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We describe an algorithm to compute trisections of orientable
four-manifolds using arbitrary triangulations as input. This results
in explicit complexity bounds for the trisection genus of a 4-
manifold in terms of the number of pentachora (4-simplices) in
a triangulation.

four-manifold | trisection | four-dimensional triangulations | topological
algorithms | computational topology

A guiding principle in low-dimensional topology is to find
practical algorithms to describe topological or geometric

structures on manifolds and to compute invariants as well as
to determine explicit complexity bounds for these algorithms.
The steps in an algorithm reveal the structure of a manifold,
and the complexity bounds relate the relative difficulty of a
wide variety of problems. This paper is a first step toward a
computational theory for understanding 4-manifolds via trisec-
tions. We use singular triangulations to give a description of a
4-manifold. These are well-established as a data structure for
algorithmic 3-manifold theory (1–9) and have shown promise
for analyzing manifolds in higher dimensions (10–12). Budney
et al. (10) have developed a census of 4-manifold triangula-
tions with up to six pentachora. This is a rich source of exam-
ples, and additional study or extension of this census requires
algorithmic tools.

We develop a theory of colorings for 4-manifold triangula-
tions, starting with a basic notion of tricoloring that encodes
suitable maps to the 2-simplex and enhancing this to c-tricoloring
with appropriate connectivity properties and ts-tricoloring, which
completely encodes a trisection. This refines previous work of
two of the authors (13).

1. Introduction
Gay and Kirby (14) introduced the concept of a trisection for arbi-
trary smooth, oriented, closed 4-manifolds. In dimensions less
than or equal to four, there is a bijective correspondence between
isotopy classes of smooth and piecewise linear structures (15, 16).
All manifolds are assumed to be piecewise linear (PL) and ori-
entable in this paper unless stated otherwise. Our definition and
results apply to any compact smooth manifold by passing to its
unique PL structure (17).

Definition 1 (trisection of closed manifold): Let M be a closed,
orientable, connected PL 4-manifold. A trisection of M is a col-
lection of three PL submanifolds H0,H1,H2⊂M , subject to the
following four conditions.

1. Each Hi is PL homeomorphic to a standard PL four-
dimensional 1–handlebody of genus gi .

2. The handlebodies Hi have pairwise disjoint interiors, and
M =

⋃
i Hi .

3. The intersection Hi ∩Hj of any two of the handlebodies is a
three-dimensional 1–handlebody.

4. The common intersection Σ =H0 ∩H1 ∩H2 of all three
handlebodies is a closed, connected surface, the central
surface.

The orientability of M implies that each of the handlebod-
ies and the central surface in a trisection of M are orientable.
The submanifolds Hij =Hi ∩Hj and Σ are referred to as the

trisection submanifolds. In our illustrations, we use the colors
blue, red, and green instead of zero, one, and two, and we will
refer to Hblue red =Hbr as the green submanifold and so on.

The above definition is somewhat more general than the one
originally given by Gay and Kirby (14) in that they ask for the tri-
section to be balanced in the sense that each handlebody Hi has
the same genus. It was noted in ref. 13 that any unbalanced tri-
section can be stabilized to a balanced one. We also remark that
the above definition and our methods naturally extend to nonori-
entable 4-manifolds, but here, we restrict ourselves to the setting
of orientable manifolds following ref. 14. A representation of a
trisection, dropping down two dimensions, is shown in Fig. 1.
This representation completely encapsulates our approach. We
wish to define maps from 4-manifolds to the 2-simplex such that
the dual cubical structure of the 2-simplex pulls back to trisections
of the 4-manifolds.

We use singular triangulations to give a concrete description of
a 4-manifold M . To induce a trisection of M , we use maps from
M to the standard 2-simplex ∆2 that are induced by what we
call tricolorings. The aim of this note is to describe an algorithm
to compute a trisection diagram on the central surface given an
arbitrary singular triangulation of M and to obtain complexity
bounds on this description in terms of the size of the input trian-
gulation. The definitions are motivated by the example given in
the next section and illustrated in Fig. 2.

2. Example
Consider the moment map from the complex projective plane
to the standard two-dimensional simplex µ : CP2→∆2⊂R3

defined by

[ z0 : z1 : z2 ] 7→ 1∑
|zk |

(|z0|, |z1|, |z2|).

The dual spine Π2 in ∆2 is the subcomplex of the first barycen-
tric subdivision of ∆2 spanned by the 0-skeleton of the first
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Fig. 1. Cartoon of a trisection.

barycentric subdivision minus the 0-skeleton of ∆2. Decom-
posing along Π2 gives ∆2 a natural dual cubical structure with
three 2-cubes, and the lower-dimensional cubes that we will
focus on are the intersections of nonempty collections of these
top-dimensional cubes, consisting of three interior 1-cubes and
one interior 0-cube. The cubical structure is indicated in Fig.
1, where the interior cubes are labeled with the trisection
submanifolds.

