1nc1, |S | ≤ K1nc1, and

P S * ⊆ S ≥ 1 − K2(p ∨ n)−1 − c2 .

(A5) Let μ τ = E 1 log X > ZTβ * τ . There exists a positive constant L, such that 

βj
* τ1 − βj

* τ2 ≤ L τ1 − τ2| and μ τ1 − μ τ2 | ≤ L|τ1 − τ2|, for all τ1, τ2 ∈ (ν, τU] and 1 ≤ j ≤ 

p.

(A6) (Eigenvalues) δTE ZiZi
T δ/‖δ‖2 is bounded below and above by λmin and λmax, 

respectively, over ‖δ‖0 ≤ K1nc1, δ ≠ 0, where 0 < λmin < λmax. (nonlinear impact)

c2: = inf‖δ‖0 ≤ K1nc1, δ ≠ 0E Zi
Tδ 2 3/2

/E Zi
Tδ 3 > 0.

(A7) Γm is equally gridded with τk − τk−1 = ϵn for τk ∈ Γm, k = 1, . . . ,m. The grid size 

satisfies ϵn = c0n−1 for some constant c0.

Assumption (A1) requires that the number of censored observations below the ν-th quantile 

does not exceed cn1/2, which is satisfied if the lower bound of the censoring time C’s 

support is greater than 0 and seems reasonable in real applications. As recommended in 

Zheng et al. (2018), ν is chosen such that only a small proportion of the observed survival 

times below the ν-th quantile are censored. (A2) assumes that the covariates are uniformly 

bounded. As pointed out by Zheng et al. (2015), the global linear quantile regression model 

is most meaningful when the covariates are confined to a compact set to avoid crossing 

of the quantile functions. (A3) ensures the positiveness of f(t|Z) between ZTβ*(ν) and 

ZTβ*(τU), which is essential for the identifiability of β*(τ) for τ < τU. (A4) restricts the 

order of data dimensions, as well as the sparsity of β*(τ), which is necessary for the 

convergence of the low dimensional estimator in (2) (Condition C4 in Wang et al. (2012)). 

(A4) also characterizes the “sure screening” property by S. The asymptotic property does 

not assess the variability of selection with a finite sample. For high dimensional inference, 

it is crucial to account for such variability (Fei et al., 2019). Specifically, several variable 
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selection methods for high dimensional CQR satisfy the sure screening property in (A4) 

with additional mild conditions.

• L-HDCQR: by Corollary 4.1 of Zheng et al. (2018), a Beta-min condition is 

required in addition to the set of conditions in this paper. Explicitly, there exist 

constants C1, C2 > 0, such that

inf
j ∈ S *

sup
τ ∈ τL, τU

βj
*(τ) > C1exp C2qτU qlog(p ∨ n)/n + L qϵn .

• AL-HDCQR: by Corollary 4.2 of Zheng et al. (2018), AL-HDCQR achieves 

the stronger selection consistency property, which implies the sure screening 

property.

• Quantile-adaptive Screening: by Theorem 3.3 of He et al. (2013), with a proper 

threshold value in their technical conditions, the screening procedure achieves 

the sure screening property.

(A5) characterizes the smoothness of β*(τ). (A6) is analogous to the assumptions on the 

covariance structure in the high dimensional literature (Zhao and Yu, 2006; Belloni and 

Chernozhukov, 2011; Fan et al., 2014; Van de Geer et al., 2014). As an extension to 

Condition C4 in Peng and Huang (2008), it ensures the convergence of low dimensional 

CQR but with a diverging number of covariates. (A7) details the fineness of Γm, which 

renders an adequate approximation to the stochastic integration in (2).

3.2 Theoretical properties of Fused-HDCQR

We first extend the results in Peng and Huang (2008) from a fixed p to a p-diverges-butless-
than-n case. They are novel and critical extensions since we allow the true model size q 

= |S*| to increase with n, while the selected Sb’s in the fused procedure vary around S*. 

Specifically, we assume a subset S ⊂ {1, . . . , p} in Theorems 1 and 2, where |S | ≤ K1nc1, 0 

≤ c1 < 1/3 and K1 > 0. Let β′ S(τ), τ ∈ [ν, τU] be the estimator from Peng and Huang (2008) 

of fitting the CQR with ZS over the τ-grid Γm.

