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The BMP pathway either enhances or inhibits
the Wnt pathway depending on the SMAD4
and p53 status in CRC
P W Voorneveld1, L L Kodach1, R J Jacobs1, C J M van Noesel2, M P Peppelenbosch3, K S Korkmaz1,
I Molendijk1, E Dekker4, H Morreau5, G W van Pelt6, R A E M Tollenaar6, W Mesker6, L J A C Hawinkels1,7,
M Paauwe7, H W Verspaget1, D T Geraets8, D W Hommes1,9, G J A Offerhaus10, G R van den Brink1,4,11,
P ten Dijke7 and J C H Hardwick*,1

1Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2300RC Leiden,
The Netherlands; 2Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands; 3Department of
Gastroenterology and Hepatology, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands;
4Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; 5Department of
Pathology, Leiden University Medical Center, Leiden, The Netherlands; 6Department of Surgery, Leiden University Medical
Center, Leiden, The Netherlands; 7Department of Molecular Cell Biology, Leiden University Medical Center, Leiden,
The Netherlands; 8DDL Diagnostic Laboratory, Rijswijk, The Netherlands; 9Center for Inflammatory Bowel Diseases,
University of California Los Angeles Medical Center, Santa Monica, CA, USA; 10Department of Pathology, Utrecht Medical
Center, Utrecht, The Netherlands and 11Tytgat Institute for Liver & Intestinal Research, Academic Medical Center, Amsterdam,
The Netherlands

Background: Constitutive Wnt activation is essential for colorectal cancer (CRC) initiation but also underlies the cancer stem cell
phenotype, metastasis and chemosensitivity. Importantly Wnt activity is still modulated as evidenced by higher Wnt activity at the
invasive front of clonal tumours termed the b-catenin paradox. SMAD4 and p53 mutation status and the bone morphogenetic
protein (BMP) pathway are known to affect Wnt activity. The combination of SMAD4 loss, p53 mutations and BMP signalling may
integrate to influence Wnt signalling and explain the b-catenin paradox.

Methods: We analysed the expression patterns of SMAD4, p53 and b-catenin at the invasive front of CRCs using
immunohistochemistry. We activated BMP signalling in CRC cells in vitro and measured BMP/Wnt activity using luciferase
reporters. MTT assays were performed to study the effect of BMP signalling on CRC chemosensitivity.

Results: Eighty-four percent of CRCs with high nuclear b-catenin staining are SMAD4 negative and/or p53 aberrant. BMP
signalling inhibits Wnt signalling in CRC only when p53 and SMAD4 are unaffected. In the absence of SMAD4, BMP signalling
activates Wnt signalling. When p53 is lost or mutated, BMP signalling no longer influences Wnt signalling. The cytotoxic effects of
5-FU are influenced in a similar manner.

Conclusions: The BMP signalling pathway differentially modulates Wnt signalling dependent on the SMAD4 and p53 status. The
use of BMPs in cancer therapy, as has been proposed by previous studies, should be targeted to individual cancers based on the
mutational status of p53 and SMAD4.
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Mutations in APC (adenomatous polyposis coli) or CTNNB1
(b-catenin) result in constitutive activation of the Wnt pathway, an
essential first step in the molecular sequence of events underlying
the adenoma–carcinoma sequence. However, while APC/CTNNB1
mutations are identical throughout a clonal tumour, immunohis-
tochemical analysis reveals heterogeneous expression of nuclear
b-catenin. Nuclear b-catenin accumulation, indicative of high
levels of Wnt pathway activity, is found in tumour cells at the
invasive front with lower nuclear b-catenin in the centre of the
tumour (Brabletz et al, 2001). This indicates that the ‘constitutively
active’ Wnt signalling caused by APC/CTNNB1 mutations is
actually still modulated by tumour cell intrinsic and/or extrinsic
factors (Fodde and Brabletz, 2007). This results in high levels of
Wnt signalling specifically in cells at the invasive front, which
underlies the cancer stem cell properties and metastatic potential of
these cells (Vermeulen et al, 2010). What these Wnt modulating
factors are remains unknown but these nuclear b-catenin
expressing cells at the invasive front only arise after an adenoma
becomes a carcinoma and in the proximity of the stroma and are
thought to be the result of an interaction between tumour cell
intrinsic and extrinsic factors. It is likely that tumour cell intrinsic
factors are, therefore, mutations occurring at this point in the
adenoma to carcinoma sequence, the commonest of which are
SMAD4 and p53 mutations (Cho and Vogelstein, 1992; Sjoblom
et al, 2006). SMAD4 and p53 have both already been shown to
influence Wnt signalling in vitro (Kim et al, 2011; Freeman et al,
2012). How these two molecules influence the Wnt pathway is
unknown, but it is likely to involve modulation of a Wnt
interacting pathway, as neither is directly involved in Wnt
signalling. The main Wnt-antagonising pathway in the intestine
is the BMP pathway (Wakefield and Hill, 2013). Tumour cell
extrinsic, stromal factors that have been proposed from indirect
evidence to influence tumour cell Wnt activity include the
Forkhead transcription factors acting via, among others, the
BMP pathway, HGF, PDGF and COX2 (Fodde and Brabletz, 2007).
However, recent research in several tumour types has identified
BMP pathway components as stromally produced factors influen-
cing tumour progression (Sneddon et al, 2006; McLean et al, 2011;
Karagiannis et al, 2013). Although the BMP pathway is classically
thought to be tumour suppressive in nature (Hardwick et al, 2004;
Beck et al, 2006; Auclair et al, 2007), our previous work in
pancreatic cancer would suggest that BMPs can promote invasion
in the context of SMAD4 loss (Voorneveld et al, 2013), and others
have shown that related molecules (TGFb) can do the same in the
context of aberrant p53 (Adorno et al, 2009). As high levels of Wnt
signalling promote invasion, we hypothesised that this may be due
to these mutations altering the influence of stromally produced
BMPs on Wnt signalling.

