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Abstract

INTRODUCTION: Alzheimer’s disease (AD) is the most prevalent neurodegenerative

disease, yet our comprehension predominantly relies on studies within non-Hispanic

White (NHW) populations. Here we provide an extensive survey of the proteomic

landscape of AD across diverse racial/ethnic groups.
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METHODS: Two cortical regions, from multiple centers, were harmonized by uniform

neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as

African American, 229 as Latino American, and 434 as NHW.

RESULTS: While amyloid precursor protein and the microtubule-associated protein

tau demonstrated higher abundance in AD brains, no significant race-related differ-

ences were observed. Further proteome-wide and focused analyses (specific amyloid

beta [Aβ] species and the tau domains) supported the absence of racial differences in

these AD pathologies within the brain proteome.

DISCUSSION: Our findings indicate that the racial differences in AD risk and clini-

cal presentation are not underpinned by dramatically divergent patterns in the brain

proteome, suggesting that other determinants account for these clinical disparities.
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Highlights

∙ We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG

(244) across AD cases.

∙ About 50% of samples were from racially and ethnically diverse brain donors.

∙ Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages.

∙ No significant race-related differences in amyloid and tau protein levels were

observed in AD brains.

∙ AD-associated protein changes showed a strong correlation between the brain

proteomes of African American andWhite individuals.

∙ This dataset advances understanding of ethnoracial-specific AD pathways and

potential therapies.

1 BACKGROUND

Alzheimer’s disease (AD) presents a significant global health challenge,

with its prevalence affecting millions worldwide.1,2 Notably, African

Americans (AAs) and Hispanic Americans (HAs) are almost twice as

likely as non-Hispanic Whites (NHWs) to develop AD and/or other

dementias.3,4 The mechanisms contributing to this disparity are mul-

tifaceted, including a combination of genetic differences, as well as

societal and environmental inequities that disproportionately affect

minoritized populations.4–12 Emerging evidence suggests differences

in some molecular measures, such as lower cerebrospinal fluid (CSF)

levels of tau and other synaptic proteins in African Americans with

AD compared toNHWs.13,14,15 A recent CSF proteome analysis across

diverse populations with AD highlighted potential racial differences in

the molecular basis of AD.14 Specifically, that study found that pro-

teins involved in cytoskeletal function and gluconeogenesis are less

abundant in the CSF of African Americans with AD, suggesting that

variations in biomarkers, including tau and amyloid beta (Aβ), might

reflect broader, race-specific differences in the brain proteome. These

findings underscore the importance of further research into the pro-

teomic changes in AD, as they could provide critical insights into how

the disease manifests differently across populations, potentially guid-

ingmorepersonalized approaches todiagnosis and treatment. There is,

however, a significant gap in our understanding of the ethnoracial dis-

parities inherent in the pathophysiology of AD. To address this gap in

knowledge, theNational Institute onAging andAcceleratingMedicines

Partnership in AD (AMP-AD) sought to promote inclusivity in multi-

omics AD research and to unravel unique molecular signatures and

pathways.16

Proteins serve as optimal markers for understanding “pro-

teinopathies” like AD and other neurodegenerative disease due

to their proximity to pathologic and phenotypic changes in disease.17

With the advancement of multiplex isobaric tandemmass tags (TMTs),

off-line fractionation, and high-resolution mass spectrometry (MS),

proteomic datasets are now approaching the scale and depth of

transcriptomic datasets.18–23 However, a comprehensive and detailed

proteome dataset of the human brain spanning various regions, races,

and ethnicities is lacking. Such a resource could uncover race-specific

protein differences, shedding light on distinct pathophysiologies,

biomarkers, and potential therapeutic targets.
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Using TMT coupled with MS (TMT-MS), we report here the deep

proteome (∼10,000 proteins) of the post mortem dorsolateral pre-

frontal cortex (DLPFC) from 998 individuals and the superior temporal

gyrus (STG) from 244 individuals across control and pathologically

defined AD cases. Of these, approximately 50% of the samples were

from racially and ethnically diverse donors. Implementing a method-

ology for quality control (QC) measures, we ensured the removal

of batch-related variations from the dataset using a previously pub-

lished method.24,25 Subsequently, variance partition analyses were

carried out to identify top proteins based on individual characteris-

tics, such as sex, race, and AD diagnosis, across both DLPFC and STG

tissues. Through TMT-MS, we characterized core proteins associated

with AD pathology, including amyloid precursor protein (APP) and the

microtubule-associated protein tau (MAPT), revealing a clear correla-

tion of APP and MAPT levels with Consortium to Establish a Registry

for Alzheimer’s Disease (CERAD) and Braak stages. Furthermore, we

show consistency between Apolipoprotein 4 (apoE4) protein levels

with APOE4 genotyping in the brain.

Furthermore, we present an analysis exploring regional differences

in brain proteome, focusing on tau tangles and amyloid plaques. Our

findings demonstrated a consistent association between proteins cor-

related with APP and MAPT across both the DLPFC and STG regions.

Additionally, we conducted a global differential abundance analysis

of the proteome, including AD hallmark protein fragments such as

Aβ42, Aβ40, and specific tau domains, with a focus on racial differ-

ences. This analysis revealed a shared pattern of global differences in

the AD proteome, with only a few distinct protein abundance varia-

tions in African Americans. In addition, no differential abundance was

observed in Aβ42, Aβ40, MAPT, or most MAPT domains. This com-

prehensive large-scale proteomic dataset establishes the foundation

for a better understanding of ethnoracial-specific proteinmodulations,

distinct pathways, pathologies, biomarkers, and potential therapeutic

targets in AD.

2 METHODS

2.1 Brain tissue collection

The proteomics data utilized in this study were a part of the AMP-AD

Diversity Initiative, a collaborative effort involving multiple research

sites. The comprehensive dataset includes information from different

multi-omics data, including proteomics, genomics, and metabolomics.

While the data generation and case selection analysis has been exten-

sively described in the data descriptor manuscript,26 this study specif-

ically focuses on database search, QC, and technical validation of the

proteomics data.

In brief, brain samples were collected with the involvement of four

institutions or data contribution sites: Mayo Clinic, Rush University,

Mount Sinai University Hospital and Emory University. The goal of this

initiative is to include diverse contributions fromAfricanAmerican and

Latino American populations. Each of the data contribution sites gath-

ered brain samples from affiliated brain banks, cohort studies, and AD

RESEARCH INCONTEXT

1. Systematic review: Large-scale unbiased quantitative

proteomics analysis ofADbrain in a racially andethnically

diverse population is lacking.

2. Interpretation: We provide the largest ethnoracially

diverse proteomic dataset to date, focusing on two dis-

tinct regions in the brain. AD-related elevations in tau

and amyloid levels are consistent across self-identified

racial groups. A global analysis of AD-associated protein

changes showed a strong correlation between the brain

proteomes of African American and White individuals,

with few distinct differences in each racial group.

3. Future directions: Combining the comprehensive pro-

teomic dataset presented in this study with paired tran-

scriptomics and genomics data in the future, holds the

promise to unveil the intricate network of molecular tar-

gets and biomarkers that contribute to the multifaceted

nature of AD pathogenesis across diverse populations.

Research Centers (ADRCs) and were sent to Emory proteomics core

for proteomic processing. A total of 1105 DLPFC tissues from 998

individuals were sent from all four data contribution sites including

n = 129 from Emory University (including 22 samples from University

of Pennsylvania), n = 399 fromMayo Clinic, n = 205 fromMount Sinai

University Hospital, and n = 372 from Rush University. Frontal brain

tissues from each contribution site were processed separately from

the others. In addition, among Emory samples, 26 from Mount Sinai

University were replicated, and among Mayo Clinic samples, 81 were

replicated from Emory University samples.

