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Single-Cell Multiomics
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2Biomedical Informatics Program, University of California, San Francisco, California, USA

3Division of Rheumatology, Department of Medicine, University of California, San Francisco, 
California, USA

Abstract

Single-cell RNA sequencing methods have led to improved understanding of the heterogeneity and 

transcriptomic states present in complex biological systems. Recently, the development of novel 

single-cell technologies for assaying additional modalities, specifically genomic, epigenomic, 

proteomic, and spatial data, allows for unprecedented insight into cellular biology. While certain 

technologies collect multiple measurements from the same cells simultaneously, even when 

modalities are separately assayed in different cells, we can apply novel computational methods 

to integrate these data. The application of computational integration methods to multimodal 

paired and unpaired data results in rich information about the identities of the cells present 

and the interactions between different levels of biology, such as between genetic variation and 

transcription. In this review, we discuss both the single-cell technologies for measuring these 

modalities and describe and characterize a variety of computational integration methods for 

combining the resulting data to leverage multimodal information toward greater biological insight.
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1. INTRODUCTION

Recently improvements in molecular biology and microfluidics have aided in the 

development of single-cell isolation and barcoding technologies. These methods now enable 

DNA, mRNA, chromatin, and protein profiles to be measured at a single-cell resolution. 

This technology has significantly advanced our knowledge of biological systems and 

yielded transformative insights into cellular diversity and development (1). Single-cell 

measurements paired with the appropriate analytical tools can reveal differences in cell 

type composition and cell states across conditions, leading to discoveries that increase our 

biological understanding (2).
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Single-cell technologies are particularly powerful in the study of systems with high cellular 

diversity, such as the immune system (3). The immune system is composed of a diverse 

array of cell types and states that maintain homeostasis and can detect and respond to 

threats such as infection and aberrant cell development. Using single-cell methods, we can 

broaden our understanding of the immune system’s complexity, including the heterogeneity, 

development, differentiation, and microenvironments of cells in health and disease.

A variety of technologies have been developed to examine properties of cells at single-cell 

resolution, including information on the transcriptome, genome, epigenome, proteome, and 

spatial organization. While a single modality provides important insights, the combination 

of single-cell data across modalities produces both richer information about individual cells 

and insights into the interactions between different elements of the cell state. Multimodal 

analysis also provides complementary information because each modality has differences in 

dimensionality, sparsity, and sources of noise. Integrating multiple modalities can improve 

our ability to identify cell types, and more broadly offer new insights into how different 

elements of the biological system behave in concert to define cellular behavior.

In this review, we start with a presentation of multiomic technologies available and 

analytical workflows for omic analyses, and then we discuss tools for data integration of 

multimodal single-cell data. This is followed by a description of downstream analyses, as 

well as some of the challenges and next steps in this expanding field.

2. TECHNOLOGIES FOR GENERATING MULTIOMIC DATA

2.1. Transcriptomic Data

Single-cell sequencing methods have been broadly applied in both basic and translational 

research, and many multiomics technologies such as single-cell RNA sequencing (scRNA-

seq) include transcriptomic measurements (Figure 1). In order to measure transcription at 

a single-cell level, each cell must be isolated from its originating tissue, which can be 

done using techniques including fluorescence-activated cell sorting (FACS), laser capture 

microdissection, and microfluidics. Droplet- or microwell-based methods, such as Drop-

seq (4) and 10× Genomics Chromium (5), generate pools of full-length complementary 

DNA (cDNA), enabling unbiased analysis of thousands of cells following Illumina short-

read sequencing. Technologies that leverage nanopore long-read sequencing can generate 

full-length sequences plus information about sequence diversity, splicing, and chimeric 

transcripts (6). New techniques such as split-pooling offer an alternative to cell isolation by 

using combinatorial indexing of single cells (7). Most of these methods are also tag based, 

adding unique molecular identifiers (UMIs) as barcodes at either the 3′ end or 5′ end of the 

transcript (8, 9), which can help reduce polymerase chain reaction (PCR) bias and artifacts 

during analysis. Following tagging, reverse transcriptase is used to obtain cDNA from RNA 

transcripts, which are then amplified and sequenced.

2.2. Genomic Data

Single-cell genome sequencing techniques help elucidate genetic heterogeneity by 

measuring genetic alterations at single-cell resolution. This permits the analysis of de 
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novo germline mutations and somatic mutations in different cell populations. Pairing 

transcriptome and genome single-cell sequencing can help uncover mechanisms of gene 

regulation and genotype–phenotype associations.

G&T-seq (genome and transcriptome sequencing) (10) uses a biotinylated oligo-dT primer, 

with the goal of separating mRNA from genomic DNA (gDNA) within the same cell. 

After cell lysis, the genome and transcriptome are amplified and sequenced in parallel. 

Using this technology, Macaulay et al. (10) detected single-nucleotide variations in gDNA 

and mRNA from the same cell. Although a single-cell’s genomic copy number can be 

inferred indirectly from scRNA-seq data (11), only by applying multi-omics approaches 

can this information be resolved unambiguously. A similar method, DR-seq (gDNA–mRNA 

sequencing) (12) also amplifies small quantities of gDNA and mRNA from single cells. 

Isolated single cells are lysed, barcoded, and mRNA is reverse transcribed into cDNA, and 

both cDNA and gDNA are amplified together then separated for further processing and 

additional amplification.

2.3. Epigenomic Data

Epigenomic data allow us to study the mechanisms that convert genome content into 

multiple functional and stable cellular conditions. Chromatin accessibility indicates the 

physical access to DNA, an essential regulatory mechanism for establishing and maintaining 

cellular identity (13). Single-nucleus ATAC (assay for transposase-accessible chromatin) 

sequencing (snATAC-seq) (14) and snRNA-seq (single-nucleus RNA sequencing) have been 

combined into SHARE-seq (simultaneous high-throughput ATAC and RNA expression with 

sequencing) to generate paired, cell-type-specific chromatin accessibility over thousands 

of cells (15). In this process, barcoded Tn5 transposases are first used to label cells in 

bulk, inserting sequencing adapters into accessible regions of the genome. After this, single 

nuclei are isolated (frequently using microfluidic devices), and cell-identifying barcodes are 

introduced. The Chromium Single Cell Multiome ATAC + Gene Expression assay from 

10× genomics is one of the most popular protocols for this experiment. While snATAC-seq 

tells us which chromatin regions are accessible, other methods can identify the locations of 

specific chromatin proteins bound to DNA. The method scCUT&Tag (single-cell cleavage 

under targets and tagmentation) (16, 17) uses antibodies targeted to the protein of interest 

[e.g., RNA Polymerase II, specific transcription factors (TFs), or histone modifications]. 