Under the moment map, the 2-cubes pull back to 4-balls

{[z0 : z1 : z2] | zi = 1, |zj | ≤ 1, |zk | ≤ 1};

the interior 1-cubes pull back to solid tori S1×D2 defined by

{[z0 : z1 : z2] | zi = 1, |zj |= 1, |zk | ≤ 1};

and the interior 0-cube pulls back to a 2-torus Σ =S1×S1

defined by

{[z0 : z1 : z2] | z0 = 1, |z1|= 1, |z2|= 1}.

The central surface is thus a Heegaard surface for the 3-sphere
boundary of each 4-ball. This shows that the cubical structure
pulls back to a trisection with central surface a torus. This is
shown schematically in Fig. 2.

Note that the midpoint of each edge of the 2-simplex pulls
back to a circle defined by

{[z0 : z1 : z2] | zi = 0, zj = 1, |zk |= 1}.

This is the core circle of the corresponding solid torus. Each
vertex of the 2-simplex ∆2 pulls back to a singleton

{[z0 : z1 : z2] | zi = 0, zj = 0, zk = 1}.

There is more information in this picture. The central surface
is the preimage of the barycenter of ∆2, and each solid torus is
the preimage of the line segment joining this to the barycenter
of a facet of ∆2. This identifies the boundary curves of the three
meridian discs. Any two of these three curves give a Heegaard
diagram for a 3-sphere, and the union of all three curves is called
a trisection diagram by Gay and Kirby (14).

3. Constructing Trisection Diagrams
In this section, we define three notions of a tricoloring and
describe an algorithm to compute trisections and trisection dia-
grams based on these colorings. We will see that these colorings
are readily constructed on triangulated 4-manifolds.

Singular Triangulations. Let ∆̃ be a finite union of pairwise dis-
joint, oriented Euclidean 4-simplices with the standard simplicial
structure. We call a 4-simplex a pentachoron. Every k -simplex τ
in ∆̃ is contained in a unique pentachoron στ . A 3-simplex in ∆̃
is called a facet, and a 0-simplex is a vertex.

Let Φ be a family of orientation-reversing affine isomorphisms
pairing the facets in ∆̃, with the properties that ϕ∈Φ if and only
if ϕ−1 ∈Φ, and every facet is the domain of a unique element of
Φ. The elements of Φ are called face pairings.

We denote T = (∆̃, Φ). Any operation O of simplicial topol-
ogy that is performed on ∆̃ (such as barycentric subdivision,
regular neighborhoods, and so on) is said to be an opera-
tion on T as long as it respects the face pairings. The set
of all face pairings Φ determines a natural equivalence rela-
tion on the set of all k -simplices in ∆̃, and we will call the
equivalence classes the (singular) k -simplices of T . This termi-
nology is natural when passing to the quotient space |T |= ∆̃/Φ
with the quotient topology. The space |T | is a closed, ori-
entable four-dimensional pseudomanifold, and the quotient map
is denoted p : ∆̃→|T |. The set of nonmanifold points of |T |,
if any, is contained in the 1-skeleton [the work by Seifert and
Threfall (18)].

A singular triangulation of a 4-manifold M is a PL homeomor-
phism |T |→M , where |T | is obtained as above. The triangula-
tion is simplicial if p : ∆̃→|T | is injective on each simplex. The
triangulation is PL if, in addition, the link of every simplex is PL
homeomorphic to a standard sphere: ∂([0, 1]n).

Tricolorings. Let M be a closed, connected 4-manifold with (pos-
sibly singular) triangulation |T |→M . A partition {P0,P1,P2}
of the set of all vertices of T is a tricoloring if every pentachoron
meets two of the partition sets in two vertices and the remaining
partition set in a single vertex. In this case, we also say that the
triangulation is tricolored.

Denote the vertices of the standard 2-simplex ∆2 by v0, v1,
and v2. A tricoloring determines a natural map µ : M →∆2 by
sending the vertices in Pk to vk and extending this map linearly
over each simplex. Note that the preimage of vk is a graph Γk in
the 1-skeleton spanned by the vertices in Pk .

As in the example of the complex projective plane, we would
like to use µ to pull back the dual cubical structure of the simplex
to a trisection of M . The preimages of the dual cubes have very
simple combinatorics. The barycenter of ∆2 pulls back to exactly
one 2-cube in each pentachoron of M , and these glue together to
form a surface Σ in M . This surface is the common boundary of
each of three 3-manifolds obtained as preimages of an interior 1-
cube (edge) of ∆2. Each such 3-manifold is made up of cubes and
triangular prisms as in Fig. 3. Each interior 1-cube c has a bound-
ary of the union of the barycenter of ∆2 and the barycenter b of
an edge of ∆2. Since the map µ : M →∆2 is linear on each sim-
plex, the preimage µ−1(c) collapses to the preimage µ−1(b). In
particular, each 3-manifold has a spine made up of 1-cubes and
2-cubes. Recall that a compact subpolyhedron P in the interior
of a manifold M is called a (PL) spine of M if M collapses to
P . If P is a spine of M , then M \P is PL homeomorphic with
∂M × [0, 1).

