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Mechanical theory of nonequilibrium coexistence and
motility-induced phase separation
Ahmad K. Omara,b,1,2 ID , Hyeongjoo Rowc,1 ID , Stewart A. Malloryd,1 , and John F. Bradyc,2

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2020.
Contributed by John F. Brady; received November 21, 2022; accepted March 24, 2023; reviewed by Hartmut Loewen, M. Cristina Marchetti,
and Ignacio Pagonabarraga

Nonequilibrium phase transitions are routinely observed in both natural and synthetic
systems. The ubiquity of these transitions highlights the conspicuous absence of a
general theory of phase coexistence that is broadly applicable to both nonequilibrium
and equilibrium systems. Here, we present a general mechanical theory for phase
separation rooted in ideas explored nearly a half-century ago in the study of
inhomogeneous fluids. The core idea is that the mechanical forces within the interface
separating two coexisting phases uniquely determine coexistence criteria, regardless of
whether a system is in equilibrium or not. We demonstrate the power and utility of
this theory by applying it to active Brownian particles, predicting a quantitative phase
diagram for motility-induced phase separation in both two and three dimensions. This
formulation additionally allows for the prediction of novel interfacial phenomena,
such as an increasing interface width while moving deeper into the two-phase region,
a uniquely nonequilibrium effect confirmed by computer simulations. The self-
consistent determination of bulk phase behavior and interfacial phenomena offered
by this mechanical perspective provide a concrete path forward toward a general theory
for nonequilibrium phase transitions.

nonequilibrium | phase diagram | active matter | driven assembly | coexistence

The diversity of phase behavior and pattern formation found in far-from-equilibrium
systems has brought renewed focus to the theory of nonequilibrium phase transitions.
Intracellular phase separation resulting in membraneless organelles (1, 2) and pattern
formation on cell surfaces (3) are just a few instances in which nonequilibrium phase
transitions are implicated in biological function. Colloids (4) and polymers (5–8) subject
to boundary-driven flow can experience shear-induced phase transitions and patterns
that profoundly alter their transport properties. Microscopic self-driven particles, such
as catalytic Janus particles, motile bacteria, or field-directed synthetic colloids, exhibit
phase transitions eerily similar to equilibrium fluids despite the absence of traditional
equilibrium driving forces (9–14).

A general predictive framework for constructing phase diagrams for these driven
systems is notably absent. For equilibrium systems, the formulation of a theory for phase
coexistence was among the earliest accomplishments in thermodynamics. Maxwell (15),
building on the work of van der Waals, derived what are now familiar criteria for phase
equilibria for a one-component system: equality of temperature, chemical potential, and
pressure. These criteria are rooted in the fundamental equilibrium requirements that
free energy be extensive and convex for any unconstrained degrees of freedom within a
system. The lack of such a variational principle for nonequilibrium systems has limited
the theoretical description of out-of-equilibrium phase transitions.

The absence of a general theory for nonequilibrium coexistence has been particularly
evident in the field of active matter. The phenomenon of motility-induced phase
separation (MIPS)—the occurrence of liquid–gas phase separation among repulsive active
Brownian particles (ABPs)—has motivated a variety of perspectives (16–26) in pursuit
of a theory for active coexistence. These perspectives range from kinetic models (27),
continuum and generalized Cahn–Hilliard approaches (16, 18, 28), large deviation
theory (29, 30), and power functional theory (24, 25). Some of these approaches appeal to
equilibrium notions such as free energy and chemical potential (19), concepts which lack
a rigorous basis for active systems. Without a first-principles nonequilibrium coexistence
theory, one cannot compare or assess the various perspectives. Despite the significant
progress, a closed-form theory for the coexistence criteria for MIPS, which makes no
appeals to equilibrium ideas, remains an outstanding challenge in the field.
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Mechanics is a natural choice for describing the behavior of
both equilibrium and nonequilibrium systems as it is agnostic
to the underlying distribution of microstates. In this article,
we construct an entirely mechanical description of liquid–gas
coexistence, relying only on notions such as forces and stresses.
This formulation is an extension of the mechanical perspective
developed decades ago to describe coexistence and interfacial
phenomena for equilibrium systems (31–33). We highlight the
utility of this framework by developing a theory for the coexis-
tence criteria of MIPS and comparing our theory’s predictions
to results from computer simulation. Our formulation further
allows for the prediction of novel nonequilibrium interfacial
behavior, such as a nonmonotonic interfacial width, as the system
is taken deeper into the coexistence region.

