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8Department of Psychiatry, Harvard Medical School

Abstract

Purpose: We examined whether interindividual differences in naturalistic sleep patterns correlate 

with any deviations from typical brain aging.

Methods: Our sample consisted of 251 participants without current psychiatric diagnoses (9–25 

years; mean(SD) = 17.4±4.52yr; 58% female) drawn from the Neuroimaging and Pediatric Sleep 

Databank. Participants completed a T1-weighted structural MRI scan (sMRI) and 5–7 days of 

wrist actigraphy to assess naturalistic sleep patterns (duration, timing, continuity, regularity). We 

estimated brain age from extracted sMRI indices, and calculated brain age gap (estimated brain 

age - chronological age). Robust regressions tested cross-sectional associations between brain age 

gap and sleep patterns. Exploratory models investigated moderating effects of age and biological 

sex and, in a subset of the sample, links between sleep, brain age gap, and depression severity 

(PROMIS Depression).

Results: Later sleep timing (midsleep) was associated with advanced brain aging (larger brain 

age gap), β=0.1575, puncorr=0.0042, pfdr=0.0167. Exploratory models suggested that this effect 

may be driven by males, although the interaction of sex and brain age gap did not survive multiple 

comparison correction (β=0. 2459, puncorr=0.0336, pfdr=0.1061). Sleep duration, continuity, and 

regularity were not significantly associated with brain age gap. Age did not moderate any brain 

age gap–sleep relationships. In this psychiatrically healthy sample, depression severity was also 

not associated with brain age gap or sleep.

Conclusions: Later midsleep may be one behavioral cause or correlate of advanced brain 

aging, particularly among males. Future studies should examine whether advanced brain aging and 

individual differences in sleep precede the onset of suboptimal cognitive-emotional outcomes in 

adolescents.

Keywords

Sleep; Adolescence; Brain Development

INTRODUCTION

The transition through adolescence and into young adulthood is a unique period of 

development (defined by the World Health Organization as the ages from 10–24 years) 

when structural brain changes continue to take place, setting the stage for adult trajectories. 

Sleep behavior also changes during adolescence, and individual differences in sleep behavior 

during adolescence have been linked to subsequent neurobehavioral outcomes in adulthood1. 

Deviations from a normative neuromaturational timetable may be linked to individual 

differences in sleep. Advancing our understanding of brain maturation and associated 

processes may help us identify early markers of vulnerability for later suboptimal outcomes. 

Linking brain measures to modifiable behaviors may allow us to intervene earlier in youth 

and prevent subsequent negative outcomes.
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We recently reported that gray matter structure across numerous brain regions was 

associated with sleep patterns across adolescent development2. Given the wide range of 

brain regions implicated, multivariate approaches that quantify brain maturation may be a 

more parsimonious and powerful approach to linking neurodevelopment and sleep patterns. 

Disruptions to the timing, duration, continuity, and regularity of sleep are associated with a 

diverse range of mental, cognitive and physical health outcomes in adolescence1. Individual 

differences in sleep patterns are also related to the myriad brain regions supporting these 

health outcomes2–5. In the past five years, a multivariate measure known as “brain age” has 

gained in popularity6. Here, various machine learning approaches are used to identify brain 

regions that are the strongest predictors of chronological age. The derived model weights 

are then applied to individual brain regions to predict an individuals’ chronological age 

(i.e., the “predicted brain age”). The individual’s true chronological age is then subtracted 

from their predicted brain age, resulting in a measure known as the “brain age gap”. If the 

predicted brain age is greater than the chronological age, this is typically perceived to reflect 

age-related brain alterations.

In adults, older brain age (i.e., a larger positive brain age gap) may reflect advanced 

“biological aging”, indicative of neurotoxic processes, environmental insults, and/or genetic 

influences. A greater brain age gap (i.e., advanced brain age) has been associated with a 

wide range of poor outcomes, including increased mortality7, lower cognitive abilities8, 

unhealthy lifestyle factors9, psychopathology10, and dementia11. However, most prior 

studies have examined adults and focused on individuals with established disorders or 

impairments.