Theorem 1.—(Consistency with a diverging number of predictors) Under Conditions (A1) 

– (A7) and given a subset S ⊂ {1, · · · , p} such that S* ⊆ S and |S | ≤ K1nc1, there exist 

positive constants ζ1 and ζ2 such that

sup
ν ≤ τ ≤ τU

‖β′ S(τ) − β*(τ)‖ ≤ ζ1exp(ζ2)(K1nc1 − 1log n)1/2

with probability at least 1 − 20c0
−2K1nc1 − 2.

Remark 4.—From the proofs of Propositions 1 and 2, it can be seen that ζ1 and ζ2 do not 

depend on the choice of S or n. Thus, ζ1 and ζ2 are universal for all possible S satisfying S* 

⊆ S and |S | ≤ K1nc1.
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Next, we derive the weak convergence of β
'

j for any j ∈ S.

Theorem 2.—(Weak convergence with a diverging number of covariates) Suppose 

Conditions (A1) – (A7) hold. Given a S ⊂ {1, · · · , p} such that S* ⊆ S and |S | ≤ K1nc1, for 

any j ∈ S,

n β′ j(τ) − βj
*(τ)

converges weakly to a mean zero Gaussian process for τ ∈ [ν, τU].

In high dimensional settings, the next theorem shows that the fused estimator enjoys 

desirable theoretical properties.

Theorem 3.—Consider the Fused-HDCQR estimator in (3). Under assumptions (A1) – 

(A7), for any j ∈ {1, . . . , p},

n β j(τ) − βj
*(τ)

converges weakly to a mean zero Gaussian process for τ ∈ [ν, τU].

Our framework enables us to obtain the joint distribution of K-dimensional estimated 

coefficients, where K is a finite number. Let K be the collection of the indices of 

K covariates of interest. We can show that the weak convergence result of β′ K(τ), a 

K-dimensional subvector of the oracle estimator, still holds for τ ∈ [ν, τU], that is, 

n(β′ K(τ) − βK
* (τ)), τ ∈ [ν, τU] converges to a K-dimensional Gaussian distribution at any τ ∈ 

[ν, τU]. We only need to replace β′ j(τ) by β′ K(τ) in the proof of Theorem 2 in the Appendix 

and slightly modify the arguments accordingly. Consequently, the term I in the proof of 

Theorem 3 still converges weakly to a mean zero Gaussian distribution, while the norms 

of items II and III are still op(1). Therefore, Theorem 3 still holds for any K-dimensional 

subvector of β K(τ), i.e., n(β K(τ) − βK
* (τ)) converges to a mean zero K-dimensional Gaussian 

distribution at any τ ∈ [ν, τU].

As shown in the proof, the covariance function of β j(τ) depends on the unknown active 

set S*, the unknown conditional density functions f(t|Z) and g(t|Z), and other unknown 

quantities. Thus, it is not calculable. The next section proposes an alternative model-free 

variance estimator based on functional delta method and multi-sample splitting properties 

(Efron, 2014; Fei et al., 2019).

4 A Variance Estimator via the Functional Delta Method

Let Jbi ∈ {0, 1} be the indicator of whether ith observation is in the bth sub-sample D2
b, and 

J . i = B−1∑b = 1
B Jbi. We define the re-sampling covariances between Jbi and βj

b τk  at τk ∈ Γm 

for each i = 1, . . . , n as
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sij τk = 1
B ∑

b = 1

B
Jbi − Ji βj

b τk − β j τk ;

Sj τk = s1j τk , s2j τk , …, snj τk
T .

Let n1 = D2
b . The covariance between β j τk  and β j τℓ  is estimated by

Covj τk, τℓ = n − 1
n

n
n − n1

2 ∑
i = 1

n
sij τk sij τℓ = n(n − 1)

n − n1
2Sj

T τk Sj τℓ ,

where the multiplier n(n − 1)/(n − n1)2 is a finite-sample correction for the sub-sampling 

(Wager and Athey, 2018). Thus a variance estimator for β j τk  is

V j τk = n(n − 1)
n − n1

2Sj
T τk Sj τk . (5)

It is shown in Wager and Athey (2018) that (5) is consistent, i.e., V j τk /Var β j τk
p 1 as n,B 

→ ∞. Furthermore, for a finite B, we propose a bias corrected version of (5):

V j
B τk = V j τk − nn1

B n − n1
B−1 ∑

b = 1

B
βj

b τk − β j τk
2 , τk ∈ Γm . (6)

The correction term in (6) is a suitable multiplier of the re-sampling variance of βj
b τk ‘s, 

which converges to zero as n → ∞ and n1 = O(n), and the two variance estimators in (5) 

and (6) are asymptotically equivalent. However, V j τk  in (5) requires B to be of order n3/2 to 

reduce the Monte Carlo noise below the sampling noise, while V j
B τk  in (6) only requires B 

to be of order n to achieve the same (Wager et al., 2014).