Fig. 2. Trisection diagram for CP2.

10902 | www.pnas.org/cgi/doi/10.1073/pnas.1717173115 Bell et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1717173115


SP
EC

IA
L

FE
A

TU
RE

M
A

TH
EM

A
TI

CS

Fig. 3. Pieces of the trisection submanifolds. The vertices of the pieces
are barycenters of faces and labeled with the corresponding vertex labels.
The central surface meets the pentachoron in a square. Two of the
three-dimensional trisection submanifolds meet the pentachoron in trian-
gular prisms, and the third (corresponding to the singleton) meets it in
a cube. Moreover, any two of these meet in the square of the central
surface.

To see that the above construction gives a trisection, it suffices
to show that

1. the graph Γk is connected for each k and
2. the preimage of an interior 1-cube of ∆2 has a one-

dimensional spine.

These conditions will be verified in the proof of the correct-
ness of Construction 3 below. The first condition ensures that
the preimage of each 2-cube of ∆2 is a connected, orientable
four-dimensional 1-handlebody. In particular, it has connected
orientable boundary. We claim that the second condition guar-
antees that the preimage under µ of each interior 1-cube of
∆2 is a three-dimensional 1-handlebody; hence, it also has con-
nected boundary. A priori, this preimage may be a union of
three-dimensional 1-handlebodies. However, the boundary of
the four-dimensional 1-handlebody is the union of such three-
dimensional handlebodies, and each of them has connected
boundary: hence, the claim. This also implies that the central
surface is connected.

We say that a tricoloring is a c-tricoloring if Γk is connected for
each k and that a c-tricoloring is a ts-tricoloring if the preimage
of each interior 1-cube collapses onto a one-dimensional spine.
In this case, the dual cubical structure of ∆2 pulls back to a
trisection of M .

For example, the standard 4-sphere S4 can be realized as
a doubled pentachoron, giving it a singular triangulation with
two pentachora and five vertices, denoted v0, . . . , v4. Letting
P0 = {v0, v1}, P1 = {v2, v3}, and P2 = {v4} gives a ts-tricolored
triangulation of S4 with each of Γ0 and Γ1 being a 1–simplex and
Γ2 being a 0–simplex.

An examples of a c-tricoloring that is not a ts-tricoloring can
be found in Section 6.

Existence of Tricolorings. In general, given an arbitrary triangu-
lated 4-manifold M , one can always obtain a tricolored triangu-
lation by passing to the first barycentric subdivision. This has a
natural partition of the vertices into five sets Bi (the barycenters
of the k -simplices for 0≤ k ≤ 4). Any coarsening of this partition
of the form {Bi ∪Bj ,Bk ∪Bl ,Bm} now gives a tricoloring. For
instance, the partition {B0 ∪B1,B2 ∪B3,B4} was used in ref.
13. While conceptually simple, this process multiplies the num-
ber of pentachora by a factor of 120. We now give an improved
construction.

A bistellar move, also called a Pachner move, consists of replac-
ing a set of pentachora that embed in a 5-simplex Ω by the
complementary set of pentachora in Ω. This also generalizes to a
singular triangulation by allowing identifications consistent with

the replacement. These moves are called 1–5, 2–4, 3–3, 4–2, and
5–1 moves.
Construction 2. Given an arbitrary triangulation of a closed 4-
manifold M having n pentachora, there is a triangulation with
60n pentachora that admits a tricoloring with the property that two
of the graphs Γk are connected and the third consists of isolated
vertices.

Proof: Let |T |→M be a (possibly singular) triangulation of
M . Each pentachoron σ in T has a natural subdivision into 60
pentachora, with a set of vertices consisting of its 0-simplices
together with its barycenter and all barycenters of its 2-simplices
and 3-simplices. This can be built by first applying a 1–5 bistel-
lar move to σ. Each new pentachoron σ′<σ has a unique 3-face
that corresponds to a 3-simplex in σ. Perform a 1–4 move on
this 3-simplex, and cone this to a triangulation of σ′ consisting of
four pentachora. Each of the resulting pentachora σ

′′
contains

a unique 2-simplex that corresponds to a 2-simplex in σ. Per-
form a 1–3 move on this 2-simplex, and cone this to a triangu-
lation of σ

′′
.