A total of 280 STG tissues from 244 individuals were obtained from

Emory University (n = 129) and Mayo Clinic (n = 151), and both were

processed simultaneously.

2.2 Tissue homogenization, protein digestion,
TMT peptide labeling, and liquid chromatography
with tandem mass spectrometry

Tissue homogenization, protein digestion, TMT peptide labeling, pH

fractionation, and liquid chromatography withmass spectrometry (LC-

MS/MS) are described in detail elsewhere.26 In brief, all samples

were homogenized using 8 M urea lysis buffer mixed with HALT pro-

tease and phosphatase inhibitor in a Bullet Blender (NextAdvance).

Samples were then sonicated and centrifuged, and the supernatants

were collected for further analysis. A bicinchoninic acid (BCA) assay

(Pierce) was used for protein concentration measurements. For pro-

tein digestion, initially, equal amounts of protein from each sample

were aliquoted and pooled to create a global pooled internal standard

(GIS) for each TMT batch. Therefore, the GIS in each batch made by
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combining portions from all samples within that batch. Then 100 µg

of each sample was aliquoted and normalized across samples. Proteins

were reduced with the addition of 1 mM dithiothreitol (DTT) followed

by 5 mM iodoacetamide (IAA) alkylation. Samples were mixed with

lysyl endopeptidase (Wako) at 1:100 (w/w) for overnight digestion.

Further digestion was carried out by the addition of 50 mM ammo-

nium bicarbonate at seven-fold dilution, and trypsin (Promega) was

added at 1:50 (w/w) for 16 h. Next, samples were acidified by adding

(vol/vol) formic acid (FA) to the concentration of 1% and (vol/vol) tri-

fluoroacetic acid (TFA) to a concentration of 0.1%. Protein solutions

were then desalted with a 30 mg Hydropilic-Lipophilic Balanced col-

umn (Oasis), rinsed and washed with 1 mL 50% (vol/vol) acetonitrile

(ACN), and equilibrated with 2×1 mL 0.1% (vol/vol) TFA. Two volumes

of 0.5 mL 50% (vol/vol) CAN were used for sample elution followed

by dehydration using SpeedVac. For TMT labeling, each brain peptide

digest was resuspended in 75 µL of 100 mM triethylammonium bicar-

bonate (TEAB) buffer, and 5 mg of TMT reagents was dissolved in

200 µL of acetonitrile (ACN). Then 100 µg of peptide samples were

aliquoted and resuspended in 100 µL TEAB buffer. After bringing the

TMT reagents to room temperature andmixing with ACN, 41 µL of the

TMT solution was added to each peptide solution and incubated for

1 h. The reaction was stopped with the addition of 8 µL of 5% hydroxy-

lamine. The labeled sampleswere then combined, concentrated using a

SpeedVac, and diluted with 0.1% TFA. After acidification, the peptides

were desalted using a C18 Sep-Pak column, washed, and eluted with

50% ACN. The eluates were dried using a SpeedVac. Dried peptides

were resuspended in a high-pH loading buffer (0.07%NH4OH, 0.045%

FA, 2% ACN) and loaded onto a Waters Bridged Ethylene Hybrid col-

umn. HPLC systems Thermo Vanquish and Agilent 1100 were used

for fractionation at a flow rate of 0.6 mL/min with a 25-min gradi-

ent. The mobile phases were 0.0175% NH4OH, 0.01125% FA, and 2%

ACN for solvent A and 0.01125% FA, 0.0175%NH4OH, and 90% ACN

for solvent B. In total, 192 fractions were collected, pooled into 96

or 48 fractions, depending on cohort, and then dried with a Speed-

Vac. The same methods were used for fractionating additional cohorts

offline.

TMT-MS was carried out by resuspending the dried fractions in

loading buffer (0.1% FA, 0.03% TFA, 1% ACN) and analyzing them

using LC-MS/MS. Peptide separation was achieved on a self-packed

C18 column (1.9 µm, 25 cm × 75 µm ID) using a Dionex UltiMate 3000

RSLCnano systemwith a 180-min gradient at a flow rate of 225 nL/min.

After performing full scans (m/z350 to1500, 120,000 resolution) using

themass spectrometer’s data-dependentmode, theMS/MSscanswere

performed using higher energy collision-induced dissociation (HCD).

2.3 Database searches and protein quantification

All raw files underwent a database search using Fragpipe (version 19.0)

for DLPFC and STG datasets, separately. The database search param-

eters have been described elsewhere.27,28 Initially, mzML files were

created from the original MS .raw files for frontal (6479 raw files

across 72 batches) and temporal regions (1824 raw files across 19

batches) using the ProteoWizard MSConvert tool (version 3.0) with

specific options, including “Write index,” “TPP compatibility,” “Use zlib

compression,” and a “peakPicking” filter setting.

Following the creation of mzML files for each set, they were sub-

jected to a search usingMSFragger (version 3.5). The human proteome

database used contained 20,402 sequences (Swiss-Prot, downloaded

February 11, 2019) along with corresponding decoys and common

contaminants. The sequences included additional specific peptide

sequences for the APOE ε4 and APOE ε2 alleles.29

The search settings included a precursor mass tolerance of −20
to 20 ppm, a fragment mass tolerance of 20 ppm, mass calibration,

parameter optimization, isotope error set to−1/0/1/2/3, strict-trypsin
enzyme specificity, and allowance for up to two missed cleavages.

Fully enzymatic cleavage type, peptide length (7 to 50), and peptide

mass (200 to 5000 Da) criteria were defined. Variable modifications

included oxidation on methionine, N-terminal acetylation on protein,

and TMTpro modification on the peptide N-terminus, with a maximum

of three variable modifications per peptide. Static modifications com-

prised isobaric TMTpro (TMT16) modifications on lysine, along with

carbamidomethylation of cysteine.

In the Post-MSFragger (version 3.6) search, Percolator30 was used

for Peptide-Spectrum Match validation, succeeded by Philosopher

(version4.6.0) for protein inferenceusingProteinProphet and falsedis-

covery rate (FDR) filtering. Reports containing quantified peptides and

UniprotID-identified proteins with FDR< 1%were generated.

Following the initial protein search andQC steps for protein search,

we conducted a targeted re-search of our proteomics data, focusing

on peptides of interest, including four main domains of MAPT and the

amyloid cleavage fragments Aβ40 andAβ42, as described elsewhere.31

The domain-level search included independent sequences for MAPT

(P10636_8) targeting the N-terminal (amino acids, 1 to 126), proline-

rich domain (PRD) (amino acids 127 to 242), microtubule binding

region (MTBR) (amino acids, 243 to 369), andC-terminal region (amino

acids 370 to 441).

2.4 Data analysis and QC

In this study, the analysis was performed using the traits provided by

SAGE at https://www.synapse.org/Synapse:syn51757646. These data

are available for general research use following the access guidelines

provided at the following link: https://adknowledgeportal.synapse.org/

Explore/Studies/DetailsPage/StudyData?Study=syn51732482.

The data analysis, using R statistical software (version 4.3.2), fol-

lowed a three-step process:

2.4.1 Step 1: Preprocessing for missing values

Proteins with missing data in less than 50% of the samples were

retained as described.21,32 The ratio of protein abundance to the total

protein abundance for each samplewas calculated to adjust for sample

loading differences. Subsequently, a log2 transformation was applied

https://www.synapse.org/Synapse:syn51757646
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyData?Study=syn51732482
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyData?Study=syn51732482
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to enhance the normality of the distribution of protein abundance,

addressing potential skewness and stabilizing variance across samples.