Since β j(τ) converges weakly to a Gaussian process by Theorem 3, and our variance 

estimators are consistent on the grid points, we define the asymptotic 100(1 − α)% local 

confidence intervals for βj
* τk  at any τk ∈ Γm as

β j τk − Φ−1(1 − α/2) V j
B τk , β j τk + Φ−1(1 − α/2) V j

B τk ,

where V j
B τk  is the variance estimator in (6), and Φ is the standard normal cumulative 

distribution function. The p-value of testing H0:βj
* τk = 0 for each τk ∈ Γm is

2 × 1 − Φ β j τk / V j
B τk .
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5 Simulation Studies

In various settings, we have compared the proposed method, Fused-HDCQR (referred to 

as “Fused” in the tables and figures hereafter), with some competing methods in quantile 

regression or high dimensional inference. These methods include Wang et al. (2012) 

(“W12”) and Fan et al. (2014) (“F14”) for quantile regression; Zheng et al. (2018) (“Z18”) 

for censored quantile regression; and Meinshausen et al. (2009) (“M09”) for inference with 

aggregated p-values from multi-sample splittings.

In the simulations and the data analysis, we choose L-HDCQR described in Section 3 as 

the variable selection tool for Fused-HDCQR. We also explore the feasibility of using other 

alternatives for variable selection, such as Fan et al. (2009) (“F09”) and M09.

When implementing Fused-HDCQR, we specify the number of splits as B = 300, the 

quantile interval as [ν, τU] = [0.1, 0.8], and the grid length as m = n/log p. The tuning 

parameter is chosen by minimizing the 5-fold cross-validation error as in (4). We study the 

following examples with sparse non-zero effects, some of which are heterogeneous.

Example 1.

The event times are generated by

log T i = Zi
Tb + εi, i = 1, …, n,

where the coefficient vector b are sparse with b20 = 0.5, b40 = 1, b60 = 1.5, bj = 0 for all 

other j’s, and εi ~ N(0, 1). Therefore, the true coefficients are β*(τ) = (Qε(τ), bT)T for all τ 
∈ (0, 1), where Qε(τ), τ-th quantile of the distribution of ε, is the intercept. Zj, i‘s are i.i.d. 

Unif(−1, 1) for j ∈ {1, . . . , p}. The censoring time is generated independently as log Ci = 

N(0, 16) + N(−5, 1) + N(8, 0.25), which gives a censoring rate around 25%.

Example 2.

The event times follow

logT i = Zi
Tb + 1.5 Z3, iεi, (7)

where b20 = 1, b40 = 1.5, b60 = 2, bj = 0 for all other j’s, and εi ~ N(0, 1). We first generate 

Z′ i Np(0, Σ) with Σ = (σkℓ)p×p, σkℓ = 0.3|k−ℓ| the AR(1) correlation structure, and then let 

Zi = Z′ i, except for the third covariate Z3, i = |Z
'

3, i| + 0.5. Therefore β1
*(τ) = 0, β4

*(τ) = 1.5Qε(τ), 
and βj

*(τ) = bj + 1, for all other j’s. The censoring time is generated independently as log Ci = 

N(0, 16) + N(−4, 1) + N(8, 0.25), which gives a censoring rate around 23%.

Example 3.

The event times follow

logT i = Zi
Tb + ϕ1 ξi Z1, i + ϕ10 ξi Z4, i,
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where b20 = 1, b40 = 1.5, b60 = 2, bj = 0 for all other j’s, ξi ~ N(0, 1), and ϕ1, ϕ10 are 

monotone functions as the dashed lines in Figure 1, both are continuous with zero and 

non-zero pieces over τ. We first generate Z′ i Np(0, Σ) as in Example 2, and then let Zi = Z
'

i, 

except Z1, i = |Z′ 1, i| + 0.5 and Z10, i = |Z′ 10, i| + 0.5. Therefore β1
*(τ) = 0, β2

*(τ) = ϕ1(τ), β11
* (τ) = ϕ10(τ), 

and βj
*(τ) = bj + 1, for all other j’s. The censoring time is generated independently as log Ci = 

N(0, 16) + N(−4, 1) + N(10, 0.25), which gives a censoring rate around 20%.