Consistent with adult studies, recent reports in adolescent samples find advanced 

brain aging in groups with elevated psychosis risk12 and MDD diagnosis13 relative 

to controls. Initial reports also demonstrate ties between advanced brain aging and 

dimensional psychopathology over adolescent development14, although there have been non-

replications15. While most studies tie advanced brain aging with negative health outcomes, 

one study found that youth with advanced brain age had faster cognitive processing speed16, 

a positive cognitive outcome. However, others fail to observe a relationship between brain 

age and cognitive abilities17. Thus, it is unclear whether a “brain age gap” is a negative 

attribute in youth as well. Given more consistent ties between advanced brain aging and 

poor outcomes, understanding how brain age in youth relates to individual differences 

in modifiable behaviors – like sleep – could shed light on factors that protect healthy 

neurodevelopment. For example, in adults, more frequent engagement in healthy behaviors, 

like meditation and physical exercise18,19, is linked to a smaller brain age gap.

Adolescent maturation of sleep-circadian bioregulatory systems (e.g., circadian rhythm 

delay) contributes to later sleep schedules20, of which midsleep timing is a strong behavioral 

proxy21. This biological circadian shift converges with psychosocial factors, like school start 

times, to result in shorter sleep durations and, in some individuals, poorer continuity and 

regularity of sleep20,22. There is a strong biological contribution to sleep timing20, however 

most sleep patterns have been linked to brain structure [e.g.,2–5], and thus it remains unclear 

which sleep patterns are associated with global structural brain aging.
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Here we conducted a novel set of analyses looking at the relationships between brain 

age gap and naturalistic sleep patterns (sleep duration, timing, continuity, regularity) in a 

relatively large sample of healthy children, adolescents, and young adults. We hypothesized 

that a greater brain age gap would be associated with interindividual differences in sleep 

patterns. We also conducted exploratory analyses to investigate whether the relationships 

between brain age gap and sleep patterns were moderated by self-reported biological sex 

and/or age, as these effects have been observed for other outcomes12,23. In a subset of 

the sample with depression symptom ratings, associations between brain age, sleep, and 

subthreshold depression severity were explored.

METHODS

Participants

We utilized data from the Neuroimaging and Pediatric Sleep (NAPS) Databank, a large, 

harmonized cross-sectional databank comprised of healthy children, adolescents, and young 

adults drawn from eight University of Pittsburgh studies conducted between the years of 

2009 to 2020. The NAPS databank was approved as a secondary data analysis protocol by 

the University of Pittsburgh Institutional Review Board. Participant consent or assent was 

collected at enrollment for each individual study included in NAPS and permitted sharing 

of de-identified data. Studies were considered for inclusion in NAPS if they included: a) 

baseline actigraphic sleep monitoring reflecting naturalistic sleep; b) a structural MRI scan; 

and c) participants aged 8.0–30.9 years-old (inclusive). Participant-level inclusion criteria for 

this study were: a) 9.0–25.9 years-old; b) absence of current psychiatric diagnosis based on 

clinical interview (i.e., KSADS, SCID); c) no current psychotropic or hypnotic medication 

use; d) ≥5 days of good quality actigraphic sleep monitoring composed of both weekday 

and weekend days; e) good quality MRI scan. Of the total 351 cases in NAPS, cases were 

excluded based on: removal of duplicate cases due to enrollment in multiple protocols 

(n=2), presence of a psychiatric diagnosis (n=24); poor quality or insufficient sleep tracking 

(n=6); poor quality MRI (n=40); age > 25 years-old (n=18). Demographics of the final 

analytic sample of N=251 are described in Table 1. Demographics by protocol are reported 

in eTables 1–2.

Neuroimaging Methods and Brain Age Calculation

sMRI protocol parameters for the individual studies have been previously published2 and 

are reported in eTable 3. An automated MRIQC T1w-classifier determined individual scan 

quality based on a reference template. We used the software brainageR7,24,25 to calculate 

the “estimated brain age” from the structural MRI images. In this software, structural MRI 

images from a large sample of healthy individuals (N=3,377; 18–90yr) were previously used 

to train a brain age model. T1-weighted MRI were segmented and normalized in SPM12. 