2.4.2 Step 2: Outlier detection and removal

Iterative principal component analysis (PCA) was employed to identify

and eliminate samples more than four standard deviations from the

mean of either the first or second principal component, as previously

described.33,34 Multiple iterations of PCA were conducted, with out-

liers from each round being systematically removed before initiating

the subsequent iteration.

2.4.3 Step 3: Accounting for batch effect

A linear regression model was fitted to estimate the effect of protein

sequencing batch. We then regressed out the batch effect from the

protein abundance before the next step of analysis to minimize batch

effects and enhance the reliability of downstream analyses.

This process was explained in previous studies.24,25

2.5 Variance partition analysis

To explore how different traits influence protein abundance, we

applied variance partition analysis (VPA).35 This model allowed us to

break down the overall variability in our data and determine howmuch

each trait, such as sex, race (comparing African American or Black

individuals to all other races), and AD diagnosis (comparing AD to all

other diagnoses), contributes to the observed differences. We also

accounted for other residual factors in our models. Themodel we used

can be represented by the following equation:

yij = 𝜇 + 𝛼i + 𝛽j + 𝛾k+ ∈ ijk.

In this equation, yij represents the abundance of a specific pro-

tein, μ is the overall mean protein abundance, αi denotes the effect

of sex, βj represents the effect of being African American or Black, γk
accounts for the effect of AD diagnosis, and ϵijk is the residual error

that includes other unexplained sources of variation.

We estimated the contribution of each factor to the total variance

using a linearmixed-effectsmodel, which allowed us to break down the

observed variability into variance components for each factor. These

contributionswere thenquantified asproportionsof the total variance.

2.6 Data QC for APP and MAPT domains and age
and sex regression

We applied two-way median polish with TAMPOR to correct for

batch effects, as described elsewhere.14,31,36 To ensure that amyloid

fragments andMAPT domains were not affected by any potential con-

founding effects other than race and AD diagnosis, the data were

bootstrapped toadjust for ageandsex in follow-updifferential analysis.

2.7 Differential abundance analysis

A one-way ANOVA followed by Tukey’s post hoc test for multiple com-

parisons was conducted on two sets (Control-White vs AD-White and

Control-African American vs AD-African American) to identify pro-

teins with differential abundance across diagnoses within each racial

group. The findings were then visualized as volcano plots using the

ggplot2 package in R, as previously described.14,31

2.8 Shiny APP

An interactiveweb-based ShinyAPP (https://telomere.biochem.emory.

edu/diversity/) is provided to facilitate analysis of this dataset. A Shiny

app is an interactive web application built in R that allows users to

explore and visualize large data. In our study, one of the features of the

Shiny app is a volcano plot comparing protein abundance between AD

and control samples, with options to interactively select proteins and

generate corresponding boxplots. Users can explore data by traits like

race, APOE genotype, and sex, with race-specific comparisons. The app

also includes a bookmarking feature to save and share specific views,

making it a powerful tool for understanding proteomic changes in AD.

3 RESULTS

3.1 Cohort characteristics

We analyzed a diverse set of brain samples (Figure 1A), which included

486 samples from 434 unique non-Hispanic White (NHW) individuals,

328 samples from 273 unique non-Hispanic Black or African Ameri-

can individuals, and 229 samples from229Hispanic/Latino non-White,

non-Black (non-African American) individuals. Additionally, the study

included smaller groups from mixed or other racial backgrounds: 11

samples from Asian individuals, five samples from American Indian or

Alaska Native individuals, and four samples from unknown racial or

ethnic groups. In this study, our analysis primarily focused on racial dif-

ferences, comparingWhite individuals directly with African Americans

(irrespective of ethnicity). Out of 1105 DLPFC tissues, 645 were from

AD brains, 250 were from controls, and 210 had other diagnoses or

missing or unknown diagnoses.

The 280 STG samples included 116 samples from 116 unique NHW

individuals, 86 samples from 77 African American individuals, and 78

samples from 51 Hispanic/Latino individuals. Out of 280 STG tissues,

178 samples were collected fromAD brains, 87 from controls, 14 from

other diagnosis, and one from someone with a missing or unknown

diagnosis.

Samples were collected from different sites and underwent TMT-

MS in different batches. Collectively, TMT-MS led to a total of 6479

https://telomere.biochem.emory.edu/diversity/
https://telomere.biochem.emory.edu/diversity/
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F IGURE 1 (A) Schematic illustrating cohort characteristics and experimental workflow for TMT-MS of human brain proteome across frontal
and temporal brain tissue samples. This study incorporated a total of 1105DLPFC brain tissues from 998 individuals, categorized as follows: 486
NHW, 328 African American, 229 Latino American, and others as applicable. These samples were sourced from four prominent data distribution
sites: Emory University, Mayo Clinic, Rush University, andMount Sinai University Hospital. Additionally, 280 STG tissues from a subset of 244
individuals were included, with 116NHW, 86 African American, 78 Hispanic, and others as applicable. STG samples were obtained from a racially
diverse set of specimens originating fromMayo Clinic and Emory, distributed across 19 batches. Tissues underwent an experimental pipeline
involving protein digestion, batch randomization, TMT labeling, fractionation, and subsequentMSmeasurements. A total of 72DLPFC batches
were processed, comprising nine batches from Emory, 24 fromMayo Clinic, 14 fromMount Sinai, and 25 fromRush (comprising a total of 72
batches). Batches were randomized to ensure a representative and diverse dataset. The output included a total of 6479 raw files for DLPFC
samples and 1824 raw files for STG. (B) Venn diagram of total number of proteins quantified fromDLPFC and STG samples. A total of 11,748
protein groups were identified fromDLPFC and 11,003 from STG samples, with 10,738 shared protein groups. (C) Venn diagram of total protein
fromDLPFC and STG samples after QC across all samples. 9180 protein groups were identified fromDLPFC samples and 9734 from STG, with
9015 shared protein groups. DLPFC, dorsolateral prefrontal cortex; NHW, non-HispanicWhite; QC, quality control; STG, superior temporal gyrus;
TMT-MS, tandemmass tagmass spectrometry.
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raw files fromDLPFCand1824 raw files fromSTG (Figure 1A), with the

distribution as follows: Emory University Frontal Cortex Cohort: 431;

Mayo Clinic Frontal Cortex Cohort: 2304; Mount Sinai Frontal Cor-

tex Cohort: 1344; Rush University Frontal Cortex Cohort: 2400; and

Emory University andMayo Clinic Temporal Cortex Cohort: 1824. The

database search led to the identification of a total of 11,748 protein

groups from DLPFC samples and 11,003 from STG samples, revealing

a shared set of 10,738 protein groups (Figure 1B). Following the QC

process, a total of 9180 proteins remained for the DLPFC and 9734

proteins for the STG, with an overlap of 9015 protein groups shared

between the two brain regions (Figure 1C).

3.2 Proteomics data QC in frontal and temporal
cortices

The analysis workflow for data QC is illustrated in the flowcharts of

Figure 2A and Figure S1A in three main steps. For the DLPFC 19 out-

liers and for the STG two outliers were removed, leading to a total of

1086 samples in DLPFC and 278 samples in STG. The QC process also

included steps to adjust for batch as described inMethods.