The critical interaction between BMP and Wnt signalling in the
intestine is exemplified by their roles in crypt–villus homeostasis.
In normal intestine, the BMP and Wnt pathways interact to
control cell fate (Radtke and Clevers, 2005). BMPs that induce
differentiation are produced at the top of the villus and antagonise
Wnts, which are responsible for a progenitor phenotype, and are
produced in the crypt. BMP antagonists from stromal myofibro-
blasts near the crypt base further ensure that stem cells are not
exposed to BMPs, thus both epithelial and stromal cells contribute
to BMP signalling (Kosinski et al, 2007). Experiments in transgenic
mice show the importance of the BMP pathway in intestinal
neoplasia and suggest that this occurs through the influence of the
BMP pathway on the Wnt pathway (He et al, 2004).

In summary, we hypothesised that a combination of SMAD4
loss, p53 mutations and BMP signalling may explain the high levels
of Wnt signalling seen in CRC cells at the invasive front that is
thought to be responsible for the stem-like phenotype, metastatic
potential and chemoresistance of these cells. We therefore set out
to investigate the influence of BMP signalling on Wnt signalling in

CRC, how two of the most common mutations occurring late in
the adenoma–carcinoma sequence influence this and how this
influences CRC chemosensitivity.

MATERIALS AND METHODS

Patient information (stage I/II CRC). Formalin-fixed, paraffin-
embedded tissues from 94 patients with stage I/II CRC who
received surgery between 1980 and 2001 were used for the study.
We studied stage I/II cancers because these cancers are at a stage
before metastasising. In these cancers, one might expect to find
both tumours with a low metastatic potential as tumours with a
high metastatic potential. Using cancers with more advanced stage
is likely to select for the more aggressive invasive/metastatic
tumours where there will be less difference in metastatic potential.
Blocks were selected from the archives of the Pathology
Department at the Leiden University Medical Center, Leiden,
The Netherlands. All the samples were handled in a coded fashion,
according to National ethical guidelines (‘Code for Proper
Secondary Use of Human Tissue’, Dutch Federation of Medical
Scientific Societies).

Immunohistochemistry

SMAD4 and b-catenin. Sections were deparaffinized, immersed in
0.3% hydrogen peroxide in methanol for 30 min to block for
endogenous peroxidase activity and antigen retrieval was per-
formed in 1� Tris/EDTA, pH 9.0, for 30 min at 97 1C.
Nonspecific binding sites were blocked with 10% normal goat
serum for 10 min. SMAD4 primary antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA, USA; sc-7966, B-8, mouse
monoclonal) were diluted in PBS/1%BSA/0.1%Triton (1 : 400)
and incubated for 1 h at room temperature. b-catenin
primary antibodies (BD Transduction Laboratories, Breda, The
Netherlands; 610154, mouse monoclonal) were diluted in PBS/
1%BSA/0.1%Triton (1 : 400) and incubated overnight at 4 1C. Poly-
HRP-Goat-a-Mouse (Immunologic, Duiven, The Netherlands)
antibodies were used as secondary antibodies. Peroxidase activity
was detected with fastDAB (Sigma-Aldrich, St Louis, MO, USA).
Every staining included a negative control where we used the same
protocol but without the primary antibody.