The Mechanics of Nonequilibrium Coexistence

We briefly review the thermodynamics of phase separation
for a one-component system undergoing a liquid–gas phase
transition. The order parameter distinguishing the liquid and
gas phases is the number density ρ ≡ N/V , where N
and V are the number of particles and volume, respectively.
For simple substances at a uniform temperature T below a
critical temperature Tc , the mean-field Helmholtz free energy
F(N,V, T ) becomes concave for a range of densities, in violation
of thermodynamic stability. The system resolves this instability
by separating into coexisting macroscopic domains of liquid and
gas with densities ρ liq and ρgas, respectively. The free energy
of the phase-separated system (neglecting interfacial free energy)
is now V liqf (ρ liq, T ) + V gasf (ρgas, T ) where we have defined
the free energy density f (ρ, T ) ≡ F(N,V, T )/V . The volumes
occupied by the liquid (V liq) and gas (V gas) phases sum to the
total system volume V . We now obtain the coexistence criteria
by minimizing the total free energy with respect to ρ liq and
ρgas subject to the conservation of particle number constraint
(i.e., V liqρ liq + V gasρgas = V ρ). This results in the familiar
coexistence criteria:

µ(ρ liq, T ) = µ(ρgas, T ) = µcoexist(T ),

p(ρ liq, T ) = p(ρgas, T ) = pcoexist(T ),
[1a]

where µ(ρ, T ) = ∂ f (ρ, T )/∂ρ is the chemical potential,
p(ρ, T ) = −f (ρ, T )+ρµ(ρ, T ) is the pressure, andµcoexist(T )
and pcoexist(T ) are the coexistence values for the chemical
potential and pressure, respectively, at the temperature of interest.
It is straightforward to show that Eq. 1a can be equivalently
expressed as

µ(ρ liq) = µ(ρgas) = µcoexist,∫ ρ liq

ρgas

[
µ(ρ)− µcoexist] dρ = 0,

[1b]

or similarly

p(υ liq) = p(υgas) = pcoexist,∫ υ liq

υgas

[
p(υ)− pcoexist] dυ = 0,

[1c]

where we have defined the inverse density υ ≡ 1/ρ and have
dropped the dependence onT in Eqs. 1b and 1c for convenience.

The integral expressions in Eqs. 1b and 1c are often referred to
as equal-area or Maxwell constructions (15) in theµ−ρ and p−υ
planes, respectively. These expressions are equivalent to Eq. 1a
and can be used to compute the coexistence curve or binodal as
a function of T . The spinodal boundaries enclose the region of
the phase diagram in which thermodynamic stability is violated,
i.e., (∂2f /∂ρ2)T < 0 or equivalently when (∂p/∂ρ)T < 0 or
(∂µ/∂ρ)T < 0. These boundaries can thus be determined by
finding the densities at which (∂p/∂ρ)T = 0 or (∂µ/∂ρ)T = 0
for a specified temperature.

Interestingly, the coexistence criteria presented in Eq. 1c con-
tains only the mechanical equation-of-state, a quantity which is
readily defined for nonequilibrium systems (unlike, for example,
chemical potential). In fact, Eq. 1c has been used in previous
studies (19, 34) to obtain the phase diagram of active systems.
However, its validity for nonequilibrium systems is questionable
as its origins are clearly rooted in a variational principle that holds
only for equilibrium systems.

We are now poised to construct a theory of coexistence based
purely on mechanics. As previously noted, the order parameter for
liquid–gas phase separation is density. The evolution equation for
the order parameter is therefore simply the continuity equation:

∂ρ

∂t
+ ∇ · jρ = 0, [2]

where we are now considering a density field ρ(x; t) that is
continuous in spatial position x (with ∇ = ∂/∂x) and jρ(x; t) is
the number density flux. A constitutive equation for the number
density flux follows directly from linear momentum conservation.
This connection can be appreciated by noting that jρ(x; t) ≡
ρ(x; t)u(x; t) (where u(x; t) is the number average velocity of
particles) and is therefore proportional to the momentum density
by a factor of the particle mass m. Expressing linear momentum
conservation with jρ (rather than the more traditional u),

∂(mjρ)

∂t
+ ∇ · (mjρ jρ/ρ) = ∇ · � + b, [3]

where �(x; t) is the stress tensor and b(x; t) are the body
forces acting on the particles. In simple systems, Eqs. 2 and 3
may constitute a closed set of coupled equations describing the
temporal and spatial evolution of the density profile. However,
the precise form of the stresses and body forces may depend on
other fields, which will require additional conservation equations
to furnish a closed set of equations.