For each pentachoron σ in the resulting triangulation, there is
a flag σ1<σ2<σ3<σ4 of simplices, such that the vertices of σ
consist of the vertices of σ1 and the barycenters of σ2, σ3, and
σ4. The tricoloring is now obtained by placing the vertices of σ1

in the set P0, the barycenter of σ2 in the set P1, and the barycen-
ters of σ3 and σ4 in the set P2. This gives a tricoloring with 60n
pentachora.

The graphs Γ0, Γ2 are connected, because they are the 1-
skeleton and dual 1-skeleton of the original triangulation. Fur-
thermore, Γ1 consists of isolated vertices, because each penta-
choron has exactly one vertex in the set P1. �

From Tricolorings to ts-Tricolorings. We now show that, given any
tricolored triangulation of M , there is a simple procedure that
transforms it into a ts-tricolored triangulation of M .
Construction 3. Given a tricolored triangulation of the closed 4-
manifold M with n pentachora, there is a ts-tricolored triangulation
with 2n pentachora.

Proof: In a tricolored triangulation, each pentachoron σ has
a unique facet τ that meets only two of the partition sets. There
is a unique pentachoron σ′ meeting σ in τ , and the two together
form a double pentachoron σ ∪τ σ′. The manifold M thus has a
decomposition into double pentachora.∗ There are three types
of double pentachora classified by the isolated vertices. Shown
in Fig. 4 is a double pentachoron with vertices numbered one to
four in τ (drawn in green and red in Fig. 4) and zero and five
not in τ (drawn in blue in Fig. 4). The three colors correspond
to the partition sets Pk , and vertices of the same color may be
identified in M . Throughout this proof, we may without loss of
generality refer to this labeled double pentachoron. The other
two types arise by permuting the three colors.

We focus on one of the partition sets, Pk . The graph Γk meets
a double pentachoron either in a single edge or in two isolated
vertices. We perform a 2–4 move on each of the double pen-
tachora meeting Γk in two isolated vertices. This gives a new
triangulation T ′ and a new graph Γ′k . Each pentachoron in T ′
meets Γ′k in an edge, and hence, the graph Γ′k is connected. To
see that Γ′k is connected, choose any two vertices in Pk con-
tained in two pentachora of the triangulation. A path in the
dual 1-skeleton between barycenters of these pentachora can be
deformed into Γ′k after the 2–4 moves, showing that this graph is
indeed connected.

Notice that Γ′k is obtained from Γk by adding one edge for
each double pentachoron on which a 2–4 move was performed.

*To the knowledge of the authors, this elementary fact has not been observed
previously.
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Fig. 4. Converting a double pentachoron to a quadrapentachoron. Also
shown are the squares of the central submanifold—the move replaces two
disjoint discs with an annulus, thus adding a handle to the central sur-
face. The remaining figures are based on this; there are two other kinds
of pentachoron corresponding to permutations of the colors.

In Fig. 4, vertices in Pk are drawn in blue. This does not affect any
of the other monochromatic graphs. Since this can be done inde-
pendently for each k (adding edges does not change the other
graphs), this shows that, after doing all 2–4 moves, we have a
c-tricoloring.

We claim that, in fact, we also have a ts-tricoloring after per-
forming all 2–4 moves. This has to do with special properties
of the degree four edges obtained in doing these moves. Let us
introduce some additional terminology that will be useful. A 2–4
move performed on a double pentachoron gives a quadrapen-
tachoron: that is, a collection of four pentachora meeting in a
common 1-simplex contained in no other pentachora and with a
particular coloring having two vertices of each color. This struc-
ture of the quadrapentachora is crucial to our constructions and
proofs.

Let Q be a collection of four pentachora forming one of these
quadrapentachora. The boundary of Q consists of eight tetrahe-
dral, and M is tiled by disjoint collections of these quadrapen-
tachora, meeting along common tetrahedral faces. After the
collection of 2–4 moves, there are four steps.

1. The monochromatic subgraph of the 1-skeleton Γk is con-
nected for each k .

2. Σ∩Q is an annulus formed from squares, one square in each
of the four pentachora of Q . The boundary of this annulus
consists of eight edges lying in eight boundary tetrahedra of
Q , with eight vertices lying in eight boundary 2-simplices of
Q . These combine to give a decomposition of Σ into annuli.

3. For each k and three-dimensional trisection submanifold
Hij , the intersection Hij ∩Q consists of one of two types of
polyhedral structures.

The first polyhedral structure is a 3-ball B ⊂Q with a bound-
ary that is tiled by eight square and four triangular faces. Four of
the square faces form an annulus that is on Σ, and the others
form a pair of discs lying in ∂Q . There is a collapse of B
to a one-dimensional spine (an “H”), and on ∂Q , this col-
lapse agrees with those defined on adjacent quadrapentachora.
This follows from the facet pairings indicated in Fig. 5. For
example, consider the red square that the red submanifold Hbg

collapses to, which is shown in Fig. 5. This square has two
edges, (01, 51) and (02, 52), that are in the interior of Q and
thus, are not glued to any other red squares. Thus, the col-
lapse to an H in Q matches with similar collapses in adjacent
quadrapentachora.