The antibodies also tether to a Tn5 transposase–Protein A fusion protein with sequencing 

adapters, so when the transposase is activated, this results in targeted DNA fragments 

for sequencing. Paired-Tag (parallel analysis of individual cells for RNA expression and 

DNA from targeted tagmentation by sequencing) (18) is a multiomic method that adapts 

scCUT&Tag to assay both histone modifications and gene expression by performing reverse 

transcription after tagmentation.

Cytosine methylation is a crucial epigenetic layer that indicates the transcriptional potential 

of genomic DNA (19) and can be detected using bisulfite sequencing. Genomic DNA treated 

with bisulfite converts unmethylated cytosines into uracils, which, after PCR amplification, 

are converted to thymidines, allowing the methylation signal to be derived by comparing 

treated and untreated samples (20). scBS-seq (single-cell bisulfite sequencing) can map 
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methylation locations (21); however, for most loci, the observed sequence reads originate 

from only one chromosomal copy, making it challenging to identify de novo regulatory 

elements.

To overcome this limitation, one can combine scBS-seq with scRNA-seq for scM&T-seq 

(single-cell methylome and transcriptome sequencing) (22). Similar to G&T-seq, single 

cells are isolated via flow cytometry, and DNA and RNA molecules are separated. RNA 

transcripts undergo bead capture and amplification while genomic DNA is further processed 

using bisulfite conversion. This method has been used to analyze the development and 

epigenetic heterogeneity of mouse embryonic stem cells (22). In addition, scNMT-seq 

(single-cell nucleosome, methylation, and transcription sequencing) (23) combines scM&T-

seq with NOMe-seq (nucleosome occupancy and methylation sequencing) (24) to capture 

transcriptome, methylome, and chromatin accessibility at the single-cell level.

2.4. Proteomic Data

mRNA and protein levels are not necessarily correlated, in part because of 

posttranscriptional regulatory mechanisms (5). Many single-cell unimodal proteomic 

methods, such as high-dimensional flow cytometry (fluorophores) and cytometry by time-

of-flight (CyTOF; metal isotopes), use antibodies conjugated to a detectable molecule 

(25). New multimodal methods have been developed to measure both proteomes and 

transcriptomes. Indexed FACS followed by scRNA-seq is one of the simpler methods for 

profiling RNA and a small number of proteins (26). Another method is the proximity 

extension assay (PEA) for protein measurement in parallel with RNA analysis (27). During 

PEA, two cDNA sequences are used to tag two different epitopes of the same protein. 

This facilitates mutual priming and extension into a sequence that can be detected using 

quantitative PCR.

CITE-seq (cellular indexing of transcriptomes and epitopes) (28) expands the dimensionality 

of proteins measured by conjugating antibodies to DNA barcodes that bind cell surface 

proteins [antibody-derived tags (ADT)]. Following incubation with these antibodies, 

sequencing occurs, producing a library of both mRNA and protein levels. REAP-seq (RNA 

expression and protein sequencing) (29) also uses DNA-conjugated antibodies, although 

with a different chemistry. Multiple studies have applied these technologies to examine 

links between the transcriptome and proteome at the single-cell level. MacParland et al. 

(30) examined the cellular landscape of the normal human liver using CITE-seq, leveraging 

both protein and RNA expression to identify 20 hepatic cell populations, including two 

distinct populations of liver-resident macrophages with inflammatory and noninflammatory 

immunoregulatory functions. The trimodal assay TEA-seq (simultaneous trimodal single-

cell measurement of transcripts, epitopes, and chromatin accessibility) (31) builds on these 

approaches to produce measures comparable to unimodal assays, although with somewhat 

lower resolution.

2.5. Spatial Organization Data

In order to understand a system and a cell’s immediate environment it is often necessary 

to profile its spatial organization. A major challenge of single-cell sequencing involves 
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matching the transcriptomic or other cellular properties with their position within a tissue. 

Several approaches including imaging-based techniques and sequencing-based techniques 

have been developed.

Imaging-based technologies, such as those leveraging multiplexed fluorescence in situ 

hybridization (FISH), offer high-spatial-resolution detection of mRNAs at the single-cell 

level (32). Single-molecule RNA imaging approaches, such as single-molecule FISH (33), 

involve multiple short DNA probes conjugated to the same fluorescence dye. Methods such 

as MERFISH (multiplexed error-robust FISH) (34) expand the number of genes measured 

from tens to thousands by using multiple rounds of hybridization. However, the higher 

number of hybridization rounds results in long imaging times, large amounts of data, and 

increased error (35).

Sequencing-based technologies capitalize on barcoding positional information in an array 

to capture and sequence mRNA using untargeted probes. This includes the Visium spatial 

transcriptomic platform (10× Genomics) (36) whose capture area is approaching single-cell 

resolution. Another technology, ZipSeq, enables the researcher to identify tissue regions of 

interest through real-time imaging that then are labeled with printed barcodes (zipcodes) 

to be subsequently sequenced using a standard droplet-based scRNA-seq workflow (37). 

Additional methods such as XYZeq use a spatially barcoded array to label cells rather than 

capture mRNA, such that the tissue can be dissociated and labeled cells sequenced using 

scRNA-seq (38).

3. COMPUTATIONAL INTEGRATION OF MULTIOMIC DATA

Analysis of multiomic data requires processing the different data types; this can be done 

for each modality entirely separately, or by integrating the data types at one of several steps 

in the analysis. Below, we describe the workflow for single-cell mono-omic analysis as a 

scaffold for contextualizing multiomic integration (Figure 2).

3.1. Single-Cell Mono-Omic Analysis

Standard computational processing for scRNA-seq can be divided into different steps, 

including data alignment, quality control (QC), normalization, integration, and visualization 

(Figure 2). There are several tools that enable this analysis, including some developed by 

companies that sell the reagents for the single-cell experiments, such as Loupe Browser by 

10× Genomics (https://www.10xgenomics.com/products/loupe-browser), along with web-

based interfaces that provide user-friendly tools (40).