As we are interested in scenarios in which phase separation
reaches a stationary state of coexistence, the continuity equation
reduces to ∇ · jρ = 0, and linear momentum conservation
is now ∇ · (mjρ jρ/ρ) = ∇ · � + b. While jρ = 0 for
systems in equilibrium, nonequilibrium steady-states may admit
nonzero fluxes*. However, a phase-separated system with a planar
interface will satisfy jρ = 0 due to the quasi-1d geometry
and no-flux boundary condition. We restrict our discussion
to macroscopic phase separation. Therefore, both equilibrium
and nonequilibrium systems will adopt a density flux-free
state, reducing the linear momentum conservation to a static
mechanical force balance:

0 = ∇ · � + b. [4]

*Phase-separated nonequilibrium systems with interfaces of finite curvature (i.e., if the
domain of one of the coexisting phases is of nonmacroscopic spatial extent) may exhibit
nonzero density fluxes (35).
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Eq. 4 is the mechanical condition for liquid–gas coexistence and
can be used to solve for ρ(x) with constitutive equations for� and
b. The nature of these constitutive equations will also determine
whether other conservation equations will be required.

Let us now demonstrate that the equilibrium coexistence
criteria are recovered from this mechanical perspective. In
principle, for any system, whether it is in or out of equilibrium,
microscopic expressions for Eqs. 2 and 3 can be obtained precisely
through the N -body distribution function and its evolution
equation. It will later be necessary to follow such an approach
to obtain stresses and body forces when considering the phase
coexistence of active particles. However, in equilibrium, the
stresses and body forces can also be obtained variationally through
a free energy functional. Consider the following free energy
functional:

F [ρ] =
∫
V

[
f + ρU ext +

κ

2
|∇ρ|2

]
dx, [5]

where f (ρ) is the mean-field free energy density, κ(ρ) is a
(positive) coefficient such that the square-gradient term penalizes
density gradients (36) andU ext(x) represents all externally applied
potential fields. Minimizing F [ρ] with respect to ρ(x) (36–38)
results, after some straightforward manipulations (SI Appendix
for details), in Eq. 4, allowing us to identify the reversible stress
and body forces as

� = −pI+
(

1
2
∂(κρ)
∂ρ
|∇ρ|2 + κρ∇2ρ

)
I− κ∇ρ∇ρ, [6a]

b = −ρ∇U ext, [6b]

where the pressure is again p(ρ) = −f (ρ) + ρ∂ f /∂ρ and I is
the second-rank identity tensor. Note that the gradient terms
appearing in Eq. 6a are the so-called Korteweg stresses (39).
The equilibrium coexistence criteria can now be obtained from
Eqs. 4 and 6.

Without loss of generality, we take the z-direction to be normal
to the planar interface and neglect any external potential (i.e.,
b = 0). In this case, the static force balance, Eq. 4 reduces to
dσzz/dz = 0, where we have exploited the spatial invariance
tangential to the interface. The stress is therefore constant across
the interface resulting in

−σzz = p−
1
2

(
∂κ

∂ρ
ρ − κ

)(
dρ
dz

)2
− κρ

d2ρ

dz2 = C, [7]

where C is a to-be-determined constant.
The complete density profile ρ(z) can now be determined

by solving Eq. 7 with the appropriate boundary conditions.
For a macroscopically phase-separated system, the density profile
approaches constant values ρ liq and ρgas as z → ±∞. In these
regions of constant density, the gradient terms in Eq. 7 vanish and
the pressure in the two phases is equal: p(ρ liq) = p(ρgas) = C .
We now recognize the constant C as the coexistence pressure
pcoexist and recover the first of the two expected coexistence criteria
in Eq. 1c. Before proceeding to the second coexistence criteria,
we rearrange Eq. 7:

p(ρ)− pcoexist = a(ρ)
d2ρ

dz2 + b(ρ)
(
dρ
dz

)2
, [8]

where a(ρ) = κρ and b(ρ) = [(∂κ/∂ρ)ρ − κ] /2. To recover
the second coexistence criteria in a form similar to Eq. 1c, we seek

to integrate Eq. 8 with a variable such that the right-hand-side
vanishes. Aifantis and Serrin (32) recognized that the gradient
terms can be eliminated by multiplying Eq. 8 by a weighting
function E(ρ)dρ/dz, where

E(ρ) =
1

a(ρ)
exp

(
2
∫

b(ρ)
a(ρ)

dρ
)
, [9]

and spatially integrating the result across the interface. This
operation eliminates the gradient terms, resulting in a coexistence
criterion purely in terms of equations-of-state:∫ ρ liq

ρgas

[
p(ρ)− pcoexist]E(ρ) dρ = 0. [10]

Aifantis and Serrin further established that Eq. 10 has a
unique coexistence solution, provided a(ρ) > 0 and p(ρ) is
nonmonotonic in ρ (32).

Eq. 10 is no longer an equal-area construction, but such a form
can be readily obtained through a simple change of variables (21,
22) E(ρ) ≡ ∂E/∂ρ resulting in∫ E liq

Egas

[
p(E)− pcoexist] dE = 0. [11]

Eq. 11 now has the form of an equal-area construction in the
p−E plane. For the equilibrium system of interest, one finds that
E(ρ) = 1/ρ2 = υ2 and E(ρ) = υ (multiplicative and additive
constants inE(ρ) and E(ρ) do not affect the coexistence criteria),
recovering the expected equilibrium coexistence criteria, Eq. 1c
from our mechanical perspective.

We emphasize that, for equilibrium systems, retaining higher-
order gradient terms in the free energy functional would not affect
the resulting coexistence criteria, i.e., E(ρ) = υ would remain
the integration variable independent of the order of truncation.
This can be verified by adding higher-order terms [e.g., ref. 40] to
Eq. 5 (they must be even with respect to spatial gradients to satisfy
the spatial inversion symmetry of the free energy) and confirming
that, for the resulting stress, integration with respect to E(ρ) =
υ also eliminates the additional higher-order interfacial stress
terms. This should not be surprising as, for equilibrium systems,
the coexistence criteria can be derived without referencing the
interface (as done at the beginning of this section) and thus should
not depend on the precise details of the interface, including the
truncation order.

We further note that in order to define the spinodal without
invoking thermodynamic stability, a linear stability analysis on
Eqs. 2 and 3 using the reversible stress Eq. 6a can be performed to
determine whether small density perturbations to a homogeneous
base state will grow in time. In doing so (SI Appendix for details),
we recover the mechanical spinodal criteria (∂p/∂ρ) < 0.
This completes our discussion of the mechanics of equilibrium
coexistence and stability.

For a nonequilibrium system, an additional complexity arises:
the possibility of spontaneously generated internal body forces.
The absence of applied external fields does not exclude the
possibility of body forces for nonequilibrium systems. A gen-
eral nonequilibrium coexistence criterion for liquid–gas phase
separation must therefore account for these internal body forces.
To understand this physically, let us consider a steady-state force
balance on a collection of particles in a control volume Fig. 1.
Application of an external force field on the particles results in
a net volumetric force acting on the particles: a body force. By
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Fig. 1. Force balance on the particles within a control volume at steady
state. Application of an external force field Fext (Top) to a passive system with
conservative reciprocal interaction forces FC and a system with no external
forces but with active forces FA in addition to FC (Bottom).

Newton’s third law, interparticle interactions do not give rise to
a net volumetric force within the volume interior. It is only at the
surface of the control volume that interparticle forces (exerted
by particles outside the volume on the interior particles) are
nonvanishing, resulting in stresses. The polarization of active
forces (Bottom of Fig. 1) results in a net active force within the
volume, behaving similarly to an external force field (41).