The second polyhedral structure is a solid torus T ∼=S1×D2

with a boundary that is tiled by 12 square faces. The boundary
of T intersects ∂Q in eight of these square faces, two in each
pentachoron of Q . This solid torus collapses to a curve consisting

of four line segments, and on ∂Q , this collapse agrees with those
on adjacent quadrapentachora (Fig. 6).

4. Xk ∩Q is a 4-ball that collapses to Γ′k ∩Q and restricts on ∂Q
to a collapse of Xk ∩ ∂Q that agrees with those on adjacent
quadrapentachora.

This discussion shows that each pairwise intersection of four-
dimensional handlebodies is indeed a three-dimensional handle-
body, since it has a one-dimensional spine and hence, completes
the proof. �

Combining Constructions 2 and 3 gives Theorem 4.
Theorem 4. Given an arbitrary triangulation of the closed ori-
entable 4-manifold M having n pentachora, there is a triangulation
with 120n pentachora that admits a ts-tricoloring.

Constructing Trisection Diagrams. The Proof of Construction 3
allows the construction of the compression discs of the three-
dimensional handlebodies (and hence, the trisection diagram)
from a ts-tricolored triangulation with a decomposition into
quadrapentachora. The details will now be given.

The three-dimensional 1-handlebodies Hij have a coarse
decomposition into polyhedral balls and polyhedral solid tori,
and they have a finer decomposition of each polyhedral ball
into two 3-cubes and two triangular prisms and of each polyhe-
dral torus into four triangular prisms. The initial spine for each
Hij consisted of a 2-cube in each polyhedral ball and of a cir-
cle consisting of four 1-cubes in each polyhedral solid torus. It
was then shown that each 2-cube can be collapsed further to
an H. To analyze the spine further, we use the natural simpli-
cial subdivision of an H into five 1-simplices. Note that a square
face of a polyhedral cube may glue to a square face of a poly-
hedral solid torus. We, therefore, also subdivide the 1-cubes
in the polyhedral solid tori into two 1-simplices. This gives a
consistent subdivision of the one-dimensional spine of Hij (pos-
sibly with some redundancies that can be avoided in an efficient
implementation).

We claim that, for each handlebody, a complete system of
compression discs is constructed by adding canonical normal
squares and normal triangles as shown in Fig. 7. In a polyhe-
dral solid torus, there are two normal triangles in triangular
prisms, which are dual to the two 1-simplices of the spine. In
a polyhedral solid torus, there is one central square in each
cube that is dual to the internal edge of the H, and each
edge meeting a boundary vertex of the H has a corresponding
dual square. To give well-defined discs in the polyhedral balls,
we introduce three normal triangles in each triangular prism
contained in it.

Fig. 5. Red submanifold (based on Fig. 4). Blocks that form pieces of tri-
section submanifolds. The vertices of the blocks are barycenters of faces of
the triangulation labeled with the corresponding vertex labels. The picture
for the green submanifold is analogous, with the notable difference that it
meets the pentachora in cubes (prisms) that the red submanifold meets in
prisms (cubes).

10904 | www.pnas.org/cgi/doi/10.1073/pnas.1717173115 Bell et al.
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Fig. 6. Blue submanifold (based on Fig. 4). Blocks that form pieces of tri-
section submanifolds. The vertices of the blocks are barycenters of faces of
the triangulation, labeled with the corresponding vertex labels.

The surface formed in each of the polyhedral structures is
shown in Fig. 8. This directly shows that the surface meeting the
internal edge of the H is a disc transverse to the spine and hence,
a meridian disc.

For the remaining discs, we need to show that no branching
occurs along the edges of the normal triangles and quadrilaterals.
It follows from the labeling of barycenters that such an edge is
in a 3-simplex in the triangulation and hence, meets at most two
building blocks of the three-dimensional handlebody. Hence, the
surface is properly embedded. The claim that each component is
a disc now follows from the fact that each triangle meets a unique
one-dimensional stratum of the spine in a vertex. Developing this
surface normally to the spine around this central vertex can only
give a disc.

To see the discs form a complete system (possibly with redun-
dancies), note that each edge of the spine has a dual disc. The
central surface Σ is decomposed along a graph into annuli. Each
annulus is made up of four squares, giving the surface a natural
singular Euclidean structure. Each such annulus is met in a single
core curve and in two pairs of boundary parallel arcs by two of
three sets of meridian curves. The remaining set meets the core
curve transversely in eight essential arcs, one in each square. This
is shown in Fig. 9.