For each of these examples, we set (n, p)=(300, 1000) and (700, 1000) to study the impacts 

of the sample size and the number of variables and how the methods fare when p > n. In 

Example 3, which mimics the real data example in Section 6 most closely, we have also 

explored (n, p) = (700, 2000), which is roughly equal to the dimension of the real dataset. 

For every parameter configuration, a total of 100 independent datasets are generated, and we 

report the averaged results from these replications, unless specified otherwise. The number 

of 100 is chosen because the penalized methods for high dimensional CQR are in general 

computationally intensive and take much computing time for one simulated dataset (Table 

5).

We first evaluate the feasibility of using various variable selection tools for our proposed 

method. Comparisons of true positives and false negatives among F09, M09, and L-HDCQR 

under Examples 1–3 are reported in Table 1. F09 presents a subpar performance because, 

by taking intersections of variables selected from different partitions of data, it tends to miss 

out some true signals and thus have fewer true positives. In contrast, L-HDCQR retains 

more true positives than both F09 and M09, while having larger false positives. Because our 

method requires the variable selection step to include the true signals with high probability, 

even at the cost of some false positives, we have opted to use L-HDCQR as the screening 

tool for our method.

We next compare the performance of Fused-HDCQR with other high dimensional quantile 

regression methods at τ = .25, .5, .75 under Example 1. As a benchmark for comparisons, 

we also compute the oracle estimates based on the true model (with S* known). As 

W12, F14, and Z18 provide coefficient estimates without standard errors (SEs), only the 

estimation biases are reported for them, while the average SEs, empirical standard deviations 

(SDs) and coverage probabilities of the confidence intervals are reported for our method. 

Table 2 shows that Fused-HDCQR presents the smallest biases, which are comparable to 

those of the oracle estimates. In contrast, Z18 has smaller biases when the sample size is 

large, and larger biases otherwise, while W12 and F14 incur substantial biases since they 

are not designed for censored data. Moreover, the SEs based on Fused-HDCQR agree with 

the empirical SDs of the estimates. The consistent estimates of coefficients and SEs obtained 

by Fused-HDCQR lead to proper coverage probabilities around the 0.95 nominal level. In 

addition, the coverage probabilities improve as n increases.

Table 2 also concerns the power for detection of signals. Since W12, F14, and Z18 cannot 

draw inference and, in general, there is lack of literature that deals with inference for 

HDCQR, we compare our method with the aggregated p-value approach (M09) in the 

quantile setting, though M09 originated from linear regression. The results indicate that 
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Fused-HDCQR outperforms M09, and presents adequate testing power when the effect size 

is moderate or large.

Table 3 summarizes the results from Example 2 with the heterogeneous effect β4 varying 

with τ. We compare the estimation accuracy between Fused-HDCQR and Z18, as well 

as the statistical power between Fused-HDCQR and M09. Again, Fused-HDCQR presents 

smaller biases than Z18 and a higher power than M09. To assess whether the tuning 

parameters selected as in Remark 3 help the variable selection method (L-HDCQR) used by 

Fused-HDCQR satisfy assumption (A4) in Section 3, we report the selection frequency of 

each signal variable in Table 3 (and also in Table 4), and observe that the selection frequency 

increases as the sample size increases, hinting that assumption (A4) may be satisfied with 

these selected tuning parameters.

Table 4 summarizes the results based on Example 3. For the two heterogeneous effects β2 

and β11 that vary with τ, their estimation biases of Fused-HDCQR become smaller and 

the estimated SEs are closer to the empirical ones as n increases. Figure 1 shows that the 

Fused-HDCQR estimates agree with the oracle estimates and the truth, except at the change 

points, and have narrower confidence intervals with a larger n.

Finally, we compare the computation intensity among Z18, M09, W12, F14, and Fused-

HDCQR under Example 1 and report in Table 5 the average computing time per dataset. Our 

method is the most computationally intensive, because it involves multiple data-splittings 

and draws inferences on all of the p coefficients. However, by utilizing parallel computing, 

we have managed to reduce the computational time to the same order of Z18, W12, and F14 

that are based on penalized regression.