In large-scale TMT-MS proteomics studies, batch effects are

inevitable due to technical reasons; this is especially problematic when

processing large cohorts in multiple separate batches.36,37

To investigate the variability associated with batch effects among

DLPFC samples prior to normalization and batch correction, we

employed multidimensional scaling (MDS). MDS is similar to

PCA, which is used for visualizing high-dimensional data in lower-

dimensional spaces.38 Before batch regression, distinctive clusters of

samples from different sites were observed (Figure 2B). After batch

correction, samples clustered together, indicating that the batch

regression successfully gave an even distribution of data without

regard to data distribution sites (Figure 2C). The effectiveness of

batch correction was also assessed through variance partition analysis

(VPA),35 which revealed that the percentage of variance in protein

abundance explained by the batch was reduced to near zero after

batch regression from>90% before correction (Figure 2D, E).

Similarly, to investigate the impact of batch on temporal cortex sam-

ples, MDS plots were utilized. The plots illustrated a distinct clustering

by batch before QC, followed by an even distribution after QC (Figure

S1B, S1C). In addition, batch variance revealed a high contribution to

the proteomic profile before correction in variance partitioning (Figure

S1D) and a substantial reduction in variance associated with batch

after QC (Figure S1E).

3.3 Variance of protein abundance in frontal and
temporal cortex explained by individual traits

Variance partition analysis of DLPFC showed that a small proportion

of the variance in protein abundance could be explained individually

by sex, race, and diagnosis (Figure 3). Proteins such as CD99, PUDP,

and UBA1, which are associated with the X chromosome and known

to be highly abundant in females,39,40 contributed significantly to the

observed variance attributable to the sex of the donor (Figure 3A,

Figure S2A). Similarly, EIF1Y, DDX3Y, and USP9Y, linked to the Y chro-

mosomeand known for their high levels inmales,39,40 also played a role

in explaining the observed variance. Subsequent analysis confirmed

significant differences (p < 0.05) in protein levels between males and

females (Figure 3B, Figure S2B), further reinforcing the importance of

sex as a determinant of proteomic variability in our dataset.

Key proteins associated with self-reported African American race,

such as BPHL, FAIM, GFM2, and CLPP, were identified through vari-

ance partition analysis in both frontal and temporal cortex samples

(Figures 3E and S2C). Notably, proteins associated with African Amer-

ican race in the temporal cortex displayed a different rank order

compared to frontal cortex proteins (Figure S2C). Further analysis

highlighted significantly higher levels of proteins like GFM2 and CLPP

in African American individuals. In contrast, the protein NUDT6 exhib-

ited markedly lower levels within this demographic group (Figure 3D

and Figure S2D). The variance explained by each of the variables for all

the proteins in DLPFC is listed in Table S1.

A parallel analysis explored the extent to which AD diagnosis

explained the variance in protein level within the frontal and temporal

cortex. Consistent with the existing literature,21,41,42 top-ranking pro-

teins associated with AD, including APP, which has been shown to cor-

relate with Aβ plaque burden in the brain,21 as well as other amyloid-

associated matrisome proteins, CTHRC1, SMOC1, MDK, and NTN1,

exhibited significantly higher levels among AD cases43,44 (Figure 3E

and S2E). Notably, the percentage of variance contributed by individ-

ual proteins varied by region, for example,NDPandMACROD1 (Figure

S2E). The variance partition values for all the STG proteins are listed

in Table S2. This comprehensive analysis not only supports the tech-

nical validation of our proteomics data but also provides insights into

themolecular basis of sex, race, andAD-associated variations in human

brain proteomic data.

3.4 Association between APOE4 genotype and
apoE4 protein abundance in human brain proteome

The APOE locus exists as three AD-related variants (ε2, ε3, ε4), each
associated with varying degrees of AD risk, with the APOE ε4 allele

representing a major genetic risk factor for non-dominantly inher-

ited AD.45,46 The apoE ε4 protein variant can be differentiated by a

cysteine-to-arginine change that can be detected and measured at the

peptide level.47 We therefore measured the abundance of an apoE4-

specific tryptic peptide (LGADMEDVR) and compared its detection to

genotypic data forAPOE across 920unique individualswhere genotyp-

ing information was available in DLPFC samples. A similar analysis was

carried out on 244 unique donors of STG samples. As expected, given

the unique change in protein sequence, themean fold change of apoE4

protein abundance betweenAPOE ε4 carriers and non-carrierswas>8-
fold (Figure 4A and C). While it was expected that the apoE4 peptide

signal would not be present in non-APOE ε4 carriers, cases without

an ε4 allele still exhibited detectable, lower signals for the peptide



SEIFAR ET AL. 8885

(A) (B)

(C)

(D) (E)

11,748

Before

Before After

After

F IGURE 2 QC and batch correction for DLPFC tissue proteins. (A) QCworkflow in threemain steps. Step 1: Preprocessing for missing values:
Only proteins withmissing data in less than 50% of the samples were retained. The ratio of protein abundance to the total protein abundance for
each sample was calculated to adjust for sample loading differences resulting in 9180 proteins being retained across 1105 samples. Subsequently,
the data were log2 transformed. Step 2: Outlier detection and removal: Iterative PCAwas employed to identify and eliminate sample outliers.
After multiple rounds of PCA analysis, 19 outliers were identified and removed, leaving 9180 proteins across 1086 samples. Step 3: Batch effect
regression: Variance attributable to batching wasmitigated through regression of the 9180 proteins in 1086 samples. (B and C)MDS plot showing
variation among samples (B) before correcting for batch and (C) after regressing for batch effect. The plot dimensions (dim 1 and 2) reveal
distinctive clusters formed by samples by site – Emory (red), Mount Sinai (blue), Rush (purple), andMayo (green) – with some scattering observed
among samples before regressing for batch effect (B). The plot in (C) illustrates the successful removal of variance due to batch. After correcting
for batch effects, samples from all four sites – Emory (red), Mount Sinai (blue), Rush (purple), andMayo (green) – cluster together, indicating amore
cohesive grouping (ie, the change in scale fromB to C). The correctionmitigates the dispersion observed in (B), highlighting the effectiveness of the
batch correction procedure in harmonizing the sample distribution across different data distribution sites. (D and E) Variance partition analysis
using experimental factors to evaluate the percentage of explained variance in proteomic samples. Violin plots before (D) and after (E) batch
correction illustrate the distribution of explained variances in overall proteomic values. The y-axis represents the percentage of explained
variance, while the x-axis depicts factors contributing to variance, such as age, sex, race, diagnosis, residuals, and batch. Notably, batch variance is
present before batch correction, influencing the overall proteomic profile. Panel (E) displays the same factors on the x-axis after batch correction.
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Significantly, the violin plot demonstrates a substantial reduction in variance associated with batch, ultimately reaching near zero percent after
batch regression.Moreover, even after batch correction, factors such as age, sex, race, AD diagnosis, and other individual traits (residual) had levels
of impact on protein abundance patterns. Each point on the violin plot represents a specific protein, with the corresponding name next to it. This
underscores the efficacy of the correction procedure in eliminating batch-related variability from the proteomic data. DLPFC, dorsolateral
prefrontal cortex; MDS, multidimensional scaling; NHW, non-HispanicWhite; PCA, principal component analysis.

abundance. These signals could be attributed to errors in genotyping

or background chemical noise, possibly stemming from TMT isotope

impurity. Similarly, there was a limited number of false positive (non-

APOE ε4 carriers with discrete APOE4 signal) proteotypes (< 2.0%)

observed between expected APOE genotype and apoE4 peptide lev-

els, mainly in DLPFC samples. Specifically, we observed 14 individuals

among the DLPFC samples and two individuals among the STG sam-

ples with homozygous APOE ε3 genotypes that had levels of apoE4

equivalent to individuals with APOE ε4 genotypes (Figure 4B and D).

These samples could be removed from further analysis as appropriate.