The first step involves aligning raw data to the genome, producing a count matrix of features 

(e.g., genes, transcripts) per cell. Alignment methods include STAR (spliced transcripts 

alignment to a reference) (41) and Kallisto (42), which are also used for bulk RNA-seq data, 

as well as Cell Ranger (10× Genomics) (5), which is specific to single-cell sequencing.

QC filtering is an essential procedure, since barcodes that represent unwanted droplets, 

such as dying cells, empty droplets, or contamination, are often present. The most general 

filtering criteria include removing cells with high numbers of mitochondrial-encoded genes 
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and with low numbers of mRNA transcripts and library sizes (43). Identifying low-quality 

cells can be difficult and is highly dependent on the biological properties of the sample. 

Another data quality challenge is the identification of doublets, or droplets containing more 

than one cell.

The next step is to normalize gene expression data to account for technical and biological 

variation. Commonly, expression is scaled to a fixed number of counts per cell (often 

10,000) and log-normalized. This is followed by the selection of highly variable genes, 

with the goal of reducing data size to facilitate further processing, while keeping relevant 

biological features for downstream clustering and visualization. Features are then scaled or 

centered; at this step, desired covariates may also be regressed out.

Application of dimensionality reduction methods, usually principal component analysis 

(PCA), is the next step for summarizing the data. After this, a shared neighborhood graph is 

built based on the distances between cells in the reduced space, and graph-based community 

detection methods, such as Louvain (44) or Leiden (45) clustering, are used to group similar 

cells into clusters. These clusters are then examined for differential expression (DE) of key 

markers and annotated with cell types. Clusters are visualized with t-distributed stochastic 

neighbor embedding (t-SNE) (46) or uniform manifold approximation and projection 

(UMAP) (47), which are graph-based dimensionality reduction methods designed to help 

preserve structure for visualization.

Different modalities require different bioinformatics approaches. For snATAC-seq data, after 

mapping raw transcripts to a reference genome (also performed in scRNA-seq), peaks are 

called. Alternate QC metrics, including TSS enrichment and fragment size distribution, are 

used for filtering; after this, because of the sparsity of snATAC-seq data, latent semantic 

indexing is used for dimensionality reduction instead of PCA. This is followed by clustering 

and visualization, similar to scRNA-seq. Software such as ChromVar (48), Signac (49), 

and ArchR (50) provides a framework for the analysis of single-cell chromatin data by 

performing several analysis tasks, including dimensionality reduction, integration, and the 

discovery of enriched DNA sequence motifs.

3.2. Batch Correction and Mono-Omic Integration

Batch effect correction across libraries is often necessary. Methods such as those provided 

by the limma package (51) and ComBat (52) fit a linear model containing a blocking 

term for the batch structure, but these existing methods were designed for bulk RNA-seq 

and make assumptions that might not be suitable for scRNA-seq. Other methods were 

developed for single-cell data (53, 54), for example, identifying mutual nearest neighbors 

(MNNs) between batches and calculating the difference in expression values between cells, 

which are then used for correction (55). Scanorama (56) and Seurat integration (57, 58) 

also leverage a variation of the MNN method. Another method, Harmony (59), uses a 

low-dimensional space to group the data into distinct clusters, favoring diverse clusters from 

different datasets. Seurat and Harmony, as well as multiple additional methods, such as 

LIGER (linked inference of genomic experimental relationships) (60), CyCombine (61), and 

Cobolt (62), can be used for both batch correction and multimodal integration (see Section 4 

below for more about these methods).
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3.3. Bulk Multiomic Integration

Computational methods for single-cell multiomic integration have been greatly influenced 

by the existing methodology in the bulk space. Integrative multiomic methods for bulk 

measurements (i.e., per-sample rather than per-cell measurements) have been developed and 

reviewed extensively (63, 64). These methods can be broadly categorized into three classes 

of approaches. Joint dimensionality reduction methods seek to produce a shared lower-

dimensional space from multiple omic datasets that maximize covariance. These include 

multiple co-inertia analysis (65), joint and individual variance explained (66), canonical 

correlation analysis (CCA) (67), multiomic factor analysis (MOFA) (68), generalizations 

of non-negative matrix factorization (NMF) (such as intNMF, jointNMF, and multiNMF) 

(69), and partial least squares (DIABLO) (70). Several of these have been adapted for use 

on single-cell multiomic data, which are discussed in Section 4.2.2 below. Similarity- or 

network-based methods, such as similarity network fusion (71), first compute similarities 

per modality, followed by integration. Finally, statistical methods model the underlying 

distribution of the data, using either a Bayesian prior (e.g., Bayesian consensus clustering) 

(72) or different distributional assumptions (e.g., PARADIGM, iCluster) (73, 74). These 

integrative multiomic methods have been applied to examine underlying structure in the data 

such as disease heterogeneity (68) and to relate biological measurements to categories and 

outcomes of interest such as cancer type (75) and survival (64).

4. SINGLE-CELL MULTIOMIC INTEGRATION

Multimodal single-cell experiments can yield either paired (from the same cell) or unpaired 

(from different cells) measurements (Figure 3). Paired data require specific experimental 

protocols, yielding high-resolution insights into individual cells. Unpaired measurements 

may result from the same sample separated into portions for each modality, or from two 

datasets measuring similar populations of cells (e.g., same species and tissues), and could be 

gathered together by different laboratories for different experiments.

The type of measurement (paired versus unpaired) greatly affects downstream computational 

integration, as one is a problem of vertical integration (different measurements from the 

same cells) and the other is diagonal integration (different measurements from different 

cells)—horizontal integration involves the same type of measurement across different cells 

and is discussed above in Section 3.2 (76). Because of these key differences, the following 

sections separately cover methods designed for paired (Section 4.1) and unpaired (Section 

4.2) data. We also address the case where the data are partially paired (Section 4.3) (Table 

1).

Multimodal integration often requires transformation of the input data to a shared feature 

space in order to analyze the modalities together. For example, snATAC-seq data include 

locations of accessibility peaks while scRNA-seq data involve counts per gene. For 

integration, the accessibility peaks are converted to a gene matrix; the simplest method for 

doing this involves summing the counts over the promoter and gene body. Other methods, 

such as Cicero (77), model the relationship between accessibility and expression and convert 

snATAC-seq data to the gene level. Certain multimodal data integration methods leverage 
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matrices generated from paired data to perform this conversion (78), while others are able to 

take the raw peak data as input to their models (62, 79).