6 Application to the Boston Lung Cancer Survivor Study (BLCSC)

Detection of molecular profiles related to cancer patients’ survival can aid personalized 

treatment, leading to prolonged survival and improved quality of life. In a subset of BLCSC 

samples, 674 lung cancer patients were measured with survival times, along with 40, 000 

SNPs and clinical indicators, such as lung cancer subtypes (adenocarcinoma, squamous cell 

carcinoma, or others), cancer stages (1–4), age, gender, education level ( ≤ high school or 

> high school) and smoking status (active or non-active smokers); see Table 6 for patients’ 

characteristics. The censoring rate was 23% and a total of 518 deaths were observed during 

the followup period, with the observed followup time varying from 13 to 8, 584 days.

We could have included all 40,000 SNPs in our analysis. However, for more statistical 

power, we opt for the targeted gene approach by focusing on 2,002 SNPs residing in 

14 genes identified to be cancer related, namely, ALK, BRAF, BRCA1, EGFR, ERBB2, 

ERCC1, KRAS, MET, PIK3CA, RET, ROS1, RRM1, TP53, and TYMS (Brose et al., 

2002; Toyooka et al., 2003; Paez et al., 2004; Soda et al., 2007). Pinpointing the 

effects of individual loci within the targeted genes is helpful for understanding disease 

mechanisms (Evans et al., 2011; D’Antonio et al., 2019) and designing gene therapies 

(Pâques and Duchateau, 2007; Hanawa et al., 2004). We also adjust for patients’ clinical and 

environmental characteristics listed in Table 6, which gives a total of p = 2, 011 predictors.
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We apply Fused-HDCQR to compute the coefficient estimates (3) and variance estimates 

(6). We set the quantile interval to be [0.2, 0.7], which is wide enough to cover high risk 

and low risk groups and, in the meantime, ensures the quantile parameters be estimable in 

the presence of censoring (Zheng et al., 2015). We choose the lower bound τ0 = ν = 0.1 to 

circumvent the singularity problem with CQR at τ = 0, because few (< 2%) observations are 

censored below the ν-th quantile. With ϵn = 01, we form the τ-grid Γm of length m = 61. We 

set B = 750 as the number of re-samples, which is sufficiently large based on our numerical 

experience. To determine the tuning parameter λn in L-HDCQR for selection, we use 5-fold 

cross-validation as specified in Remark 3.

For ease of presentation, we summarize the results evaluated at 6 quantile levels, τ = 0.2, 

0.3, . . . , 0.7, instead of the whole grid Γm. To highlight the findings of the high risk group, 

we rank all SNPs based on their p-values at τ = 0.2. After Bonferroni correction for multiple 

testing, there are 83 significant SNPs with the overall type I error of α = 0.05. Our method 

estimates the coefficients and the p-values for all predictors, and we only present the results 

for the patient characteristics, the top 10 significant SNPs, and the 3 least significant SNPs 

in Figure 2 and Table 7. The estimated coefficient of active smoking drops from −0.42 (p 
= 0.0011) to −0.53 (p = 0.0005) as τ changes from 0.2 to 0.5, and then increases to −0.31 

(p = 0.038) as τ changes to 0.7, suggesting that active smoking might be more harmful to 

the high or median risk groups than the low risk group of patients. The most significant 

SNP at τ = 0.2 is AX.37793583 T, which remains significant throughout τ = 0.2 to τ = 0.7. 

However, its estimated coefficient decreases from 2.75 (τ = 0.2) to 1.39 (τ = 0.7), indicating 

its heterogeneous impacts on survival, i.e. stronger protective effect at lower quantiles and 

vice versa.

The effects of some SNPs are nearly zero for higher quantiles. For example, the estimated 

coefficient of AX.15207405 G decreases from 2.03 (τ = 0.2; p = 10−24) to −0.05 (τ = 0.7; 

p = 0.92), with the estimated standard error increasing from 0.20 to 0.48. Similarly, the 

estimated coefficient of AX.40182999 A decreases from 1.5 (τ = 0.2; p = 9.6×10−13) to 

−0.01 (τ = 0.7; p = 0.96). The results again hint at heterogeneous SNP effects in various risk 

groups, which cannot be detected using traditional Cox models.