P53, BMP2, BMP4, BMP6 and BMP9. The sections were
deparaffinized and immersed in 0.3% hydrogen peroxide in methanol
for 30 min. Antigen retrieval was achieved by heating for 10 min to
97 1C in sodium citrate, pH 6.0, and nonspecific binding sides were
blocked by incubation with TENG-T (10 mmol l� 1 Tris, 5 mmol l� 1

EDTA, 0.15 mol l� 1 NaCl, 0.25% gelatin, 0.05% Tween 20, pH 8.0)
for 10 min. P53 (sc-126, DO-1, mouse monoclonal), BMP2 (sc-6895,
N-4, goat polyclonal), BMP4 (sc-393329, D-6, mouse monoclonal)
and BMP6 (sc-27409, D-19, goat polyclonal) primary antibodies were
obtained from Santa Cruz Biotechnology. BMP9 antibodies
(ab35088, rabbit polyclonal) were obtained from Abcam (Cambridge,
UK). All primary antibodies were diluted in PBS/1%BSA/0.1%Triton
(1 : 100). Incubation took place overnight at 4 1C and the Dako
detection system LSABþ System-HRP (Dako, Glostrup, Denmark)
was used. Peroxidase activity was detected with fastDAB (Sigma-
Aldrich). Every staining included a negative control where we used
the same protocol but without the primary antibody. Antibody
specificity was tested using western blot analysis on colorectal cancer
cell lines and colorectal cancer samples (Supplementary Figure 1).

Tissue analysis. The analysis was performed in a blinded fashion
by two investigators independently. The scoring was done
according to the scoring systems supplied in the Supplementary
Methods.
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Cell lines. HCT116, DLD-1, SW480, RKO, LS174T, HT-29 and
HEK-293 cells were obtained from the ATCC. HCT116
SMAD4� /� , HCT116 p53 R248, HCT116 p53� /� and
DLD-1 SIL/þ cells were the kind gift of Dr B Vogelstein (Johns
Hopkins University, Baltimore, MD, USA). A description of the
generation of the cell lines was previously published (Zhou et al,
1998; Sur et al, 2009). All cell lines were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco, Paisley, Scotland) with
4.5 g l� 1 glucose and with 580 mg l� 1

L-glutamine. This was
supplemented with penicillin (50 U ml� 1) and streptomycin
(50 mg ml� 1) and with 10% fetal calf serum (FCS) (Gibco) unless
stated otherwise. All in vitro experiments were performed on cells
growing exponentially.

Reagents. Stock solutions of recombinant human BMP2 ligands
(R&D systems, Minneapolis, MN, USA) were prepared in
phosphate-buffered saline (PBS) and subsequently dissolved in
culture medium (100 ng ml� 1) containing 0.5% FCS. Stock solutions
of LDN-193189 (AxonMedchem BV, Groningen, The Netherlands)
were prepared in dimethyl sulphoxide (DMSO) and subsequently
dissolved in a culture medium containing 10% FCS (5 nM).

BMPR2 transfection. Cells were transiently transfected with
either a pcDNA4/TO*BMPR2 plasmid or pcDNA4/TO control
vector (Invitrogen, Breda, The Netherlands). pcDNA4/TO*BMPR2
plasmid was constructed by digesting a previously developed
pcDNA3.1*BMPR2 construct (Rosenzweig et al, 1995) using
HindIII and BamHI restriction enzymes and subsequently placing
the BMPR2 sequence into a pcDNA4/TO plasmid. The efficiency
of transfection was evaluated by co-transfection with pmaxGFP
control vector (from Amaxa GmbH, Cologne, Germany).
Efficiency of transfection was determined by the measurement of
GFP-positive cells and was at least 70%. All the experiments where
BMPR2 transfection was used, were done in normal culture
conditions, which includes 10% FCS.

Luciferase reporter assays. Transcriptional activity of canonical
BMP, TGF-b and Wnt signalling was measured by transfection of
BRE-Luc, CAGA-Luc or WRE-luc/MRE-luc, respectively (Dennler
et al, 1998; Korchynskyi and Ten, 2002; van et al, 2011).
Transfection efficiency was corrected by co-transfection of a CMV
promoter-driven Renilla luciferase vector (Promega, Leiden, The
Netherlands). Transfections were performed using Lipofectamine
2000 (Invitrogen). Luciferase activity was measured using the
Dual-Glo Luciferase Assay System (Promega) on a Luminometer
(Berthold Technologies, Bad Wildbad, Germany).