Normalized MRI images were loaded into R using the RNifti package26. Grey matter, white 

matter and CSF measures were vectorized and combined. Principal components analyses 

were conducted and 80 percent of the variance was retained, resulting in a total of 435 

components. Gaussian processes regression (implemented in kernlab)27 were used to predict 

chronological age. This trained brain age model was then tested in a hold-out sample 

(N=857). After all images were segmented and normalized in SPM12, the rotation matrix 
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of the principal components analysis from the discovery sample was applied to the holdout 

sample data and Gaussian Processes regression was used to predict an age value from 

the trained model. In the holdout test sample, there was a strong relationship between 

chronological age and brain-predicted age (r = 0.973, mean absolute error = 3.933 years). 

This model was also tested in an entirely independent sample of participants (CamCAN, 

N=611). Again, the creators of this software package observed a strong relationship between 

chronological age and brain-predicted age (r = 0.947, mean absolute error = 4.90 years).

For the data in our sample, we followed the procedure applied to the test data described 

above to calculate the predicted brain age for each participant. We then subtracted 

chronological age from the predicted brain age to obtain the brain age gap. Because there 

is a known relationship between brain age and chronological age16, we regressed out the 

effects of chronological age prior to running any statistical analyses.

To understand how well the publicly available brain age model (brainageR) performed when 

predicting chronological age in our own sample, we calculated and reported the following 

model performance metrics: correlation coefficient (r) between predicted and chronological 

age, the amount of variance in the predicted age that can be explained by chronological age 

(R2), the square root of the average squared errors (RMSE), and the average of the absolute 

value of the residual (MAE). We used bootstrapping28 of N=1000 models to calculate the 

uncertainty (standard error) for each metric. We report these metrics based on guidance from 

a recent methodological paper on brain age performance evaluation29. We performed these 

calculations before and after age-bias correction, due to the age-bias present in brain age 

calculation29,30: that brain age is typically over-estimated in younger participants, whilst it 

tends to be under-estimated in older individuals31. A power analysis was also performed to 

ensure that we were adequately powered for our main analyses (see eMethods, eResults, 

eTable 4).

Sleep Estimation with Wrist Actigraphy

Actigraphy is a well-validated and widely-used tool for objectively assessing naturalistic 

sleep in children, adolescents, and adults32. Participants continuously wore accelerometers 

on their non-dominant wrist during a monitoring period of 5 or more consecutive days. 

eTable 2 describes the number of participants who wore watches from Philips Respironics 

(PR; Actiwach-64, Actiwatch2, Spectrum series) or Ambulatory Monitoring, Inc. (AMI; 

Basic Octagonal Motionlogger). Wrist activity was sampled in 1-minute intervals (epochs). 

Participants were asked to indicate via button press the start and end of each rest interval.

We estimated sleep from wrist actigraphy using a combination of validated brand-specific 

sleep algorithms (PR Medium Threshold; AMI Sadeh) and standardized visual editing 

procedures2. Trained scorers blinded to neuroimaging data manually identified rest intervals 

based on a combination of event markers indicated by participants and clear changes in 

activity and (if available) environmental light level recorded by the device. Brand-specific 

sleep scoring algorithms estimated sleep within each rest interval2. We implemented 

additional semi-automated quality assurance procedures using in-house R scripts, including 

identification of the main rest interval (defined as the longest rest interval each day), removal 

of invalid sleep intervals containing ≥1 hour of off-wrist time or recording errors33,34, time 
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adjustment for daylight savings time, and final visual inspection of sleep intervals on raster 

plots.

Sleep Outcomes

Primary actigraphy sleep outcomes were based on the main rest interval. We selected 

four sleep outcomes corresponding to key dimensions of sleep health35: sleep duration 

(total sleep time in minutes), timing (midpoint between sleep onset and offset in minutes 

from midnight), continuity (minutes awake after sleep onset; WASO), and variability 

(intra-individual standard deviation of midpoint in minutes). The first three outcomes were 

averaged over the 5–7 tracking days most proximal to their MRI scan; variability was 

calculated from the available days of recording.