Finally, our results shed light on the roles of SNPs in the high risk group (i.e. lower 

quantiles). Specifically, we map the 83 SNPs with significant effects at the 0.2-th quantile by 

Fused-HDCQR to the corresponding genes and rank the genes by the number of significant 

SNPs (over total number of SNPs for each gene in the parenthesis), which are TP53 

(14/321), RRM1 (14/174), ERCC1 (10/167), BRCA1 (10/114), ALK (8/163), ROS1 (5/294), 

EGFR (5/261), ERBB2 (4/167), and 6 other genes with numbers of significant SNPs less 

than 4. While these genes were reported to be associated with lung cancer (Toyooka et al., 

2003; Takeuchi et al., 2012; Rosell et al., 2011; Lord et al., 2002; Zheng et al., 2007; Sasaki 

et al., 2006; Brose et al., 2002), our analysis provides more detailed information as to which 

SNPs and locations of the genes are jointly associated with the lung cancer survival, as well 

as the estimated effects and uncertainties. Analysis of heterogeneous SNP effects has been 

gaining increasing research attention in lung cancer research (McKay et al., 2017; Dong et 

al., 2012; Huang et al., 2009), and beyond it (Garcia-Closas et al., 2008; Cheng et al., 2010; 

Gulati et al., 2014).
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7 Conclusions

Our proposed procedure involves repeated estimates from low dimensional CQRs, which 

are computationally straightforward and can be efficiently implemented with parallel 

computing. We require the variable selection to possess a sure screening property as in 

condition (A4). This seems to be supported by our simulations, which find our procedure 

works well when the variable selection method can select a superset of the true model 

with high probability. Our condition is much weaker than a stringent condition of selection 

consistency as specified in Fei et al. (2019).

In regards to the selection of B, we recommend B to be in the same order of the sample size 

n. Smaller B might not affect coefficient estimation much, but it would yield biased standard 

errors for inference. In addition, we opt to define Γm by setting the grid as n/log p equally 

spaced points between τ0 and τU. This may cover the quantile interval well, with reasonable 

computation efficiency.

There are open questions left to be addressed. First, substantial work is needed when 

predictors are highly correlated as the performance of our method, like the other competing 

methods, deteriorates when correlations among predictors become stronger. Second, it is of 

interest to investigate an alternative method when the sparsity condition fails. For example, 

it is challenging to find an effective strategy to draw inference when a non-negligible portion 

of predictors have small but non-zero effects. We will pursue them elsewhere.
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Figure 1: 
Estimated heterogeneous effects and confidence intervals of Fused-HDCQR using Example 

3: β2
*( ⋅ )(left panel) and β5

*( ⋅ ) (right panel). From the top to the bottom are the plots for (n, p) 

= (300, 1000), (700, 1000) and (700, 2000), respectively.
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Figure 2: 
Estimated quantile-specific coefficients of the predictors in Table 7.
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Table 1:

Summary of variable selection results based on the simulated datasets.

TP FP

(n,p) CR q L-HDCQR M09 F09 L-HDCQR M09 F09

Example 1
(300,1000) 0.25 3 2.67 2.12 1.64 7.95 0.00 0.19

(700,1000) 0.25 3 2.98 2.78 2.27 13.08 0.01 0.34

Example 2
(300,1000) 0.22 4 3.60 3.58 2.22 12.45 0.00 0.22

(700,1000) 0.23 4 3.99 3.99 3.54 11.29 0.00 0.64

Example 3

(300,1000) 0.20 5 3.82 3.63 1.91 10.00 0.00 0.17

(700,1000) 0.20 5 4.81 4.77 4.35 11.73 0.01 0.54

(700,2000) 0.19 5 4.78 4.76 4.17 16.34 0.00 0.47

Note: CR, average censoring rate; q = |S*|; TP, average true positives; FP, average false positives; M09, Meinshausen et al. (2009); F09, Fan et al. 
(2009); L-HDCQR, Zheng et al. (2018).

J Am Stat Assoc. Author manuscript; available in PMC 2023 June 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fei et al. Page 22

Table 2:

Results of Example 1 based on the simulated datasets.