Top sex-covariate proteins

Top diagnosis-covariate proteins

Top race-covariate proteins

p p p p

p p p p

p p p p

F IGURE 3 Variance explained by individual traits in DLPFC tissues. Bar plots (A, C, E) depict amount of variance explained by sex, race, and AD
diagnosis across all DLPFC samples. (A) Top-ranking proteins associated with sex in dataset were identified through variance partitioning and
depicted as bar plots. Boxplots in (B) illustrate log2 normal abundance levels of four selected proteins exhibiting significant differences between
males and females. These proteins serve as key indicators of sex-related variations and are depicted with statistical significance (p< 0.05). (C) Bar
plots of top-ranking proteins associated with race differences in DLPFC dataset. Boxplots in (D) illustrate log2 normal abundance levels of four
selected proteins demonstrating significant differences between African American individuals and other races (p< 0.05). (E) Bar plots identified
top-ranking proteins contributing to differences in diagnosis of ADwithin dataset. Boxplots in (F) display the log2 normal abundance levels of four
selected proteins exhibiting significant differences between AD patients and controls, as well as other diagnostic categories (p< 0.05). AD,
Alzheimer’s disease; DLPFC, dorsolateral prefrontal cortex.
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F IGURE 4 Association between APOE ε4 genotype and prototype across DLPFC and STG samples. (A) The boxplots of log2 normal abundance
of APOE ε4 protein measured by TMT-MS across each APOE genotype reveal a high APOE ε4 abundance among APOE ε4 carriers among 920
unique DLPFC tissue samples. (B) Histogram of APOE ε4 log2 normal abundance amongDLPFC samples (y-axis) across ε4 allele presence (red) and
non-presence (blue) (x-axis). (C) The boxplots of log2 normal abundance of APOE ε4 proteinmeasured by TMT-MS across 244 STG unique tissue
samples reveal a high APOE ε4 abundance among APOE ε4 carriers. (D) Histogram of APOE ε4 log2 normal abundance among STG samples (y-axis)
across ε4 allele presence (red) and non-presence (blue) (x-axis). High levels of APOE ε4 abundance were observed in cases with the ε4 allele
combination in both cortices, with a few discrepancies between APOE ε4 genotyping and prototyping (purple) being depicted. These
inconsistencies may be attributed to various factors, includingmis-genotyping or potential technical challenges inMSmeasurements, such as
isotope impurity and low signal-to-noise ratio in specific samples. DLPFC, dorsolateral prefrontal cortex; STG, superior temporal gyrus; TMT-MS,
tandemmass tagmass spectrometry.

Nevertheless, approximately 98% of samples appeared to have the

correct APOE ε4 genotype based on apoE4 “proteotype.”

3.5 Correlation of amyloid and tau abundance in
human brain proteome with AD neuropathology and
other proteins

The pathological hallmarks of AD include the accumulation of Aβ
plaques and hyperphosphorylated tau neurofibrillary tangles.48,49 To

examine the extent to which these known disease-associated changes

are reflected in the proteome, we assessed the levels of the APPand

MAPT using TMT-MS. APP has different isoforms, while in the brain

it is typically expressed as a full-length transmembrane protein con-

sisting of 695 amino acid residues.50,51 In proteomic studies of AD

brains, the levels of APP have been shown to correlate well with

Aβ plaque burden52,53 driven in part by the Aβ region of the pro-

tein (described below). As expected, therefore, the proteomic quan-

tification of APP revealed significantly higher levels in AD cases

(p = 6.4e-115) (Figure 5A). Furthermore, there is a stepwise increase

in proteomic quantification of APP with increasing CERAD score,

a measure of the extent of neuritic and diffuse plaques in brain
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F IGURE 5 Correlation of proteomic measurements of tau (MAPT) and APP levels with Braak and CERAD scores, as well as with other
proteins, in DLPFC. (A) Boxplots depicting relative abundance of APP across AD (pink) and control (green) in DLPFC tissue samples (adjusted
ANOVA p value< 0.05). (B). Raincloud plots depict group differences in relative abundance of APP (y- axis) across distinct CERAD stages (x-axis) in
DLPFC tissues. The analysis revealed a stepwise increase in themedian APP levels with ascending CERAD classifications, indicating a progressive
trend in APP abundance corresponding to different CERAD groups (score 1: green, score 2: orange, score 3: purple, score 4: pink). (C) Bicor
correlates to APP. The plot illustrates the results of a bicor pairwise correlation between APP and 9180 proteins in DLPFC region. Proteins with a
significant positive correlation with APP (p< 0.05) are highlighted in pink, whereas those with a significant negative correlation (p< 0.05) are
displayed in green. Proteins that did not show a significant correlation with APP are colored in gray. Among the 9180 proteins analyzed, 3273
showed a positive correlation with APP, and 2778were negatively correlated with APP. (D) Boxplots depicting relative abundance ofMAPT across
AD (brown) and control (green) in DLPFC tissue samples (adjusted ANOVA p value< 0.05). (E) Raincloud plots illustrate group differences in
relative abundance ofMAPT (y-axis) across distinct Braak stages (x-axis) in DLPFC tissues. The Braak stages range from 0 to 6, with corresponding
colors representing different stages (0: dark green, 1: orange, 2: purple, 3: pink, 4: light green, 5: yellow, 6: brown). Notably, the analysis highlights
elevatedMAPT levels at Braak stages 5 and 6, aligning with the expected increase in tau tangles in later stages of Braak in the frontal cortex. (F)
Bicor pairwise correlation analysis betweenMAPT (tau) and 9180 proteins in the DLPFC region. Proteins with a significant positive correlation
(p< 0.05) are shown in brown, while those with a significant negative correlation (p< 0.05) are shown in green. Of the proteins analyzed, 4707 had
a positive correlation, and 1226 had a negative correlation withMAPT. Non-significant correlations are depicted in gray. AD, Alzheimer’s disease;
APP, amyloid precursor protein; Bicor, biweight midcorrelation; DLPFC, dorsolateral prefrontal cortex; CERAD, Consortium to Establish a Registry
for Alzheimer’s Disease; MAPT, microtubule-associated protein tau.
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tissue, (Figure 5B), demonstrating the ability of proteomic APP levels

to quantitatively capture the biology underlying known diagnostic and

pathologic measures of Aβ plaque burden.
To extend our understanding of the proteomic changes associated

with the Aβ burden in the frontal cortex, we conducted biweight

midcorrelation (bicor) analysis across all 9180 pairwise protein com-

parisons with APP for 980 unique donors (Figure 5C, Table S3).

Consistent with previous findings, proteins associated with the matri-

some (ie, module 42 of the brain consensus network21) exhibited the

highest positive correlations with APP. MDK had the highest correla-

tion (bicor = 0.88, p = 0), followed by SMOC1, NTN1, CTHRC1, and

SFRP1, all known to colocalize with amyloid plaques and be enriched

in amyloid plaque proteomes.54,55,56 In contrast, the strongest nega-

tive correlations with APP were observed for RTN4, ADAM11, VGF,

NPTX2, and TRIM36. RTN4 had the highest negative correlation with

APP. It is a reticulon protein, which plays a role in blocking BACE1

access to APP, thereby reducing Aβ production and potentially limiting

amyloid plaque formation.57,58 Similarly, NPTX2 and VGF, both associ-

ated with synaptic function and neuroprotection, have been identified

as potential biomarkers with protective effects against AD.59,60,61

Additionally, TRIM36 is involved in the clearance of misfolded protein

aggregates, including APP, consistent with its proposed role in mitigat-

ing amyloid burden in the brain.62 The full list of DLPFC proteins and

the correlation values are available in Table S3.