Stable knockdown of SMAD4. Lentiviral constructs expressing
shRNAs targeting SMAD4 (TRCN0000040028) and a non-
targeting control construct (SHC002) were obtained from the
Sigma MISSION shRNA library (Sigma-Aldrich). Production of
lentiviruses by transfection into 293T cells has been described
earlier (Carlotti et al, 2004). Cells were selected using puromycin.
The shSMAD4 transduced CRC cell lines were constructed and
used previously (Voorneveld et al, 2014).

Real time PCR. Total RNA was isolated using Trizol (Invitrogen)
according to the manufacturer’s instructions. cDNA was synthe-
sised from 1 mg of total RNA using Random primers (Promega)
and MMLV-reverse transcriptase (Invitrogen). PCR was performed
using the iCycler Thermal Cycler and iQ5 Multicolour Real Time
PCR Detection System (Bio-Rad). GAPDH expression was used to
normalise for variance. Primer sequences and protocols can be
provided upon request.

Wnt specific RT–PCR array. HCT116 and HCT116 SMAD4� /�
cells were transfected with a pcDNA4/TO*BMPR2 plasmid or
pcDNA4/TO control vector and after 24 h, the cells were lysed and
RNA was isolated using RNeasy (Qiagen, Venlo, The Netherlands).
The Human WNT Signalling Targets RT2 Profiler PCR Array was

purchased from SABIOsciences (Qiagen) and used according to
the manufacturer’s instructions.

Immunofluorescence. Cells were allowed to adhere to poly-l-
lysine (Sigma-Aldrich)-coated coverslips, fixed in 4% paraformal-
dehyde and stained in permeabilisation buffer (PBS containing
0.05% Triton X-100) using mouse monoclonal b-catenin (1 : 100)
and goat-anti-mouse 594 nm (1 : 200) antibodies. Slides were
embedded in SlowFade Gold (Invitrogen). Images were obtained
using a Leica TCS SP2 confocal system (Leica, Mannheim,
Germany) and processed using ImageJ software.

Chemosensitivity. Cells were transfected with either a pcDNA4/
TO*BMPR2 plasmid or the pcDNA4/TO control vector 48 h before
the treatment with different concentrations of 5-fluorouracil
(5-FU). After 24 h of 5-FU treatment, cell viability was measured
by adding 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) solution for 2 h at 37 1C (0.5 mg ml� 1) after
which the absorbance of the samples was measured at 562 nm. In
another experimental set-up, cells were treated with 5 nM LDN-
198189 or control (DMSO) for 4 days before the treatment with
different concentrations of 5-FU.

Statistical analysis. In vitro experiments were analysed using
a two-tailed Student’s t-test. Significant differences are presented as
following: *Po0.05; **Po0.01 ***Po0.001. All the experiments
were done with a minimum of three independent experiments. For
the tissue analysis, the Fisher’s exact test was used as appropriate
and performed using SPSS Statistics version 20 (IBM, New York,
NY, USA). A P-value of o0.05 was considered significant. The
hierarchical cluster analysis was performed using JMP 10 (Cary,
NC, USA).

RESULTS

BMPs are expressed abundantly in both the tumour and stroma
at the invasive front. To explore to what extent the BMP
signalling pathway can potentially be activated by BMP ligands, we
assessed the levels of BMP ligand expression at the invasive front.
We stained and scored BMP2, BMP4, BMP6 and BMP9 in the
invasive front of 94 colorectal cancers using immunohistochem-
istry. BMP2, BMP4, BMP 6 and BMP9 ligands were expressed in
the tumour in 45.2%, 10.7%, 50.0% and 90.5%, respectively
(Supplementary Figure 2). In the surrounding stroma, we detected
one or more BMP ligands in 56.0% of the cases. Overall, in all of
the cancer specimens, there were one or more BMPs expressed in
the tumour, stroma or both. From this, we concluded that there are
sufficient BMP ligands present at the invasive front to potentially
activate BMP signalling.