4.1. Methods for Paired Data

Paired associations can be examined via (a) transferring labels from one modality to another, 

(b) creating a shared low-dimensional space, or (c) late integration (63, 80), which we define 

as data integration after dimensionality reduction.

4.1.1. Label transfer.—The simplest way of examining relationships between cells 

with paired multimodal data involves clustering in one modality and then overlaying 

measurements from other modalities to further understand the behavior of the cells in each 

cluster. For paired spatial transcriptomic assays, such as Visium, XYZeq, and ZipSeq, this 

is often a key component of the analysis: Transcriptomic data are processed following the 

mono-omic workflow, and then cell labels are transferred to the spatial locations. Initial 

efforts for paired assays, such as for CITE-seq (28), involved defining a low-dimensional 

space and clustering based on gene expression, followed by examination of the cell surface 

markers within each cluster. While this allows for examination of multiple data types, it 

misses information added by the cell surface markers that could separate cell populations in 

clustering. For T and natural killer (NK) cell subpopulations, which are hard to distinguish 

based on transcriptomic data (28), using clusters based on transcription alone may reduce 

our ability to identify these populations.

4.1.2. Joint dimensionality reduction.—In the case where multiple modalities can 

aid in distinguishing between cell types, computational methods for paired multimodal 

integration can be used to create a shared low-dimensional space. The low-dimensional 

space can also be used for clustering and data visualization. There are several ways to 

generate this shared low-dimensional space, including by matrix decomposition and by 

neural network–based methods.

4.1.2.1. Matrix decomposition.: Single-cell experiments generate hundreds to thousands 

of measurements per cell, leading to large cell–measured feature matrices. As one of the first 

steps in single-cell mono-omic analysis, dimensionality reduction is performed to identify 

underlying axes of variation and reduce the number of dimensions for downstream analysis. 

In most cases, PCA is used. Matrix decomposition divides a matrix into the product of two 

matrices, a matrix of latent factors-by-samples and a matrix of factors-by-features, such that 

each data point in the original matrix is made up of a linear combination of the underlying 

factors multiplied by their loadings. For dimensionality reduction, the number of factors 

selected is less than the original number of features, so each sample (in this case, cell) can be 

represented by a smaller number of values. PCA works by identifying independent factors 

that explain the maximum amount of variation in a dataset. Multiple additional matrix 

decomposition techniques exist, including independent component analysis and NMF; these 

can also be leveraged to combine multiple data types into a shared space (81).

Factor analysis is a widely used technique for identifying a small number of latent factors 

that drive observed variation in a dataset. MOFA (68) is a method for identifying shared 
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and modality-specific factors within a dataset. The authors of MOFA+ (82) extended the 

original bulk-focused method to accommodate the large sizes of single-cell datasets and to 

consider group relationships between cells. Consideration of group structure is particularly 

important in single-cell analysis because each sample contains a set of cells, rather than a 

single measurement.

Another method, scAI (single-cell aggregation and integration) (83), iteratively performs 

matrix decomposition, learning both a low-dimensional representation and a cell–cell 

similarity matrix across paired transcriptomic and epigenomic measurements. The cell–

cell similarity matrix can be used for linking between modalities, while the shared 

dimensionality reduction is used for clustering and downstream cell type identification.

Argelaguet et al. (82) applied MOFA+ to a mouse scNMT-seq dataset of 1,800 cells at 

three time points in mouse development, and used the resulting latent factors to identify 

different lineages in development. Jin et al.’s (83) application of scAI to an sci-CAR dataset 

from 8,800 kidney cells led to better identification of subpopulations than with scRNA-seq 

alone. The authors also used the joint clustering and cell similarity matrix to perform motif 

discovery and examine cell-type-specific TF patterns.

4.1.2.2. Neural networks.: Matrix decomposition methods such as PCA and factor 

analysis assume linearity of the feature space, which is not the case for most biological data. 

For example, bulk gene expression measurements follow a negative binomial distribution; 

for single-cell data, this is often zero-inflated because of dropout (84). Neural network 

methods allow for the modeling of nonlinear relationships. In particular, several multimodal 

integration methods leverage variational autoencoders (VAEs), which, similar to PCA and 

factor analysis, perform dimensionality reduction, identifying a reduced latent space to 

describe the data. VAEs consist of an encoder, a decoder, and a loss function. The encoder 

iteratively learns the latent space (or encoding) from the data and the decoder regenerates 

the data from the reduced-dimensionality latent space. A loss function minimizes the error 

in data reconstruction, keeping the maximum amount of information in this latent space, 

and regularization is used to reduce the number of latent variables, avoid overfitting, and 

increase model interpretability.

The method totalVI (total variational inference) (85), which is part of the Python library 

scvi-tools (86), uses VAEs to integrate scRNA-seq and protein data from CITE-seq, while 

considering each modality’s different background and noise distributions. Leveraging an 

RNA noise model from scVI (single-cell variational inference) (87), totalVI also includes 

a protein model that separates protein signal from background, where background includes 

both the antibodies in empty droplets and nonspecific binding. Following this correction, 

totalVI learns a joint probability distribution for integration and joint dimensionality 

reduction. This results in a 20-dimensional latent space for integration, clustering, and 

visualization. A new addition to scvi-tools (86), multiVI (88), focuses on integrating 

scRNA-seq and snATAC-seq using the scVI (87) RNA and the peakVI (89) accessibility 

models for each modality, respectively.

Flynn et al. Page 9

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2024 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Other VAEs for multimodal integration include scMVAE (single-cell multimodal VAE) (90), 

which leverages a VAE with a probabilistic Gaussian mixture model because it has been 

shown to work better with sparse inputs, which is important for integrating epigenomic 

data. scMM (79) extends this, using a mixture of experts multimodal VAE (MVAE), which 

models the raw count data in each data type separately (the experts), so that the posterior 

distributions are estimated separately and then mixed evenly in the joint representation. For 

chromatin accessibility data, scMM uses a zero-inflated negative binomial model to model 

peak counts. The authors also provide a procedure for generating so-called pseudocells 

from different latent variables to aid in model interpretability. Another method, Cobolt (62), 

works for both unimodal and multimodal data. Both scMM and Cobolt work with peak 

summaries directly and do not summarize them to the gene level.