Similarly, our proteomic analysis ofMAPT that produces tau protein

demonstrated, as expected, significantly elevated levels in AD cases

(p = 5.9e-13) (Figure 5D).63,64 We assessed the association between

the levels ofmeasuredMAPT in the frontal cortex and Braak staging.65

Proteomic measures of MAPT levels exhibited higher levels mainly in

advanced Braak stages (stages 5 and 6) in cases where Braak staging

was available (Figure 5E). Of note, the association betweenMAPT lev-

els and Braak staging may be influenced by regional differences in tau

pathology and staging. Specifically, neurofibrillary tangles arepredomi-

nantly encountered in the neocortex in higher Braak stages. Therefore,

the observed elevation in MAPT levels in individuals with advanced

Braak stages could be attributed to the assessment of tau levels in

neocortical samples, where tau tangle pathology is pronounced.

Similar to APP, we explored the correlation between MAPT abun-

dance in the DLPFC proteome (Figure 5F). In our pairwise analy-

sis, SQSTM1 showed the highest positive correlation with MAPT.

Sequestosome-1 protein (SQSTM1) is known for its role in the

autophagic regulation of tau and has shown high enrichment in the fib-

rillary tangle proteome.66,67,68 Additionally, other proteins with strong

correlationswithMAPT includedmembers of theCSNK1 family, which

are involved in tau phosphorylation and clearance,69 as well as pro-

teins associated with ubiquitination (GID4)70 and proteasome activity

(PSM3, PSM6, PSM7). Interestingly, several proteins that are highly

enriched in the amyloid-associated module, including COL25A1 and

SPOCK2, also exhibited strong positive correlations with tau.21 The

most prominent proteins that were negatively correlated with tau

included LYNX1, STK39, INA, EPB41L3, KCNA2, HSPA12A, TPP2,

and FIS1. A number of these proteins have been associated with

neuroprotective effects and synaptic plasticity.71,72,73

A similar analysis exploring correlates of APP andMAPT within the

temporal cortex are presented in Figure S3. APP andMAPT levelswere

also significantly higher in theSTG (p=8.3e-41andp=1.3e-16, respec-

tively) of individuals with AD compared to controls (Figure S3A, S3D).

Moreover, there was a graded increase in APP and MAPT levels with

CERAD (Figure S3B) andBraak scores (Figure S3E), respectively. A sim-

ilar pattern emerged in the proteome-wide correlation analysis of the

STG, with a positive association of the matrisome proteins with APP

abundance (Figure S3C). SQSTM1andmultiplemembers of theCSNK1

and PSM families also all presented as significantly and positively cor-

relatedwith tau in the STG (Figure S3F). The full list of STGproteins and

correlation values can be found in Table S4.

3.6 TMT-MS quantification of APP and MAPT
revealed no racial differences in AD

Our analysis across both the DLPFC and STG regions demonstrated

a consistent pattern where increased levels of proteomic measure-

ments of APP and MAPT correlated with established AD pathologic

and diagnostic scores. The proteome-wide correlation analyses high-

light the association of matrisome proteins with APP and proteins

involved in autophagy and phosphorylation of tau, emphasizing their

roles in the molecular mechanisms underlying AD. Emerging research

has indicated that Aβ and tau peptides, identified as AD biomark-

ers, may differ across race.13,14,15,74 Despite similar levels of cognitive

decline, African Americans have been shown to have lower levels of

certain CSF biomarkers compared to White individuals.13,74 Using

brain proteomes fromdiverse donors,we sought to determinewhether

the observed differences in the CSF reflect variation in the underly-

ing pathology of AD in the brain. We first determined the proteomic

abundance of MAPT and APP across race and AD diagnosis (Figure 6).

We then quantified specific protein domains of APP and MAPT,

stratifying our samples by race. To control for potential confounding

effects of age and sex, we regressed the protein abundances for age

and sex.

APP undergoes cleavage in two C-terminal sites to form Aβ40
and Aβ42 (Figure 6A). The two amino acids at the C-terminal end of

Aβ42 – isoleucine (Ile) and alanine (Ala) – increase its tendency to

aggregate and form Aβ plaques, making it more pathogenic compared

to Aβ40.75 Aβ42 is a major component of neuritic plaques, whereas

Aβ40 is often found in cerebral amyloid angiopathy (CAA), where it is

typically deposited in blood vessel walls.76,77 We determined the dif-

ferential abundance of APP (Figure 6B), Aβ42 (Figure 6C), and Aβ40
(Figure 6D) acrossWhite and African American brain samples in AD or

control groups. As expected, our analysis revealed a significantly higher

abundance of APP and Aβ42 and Aβ40 peptides among AD brains

compared to controls, however, without a significant race-associated

difference.

Tau protein is expressed and ultimately translated from the MAPT

gene, and its accumulation is another pathologic hallmark of AD.

When hyperphosphorylated, tau aggregates into neurofibrillary tan-

gles, which strongly correlate with cognitive decline in AD.78,79 Earlier
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F IGURE 6 TMT-MS quantification of APP,MAPT, and their specific fragments acrossWhite and African American cases with andwithout AD.
(A) Schematic of APP fragments. Schematic representation of amino acid sequence of APP, with the specific C-terminal tryptic cleavage sites
leading to Aβ40 and Aβ42measures viaMS. The site of trypsin cleavage is marked by this red “K” (lysine) residue. (B-D) Boxplots of log2
normalized abundance of APP (B), Aβ42 (C), and Aβ40 (D) in brain tissue samples from 980 unique individuals categorized by race and AD status.
The four groups analyzed areWhite CT (n= 125), AA CT (n= 63),White AD (n= 281), and AAAD (n= 145). Data were adjusted for age and sex
using the bootstrapmethod before analysis. Themiddle line in each boxplot shows themedian, the box covers the range from the 25th to the 75th
percentile, and the whiskers indicate the full range of the data. One-way ANOVAwas conducted to assess overall differences among the four
groups, with significance set at p< 0.05. APP, Aβ42, and Aβ40 levels were significantly higher in AD cases compared to controls. Post hoc
comparisons using Bonferroni correction did not reveal significant differences across race for these peptides. (E) Schematic ofMAPT domains in
4R tau structure. Schematic representation of the four main domains ofMAPT: N-terminal, PRD,MTBR, and C-terminal domain. (F-J) MAPT
domains. Boxplots of log2 normalized abundance ofMAPT (F) and its domains: N-terminal (G), PRD (H), MTBR (I), and C-terminal (J) across the
same four groups (White CT, AACT,White AD, AAAD). Data were adjusted for age and sex using the bootstrapmethod before analysis. MAPT and
all its domains showed significantly higher abundance in AD cases compared to controls. The PRD had a slightly higher abundance in AAwith AD
compared toWhite with AD (p= 0.02), and the N-terminal domain showed a slight increase in AA individuals, both in controls (p= 0.02) and AD
cases (p= 0.03). TheMTBRwas themain contributor to theMAPT signal in AD cases. The p values from these analyses aremarked on the graphs.
AA, African American; AD, Alzheimer’s disease; APP, amyloid precursor protein; CT, control; MAPT, microtubule-associated protein tau;MTBR,
microtubule binding region; PRD, proline-rich domain; TMT-MS, tandemmass tagmass spectrometry.