Depression

Self-reported depression severity was collected in a subset of 178 participants using 

validated instruments: the Mood and Feelings Questionnaire36 (MFQ) and Patient-Reported 

Outcomes Measurement Information System [PROMIS]-Depression Inventory37. MFQ-

Short scores (n=142) were harmonized to a common metric, the PROMIS-Depression 

Inventory T-Score, using an established linking method38,39. The PROMIS scale is an 

advantageous common metric because it yields a T-Score centered to both pediatric and 

adult US general population; depression severity estimates are weighted to population age, 

sex, and education norms.

Statistical Analyses

We first conducted general additive models to confirm that the four sleep outcomes 

showed age-associated patterns consistent with prior research (eFigure 1). We observed the 

characteristic decline in sleep duration, delay in sleep timing, and increased sleep variability 

over adolescent development. Sleep continuity did not vary with age.

Within the R package MASS40, we used robust regression41,42 to estimate associations 

between brain age gap and four sleep characteristics (sleep duration, midsleep, midsleep 

variability, wake after sleep onset). Robust regression was selected over ordinary least 

squares regression due to the presence of potentially meaningful outliers in our sleep 

outcomes. Robust regression is a form of linear regression that de-weights high-leverage 

outliers based on the distribution of the outcome data, making it a more conservative model 

and less sensitive to outliers than ordinary least squares regression. Robust linear regression 

analyses were performed in R (using rlm function from the MASS package, Huber weights) 

and p-values estimated using robust F-tests (f.robftest function from the sfmisc package). 

The following covariates were included in all models: age, sex, season, study (as a factor), 

lag in days between actigraphy tracking and MRI scan, number of actigraphy tracking 

days, proportion of weekday to weekend days during actigraphy tracking. To ensure that 

the beta weights were interpretable, all continuous independent and outcome variables were 

normalized to mean of zero and a standard deviation of one.

To check the robustness of our primary analyses, we performed “leave-one-out analyses” 

to evaluate the extent to which any one study influences associations between brain age 
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gap and our sleep outcomes. We re-ran robust regression models for each sleep outcome 9 

times, each time omitting all data from a different study. Second, based on recent evidence 

indicating that linear mixed-effects random-intercept models may outperform the ability of 

linear regression models to account for cohort differences in multi-cohort analyses43, we 

performed sensitivity analyses using this alternative analytic method (see eMethods).

We conducted two sets of exploratory analyses. First, we ran robust regression models 

to probe whether age or sex moderated relationships between brain age gap and sleep 

outcomes. Specifically, we included an interaction term (e.g., βsex*sleep outcome) as an 

additional parameter to the primary models. Second, we examined whether sleep outcomes 

or brain age gap was associated with depression severity in the subset of the sample with 

depression ratings.

RESULTS

Sample characteristics

Table 1 depicts participant characteristics. Most sleep variables exhibited small 

intercorrelations. Shorter sleep duration was associated with later midsleep (r = −0.17, 

p=.0055), greater day-to-day midsleep variability (r = −0.20, p=.0012), and greater time 

spent awake after sleep onset (r = −0.13, p=.0305). Later midsleep timing was strongly 

correlated with greater midsleep variability (r = 0.40, p=3e−11) and longer time spent awake 

after sleep onset (r = −0.22, p=.0005). Midsleep variability and wake after sleep onset were 

uncorrelated (r=0.05, p=0.4313).

Brain Age Performance Metrics

Brain age performance metrics before and after age-bias correction are reported in eTable 

5. Correlation plots between chronological and predicted brain age (before and after age 

correction) are presented in eFigure 2. Both r and R2 increased when age-bias correction 

was performed (rbefore=0.54, rafter=0.62; R2
before=0.28, R2

after=0.39) However, MAE and 

RMSE remained similar before and after age-bias correction (RMSEbefore=5.7 years, 

RMSEafter=6.4 years; MAEbefore=4.6 years; MEafter=5.2 years).