Bias EmpSD SE Cov Power

Oracle Fused Z18 F14 W12 Fused Fused M09

n = 300, p = 1000

0.02 0.02 −0.38 −0.50 −0.48 0.14 0.13 0.93 0.97 0.06

β21 = 0.5 0.02 0.01 −0.24 −0.49 −0.48 0.12 0.13 0.95 0.98 0.04

0.01 0.01 −0.13 −0.50 −0.48 0.12 0.13 0.96 1.00 0.02

−0.01 −0.01 −0.02 −0.91 −0.33 0.14 0.13 0.92 1.00 0.99

β41 = 1 −0.00 −0.00 −0.03 −0.68 −0.32 0.14 0.12 0.92 1.00 0.98

0.02 0.01 −0.01 −0.70 −0.30 0.17 0.14 0.93 1.00 0.94

−0.00 0.01 0.00 −0.92 −0.24 0.12 0.13 0.92 1.00 1.00

β61 = 1.5 0.00 0.01 0.01 −0.64 −0.25 0.11 0.13 0.97 1.00 1.00

0.02 0.01 0.02 −0.70 −0.25 0.13 0.14 0.95 1.00 1.00

n = 700, p = 1000

−0.02 −0.01 −0.01 −0.47 −0.23 0.09 0.08 0.92 1.00 0.56

β21 = 0.5 −0.01 −0.01 −0.01 −0.39 −0.22 0.08 0.08 0.89 1.00 0.65

−0.01 −0.01 −0.01 −0.40 −0.23 0.10 0.09 0.89 1.00 0.44

0.00 0.00 0.04 −0.53 −0.17 0.09 0.08 0.91 1.00 1.00

β41 = 1 −0.00 0.00 0.03 −0.49 −0.19 0.09 0.08 0.90 1.00 1.00

−0.01 −0.01 0.01 −0.53 −0.18 0.08 0.10 0.87 1.00 1.00

0.01 0.01 0.06 −0.54 −0.21 0.10 0.09 0.93 1.00 1.00

β61 = 1.5 0.01 0.01 0.03 −0.62 −0.21 0.08 0.08 0.93 1.00 1.00

−0.00 0.00 0.03 −0.71 −0.21 0.07 0.09 0.94 1.00 1.00

Note: Each β has three rows corresponding to τ = .25,.5,.75 from the top to bottom; EmpSD, empirical standard deviation; SE, average standard 
error; Cov, coverage probability; Oracle, Oracle estimator; Z18, Zheng et al. (2018).F14, Fan et al. (2014); W12, Wang et al. (2012); M09, 
Meinshausen et al. (2009).
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Table 3:

Results of Example 2 based on the simulated datasets.

Bias EmpSD SE Cov Freq Power

Oracle Fused Z18 Fused Fused M09

n = 300, p = 1000

0.01 0.13 0.29 0.32 0.31 0.88 0.82 0.16

β4 = 1.5Qε(τ ) −0.05 −0.07 0.06 0.33 0.29 0.90 0.73 0.11 0.00

0.01 −0.14 −0.05 0.31 0.34 0.82 0.62 0.10

−0.01 −0.01 −0.01 0.14 0.13 0.90 1.00 0.88

β21 = 1 −0.03 −0.01 −0.05 0.12 0.12 0.91 0.69 1.00 0.92

−0.01 −0.00 −0.02 0.14 0.13 0.92 1.00 0.84

0.01 0.01 0.03 0.13 0.13 0.90 1.00 1.00

β41 = 1.5 −0.01 0.01 0.03 0.12 0.13 0.93 0.99 1.00 1.00

−0.00 0.02 −0.02 0.13 0.14 0.93 1.00 1.00

−0.03 −0.03 0.04 0.13 0.13 0.91 1.00 1.00

β61 = 2 −0.03 −0.02 0.03 0.11 0.13 0.92 1.00 1.00 1.00

−0.01 −0.01 −0.00 0.12 0.15 0.95 1.00 1.00

n = 700, p = 1000

0.03 0.08 0.19 0.19 0.21 0.92 0.99 0.61

β4 = 1.5Qε(τ ) 0.02 0.03 0.14 0.18 0.19 0.89 0.89 0.11 0.00

0.04 −0.03 −0.01 0.21 0.23 0.92 0.97 0.56

0.01 0.01 0.05 0.09 0.08 0.94 1.00 1.00

β21 = 1 0.01 0.01 0.01 0.08 0.08 0.87 0.99 1.00 1.00

0.01 0.01 0.05 0.10 0.09 0.89 1.00 1.00

−0.01 0.00 0.08 0.08 0.08 0.94 1.00 1.00

β41 = 1.5 −0.00 0.00 0.05 0.09 0.08 0.92 1.00 1.00 1.00

0.00 0.01 0.04 0.09 0.09 0.95 1.00 1.00

−0.01 −0.01 0.10 0.08 0.09 0.93 1.00 1.00

β61 = 2 −0.01 −0.01 0.06 0.08 0.09 0.91 1.00 1.00 1.00

−0.00 −0.00 0.07 0.09 0.10 0.90 1.00 1.00

Note: See the footnote of Table 2; Freq, average selection frequency in B splits.
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Table 4:

Results of Example 3 based on the simulated datasets.