studies showed that African Americans with AD had reduced lev-

els of CSF tau and phosphorylated tau (p-tau) compared to their

White counterparts.13,14,15,74 Our analysis revealed that total brain

MAPT protein levels did not differ significantly betweenAfricanAmer-

icans and White individuals (Figure 6F). We subsequently re-analyzed

our proteomic dataset to assess differences in MAPT-specific protein

domains, including theN-terminal domain, PRD,MTBR, andC-terminal

domain (Figure 6E). The MTBR, located between amino acids 243 and

369, contains microtubule-binding repeats and forms the core of the

insoluble aggregates found in the AD brain, as observed in cryo-EM

studies.80,81 Our analysis of these MAPT domains revealed signifi-

cantly higher levels in AD brains, regardless of race, with the MTBR

and C-terminal domain showing the largest increase, consistent with

previous observations82 (Figure 6G-I). Interestingly, there was a slight

but nominally significant increase in theN-terminal domain and PRD in

AfricanAmericans compared toWhites, observed in eitherADcases or

both control and AD cases. Nevertheless, while there were minor dif-

ferences across those domains, the core proteomic signatures of tau

(MAPT andMTBR domain) associated with tangle pathology (Braak) in

the brain were similar in African Americans andWhite individuals.
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3.7 Differential protein abundance across race in
AD brain proteomes reveals a convergence of
predominantly shared changes

Global differential abundance analysis was performed to identify

changes in the AD brain proteome with race (Figure 7A, B; Tables S5

and S6). Consistent with previous proteomic analyses of AD brain tis-

sue, therewas a significant increase in key proteins associatedwith AD

pathology, such as matrisome-associated proteins (eg, MDK, SMOC1,

APOE, APP), as well as proteins involved in neuroinflammation (eg,

GFAP, ICAM1) and synaptic function (eg, VGF, NPTX2) in both African

Americans and White individuals with AD compared to controls in

the same racial group. A scatter plot illustrates the correlation of dif-

ferentially abundant proteins (DAPs) in AD from African Americans

and White populations (Figure 7C), showing strong overall agreement

in the direction and magnitude of change (bicor = 0.9, p < 1e-200;

Figure 7D,G).

In addition, while our analysis revealed that the overall number of

DAPs between AD and control groups was similar betweenWhite and

African American individuals, the statistical power, as reflected by the

y-axis (-log10 p value), differed between the two groups (Figure 7A

and B). This difference in statistical power could be attributed to vari-

ations in sample size, biological variability, or other factors between

the groups. A small number of changes unique to AD samples of one

race were noted (Figure 7E, F), including proteins known to have dis-

tinct expression patterns in African American and European American

populations.83 To further dissect the global changes in protein abun-

dance, we categorized the DAPs into four main subgroups based on

their abundancepatterns across the racial groups. Someof theproteins

represented in each of these groups are illustrated in Figure 7D-G:

Group 1: Proteins exhibiting low abundance in AD irrespective of

race. This subgroup includes proteins that show a consistent reduc-

tion in abundance in AD samples from both African American and

White individuals compared to controls. This group includes proteins

like VGF, NRN1, NPTX2, and RPH3A, which have been reported to be

neuroprotective against AD.84,85,86 The universal downregulation of

these proteins suggests a loss of neuroprotective mechanisms in AD,

affecting both racial groups similarly.

Group 2: Proteins with differential abundance in AD only in the

White population. This subgroup includes proteins that are signifi-

cantly altered in abundance in White individuals with AD but do not

show a corresponding change in African American individuals. For

instance, proteins associated with immune function (IGHG4) andmyo-

globin (MB) exhibit high abundance in White AD brains compared to

controls. Additionally, proteins such as RNA-binding protein (RBM3)

and ubiquitin (PCMTD2) show low abundance specifically in White

AD brains. These findings suggest that certain immune-related and

metabolic processes may be more prominent or exclusively altered in

theWhite population with AD.

Group 3: Proteins with differential abundance in AD only in the

African American proteome. Similar to Group 2, these proteins are sig-

nificantly altered in abundance in African American individuals with

AD, with no comparable change in the White population. This group

includes proteins such as BPHL, which shows low abundance in African

American AD brains, and proteins associated with neuroinflamma-

tion (CXCL16) and cell signaling (RGN), which have high abundance

in this population.87,88 These proteins might reflect unique patho-

logical processes or protective factors within the African American

community that are not observed in theWhite population.

Group 4: Proteins exhibiting high abundance in AD irrespective

of race. This final subgroup includes proteins that are consistently

upregulated in AD samples from both African American and White

individuals compared to controls. This group includes several hub pro-

teins in the matrisome, such as SMOC1, CTHRC1, SFRP1, and SPON1,

which are highly abundant in neuritic plaques and CAA and are colo-

calized with Aβ.21,31,55 The universal increased level of these proteins

highlights their central role in AD pathology and suggests they may

serve as key biomarkers or therapeutic targets in both racial groups.

In summary, our global differential abundance analysis explored

differences in protein levels in the brains of African American and

White individuals across AD pathology. The findings showed that most

changes in protein abundance were similar across both racial groups.

However, someproteins showed race-specific changes, suggesting that

certain biological processes may differ between the two groups. These

results highlight both shared and unique aspects of AD across race,

offering insights into potential biomarkers and therapeutic targets.

4 DISCUSSION

Here we presented a comprehensive large-scale deep proteome anal-

ysis on 1105 DLPFC and 280 STG brain tissues. This dataset consists

of approximately 10,000 proteins quantified in a racially and ethnically

diverse cohort of ADand controlled aging brain tissues. In addition,QC

measures were implemented to ensure the validity of our dataset for

subsequent analysis. Consistently with the literature,21,39,40,43,44 our

analysis identified top proteins associated with sex, race, and AD diag-

nosis. Additionally, quantified levels of MAPT and APP showed strong

associations with neuropathology scores of Braak and CERAD, respec-

tively. Moreover, with minor exceptions, the protein abundance of

APOE4 was highly consistent with APOE genotyping of the measured

samples.

Our analysis demonstrates that the core pathological processes

of AD, as reflected by key proteins associated with the disease, are

consistent across racial groups. Our proteomic analysis also revealed

no significant racial differences in the abundance of Aβ40, a peptide

closely associated with cerebral Aβ angiopathy (CAA). This finding is

consistent with previous studies that demonstrated similar prevalence

and histopathologic characteristics of CAA among African Ameri-

cans and Caucasians.89,90 In addition to Aβ40, Aβ42, which is highly

enriched in amyloid plaques, also had no race-associated differences

among African Americans and White individuals. This suggests that

the degree of plaque pathology is similar across races, consistent with

recent amyloid positron emission tomography (PET) findings show-

ing that African Americans and White individuals have a similar rate

of amyloid PET positivity.91 Other neuropathological studies of the
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F IGURE 7 Global differential protein abundance between AD and control across racial groups. (A and B) Volcano plots displaying log2 FC
(x-axis) against one-way ANOVAwith Tukey correction-derived−log10 p value (y-axis) for all proteins (n = 9180) comparing AD versus controls in
White (A) and AA (B) proteomes. Proteins that are significantly more abundant in AD are presented in red, those significantly less abundant in
blue, and proteins with non-significant changes are presented in gray. (C) Scatter plot showing correlation between FC of all DAPs (n= 2819) found
to be significant within the AA proteome (x-axis) compared to theWhite proteome (y-axis). The FCswere strongly correlated (bicor = 0.9,
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racially diverse brain tissues have also confirmed a similar pattern of

amyloid plaques, morphology, and quantifications in brain tissues of

African Americans compared to White individuals.90,92 This suggests

that the fundamental mechanisms driving core AD pathology, such as

the accumulation of Aβ plaques and tau neurofibrillary tangles, are

universally shared across diverse populations.

Importantly, in contrast to CSF data published by our group and

others, MAPT protein levels in brain tissues (DLPFC and STG) are not

significantly lower inAfricanAmerican individualswithAD.13,14 There-

fore, differences in CSF MAPT levels between African Americans and

Whitesmay not be driven by variations in tau tangle deposition or neu-

rodegeneration in the brain. This suggests that other mechanisms may

contribute to the lower peripheral tau levels in African American CSF.