Association between expression of b-catenin, SMAD4 and p53 at
the invasive front in human colorectal cancer tissue. We
analysed the expression patterns of SMAD4, p53 and b-catenin
at the invasive front of 94 CRCs using immunohistochemistry. We
have made use of immunohistochemical analysis methodology that
others have shown to correlate well with the mutation status p53
(see Supplementary Methods) (Curtin et al, 2004; Yemelyanova
et al, 2011). Allelic loss of 18q and SMAD4 mutation also
correlates with SMAD4 expression, but SMAD4 expression can
also be reduced without the presence of mutations or allelic
imbalance (Alazzouzi et al, 2005). A total of 59.6% of the cancers
have a high expression of nuclear b-catenin, 55.3% have aberrant
p53 expression and 40.4% have loss of expression of SMAD4
(Table 1). There is no association between age, gender, stage and
immunohistochemical scoring for p53, nuclear SMAD4 and
nuclear b-catenin, except that patients with SMAD4-positive
cancers are younger (P¼ 0.04). Left-sided tumours have
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significantly higher levels of nuclear b-catenin (P¼ 0.001) and
SMAD4-negative cancers are associated with Microsatellite
stability (P¼ 0.008) and left-sided tumours (P¼ 0.04;
Supplementary Table 1). There is a strong association between
loss of SMAD4 expression and high expression of nuclear
b-catenin (P¼ 0.001), and there is an association between aberrant
p53 expression and high expression of nuclear b-catenin (P¼ 0.04)
(Table 1). To graphically visualise the relationship between the
expression profiles of these three molecules, we used a hierarchical
cluster analysis (Figure 1A). This shows that the majority of
cancers with high nuclear b-catenin staining (n¼ 56) are either
SMAD4 negative and/or p53 aberrant (n¼ 46/56, 82%). Figure 1B
and Supplementary Figure 3 show examples of the four clusters
based on these expression patterns. When comparing patient
characteristics, cluster 1 and 2 cancers are more often left-sided
compared with cluster 3 and 4 cancers (Supplementary Table 2).

BMP/Wnt activity in colorectal cancer cell lines. We investigated
the effects of BMP signalling on Wnt signalling activity in CRC cell
lines. We measured the BMP and Wnt signalling activity in a panel
of CRC cell lines and a control cell line HEK-293 (embryonic
kidney cells) using luciferase reporter assays and found an inverse
correlation between the activity of the two pathways (Figure 2):
Low BMP signalling activity is associated with a high Wnt

signalling activity and vice versa. Mathematically, BMP and Wnt
signalling show a log correlation following the equation WRE-
luc¼ 10^(� 0.564� log(BRE-luc)þ 3.907) with a correlation
coefficient of R2¼ 0.94

BMP activation results in paradoxical Wnt activation in a subset
of CRC cell lines. It is known that BMP signalling can inhibit Wnt
signalling in normal intestinal epithelium, but it is not known
whether the major mutations found in CRC influence this pathway
interaction. We, therefore, activated BMP signalling in a panel of
CRC cell lines and HEK-293 using a pcDNA4/TO plasmid
expressing WT-BMPR2 and measured Wnt signalling activity
using WRE/MRE-luciferase. We have previously shown that
transfection of BMPR2 results in a reliable and robust increase
in BMP signalling activity (BRE-luc) (Kodach et al, 2008) and it
does not lead to the activation of TGF-b signalling (CAGA-luc)
(Supplementary Figure 4). The activation of BMP signalling results
in a reduction of Wnt signalling only in HCT116 and LS174T cells
and the control cell line HEK-293. In HT-29, RKO and SW480
cells, the activation of BMP signalling results in an increase in Wnt
signalling (Figure 3A). To elucidate whether mutations might affect
the BMP–Wnt interaction, we looked at the known mutation
profile of these cell lines to see if this suggested a pattern
(Figure 3B). Interestingly, the two cell lines in which BMP
signalling has a negative effect on Wnt signalling (HCT116 and
LS174T) are both SMAD4 positive and p53 WT. This would
suggest that if either SMAD4 is lost and/or p53 is mutant, the
BMP–Wnt interaction is either reversed or abolished.

The effect of BMP signalling on Wnt signalling is dependent on
the SMAD4 and p53 status. To investigate the influence of
SMAD4 and p53 status on the BMP–Wnt signalling interaction, we
first compared several cell lines in which the p53 and SMAD4
status was manipulated. We activated BMP signalling in colorectal
cancer cells that have intact p53 expression (HCT116) and
compared this with p53 null cells (HCT116 p53� /� ) or p53
mutant cells (HCT116 p53 R248). In p53 expressing cells, BMP
signalling reduces Wnt signalling activity, whereas a mutation in
p53 or the absence of p53 abolishes the inhibiting effect of BMP
signalling (Figure 3C). To further confirm the role of p53 in
influencing the BMP–Wnt interaction, we treated DLD-1 cells, that
naturally contain one mutated and one wild-type p53 allele, with
100 ng ml� 1 BMP2 and compared these with DLD-1 p53 SIL/þ

Table 1. Tumour expression patterns of SMAD4, p53 and
b-catenin

b-catenin

Total High Low

n¼94 (%) n¼56 (59.6%) n¼38 (40.4%) P

SMAD4
Positive 56 (59.6) 25 (44.6) 31 (81.6) 0.001
Negative 38 (40.4) 31 (55.4) 7 (18.4)

p53
Normal 42 (44.7) 20 (35.7) 22 (57.9) 0.04
Aberrant 52 (55.3) 36 (64.3) 16 (42.1)
There is a strong association between loss of SMAD4 expression and high expression of
nuclear b-catenin (P¼ 0.001) and there is an association between aberrant p53 expression
and high expression of nuclear b-catenin (P¼ 0.04) P-value is based on two-sided Fisher’s
exact test.