One can make the placement of the discs in the blocks
completely canonical as follows. Each 1-simplex that is in a sub-
divided 1-cube of the spine is oriented toward the midpoint of
the 1-cube. One then marks the potential intersection points of
normal discs with these 1-simplices as 1

5
from the initial ver-

tex for H12, 2
5

for H02, and 3
5

for H12. Each internal edge
of an H is oriented arbitrarily, and the potential intersection
points are marked at 4

10
, 5

10
, and 6

10
, respectively. These place-

ments can now be extended linearly over the cubes and prisms
and give markings on the squares of the central surface. The
resulting curves are hence transverse. After a clean-up step
that removes parallel copies of curves, we obtain the desired
trisection diagram.

4. Complexity Bounds
In this section, the aim is to give a bound for the genus of the
central trisection surface in terms of the number of pentachora
in a triangulation of a 4-manifold.
Theorem 5. Suppose M is a closed orientable 4-manifold with a
triangulation having a ts-tricoloring and n pentachora. Then, the
genus of the central trisection surface is at most n/2.

Proof: Every pentachoron contributes one quadrilateral to
the central trisection surface Σ. Hence, Σ has a quadrangula-
tion with n quadrilaterals, 2n edges, and at least one vertex.
The Euler characteristic satisfies χ(Σ)≥ 1−n , and this implies
that g(Σ)≤ (n + 1)/2. Since n is even, we have the claimed
inequality. �

Corollary 6. Suppose M is a closed orientable 4-manifold with an
arbitrary triangulation with m pentachora. Then, there is a trisection
with central surface having genus at most 60m .

Proof: This follows by combining the results of Theorem 4 and
Theorem 5. �

Since a surgery description of a 4-manifold M can be con-
verted into a triangulation, this implies an upper bound for the
genus of a trisection of M , with input of a Kirby diagram. It
would be interesting to determine explicit complexity bounds on
the trisection genus from different descriptions of 4-manifolds,
such as Kirby diagrams.
Question 7. Can one find general bounds that are asymptotically
sharp for infinite families of examples?

5. Moves Simplifying Tricolored Triangulations
Given a c-tricolored (ts-tricolored) triangulation, we give a cri-
terion to obtain a collapsed triangulation that is also c-tricolored
(ts-tricolored) but has only three vertices, one for each color. We
also show that tricolored triangulations can be simplified with
some bistellar moves while maintaining the coloring property.

Tricolored Triangulations with Few Vertices. An edge E of a trian-
gulation T of a 4-manifold is contained in a bubble 2-sphere S if
the following three conditions are satisfied.

1. There is an even collection of singular 2-simplices F1,
F2, . . . ,F2k of T , each containing the edge E .

2. For each i , the remaining edges of Fi can be labeled E−i and
E+

i , such that E+
i =E−i+1 and E+

2k =E−1 .
3. If there is a tricoloring of the triangulation, then E is a

monochromatic edge with ends on two different vertices.

We say that T ? = (∆̃?, Φ?) is obtained from T = (∆̃, Φ) by
collapsing the edge E if ∆̃? consists of all pentachora in ∆̃ not
containing the edge E , and the face pairings Φ? are obtained as
follows. Each facet τ in ∆̃? is the domain of a unique ϕτ ∈Φ.

If the codomain of ϕτ is also a facet in ∆̃?, then ϕτ ∈Φ?. Oth-
erwise, the codomain of ϕτ is a facet τ1 of a pentachoron σ1

containing E , and the collapse χ of σ1 naturally identifies this
with another facet τ2 of σ1. If the codomain of ϕτ2 is in ∆̃?,

then we let ϕτ2
◦χ◦ϕτ ∈ ∆̃?. Otherwise, this procedure propa-

gates through a finite number of facets of collapsed pentachora
until it terminates at a facet in ∆̃?. We note that, at this stage,
no claim was made that |T ?| is a manifold or PL equivalent
with |T |.
Theorem 8. Suppose that T is a triangulation of a 4-manifold that
admits a c-tricoloring (a ts-tricoloring) and that E is a monochro-
matic edge that is not contained in any bubble 2-sphere. If T ∗ is
obtained by collapsing E , then |T ?| is PL equivalent with |T |, and
T ∗ admits a c-tricoloring (a ts-tricoloring).