In addition, we observed that both African American and White indi-

viduals with AD exhibited significant increases in key proteins involved

in AD pathology, including proteins associated with the matrisome,

neuroinflammation, and synaptic function. These findings are in line

with established knowledge of AD pathology,21,31,55 underscoring the

robustness of these molecular signatures in the brain, regardless of

race. The consistency in these core pathologies highlights that the

fundamental biological processes underlying AD are preserved across

different racial backgrounds.

While the directionality of changes in the proteome was similar

between African American and White individuals, with strong over-

all agreement in the direction of differential abundance, some unique

variations were noted, with a small number of proteins exhibiting dif-

ferential abundance unique to either the White or African American

proteome. Proteins such as IGHG4 and MB showed higher abun-

dance, while RBM3 and PCMTD2 exhibited lower abundance inWhite

AD brains, indicating distinct immune and metabolic alterations in

this population.93,94 In contrast, African American AD brains showed

lower levels of BPHL and higher levels of CXCL16 and RGN, high-

lighting unique neuroinflammatory and cell signaling pathways in

this group.87,88 These unique changes might be attributable to dif-

ferences in genetic ancestry, which may influence susceptibility to

specific AD-related pathways. Additionally, comorbidities and fac-

tors relating to social determinants of health may also play a role

in shaping the proteomic landscape of AD across different racial

groups. It is an ongoing priority of the AMP-AD consortium and

other groups to explore the extent to which social determinants

of health, such as variations in access to healthcare and educa-

tion, as well as environmental exposures, may modulate AD risk and

progression.

To that end, this study serves as an important data resource for

exploring difference in the brain proteome and is complemented by

ongoing efforts of the AMP-AD diversity initiative to share paired

genomes and transcriptomes from the same donors.16,26 Moving for-

ward, these unique, large datasets derived from diverse populations

will set the stage for future investigations aimed at addressing existing

knowledge gaps and advancing our understanding of AD pathogenesis

across, age, sex, race, and ethnicity. Inwhat follows,wedescribe several

use cases in which this proteomic dataset can be used to address these

gaps.

4.1 Network analysis

Unbiased proteomics of the human brain in AD, coupled with network

analysis, is a valuable approach to organizing and reducing large-scale,

complex protein expression matrix data into groups or “modules” of

proteins that highly correlate across tissues.29,32,95 We and others

have shown that these modules reflect various biological functions

with cell-type specificity linked to AD pathology.21,22,32,96 Using this

approach modules could reveal potential associations between sex,

race, APOE genotype, and AD diagnosis, shedding light on intersecting

biological processes that contribute to disease susceptibility. Further-

more, bulk RNA sequencing (RNA-seq) analysis will be available for the

majority of these same tissues profiled by proteomics, which will allow

for integrated network analyses to compare transcript expression

to protein-level abundance, which are not generally well correlated

in human brain tissues.21,23 Ultimately, the development of robust

biomarkers and therapeutic targets, generalizable to whole popula-

tions, will necessitate integration of multiple data types derived from

diverse populations.

4.2 Mapping post-translational modifications

The phosphorylation of tau and proteolytic cleavage of APP into Aβ
species are pathological hallmarks of AD and have important roles in

disease progression and pathogenesis.48,49 Other post-translational

modifications (PTMs) have also been described as altering the brain

proteome in AD.97,98 Although we did not specifically enrich proteins

with antibodies or chemical approaches like immobilized metal affin-

ity chromatography for phosphorylated peptides, the rawMS data can

be re-searched to determine whether high abundance PTMs like phos-

phorylation, acetylation, methylation, and ubiquitination of tau are

altered in these tissues across race. The analysis presented here, there-

fore, will provide the basis for additional in-depth interrogation of the

AD-related brain proteome.

p < 1e-200), regardless of whether the DAPwas significant in one (yellow) or both proteomes (red: significantly higher abundance in AD, blue:
significantly lower abundance in AD). (D-G) Boxplots illustrating log2 FC relative abundance of representative proteins for four main categories
across race and AD diagnosis: (D) DAPs in AD compared to control in bothWhite and AA proteomes. (E) Proteins showing differential abundance
across AD only inWhite individuals. (F) DAPs in only AA proteome across AD. (G) Proteins with a high abundance in AD comparedwith controls,
independent of race. Boxes represent median and IQRs, and whiskers represent minimum andmaximum data points within 1.5 times the IQR.
P< 0.05was considered significant. AA, African American; AD, Alzheimer’s disease; Bicor, biweight midcorrelation; DAP, differentially abundant
proteins; FC, fold change; IQR, interquartile range.
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4.3 Proteogenomics

The AMP-AD consortium is committed to making the paired whole

genomes of the majority of the tissues profiled by proteomics in

this study available. Notably, this will offer an opportunity to inves-

tigate protein quantitative trait loci (pQTLs) to estimate the effects

of genetic variants on protein abundance.99 Furthermore, integrat-

ing AD genome-wide association studies (GWASs) with these pQTLs

can be used to identify causal genes that confer AD risk through

their effects on brain protein abundance. This approach is referred

to as proteome-wide association studies (PWASs), which can now

be done with African American GWAS summary statistics on AD

or related dementias.100,101 Incorporating quantitative measures of

genetic ancestry will help to further resolve inherited contributions to

AD pathogenesis. Additionally, paired RNA-seq and proteomics from

these same tissues can also be used to identify splicing defects in

AD that generate alternative protein isoforms occurring in the brain

across different disease states and ancestries.102,103 Understanding

how alternative splicing contributes to AD pathophysiology and its

intersection with demographic factors may uncover novel disease

mechanisms and identify splice variants as potential biomarkers or

therapeutic targets.

4.4 Limitations and future directions

While our study provides valuable insights into the proteomic land-

scape of AD in a diverse population, several caveats and limitations

should be considered. First, it is essential to acknowledge that pro-

teomics data represent a snapshot of protein abundance at end-stage

disease and do not capture dynamic changes in protein expression over

the course of disease progression. Additionally, although efforts were

made to minimize technical variability through rigorous QCmeasures,

the inherent complexity of brain tissues and potential confounding fac-

tors such as comorbidities may introduce biases or artifacts into the

dataset. In addition, a few discrepancies were noted; for example, the

number of controls in our study was not matched with the number of

AD cases, resulting in fewer control cases. Moreover, the lack of post

mortem interval (PMI) information for all samples is another limitation

of our study. Without PMI data, we were unable to account for the

potential effects of PMI, even though our previous studies showed a

minor impact of PMI on data variance.21,32,104 It is also important to

note that the interpretation of race-specific protein changes should be

approachedwith caution, as the biological and genetic basis underlying

these differences remains incompletely understood. Further valida-

tion studies and replication in independent cohorts are warranted

to confirm and extend our findings. Future proteomic studies on the

biofluids from the CSF and plasma of diverse participants will be war-

ranted to understand how these changes in the post mortem brain are

reflected in the periphery and whether they are of prognostic utility.

Ultimately, integrated multi-omic datasets across tissues and bioflu-

ids will be needed for further investigation into how AD heterogeneity

varies across different ethnoracial backgrounds.

5 CONCLUSIONS

In conclusion, this large-scale deep proteome analysis represents a

valuable resource for future exploration of the complexities of AD

across diverse ethnoracial groups. While our findings highlight that

the core AD-related pathologies are consistent across populations, the

differences observed in certain CSF biomarkers suggest the need for

further research. These variationsmay be influenced by comorbidities,

genetic factors, and social determinants of health, underscoring the

importance of continued investigation.
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