Application of totalVI (85) to a CITE-seq dataset of over 32,000 mouse spleen and lymph 

node cells allowed for better characterization of variation in B cell populations, identifying 

a unique subpopulation of mature B cells. Zuo & Chen (90) applied the scMVAE method 

to paired snATAC-seq and scRNA-seq data from a mixture of human cell lines to predict 

TF–target gene pairs, two-thirds of which were in an existing regulatory network database.

4.1.3. Late integration using shared neighborhood graphs.—In a single-cell 

analysis workflow, following dimensionality reduction, a neighborhood graph is generated 

and then clustered. A UMAP or t-SNE is often derived from the neighborhood 

graph for two-dimensional visualization. While matrix decomposition and VAEs perform 

dimensionality reduction, shared neighborhood graphs work downstream of standard 

dimensionality reductions (e.g., PCA) to perform joint clustering.

The method CiteFuse (91) uses network fusion to combine low-dimensional representations 

of ADT and RNA data, allowing for downstream identification of ligand–receptor 

interactions. Weighted nearest neighbors (WNN) (92) (available in Seurat v4) learns cell-

specific weights for each modality and uses these to generate a shared nearest-neighbor 

graph across modalities. The cell-specific modality weights are based on how well a cell’s 

neighbors in each modality predict the cell’s profiles for both modalities. These weights 

make WNN robust to cross-modality variation in data quality and number of features, as 

well as the amount of information provided for each cell (e.g., antibody data are generally 

more helpful for identifying immune cells).

Hao et al. (92) demonstrated that applying WNN to a cord blood mononuclear cell CITE-seq 

dataset improved separation between CD8+ and CD4+ T cells and identified a subpopulation 

of NK cells. Application of WNN to bone marrow mononuclear cell and peripheral blood 

mononuclear cell (PBMC) CITE-seq datasets with larger antibody panels, as well as to 

Multiome from 10× Genomics and SHARE-seq datasets, also demonstrated improved 

separation of cell types when including multiple modalities to define clusters.

4.2. Methods for Unpaired Data

While paired data provide important insights about within-cell relationships, they can only 

be produced by experimental technologies designed for multiple measurements (e.g., G&T-

seq, scM&T-seq) and it is not always possible to use these methods. This could be in 
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part due to cost, timing, or limitations in available technology and information provided. 

Examination of unpaired data also allows for the combination of data across batches and 

the reanalysis of existing datasets. As a result, methods for integrating unpaired single-cell 

measurements are required. Similar to methods for paired data, we organize these methods 

into three categories: label transfer, joint dimensionality reduction, and late integration.

4.2.1. Label transfer.—Label transfer is generally used when one modality provides 

less information than the other modality, such as with sparse epigenomic measurements or 

spatial data. One example, scJoint (93), performs a neural network–based dimensionality 

reduction to generate a shared space and then uses the k-nearest neighbors to identify 

the nearest labeled neighbors of an unlabeled cell and transfer labels. Mixing in the low, 

shared-dimensional space is thereby improved using the transferred labels.

4.2.2. Joint dimensionality reduction.—While label transfer can be helpful in 

many contexts, it biases the results to one modality and may miss the signal provided 

by the combination of modalities. Generating a shared low-dimensional representation, 

for downstream clustering and annotation, provides a powerful technique for combining 

datasets. While the goal of dimensionality reduction is similar to the case of paired data, 

different methodologies are required to address the challenge of diagonal integration (e.g., 

different cells, different measurements).

4.2.2.1. Matrix decomposition.: Above we described how methods for matrix 

decomposition are regularly used in unimodal analysis (e.g., PCA) and can help with 

identifying latent factors in paired data (e.g., with factor analysis). For unpaired data, matrix 

decomposition methods can also be used to identify shared factors. Below, we highlight two 

NMF methods, as well as a method that uses CCA to perform integration.

NMF is a dimensionality reduction technique that results in factors with only positive 

entries. These positive, sparse loadings make the relationships between samples and factors 

(as well as features and loadings) more interpretable; the loadings in the sample-by-factor 

matrix can be interpreted as soft-clustering assignments of samples to latent factors (81, 

94). One method, coupled NMF (78), along with the use of NMF to identify shared factors, 

also uses a conversion (or coupling) matrix generated from publicly available paired data to 

translate between snATAC-seq and scRNA-seq measurements.

LIGER (95) is another NMF-based method that leverages integrative NMF (iNMF) to 

combine datasets. iNMF(94) expands upon NMF to combine datasets into sets of shared and 

dataset-specific latent features. Following iNMF, LIGER creates a shared factor graph by 

identifying cells across datasets with similar factor neighborhoods. Clustering is performed 

on this graph, and the factor loadings of the smaller dataset are quantile normalized to 

match the larger one. UINMF (96) is an extension of LIGER that learns low-dimensional 

representation from both shared and unshared features. When combining other modalities 

with scRNA-seq, there are often many unshared features; for spatial data this is often genes, 

and in accessibility data this can be intergenic regions. UINMF improves integration with 

little additional computational cost by including this information. Another expansion of 

LIGER to include online learning (97) was designed for integrating large datasets with fixed 
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amounts of memory. Online iNMF breaks datasets into mini-batches, which are used to 

iteratively update the NMF factors and loadings.

CCCA identifies pairs of maximally correlated canonical variables, which are linear 

combinations of the variables in each dataset. Stuart et al. (58) used CCA and anchor finding 

(Seurat v3) to combine unpaired multimodal datasets. Briefly, the datasets are reduced into 

a joint low-dimensional space with CCA, and then pairs of cells (anchors) between datasets 

are identified in this space, filtered, and scored based on their shared nearest neighbor 

overlap. One dataset (the query) is then transformed based on the other (reference) by 

the weighted average of the integration anchor vectors, resulting in a corrected expression 

matrix.

Duren et al. (78) applied coupled NMF to examine the effects of retinoic acid treatment 

on mouse embryonic stem cells. Using both expression of TFs from scRNA-seq and TF 

motif enrichment in chromatin-accessible regions from snATAC-seq, the authors constructed 

cluster-specific gene regulatory networks (GRNs) based on proximity (see Section 5.5).

Both Welch et al. (95) and Stuart et al. (58) each applied their respective methods to mouse 

cortex samples to integrate scRNA-seq data with epigenomic and spatial measurements. 

The authors demonstrated that integration across data types leads to identification of cell 

types not found within the sparser modality alone (snATAC-seq, methylation, or spatial). 

Integration with spatial data also allowed for the examination of the expression localization 

of genes not labeled by spatial methods.