Proof: Consider a monochromatic edge E joining two distinct
vertices v , v ′ colored R without loss of generality. Each penta-
choron σ containing E is the join of E and a triangular face ∆
with vertices colored either BBG or BGG . The two tetrahedral
facets τ , τ ′ of σ, with vertices being those of ∆ and one of v , v ′,

Fig. 7. Canonical triangles and squares in blocks. Shown from left to right
are prism in torus, cube, and prism in ball.
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Fig. 8. Canonical triangles and squares in the polyhedral structures of the
submanifolds: all discs in the torus structure (Left), one of the four discs
parallel to vertical edges in the cube structure (Center), and the central discs
in the cube structure (Right).

respectively, are identified when E is collapsed. Clearly, the col-
lapse of E preserves the tricoloring, and each monochromatic
subgraph is either unchanged or in the case of ΓR, has the edge
E collapsed to a vertex. Hence, the property of c-tricoloring is
preserved. Moreover, the result of collapsing is a new manifold
PL homeomorphic to the original one if the collapsing map is cell
like (i.e., the inverse image of a point in the identification space
after collapsing is either a point or a finite tree). This also implies
that the property of ts-tricoloring is preserved. We claim that this
map is cell like when E is not contained in any bubble 2-spheres.

The boundary of the collection of pentachora containing E
is the suspension of the link S of E , where S is the set of tri-
angular faces ∆ as in the previous paragraph. Therefore, this
boundary is the union of two cones over S , with cone points v , v ′.
Note that S is obtained from a 2-sphere with vertices all colored
B ,G and that any identifications of these cones must preserve
the colorings.

Suppose a sequence s1, s2, . . . sk of pairs of edges joining two
vertices of S either both to v or both to v ′ are identified. Assume
also that, for si , si+1 and sk , s1, one of the edges of each pair
is collapsed to the same image. We can label the pairs of edges
by s1 = {E+

1 ,E−2 }, . . . sk = {E+
2k ,E−1 }. This produces a bubble

2-sphere and a loop in the inverse image of the points in these
edges after collapsing. In fact, there is a singular foliation of the
bubble 2-sphere by loops that are inverse images of points. The
effect of collapsing is to map the bubble 2-sphere to an inter-
val, which induces a surgery on the manifold. This shows why the
absence of bubble 2-spheres is necessary and sufficient to ensure
that collapsing E corresponds to a cell-like map. A general dis-
cussion of cell-like mappings in dimensions other than four is
given in ref. 19.

We can construct the PL homeomorphism directly, since the
cell-like collapsing map is of a simple type. We follow a method
of J. W. Cannon, factoring the edge collapse into a sequence of
small collapses using the skeleta of the triangulation.

Consider, for example, the inverse image of an edge E ′, where
the inverse image of each interior point is a finite tree and the
inverse image of one vertex is a single vertex and of the other
vertex of E ′ is the edge E . The resulting 2-complex F is the union
of a cone over the tree and the mapping cylinder of the map of
the tree to the edge E as can be seen by decomposing over the
inverse image of the midpoint of E ′. Notice that F can be viewed
as a tree of 2-simplices. F can be collapsed by homotoping leaf
2-simplices onto two of their boundary edges, one of which is E
and the other of which is where the 2-simplex connects onto the
rest of F , one 2-simplex at a time.

After collapsing all such inverse images of edges E ′, we can go
on to collapse inverse images of 2-simplices etc. Note that each
small collapse is then of a PL-embedded ball, namely a simpli-
cial collapse of an embedded simplex. However, it is elementary
to verify that collapsing such a ball gives a map that can be
approximated by a PL homeomorphism. Therefore, this com-
pletes the proof. �

Suppose that T is a triangulation of a 4-manifold that admits a
c-tricoloring (a ts-tricoloring). If, after each edge collapse, there
are no bubble 2-spheres, then we can perform a series of edge
collapses to obtain a new triangulation T ∗ that has a c-tricoloring
(a ts-tricoloring) where each monochromatic graph has a sin-
gle vertex and therefore, is a wedge of circles. In particular, T ∗
has precisely three vertices, one of each color. It is an interest-
ing problem to determine whether such a series of triangulations
without bubble 2-spheres can be found.

Simplifying Moves.
Theorem 9. Suppose T is a triangulation of a 4-manifold that
admits a tricoloring (a c-tricoloring).

• Suppose that T ∗ is obtained by performing a 5–1 move on T .
Then, T ∗ admits a tricoloring (a c-tricoloring).

• Suppose that T ∗ is obtained by performing a 4–2 move on T .
Then, T ∗ admits a tricoloring.

• Assume that T ∗ is obtained by performing a 3–3 move on T
and that the three pentachora involved in the 3–3 move have
six vertices with three sets of pairs of colors. Then, T ∗ admits a
tricoloring.

Proof: Recall that a bistellar move on a four-dimensional tri-
angulation T consists of replacing a set of pentachora that embed
in a 5-simplex Ω by the complementary set of pentachora in Ω.
Now, Ω has six vertices and pentachora facets.

The facets coming from T are tricolored. Therefore, we see
immediately in the cases of 5–1 and 4–2 moves that the ver-
tices of Ω must be colored RRBBGG , because if there were
three vertices of the same color, then the number of tricolored
facets would be at most three. However, if there are two ver-
tices of each color, then every facet is tricolored. Hence, in this
case, every bistellar move associated with Ω yields a tricolored
triangulation.