Brain age gap was associated with midsleep timing, but not other sleep outcomes

Results of primary analyses are reported in Table 2. After correcting for multiple 

comparisons, there was a statistically significant association between brain age gap and 

midsleep timing (β = 0.1575, puncorr = 0.0042, pfdr = 0.0167; Figure 1A), such that a larger 

brain age gap (i.e., older predicted brain age relative to chronological age) was associated 

with later sleep timing. Larger brain age gap was also associated with greater day-to-day 

midsleep variability, but this result did not survive multiple comparison correction (β = 

0.0721, puncorr = 0.0474, pfdr = 0.0948; Figure 1B). Brain age gap was not significantly 

associated with sleep duration (β = 0.0296, puncorr = 0.5602) or minutes wake after sleep 

onset (β = 0.0203, puncorr = 0.6907). We obtained similar results when we conducted 

robust linear mixed-effects model sensitivity analyses (eResults, eTable 6), highlighting the 

robustness of our findings.
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Relationship Between Midsleep Timing and Brain Age Gap Was Not Driven by an 
Individual Study

Table 3 shows results of the leave-one-out analyses. Findings across iterations were largely 

consistent for significant positive associations between brain age gap and midsleep timing 

(p-values < 0.05), with just one of nine models failing to reach statistical significance (p 

= 0.055). For associations between brain age gap and midsleep variability, results were 

more inconsistent and ranged from non-significant (p-values > 0.1, 2 models) to trend level 

(p-values 0.05–0.1, 5 models) to significant (p-values < 0.05, 2 models). Thus, results for 

midsleep variability were more strongly influenced by the composition of specific samples. 

As in our primary analysis, brain age gap was not significantly associated with sleep 

duration or wake after sleep onset in all nine models (all p-values > 0.1).

Exploratory Age and Sex Moderation Analyses

Table 4 describes the results of exploratory brain age gap × age and brain age gap × sex 

robust regression moderation models. Age did not moderate the association between brain 

age gap and any of the sleep outcomes (all p-values > 0.05). Sex moderated the association 

between brain age gap and midsleep (β = 0. 2459, puncorr = 0.0336, but this result did not 

survive multiple comparison correction (pfdr = 0.1061). Post-hoc examination of sex-specific 

simple slopes (Figure 1C) suggest that ties between accelerated brain age and later midsleep 

timing may be driven by males (β = 0.263, puncorr=0.005) but not females (β = 0.038, 

puncorr=0.615). Sex did not moderate associations between brain age gap and sleep duration, 

midsleep variability, or minutes wake after sleep onset (all p-values > 0.05).

Exploratory Sleep, Brain Age, and Depression Analyses

PROMIS-depression severity T-score in the subsample of n=178 was 43.8±6.6 on average 

(T=50 reflects an age, sex, education-normed population average) and 87% of the sample 

had a T-score < 50, indicating that this sample had below-average depression severity. 

Neither brain age gap nor any of the four sleep outcomes were associated with depression 

severity (all p-values > 0.05; eTable 7).

DISCUSSION

Using a large sample of typical adolescent development (9.0–25.9 years), we identified 

relationships between individual differences in global structural brain age and naturalistic 

sleep patterns. Across adolescent development, later sleep timing was associated with a 

greater brain age gap, or “older brain age”. These results were not driven by sample 

characteristics or potential confounds (e.g., season, actigraph brand). Our results provide 

a novel view of brain-sleep structure relationships, highlighting the importance of using 

a neuroimaging summary score to identify relationships between brain structure and 

individual differences, as opposed to focusing on individual brain regions.