4.2.2.2. Neural networks.: While most neural network–based integration methods exist 

for paired data, a small number can be used with unpaired data. scDART (single-cell deep 

learning model for ATAC-seq and RNA-seq trajectory integration) (98) is a model designed 

for integrating snATAC-seq and scRNA-seq data. scDART learns the gene–chromatin region 

relationships from the data instead of using a predefined gene activity matrix, which allows 

for nonlinear relationships between regions and genes and does not assume colocalization 

of regulation and expression. scMoGNN (99) is a graph neural network–based method. 

The authors of this model used it because it aggregates information from the neighborhood 

graph, and it has had success in single-cell unimodal analysis (100). scMoGNN starts with 

cell–feature bipartite graphs for each modality and learns separate low-dimensional spaces 

for each modality that are then aggregated in a joint network. The method also allows for the 

addition of known information on between-modality interactions to the graph.

4.2.2.3. Manifold alignment.: Several methods for unpaired integration leverage the 

technique of manifold alignment, which has been used in other domains to join multiple 

data types resulting from observations of the same events. Manifold alignment works by 

generating a low-dimensional space or manifold for each modality, and then aligning the 

manifolds to create a shared space.

MATCHER (manifold alignment to characterize experimental relationships) (101) adapted 

manifold alignment to combine single-cell datasets from different modalities, specifically 

focusing on applications related to development—assuming the single-cell data exist on 
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a 1D manifold that only moves in one direction. Another manifold alignment method, 

MAGAN (manifold aligning generative adversarial network) (102), does not require input 

data to exist on a 1D trajectory. MAGAN also leverages generative adversarial networks 

(GANs) (103), which are a pair of neural networks that compete to fool each other. The 

authors use GANs in part because they scale better for massive datasets than most other 

graph-based manifold alignment methods.

Welch et al. (101) applied MATCHER to two paired single-cell transcriptome and 

methylome datasets, demonstrating its ability to accurately align these data types and 

examine the epigenome/transcriptome relationship during stem cell development. Amodio 

et al. (102) applied MAGAN to combine scRNA-seq and flow cytometry data, as well as 

CyTOF data, demonstrating that this method can align similar cell populations.

4.2.3. Late integration.—Late integration of unpaired multiomic data involves 

alignment of modalities that have already been processed and projected into a low-

dimensional space. Aligning these data often occurs by jointly clustering across modalities, 

or training models of the relationship between data types.

4.2.3.1. Joint clustering.: Some late integration methods combine modalities during 

clustering. Harmony (59) is a soft-clustering-based method that is generally used for 

integrating across mono-omic batches, but it can also be applied to multimodal datasets. 

Harmony starts with principal component space representations of the datasets, and then 

iteratively assigns cells to soft clusters while maximizing the diversity of the datasets within 

each cluster in order to obtain clusters that are organized by cell type rather than dataset. 

CyCombine (61) is a method for combining cytometry measurements, such as those from 

CITE-seq or CyTOF, across batches, panels, and modalities. CyCombine clusters cells using 

a self-organizing map (104) for dimensionality reduction and clustering and then applies 

ComBat (105) to each cluster of cells to perform batch correction.

Korunsky et al. (59) applied Harmony to a spatial (MERFISH) and scRNA-seq dataset to 

generate a shared low-dimensional space. This improved the cell type labels for the spatial 

dataset, identified cell population locations, and predicted the localization TFs not measured 

in the spatial data. Pedersen et al. (61) demonstrated that CyCombine allowed for the 

examination of similar populations across technologies, integrating over 6,700 PBMCs from 

spectral flow, CyTOF, and CITE-seq.

4.2.3.2. Bayesian methods.: Satija et al. (106) developed an integration method for 

combining spatial and scRNA-seq data that leverages Bayesian methods and implemented 

this in their software Seurat (v3.2+). Their integration method first trains a LASSO (least 

absolute shrinkage and selection operator) model (107) on the scRNA-seq data to impute 

the expression of each of the spatial or landmark genes. The spatial data are divided into 

bins, and for each bin, a multivariate normal model is trained to predict the joint expression 

of landmark genes from scRNA-seq. Finally, for each cell in the scRNA-seq data, the 

posterior probability of each bin is estimated and summarized to identify the cell’s location. 

clonealign (108) is a method for combining unpaired single-cell genomic and transcriptomic 

data to assign expression to clones in cancer data. For each clone, clonealign models the 
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relationship between copy number variation and expression, adding a term for noise and 

covariates of interest, and then estimates the assignment of each cell across clones using the 

variational Bayes method.

Satija et al. (106) combined FISH and scRNA-seq data from zebrafish embryos to generate 

high-resolution maps of gene expression localization and identify rare cell populations 

and their locations. Campbell et al. (108) applied clonealign to identify clone-specific 

differentially regulated genes in an ovarian cell line not identified by the scRNA-seq data 

alone.

4.3. Methods for Partially Paired Data

Many of the methods for paired data, including MOFA+ (82), totalVI (85), multiVI (88), 

scMM (79), and Cobolt (62), also work in the case that the data are only partially paired 

(i.e., only a portion of cells have measurements from multiple modalities). Other methods 

were developed specifically for this case; for example, Hao et al. (109) introduced a method 

for multimodal bridge integration (Seurat) to allow for mapping across multiple modalities 

to an scRNA-seq reference. The method uses dictionary learning to identify underlying 

elements of each modality in a paired dataset, and then uses this as a bridge to impute 

measurements in the unpaired data.

For data from one modality (i.e., if the second modality is fully missing), it is also possible 

to computationally generate profiles for another modality if a model exists to predict 

these measurements. BABEL (110) is a deep learning method for translating between 

expression and chromatin accessibility. The method includes scRNA-seq and snATAC-seq 

encoder/decoder pairs to translate in either direction. The model is trained on data from 

PBMCs, as well as colon, colorectal and lymphoblastoid cell lines—as such, it shows better 

performance in data on cell types more similar to those in the training dataset, but it can also 

be applied in other contexts.

5. DOWNSTREAM ANALYSIS

Following multimodal integration, clustering, and cell type identification, a variety of 

methods can be applied to examine associations within and between modalities. Many of 

these methods are also applied to unimodal datasets following clustering, with the key 

difference being that the clusters are defined based on a single data type rather than multiple 

data types.