Bias EmpSD SE Cov Freq Power

Oracle Fused Z18 Fused Fused M09

n = 300, p = 1000

−0.05 0.06 0.59 0.34 0.36 0.94 0.06 0.00

β2 = φ1(τ ) 0.11 0.37 1.01 0.52 0.51 0.89 0.71 0.20 0.00

0.04 −0.20 −0.05 0.80 0.72 0.89 0.87 0.06

0.08 0.14 0.27 0.65 0.50 0.90 0.77 0.36

β11 = φ10(τ ) 0.10 −0.20 −0.36 0.62 0.51 0.91 0.67 0.19 0.00

0.16 0.06 −0.03 0.56 0.52 0.90 0.10 0.00

β21 = 1.5 0.03 0.03 0.04 0.25 0.23 0.95 0.65 1.00 0.77

β41 = 2 0.00 −0.00 0.02 0.23 0.25 0.93 0.93 1.00 0.99

β61 = 2.5 0.09 0.07 0.19 0.21 0.26 0.94 0.99 1.00 1.00

n = 700, p = 1000

0.02 0.04 0.27 0.21 0.23 0.94 0.06 0.00

β2 = φ1(τ ) 0.17 0.30 0.79 0.37 0.40 0.88 0.96 0.27 0.01

0.15 0.08 0.35 0.51 0.51 0.90 1.00 0.77

0.07 0.09 0.18 0.33 0.33 0.91 0.99 0.92

β11 = φ10(τ ) −0.01 −0.19 −0.23 0.35 0.34 0.85 0.92 0.21 0.00

−0.00 −0.04 −0.08 0.37 0.31 0.94 0.06 0.00

β21 = 1.5 −0.00 0.00 0.04 0.16 0.17 0.97 0.98 1.00 1.00

β41 = 2 −0.03 −0.02 −0.01 0.15 0.18 0.95 1.00 1.00 1.00

β61 = 2.5 0.00 0.00 0.07 0.18 0.18 0.94 1.00 1.00 1.00

n = 700, p = 2000

0.05 0.11 0.13 0.32 0.32 0.93 0.07 0.00

β2 = φ1(τ ) 0.09 0.34 0.87 0.46 0.44 0.91 0.93 0.09 0.02

0.25 0.36 1.77 0.53 0.46 0.87 0.74 0.58

0.13 0.25 0.73 0.45 0.35 0.84 1.00 0.83

β11 = φ10(τ ) 0.09 −0.02 0.56 0.41 0.36 0.89 0.90 0.76 0.01

−0.04 −0.30 −0.13 0.36 0.34 0.85 0.15 0.00

β21 = 1.5 0.01 0.01 0.03 0.18 0.21 0.98 0.98 1.00 1.00

β41 = 2 0.01 0.03 −0.07 0.22 0.20 0.91 0.99 1.00 0.98

β61 = 2.5 −0.02 −0.01 −0.05 0.25 0.20 0.94 1.00 1.00 0.98

Note: See the footnote of Tables 2 and 3; For β2 and β11, the numbers are shown at τ = .25,.5,.75 from the top to the bottom and, for the other β’s, 

at τ = 0.5.
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Table 5:

Comparisons of average computing time (in seconds) when performing Example 1.

Fused Z18 W12 F14 M09

(n,p) = (300,1000) 888 853 509 390 170

(n,p) = (700,1000) 3,108 1,812 2,230 1,231 440

Note: see the footnote of Table 2.
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Table 6:

Patients’ characteristics in the BLCSC samples.

(n = 674)

Mean (SD)

Age 60 (10.8)

Count (%)

Female 259 (38)

Education level ≤ High school 264 (39)

> High school 410 (61)

Smoking Non-active 418 (62)

Active 256 (38)

Cancer type Adenocarcinoma 283 (42)

Squamous cell 110 (16)

Other 281 (42)

Cancer stage 1 283 (42)

2 110 (16)

3 256 (38)

4 25 (4)
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