The selective relationship between brain age gap and midsleep is intriguing. Sleep timing 

and timing preference (chronotype) have been consistently associated with gray matter 

structure across diverse brain regions in adults (for example,3,4). Our result extends these 

findings by providing a more parsimonious interpretation that sleep timing is tied to global 
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brain age. Midsleep is a good proxy for endogenous circadian phase (timing)21. Midsleep 

time and the phase of the circadian clock become increasingly delayed over adolescent 

development22. Developmental changes in midsleep and circadian phase parallel, and may 

be guided by, pubertal maturation44,45. Age and puberty are highly correlated with one 

another, and the most prominent age-associated changes in sleep are typically observed 

in measures of sleep timing46,47. Furthermore, given our preliminary finding that the 

relationship between midsleep and brain age gap is stronger in males, it is possible that 

the effect of sex may be driven by differences in pubertal maturation. Males tend to undergo 

pubertal maturation later than females48. Future studies should examine 1) the common 

and unique influences of age and puberty on sleep and global brain maturation and 2) test 

the strength of the potential sex moderation effects on brain age gap in a larger sample. 

Another possibility is that lifestyle factors associated with later sleep timing and older 

brain age (e.g., alcohol use, smoking49,50) could underlie the observed relationship between 

sleep timing and brain aging. For next stage mechanistic studies, it will be important to 

distinguish whether it is a sleep-circadian process or a downstream lifestyle behavior driving 

the associations between sleep timing and structural brain aging.

The relationship between midsleep and brain age gap was not moderated by age. This 

finding suggests that this relationship remains consistent across a dynamic period of 

development. We did previously observe developmentally specific relationships (present 

in one age group but not another) between sleep and gray matter structure in our most 

recent paper from the same dataset2. This finding suggests that those developmentally 

specific associations may be restricted to discrete brain regions, and not more global 

neuromaturation.

Though midsleep variability was also associated with a greater brain age gap, this finding 

did not survive multiple comparison correction and appeared to be more strongly influenced 

by the sample composition. Thus, variable sleep patterns could be tied to brain age gap, 

as well as the sample characteristics for capturing this association. Sleep variability is 

inherently impacted by schedule constraints which may vary by social commitments, such 

as school, work, hobbies, or family responsibilities. Given that we utilized an archival data 

set, the sample composition varied greatly and were originally chosen for different reasons. 

Future studies should test the ability to replicate this relationship in a more homogenous 

sample and/or examine possible moderators of this relationship in a larger community 

sample (i.e., school/work schedule, parental-set sleep timing, season, etc.).

We failed to observe relationships between brain age gap and sleep duration and wake after 

sleep onset. Though these sleep behaviors were related to multiple brain regions in our 

previous paper, our findings suggest that perhaps these relationships are best understood 

by cortical thickness and subcortical volume in these discrete regions, not a more global 

phenomenon. This lack of a relationship may be because sleep duration and wake after sleep 

onset are not as strongly driven by a developmental process, like midsleep22,46. While sleep 

duration declines over adolescence, is sometimes conceptualized as secondary to changes in 

circadian timing in combination with school start times20.
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We also did not detect associations between depression and brain age gap or sleep outcomes 

in exploratory models conducted in a subset of our sample. Both null results may be due 

to our healthy, psychopathology-free sample. One exciting possibility is that brain age-sleep 

associations are evident prior to the emergence of impairing depressive symptoms and 

their tie to global brain age. Based on our results, later midsleep in particular may reflect 

advanced brain aging before clinically significant depression symptoms manifest. This 

interpretation is consistent with the conceptualization of sleep as a precursor or prodrome of 

psychopathology1.

There are several limitations to our study. First, the original brain age model was trained 

and tested on individuals 18–90 years old, and our sample encompassed individuals 9–25 

years old. It has not yet been established if the same individual brain weights are the 

best at predicting chronological age in children and adults; however, other consortia are 

currently working on this issue51. Because there is evidence that age-related structural brain 

changes differ between childhood/adolescence and adulthood52–54, the brainageR model 

may not adequately capture typical adolescent brain development and future studies should 

explore how sleep is related to a brain age model developed specifically for youth. Though 

several other studies have developed brain age models in youth12,14,55, these models have 

not been validated in independent samples and the model we used has been rigorously 

tested in multiple samples. There are critiques against brain age calculations because it is 

a global measure. However, predicted brain age is heritable25 suggesting that this summary 

score is still capturing valuable, meaningful biological information. The age gap score 

we used did not include other bodily system ‘ages’ (e.g., metabolic measures, epigenetic 