Downstream methods are applied at the single-cell or pseudobulk level. For pseudobulk 

analysis, the measurements of cells within a single cluster or group of clusters are 

summarized together, making them appear similar to the bulk assay of that modality. 

Pseudobulk summarization can occur across the whole cluster (or group of clusters)—or 

can be separated by biological samples within that cluster (e.g., for n samples in a cluster, 

we could calculate n pseudobulk measurements).
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5.1. Differential Expression Analysis

DE analysis helps with the identification of cell types and with the examination of 

differences between groups of samples. Tools originally developed for bulk RNA-seq 

data [e.g., DESeq2 (111), edgeR (112)] are regularly applied to single-cell data, after 

summarization to pseudobulk measurements, to identify differentially expressed genes 

(DEG). In addition, an increasing number of DEG analysis methods have been developed 

for single-cell data, with varying strengths and limitations (113, 114). For example MAST 

(84), which uses a Hurdle model and a normalization procedure that transforms the UMI 

counts into a dense matrix, is especially useful for handling zero-inflation and zero-deflation 

present in single-cell data. Monocle (115) uses a generalized additive model and has proven 

to be successful in handling the response variables of both categorical and continuous data 

(116). Methods such as SCDE (single-cell differential expression) (117) that use a mixture 

model are commonly used to capture the different abundance of specific transcripts in each 

cell.

Differential analysis tests are specific to the feature types collected by each modality. 

For example, for snATAC-seq data, differences in peak locations or accessible regions are 

generally examined.

5.2. Gene Set Enrichment Analysis

Aggregating genes to the gene set or pathway level both reduces the number of tests and aids 

in the interpretability of DEG results. Most gene set enrichment methods test for significant 

associations with curated gene sets from databases such as MSigDB (Molecular Signatures 

Database) (118, 119). Gene set enrichment analysis (GSEA) (118, 120) is a method 

developed for bulk gene expression data that ranks genes by expression (usually average 

log-fold change across conditions) and uses a Kolmogorov–Smirnov test to determine 

whether a set of genes is overenriched at the top or bottom of this ranked list. Single-sample 

GSEA (121) ranks the gene expression of each sample separately; a variation of this is often 

applied to single-cell analysis, with rankings calculated at the cell rather than sample level. 

GSVA (gene set variation analysis) (122) is another sample-based nonparametric gene set 

enrichment method created for bulk data, which can be applied to individual cells rather 

than samples. Several single-cell-specific methods have been developed for gene enrichment 

[e.g., Pagoda (123), AUCell (124)]. These are reviewed elsewhere (125, 126), along with 

their relative performance compared to bulk methods.

WGCNA (weighted gene co-expression network analysis) (127) does not rely on existing 

sets of genes; rather, it constructs a network from the data, with each edge weight 

corresponding to the co-expression of the genes it connects. The method is helpful for 

grouping highly correlated genes into clusters, which can then be analyzed for DE.

5.3. Quantitative Trait Loci

In quantitative trait locus (QTL) analyses, tests for associations between genetic variants 

and changes in another modality (e.g., expression, methylation, splicing) are performed to 

identify QTLs [e.g., expression QTL (eQTL), methylation QTL, or splicing QTL]. The 
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majority of these analyses have been performed to examine associations with eQTLs, so we 

focus on this modality here, but similar principles apply for other modalities.

Previous bulk RNA-seq studies have identified both widespread and tissue-specific eQTLs 

(128). While single-cell eQTL analyses have lower statistical power because of increased 

sparsity and smaller dataset sizes than bulk analysis, they are better at detecting cell type and 

context-dependent associations (129). For single-cell eQTL (sc-eQTL) analysis, annotated 

clusters are summarized to pseudobulk measurements and tested for associations between 

genetic variants and expression. Genetic data are often gathered separately, with either a 

genotyping array or whole-genome sequencing; however, it is possible to call variants from 

scRNA-seq alone (130).

Most eQTL analyses focus on cis-eQTLs, which are proximal (with a defined region, often 

1–2 kb) to the gene they are associated with, because subsetting to a local region reduces the 

number of tests performed. CRISPR/Cas9 genome editing combined with paired genomic 

and transcriptome measurements (e.g., G&T-seq) can be used to generate experimental 

eQTLs, which are helpful for identifying trans-eQTLs (nonproximal) (129).

Multiple sc-eQTL studies (131–133) have identified both known (i.e., matching those from 

bulk) and novel cell- and context-specific associations. For example, Yazar et al. (133) 

identified 26,597 cis- and 990 trans-eQTLs in a dataset of 1.3 million PBMCs from 

982 donors across 14 immune cell types, many of which were associated with known 

autoimmune disease risk loci.

5.4. Trajectory Inference

Single-cell omics provides a powerful tool for understanding dynamic processes such as 

cell development and activation. By assuming that transcriptomic similarity is the driving 

force of differentiation, computational trajectory inference or pseudotime methods can track 

a progression along a differentiation pathway (134). The structure of the dynamic process 

can either be linear, bifurcating (or tree shaped), or nonlinear (e.g., cyclic). The majority of 

these algorithms require previous knowledge to determine the process’s direction and are 

applied following a standard workflow, after which these cells are ordered and abstracted 

into a graph (135). The most popular trajectory inference methods include Monocle (115, 

116), slingshot (136), and PAGA (partition-based graph abstraction) (137).

Incorporating pseudotime with different biological measurements (e.g., epigenetic, protein 

level, and spatial information) can provide a better representation by which to understand 

processes in differentiation and development (138). MATCHER (101), which was discussed 

above in the context of paired data, uses a manifold alignment approach; it has been used 

to reconstruct the correlation between transcriptomic and epigenetic changes in embryonic 

stem cells.

5.5. Regulatory Network Analysis

Understanding the structure of GRNs has been a central goal of systems biology research. 

While many methods infer GRNs from scRNA-seq data (reviewed in 139), identifying 

these networks from transcription data alone is challenging (140), and analysis of single-

Flynn et al. Page 16

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2024 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell multimodal data can provide complementary for examining regulation. In particular, 

multimodal data containing epigenomic (e.g., snATAC-seq, methylation) and transcriptomic 

measurements can help identify these regulatory relationships (scRNA-seq and proteomic 

data can also be helpful for examining signaling networks). Genetic perturbation screens by 

methods such as CRISPR/Cas9 also help infer GRNs (141). These screens can be assayed by 

scRNA-seq [e.g., Perturb-seq (142)] or multimodal methods such as G&T-seq for examining 

both expression and genome editing.