SMAD4 loos
�-Cateninhigh

Aberrant p53

Examples

SMAD4 negative SMAD4 positive

SMAD4 positive

Aberrant p53 Aberrant p53

Normal p53

�-Cateninhigh �-Cateninhigh

�-Cateninlow

Cluster 1 Cluster 2

C
lu

st
er

 2

C
lu

st
er

 2

C
lu

st
er

 3

Cluster 3 Cluster 4

Only �-Cateninhigh

n =10
SMAD4 loss and /or p53 Aberrant + �-Cateninhigh

n =46
No Alternations

n =20
SMAD4 loss and/or p53 Aberrant

+ �-Cateninlow

n =18

Figure 1. The majority (82%, 46/56) of colorectal cancers exhibiting high levels of nuclear b-catenin at the invasive front have abnormal
expression of SMAD4 or p53 or both. (A) Hierarchical cluster analysis of the expression patterns of b-catenin combined with SMAD4 and p53. The
invasive front of 94 stage I/II cancers was stained and scored for nuclear SMAD4, p53 and b-catenin. (B) Examples of cluster 2 and 3 expression
patterns. (� 400).
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cells, where the mutant p53 allele has been silenced (Figure 3D).
Activating BMP signalling does not lead to changes in Wnt
signalling in the parental DLD-1 cells, but, in the DLD-1 p53
SIL/þ cells, Wnt signalling activity is decreased.

Next, we investigated the role of SMAD4 in the BMP–Wnt
interaction. First, we compared the effect of BMP signalling on
Wnt signalling activity in HCT116 (SMAD4 positive) versus
HCT116 SMAD4� /� cells. Loss of SMAD4 leads to a major
increase in Wnt signalling and reversal of the BMP/Wnt
interaction with BMP activation now leading to an activation of
Wnt signalling (Figure 3C). This was measured both by WRE-luc
and nuclear localisation of b-catenin. The reversal of the BMP–
Wnt interaction due to loss of SMAD4 is further confirmed by the
treatment of HCT116 SMAD4� /� cells with the BMP inhibitor
noggin, which results in reduced nuclear and increased membra-
nous b-catenin (Supplementary Figure 5A).

The role of SMAD4 was further investigated by stable lentiviral
shRNA-mediated knockdown of SMAD4 in LS174T cells and
treatment with 100 ng ml� 1 BMP2. BMP inhibits Wnt signalling
in the control shRNA LS174T cell line, which expresses SMAD4
(Figure 3E). Knocking down SMAD4 switches BMP signalling
from inhibiting to enhancing Wnt signalling. The effect of BMP
signalling on Wnt signalling in SMAD4-negative cells can also be
seen by the increase in mRNA expression of the Wnt signalling
components AXIN2 and c-MYC (Supplementary Figure 5B). We
conclude that the BMP–Wnt interaction is dependent on the
SMAD4 and p53 status.

BMP activation influences Wnt target gene expression to a
greater extent in SMAD4-deficient cells. To obtain insight into
which Wnt pathway-associated genes are affected by the reversal of
the BMP–Wnt interaction due to SMAD4 loss, we performed a
Wnt signalling RT–PCR array while activating the BMP pathway
in two isogenic cell lines with or without SMAD4. Figure 4
demonstrates that the activation of BMP signalling in

SMAD4-positive versus SMAD4-negative cells leads to a completely
different expression pattern of Wnt signalling-associated genes in
the two cell types. It is also notable that BMP pathway activation
leads to larger changes in Wnt gene expression in SMAD4-negative
cells than in SMAD4-positive ones. One of the genes that is
upregulated when activating BMP signalling in SMAD4-positive
cells is CTNNBIP1. The CTNNBIP1 gene encodes for the b-catenin-
interacting protein 1, which binds b-catenin to prevent interaction
with TCF, thereby inhibiting Wnt signalling (Tago et al, 2000;
Yemelyanova et al, 2011). The activation of BMP signalling in
SMAD4-negative HCT116 cells leads to the upregulation of DVL1.
DVL1 encodes for the protein Segment polarity protein dishevelled
homologue (DVL1), which prevents the GSK3b/APC/Axin complex
from degrading b-catenin. The full gene lists with fold changes can
be found in Supplementary Tables 3 and 4.