markers56,57). Given that sleep patterns are related to a diverse array of bodily systems, 

it will be informative to test how incorporating a more comprehensive assessment of 

biological brain age may improve our ability to account for variability in naturalistic sleep 

patterns. Another potential limitation is the generalizability of our findings due the sample 

composition and sleep measurement method. Our sample was comprised of multiple studies 

conducted in the Pittsburgh, Pennsylvania area, and thus is not a nationally representative 

sample. Further, actigraphy estimates sleep based on low activity levels, which could 

also reflect rested wakefulness. It will be important to replicate these findings in larger, 

nationally representative cohorts that incorporate objective sleep estimation methods, like 

polysomnography. Finally, because our analyses were cross-sectional across a range of ages, 

rather than longitudinal within participants, it is unclear whether sleep patterns are a cause, 

correlate, or consequence of global brain age. Advanced brain aging is most consistently 

associated with negative outcomes, as is later midsleep. Thus, it is possible that midsleep 

could contribute to or result from advanced brain aging. Future, prospective longitudinal 

studies are necessary to disambiguate directionality of relationships between sleep timing 

and brain aging.

A larger brain age gap may also serve as an early marker of risk for multiple suboptimal 

outcomes in youth. Brain age gap is an individual, parsimonious measure that may be more 

easily applied in a clinical setting. Later midsleep may be one behavioral indicator of, or 

contributor to, advanced brain age, particularly among males. Future studies should test the 

hypothesis that advanced brain age gap and individual differences in sleep patterns precede 

the onset of suboptimal outcomes, such as psychopathology. If sleep timing contributes 
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to advanced brain maturation, interventions that normalize sleep timing have potential to 

improve brain maturational trajectories over adolescence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IMPLICATIONS AND CONTRIBUTION

Our findings link a developmentally-driven sleep characteristic – later sleep timing – with 

advanced brain aging over typical adolescent development, particularly among males. 

Herein, ties between sleep timing and brain age predate the emergence of suboptimal 

cognitive-emotional outcomes, implicating late sleep timing as a prodrome or risk factor 

for altered brain development.
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Figure 1: Associations between brain age gap and actigraphy-based midsleep
All regression models examining associations between brain age gap and sleep outcomes 

were adjusted for age, sex (except Fig. 1C), season, study, lag in days between actigraphy 

tracking and MRI scan, number of actigraphy tracking days, proportion of weekday to 

weekend days during actigraphy tracking in robust regression models). Linear best fit line 

with 95% confidence interval is plotted. Linear best fit line with 95% confidence interval 

is plotted. A. Brain age gap (years) plotted versus midsleep (minutes from midnight) in 

the NAPS sample (N=251). B. Brain age gap (years) plotted versus midsleep variability 

(minutes) in the whole NAPS sample (N=251). C. Brain age gap (years) plotted versus 

midsleep (minutes from midnight) for males (n=106; blue) and females (n=145; red).
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Table 1:

NAPS sample characteristics

Variable Mean or n sd or %

Sample N 251

Age (Years) 17.4 4.52

Self-reported Sex at Birth

 Female 145 58%

 Male 106 42%

Ethnicity

 Non-Hispanic 237 94%

 Hispanic 14 6%

Race

 Asian 9 4%

 Black 39 16%

 Multiple 21 8%

 White 179 71%

 Unknown/Missing 3 1%

Wrist Actigraph Type

 AMI Octagonal MotionLogger 36 14%

 PR/MiniMitter Actiwatch64 25 10%

 PR Actiwatch2 93 37%

 PR Spectrum Series 97 39%

Tracking Days 6.6 0.84

 Weekdays 4.53 0.91

 Weekend Days 2.07 0.51

Season

 Spring 43 17%

 Summer 106 42%

 Fall 58 23%

 Winter 44 18%

Sleep Duration (min) 420.53 62.41

Wake After Sleep Onset (minutes) 56.5 26.93

Midsleep (minutes from midnight) 266.69 76.39

Midsleep Variability (minutes) 64.87 51.14

Actigraphy-MRI Scan Lag (days) 3.29 7.17

Note: PR = Philips-Respironics; AMI = Ambulatory Monitoring Inc.
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Table 2.