Following integration of multimodal data, regulatory relationships can be explored by 

examining the correlations and colocalizations of open regions, methylation sites, or 

regulatory motifs with gene expression. These relationships are often explored by cluster, 

using pseudobulk summarization. For example, Welch et al. (95) calculated correlations 

between methylation signal and the expression of known TFs in order to examine cell-type-

specific regulation patterns. Using accessibility data, Duren et al. (78), constructed GRNs 

using edges between proximal-cluster-specific accessible peaks and expressed genes. Duren 

et al. (78), Jin et al. (83), and Stuart et al. (58) also all identified cluster-specific TF motifs 

using RNA expression of TFs and enrichment of TF motifs in accessible regions.

In addition to postintegration comparisons at the cluster level, several methods have been 

developed specifically for identifying GRNs from multimodal data, including MIRA (143), 

scBPGRN (single-cell back-propagation GRN) (144), and Symphony (145).

6. CHALLENGES

Single-cell multiomic analysis presents several unique challenges. Improvements to 

single-omic technologies that help address noise and limitations of these methods will 

improve multiomic technologies as well. For example, for scRNA-seq and the multimodal 

technologies that include it, the incomplete capture of mRNAs presents a challenge, which 

newer microfluidic technologies attempt to tackle (146). Paired multiomic technologies can 

be costly and often involve an extra step in experimental processing. Protocols that use 

manual isolation to separate the nucleus and the cytoplasm (e.g., G&T-seq, scM&T-seq) 

can lose mRNA and DNA molecules, and this loss can be partially avoided by using 

other methods (e.g., DR-seq) that process the DNA and the RNA molecules together in a 

preamplification step (147). The options for paired multiomic technologies also do not cover 

all possible pairs and groupings of single-omic methods; future work is required to generate 

and optimize protocols for measuring novel combinations of omics technologies.

Computationally, integration across single-cell modalities can be challenging. All methods 

for single-cell multimodal integration must address a variety of challenges related to each 

modality’s noise, features measured, and information provided. Each data type presents 

its own bias: Spatial and protein data have both probe- and antibody-related background 

signals, scRNA-seq data have ambient RNA and problems of dropout, and epigenomic 

data involve sparse binary or almost binary measurements. Additionally, there are large 

differences in the numbers of features measured, ranging from tens or hundreds for spatial 

and protein data to tens of thousands for scRNA-seq data.
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While many integration methods create a shared low-dimensional representation that can 

be visualized using UMAP or t-SNE, additional methods for visualizing the relationships 

between modalities are required (148). Models that can impute missing data or modalities 

are limited by the data on which they are trained, and since most analyses have focused on 

PBMCs and cell lines, further work is required to optimize protocols and analyses for tissue 

samples. Difficulties also exist that are related to the large size and sparsity of the single-cell 

data. Neural network and online learning methods help scale integration to increasingly large 

and atlas-sized datasets, but this issue, along with dataset sparsity, must be a continued area 

of consideration.

7. SUMMARY AND PERSPECTIVES

In the past decade, the ability to make high-dimensional measurements at the single-cell 

level has skyrocketed and continues to increase in throughput and affordability. These 

technologies have extended to multiomic measurements within and across cells, providing 

complementary and integrated information about cellular state and behavior. With these 

multimodal technologies have come a variety of methods for data integration and analysis, 

which we have reviewed here.

Multiomic data paired with computational integration approaches hold tremendous potential. 

Big cataloging efforts are underway that phenotype cell types and tissues in the human body 

at the single-cell level, including the Human Cell Atlas (149) and the Tabula Sapiens project 

(150); beyond this, multiomic approaches are being applied across patient populations as 

a means of understanding biological variation and disease states. As we move forward, it 

will be critical to share these data broadly and to reach a consensus around which methods 

are most effective for extracting biological information. In addition, we should seek to 

share these data and methodologies in a form that is readily accessible to the research 

community, such that limitations in data science expertise and compute infrastructure are 

not barriers to discovery. In doing so, we can open up new dimensions of single-cell patient 

profiling toward precision-level understanding of disease mechanisms, disease progression, 

and opportunities for treatment.
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Figure 1. 
An overview of multimodal technologies. Multimodal technologies listed involve the 

simultaneous measurement of transcriptomic, genomic, epigenetic, proteomic, or spatial 

information. Technologies listed are not comprehensive but represent many of the most 

prevalent technologies used, as described in more detail in the text. Abbreviations: 

CITE-seq, cellular indexing of transcriptomes and epitopes; DR-seq, genomic DNA–

messenger RNA sequencing; FISH, fluorescence in situ hybridization; G&T-seq, genome 

and transcriptome sequencing; MERFISH, multiplexed error-robust FISH; Paired-Tag, 

parallel analysis of individual cells for RNA expression and DNA from targeted 

tagmentation by sequencing; PEA, proximity extension assay; REAP-seq, RNA expression 
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and protein sequencing; scBS-seq, single-cell bisulfite sequencing; scM&T-seq, single-

cell methylome and transcriptome sequencing; scRNA-seq, single-cell RNA sequencing; 

SHARE-seq, simultaneous high-throughput ATAC and RNA expression with sequencing; 

smFISH, single-molecule FISH; TEA-seq, simultaneous trimodal single-cell measurement 

of transcripts, epitopes, and chromatin accessibility. Figure adapted from images created 

with BioRender.com.
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Figure 2. 
Experimental and data processing workflows of single-cell sequencing data. Typical 

processing involves tissue preparation, single-cell isolation, and sequencing (experimental 

steps are highlighted in green), followed by alignment, normalization, dimensionality 

reduction (DR), neighborhood graph generation, and cell clustering. This is followed by 

cell type annotation and downstream analysis. Steps where multimodal integration is often 

performed are highlighted in light blue and marked with an asterisk, with the integration 

phase (joint DR, late integration, or label transfer) listed underneath. Figure adapted from 

images created with BioRender.com.
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Figure 3. 
Computational strategies for single-cell multiomic integration. (a) Types of input data: 

paired, unpaired, and partially paired. Different colors represent different modalities, and 

cell diagrams show whether these are measured on the same or separate cells. (b) Integration 

techniques: matrix decomposition, shared neighborhood graphs, joint clustering, manifold 

alignment, Bayesian methods, and neural networks. Figure adapted from images created 

with BioRender.com.
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