BMP signalling influences 5-FU chemosensitivity dependent on
the SMAD4 and p53 status. It has been shown that patients with
CRC with low levels of SMAD4 protein expression respond poorly
to 5-fluorouracil (5-FU; Alhopuro et al, 2005). Also, the
inactivation of SMAD4 leads to an increase in 5-FU resistance
(Papageorgis et al, 2011). The inactivation of p53 has also been
shown to result in a poorer response to chemotherapy in vivo
(Lowe et al, 1994) and in vitro (Bunz et al, 1999), although some
reports show otherwise(Hawkins et al, 1996). The use of BMPs has
been proposed as a means of combatting chemoresistance in
several cancer types including CRC (Piccirillo et al, 2006;
Lombardo et al, 2011). We tested the influence of BMP activation
on 5-FU chemosensitivity in SMAD4 and p53 inactivated cell lines.
In SMAD4 and WT p53 expressing parental HCT116 cell line, an
increase in chemosensitivity can be seen when BMP signalling is
activated (Figure 5A). In the p53 mutated HCT116 R248 cell line, a
slight reduction in chemosensitivity can be seen when BMP is
activated, but not in the HCT116 p53� /� cells (Figure 5B and C).
In the HCT116 SMAD4� /� cells, BMP signalling activation
results in less chemosensitivity, especially at high concentrations of
5-FU (Figure 5D). These results suggest that activation of BMP
signalling can increase the effects of chemotherapy as others have
suggested but only in cancers that express SMAD4 and WT p53.

We subsequently investigated the effect of BMP pathway
inhibition by treating cell lines with the BMPR1A (ALK3) inhibitor
LDN-193189. After 4 days of treatment with 5 nM LDN-193189, a
significant decrease in viability can be seen in SMAD4� /� cells
(Figure 5E). At a dose of 5 nM, the kinase inhibitor LDN-193189 is
a highly specific inhibitor of BMPR1A and results in specific
downregulation of BMP signalling compared with TGFb signalling
as measured by reporter assays. Higher concentrations only result
in less specificity (Supplementary Figure 6A–C). Pre-treating
HCT116 SMAD4� /� cells for 4 days with 5 nM of LDN-
193189 followed by subsequent 5-FU treatment resulted in a
stronger decrease in viability (Figure 5F). In summary, in HCT116
cells in which both SMAD4 and p53 are wild type, activation of
BMP signalling results in an increase in chemosensitivity, whereas
BMP inhibition has no effect. In HCT116 SMAD4 wild type, p53
mutant cells, activating or inhibiting BMP signalling has no effect
on chemosensitivity, whereas in HCT116 SMAD4 cells, BMP
activation increases chemoresistance and BMP inhibition increases
chemosensitivity (Figure 5G).

DISCUSSION

The b-catenin paradox cannot be explained by mutations within the
Wnt signalling pathway, as APC/CTNNB1 mutations are clonal
within a tumour. On the basis of several observations made in
previously published studies, we hypothesised that the b-catenin
paradox may at least, in part, be explained by the effects of SMAD4
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loss or p53 mutations on the ability of BMP signalling to suppress
Wnt signalling in colorectal cancer cells at the tumour invasive front.

Further evidence to support the likely involvement of the BMP
pathway in determining the levels of Wnt signalling in tumour cells
at the invasive front is the finding that the combination of
extensive stroma at the invasive front and loss of SMAD4 in the
tumour leads to a poorer prognosis (Mesker et al, 2009). One
potential explanation for this is that SMAD4-independent tumour-
stroma signalling drives invasion and metastasis, both of which are
driven by enhanced Wnt signalling.

We hypothesised that candidate mutations underlying the
b-catenin paradox are likely to be those that occur at the same
stage in tumour progression as the appearance of this phenomenon
itself. High levels of Wnt signalling are seen in cells that have
acquired the ability to invade and metastasise. This occurs at the
transition from advanced adenoma to invasive carcinoma and the
two most frequently occurring mutations at this stage are SMAD4
and p53 mutations. This choice of candidate mutations is further
supported by previous studies showing that SMAD4 loss is
associated with elevated levels of Wnt activity in CRC cell lines
(Freeman et al, 2012) and that p53 mutations increase Wnt
signalling activity in vitro (Kim et al, 2011).