Robust regression models for actigraphy-assessed sleep outcomes, brain age gap coefficient estimates

Outcome Brain Age Gap Beta (se) Uncorrected p-value FDR-corrected p-value

Sleep Duration 0.0296 (0.0509) 0.5602 0.6907

Midsleep 0.1575 (0.0546) 0.0042 0.0167

Midsleep Variability 0.0721 (0.0364) 0.0474 0.0948

Wake After Sleep Onset 0.0203 (0.0509) 0.6907 0.6907

Note: All models adjusted for age, sex, season, study, lag in days between actigraphy tracking and MRI scan, number of actigraphy tracking days, 
proportion of weekday to weekend days during actigraphy tracking
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Table 3.

Leave-one out models

Left Out Study Sleep Duration Midsleep Midsleep Variability Wake after Sleep Onset

Name N Age Range Beta p-value Beta p-value Beta p-value Beta p-value

Study 1 23 13–17 0.045 0.384 0.138 0.019 0.069 0.069 0.037 0.493

Study 2 20 13–23 0.013 0.805 0.158 0.006 0.068 0.067 0.010 0.843

Study 3 19 14–18 0.014 0.791 0.173 0.003 0.060 0.128 0.012 0.817

Study 4 36 9–14 0.025 0.672 0.183 0.003 0.072 0.058 −0.015 0.787

Study 5 37 11–14 0.020 0.710 0.168 0.004 0.068 0.093 0.044 0.440

Study 6 24 18–22 0.024 0.650 0.169 0.003 0.083 0.022 0.038 0.467

Study 7 25 18–25 0.031 0.558 0.137 0.019 0.061 0.118 0.029 0.590

Study 8 36 19–25 0.086 0.136 0.111 0.055 0.067 0.079 0.023 0.681

Study 9 31 12–19 0.018 0.731 0.187 0.002 0.093 0.024 0.003 0.951

Note: All models adjusted for age, sex, season, study, lag in days between actigraphy tracking and MRI scan, number of actigraphy tracking days, 
proportion of weekday to weekend days during actigraphy tracking. All continuous variables were scaled.
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Table 4.

Exploratory robust regression moderation models

Outcome Brain Age Gap Beta (se) Uncorrected p-value

Brain Age Gap × Age

Age × Sleep Duration −0.0398 (0.0539) 0.4595

Age × Midsleep 0.0579 (0.0574) 0.3135

Age × Midsleep Variability 0.0041 (0.0385) 0.1077

Age × Wake After Sleep Onset −0.0867 (0.0535) 0.1061

Brain Age Gap × Sex

Sex × Sleep Duration −0.0732 (0.1037) 0.4804

Sex × Midsleep 0.2459 (0.1150) 0.0336

Sex × Midsleep Variability 0.1393 (0.0726) 0.0563

Sex × Wake After Sleep Onset 0.1797 (0.1019) 0.0796

Note: All models adjusted for age, sex, season, study, lag in days between actigraphy tracking and MRI scan, number of actigraphy tracking days, 
proportion of weekday to weekend days during actigraphy tracking

J Adolesc Health. Author manuscript; available in PMC 2024 January 01.


	Table T1
	Abstract
	INTRODUCTION
	METHODS
	Participants
	Neuroimaging Methods and Brain Age Calculation
	Sleep Estimation with Wrist Actigraphy
	Sleep Outcomes
	Depression
	Statistical Analyses

	RESULTS
	Sample characteristics
	Brain Age Performance Metrics
	Brain age gap was associated with midsleep timing, but not other sleep outcomes
	Relationship Between Midsleep Timing and Brain Age Gap Was Not Driven by an Individual Study
	Exploratory Age and Sex Moderation Analyses
	Exploratory Sleep, Brain Age, and Depression Analyses

	DISCUSSION
	References
	Figure 1:
	Table 1:
	Table 2.
	Table 3.
	Table 4.