We now show that if T is c-tricolored, then so is T ∗. In the case
of a 5–1 move, we can visualize this as replacing the cone on the
facets of a pentachoron by the pentachoron. Suppose the facets

Fig. 9. The trisection diagram on a cubulated annulus of Σ: Upper shows
the placement of the intersection points with the spine, and Lower shows
the curves on the cubulated annulus consistent with Fig. 4. Also indicated is
that, whenever the ball structure of the red submanifold meets a square
of the central surface in a cube, then the ball structure of the green
submanifold meets it in a prism and vice versa.
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have vertices that are colored RRBBG without loss of generality.
Then, the central cone point is colored G . If the monochromatic
subgraphs are connected before we do this bistellar move, it is
easy to see they are still connected afterward, because only ΓG

changes by deleting the edge joining the two vertices colored G .
This edge clearly has a leaf vertex of the tree ΓG at the central
cone point colored G . Therefore, this does not disconnect the
subgraph.

Consider next a 4–2 move. Here, four pentachora share a com-
mon edge E . Each pentachoron can be viewed as the join of E
and a triangular face σi , 1≤ i ≤ 4. The four triangles are faces of
a tetrahedral facet Π, and the replacement can be viewed as two
pentachora sharing a facet Π.

Suppose first that the two vertices of E have different colors,
say BG without loss of generality. Then, Π has vertices with col-
ors RRBG . As in the case of the 5–1 move, the monochromatic
edges deleted under our 4–2 move end at leaf vertices at E and
therefore, do not disconnect the monochromatic graphs.

Finally, assume that the vertices of E both have colors, say G .
In this case, Π has vertices with colors RRBB . In particular, the
monochromatic subgraphs ΓR, ΓB do not change, whereas ΓG

has E deleted. Therefore, this may disconnect ΓG , and we may
change a c-tricoloring into a tricoloring.

The case of a 3–3 move, where the three pentachora have six
vertices colored RRBBGG , is similar to the case of a 4–2 move.
In fact, such a move only gives a c-tricoloring from an initial c-
tricoloring if the three pentachora share a triangular face with
vertices colored RBG . �

6. Examples
After a tricoloring is found for a triangulation, one needs to
check the two properties that the monochromatic graphs are
connected and that the three-dimensional trisection submani-
folds have one-dimensional spines. An example of a tricolorable
triangulation, where the former property holds but the latter
fails, is the triangulation of S1×S3 with isomorphism sig-
nature gLAAMQacbdcdefffcaTava4acavayaWaZa2a (20). This
has six pentachora and three vertices. The three monochro-
matic graphs are circles, but the central surface consists of
three pairwise disjoint 2-tori. Two ts-tricolorable triangulations
with six pentachora and three vertices of this manifold were
found by Jonathan Spreer. These have isomorphism signatures
gLMPMQccdeeeffffaaaa9aaaaaaaaaaaaa9a and gLwMQQccee-
effeffaaaaaaaaaaLaLaLaLaLa. The central surface in each case

is a 2-torus, and all four-dimensional and three-dimensional
handlebodies have genus one.

Since the fundamental group π1(S1×S3)∼=Z and the fun-
damental group of the central surface surjects onto the funda-
mental group of each handlebody (as shown in the proof of
proposition 5 in ref. 13), it follows that the central surface of any
trisection of S1×S3 has genus of at least one. Hence, we recover
the result of ref. 14 in Corollary 10.
Corollary 10. The trisection genus of S1×S3 is one.

We note that S1×S3 also has a triangulation with just two
pentachora, cMkabbb2aHaua2a, and therefore, application of
Corollary 6 merely gives a bound of g(Σ)≤ 120. This highlights
the fact that, while our main bound gives a linear upper bound
on the minimal genus of a central surface, in practice, this may
be far from optimal.
Question 11. Are there interesting families of 4-manifolds for which
there exists an algorithm to compute a trisection of minimal genus
for each member of the family?
Question 12. Are there interesting families of 4-manifolds for which
one can find ts-tricolorable triangulations in which the central
surface is of minimal genus?

Our current techniques allow us to first determine a ts-
tricolored triangulation with a large number of pentachora and
then collapse this to a smaller triangulation. This could be
improved with better heuristics to produce tricolorable triangu-
lations to which we apply 2–4 moves to obtain a ts-tricolored
triangulation.

An indispensable tool for experimentation is an implementa-
tion of our algorithms and heuristic procedures in Regina. This
has recently been carried out and extended using algorithmic
tools from discrete Morse theory by Spreer and Tillmann (21).
Experimental data for the Budney–Burton census and links to
code can be found in ref. 21. As a consequence, the two ques-
tions above were recently answered affirmatively for the family
of all standard simply connected PL 4-manifolds in ref. 21.
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