The BMP pathway counteracts Wnt signalling in the normal
colonic epithelium as has been shown by BMP pathway
manipulation in transgenic mouse models (Haramis et al,
2004; He et al, 2004). We hypothesised that SMAD4 or p53
mutations may influence the way BMP signalling activity
modulates Wnt signalling activity despite APC/b-catenin muta-
tions and provide a molecular explanation for the b-catenin
paradox.

We performed our initial analysis in archival human colorectal
cancer specimens in tissue sections at the invasive front. We
assessed nuclear b-catenin, SMAD4 and p53 expression using
immunohistochemistry and found an association between SMAD4
loss and/or aberrant p53 expression and a high level of nuclear b-
catenin (representing high Wnt activity). This provides evidence
in vivo to support previous evidence in vitro that SMAD4 and p53
can alter Wnt signalling activity, revealing for the first time a
connection between SMAD4, p53 and Wnt signalling in the
invasive front of CRC tissue.

To investigate this further, we activated BMP signalling using
transient transfection of BMPR2 in a set of isogenic cell lines in
which p53 and SMAD4 have been genetically manipulated. Although
transient transfection of BMPR2 is a rather artificial method to
activate the BMP pathway, we have previously shown that it is a
reliable way of achieving robust activation of BMP signalling in all
CRC cell lines by circumventing the loss of BMPR2 seen in a
proportion of CRCs and variations in expression levels of BMP
ligands and inhibitors (Kodach et al, 2008). To avoid the possibility
of bias arising from the use of a single method of BMP activation, we
also performed similar experiments using BMP2 ligands in cells that
we have previously shown to have normal BMP receptor levels.

We found an interesting correlation between the p53 and SMAD4
status and the ability of the BMP signalling pathway to modulate
Wnt signalling activity. Wild-type p53 is necessary for BMP to
inhibit Wnt signalling and loss of SMAD4 completely reverses the
BMP–Wnt interaction switching inhibition into activation. It has
been previously described that the effect of cancer signalling
pathways can change due to the mutation or loss of oncogenes
outside the main signalling pathway. This is illustrated by studies
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showing that the Transforming Growth Factor-b (TGF-b) signalling
pathway can either inhibit or promote migration/invasion dependent
on the presence of wild-type or mutant p53 (Adorno et al, 2009).

We also found that the BMP signalling pathway can modulate
the chemosensitivity of 5-FU based on the SMAD4 or p53 status.
The similarity between the effects of BMP signalling on both Wnt
signalling activity and chemosensitivity can be explained by the
previously observed correlation between b-catenin levels and
chemoresistance (Sinnberg et al, 2011).

Our study has several limitations. The study in patient tissue is
limited by the fact that it is difficult to assess BMP signalling
activity in CRC tissue especially when this is SMAD-independent.
We observed an abundance of BMP ligand expression at the
invasive front both in the stroma and the tumour cells, which
would suggest that active BMP signalling is more or less ubiquitous
at the invasive front of CRC. However, we have not analysed the
expression of a large number of other BMP ligands and inhibitors
as it is currently impossible to deduce the integrated effect on
pathway activity even with a much more comprehensive analysis.
Many of the effects of BMP signalling on Wnt signalling seem to be
SMAD4-independent, as we describe in our study. Although
canonical SMAD-dependent BMP activity can be assessed by
nuclear pSMAD1,5,8 localisation using immunohistochemistry as
we have performed previously, there is no equivalent for the
assessment of SMAD-independent BMP activity.

Our study is necessarily highly reductionist in nature. As we
have outlined, there are many other molecular pathways and many
other mutations that could be explored. In fact, one of the cell lines
we used (RKO) is SMAD4 positive and p53 WT, but showed an
increase in Wnt signalling upon BMP activation suggesting the
involvement of other pathways. However, we feel that the study of
the two most important signalling pathways in conjunction with
two of the commonest mutations is a good starting point.

Cancer therapy is increasingly focused on the targeted
pharmacological modulation of the specific molecular pathways
underlying carcinogenesis. Understanding how the major pathways
interact and how mutations influence, this is thus of critical
importance. The clinical implications of this study are that the use
of BMPs in cancer therapy, as has been proposed by previous
studies, could have deleterious effects and should be targeted to
individual cancers. However, interventions to modulate BMP
signalling have the potential to enhance the effect of conventional
chemotherapy dependent on the mutational status of p53 and
SMAD4. This may be especially important in SMAD4-negative
CRCs, which are aggressively invasive and metastatic cancers with
a poor prognosis that respond poorly to current therapy.
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