At steady state, the self-generated body force density due to
nonequilibrium forces must balance a stress difference across
the volume. In this case, the steady-state one-dimensional (1d)
mechanical balance is dσzz/dz + bz = 0. For a one-dimensional
system, the body force can always be expressed as bz = dσ b/dz,
and the mechanical balance can now be expressed as d(σzz +
σ b)/dz = 0. This newly defined effective stress6 ≡ σzz +σ b is,
just as before, constant spatially. Expressing 6 as a second-order
gradient expansion in density,

−6 = P(ρ)− a(ρ)
d2ρ

dz2 − b(ρ)
(
dρ
dz

)2
= C, [12]

whereP(ρ) is a dynamic or effective pressure. We again recognize
that, as the gradients must vanish in the bulk phases, P(ρ liq) =
P(ρgas) = C , where we identify the constant as the coexistence
effective pressure Pcoexist. The second coexistence criteria can be
found analogously as before through the use of an integrating
factor E(ρ)dρ/dz, where E(ρ) is defined in Eq. 9. The two
coexistence criteria are then:

P(E liq) = P(Egas) = Pcoexist, [13a]

∫ E liq

Egas

[
P(E)− Pcoexist] dE = 0, [13b]

where
∂E
∂ρ

=
1

a(ρ)
exp

(
2
∫

b(ρ)
a(ρ)

dρ
)
. [13c]

Eq. 13 is the general nonequilibrium coexistence criteria for
liquid–gas phase separation.

The powerful idea that coexistence criteria can be extracted
from knowledge of interfacial mechanics was, to the best of our
knowledge, first proposed by Aifantis and Serrin (32) in the
context of equilibrium systems. Solon and coworkers proposed
a similar gradient-expansion-based approach beginning with a
generalized Cahn–Hilliard model (21, 22). The criterion derived
herein, Eq. 13 makes clear that for nonequilibrium phase
separation, one criterion is always equality of dynamic pressure,
while the other is obtained from knowledge of the interfacial
stresses and body forces.

Application of this criterion to determine the phase diagram
will require expressing the dynamic pressure P(ρ) as a second-
order density gradient expansion in order to identify the equal-
area construction variable E(ρ). Furthermore, provided that a
timescale exists such that this dynamic pressure can also be
defined for time-dependent states, the spinodal criterion is now
(∂P/∂ρ) < 0, as shown in SI Appendix. We now proceed to
obtain the dynamic pressure of active Brownian particles and
apply this nonequilibrium coexistence criterion.

The Mechanical Theory of MIPS

For a theoretical prediction of the phase diagram of active Brow-
nian particles, our mechanical perspective requires expressions
for the dynamic pressure, P(ρ), and the coefficients of the
leading gradient terms, a(ρ) and b(ρ). These quantities are
needed to calculate the appropriate integration variable E(ρ)
such that Eq. 13 is satisfied. To derive these quantities, we require
expressions for the stress � and body forces b without invoking
a variational principle. These constitutive equations can be
obtained systematically, beginning with the equations-of-motion
describing the motion of the microscopic degrees of freedom. We
consider active Brownian particles with overdamped translational
and rotational equations-of-motion describing the position rα
and orientation qα (|qα| = 1) of particle α as

ṙα = U0qα +
1
ζ
FC
α , [14a]

q̇α = 
R
α × qα , [14b]

where ζ is the translational drag coefficient and FC
α is the inter-

particle force on particle α. The orientation of a particle evolves
under the influence of a stochastic angular velocity 
R

α , which
follows the usual white noise statistics with a mean of

〈

R
α(t)

〉
=0

and a variance of
〈

R
α(t)
R

β(t
′)
〉
= (2/τR) δαβδ(t − t ′)I, where

τR is the reorientation time and δαβ is the Kronecker delta. We
aim to describe the strongly active (athermal) limit of hard active
disks and spheres where the phase diagram for these systems
are fully described by two geometric parameters: the volume (or
area) fraction φ ≡ vpρ (where vp is the area (d = 2) or volume
(d = 3) of a particle) and the dimensionless intrinsic run length
`0/D, where `0 ≡ U0τR , with D being the particle diameter
and U0 being the intrinsic active speed. We therefore choose a
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conservative force FC
α that results in hard-particle interactions, as

further detailed in Materials and Methods.
The probability density fN (�; t) of finding the system in

a microstate � = (rN , qN ) at time t satisfies a conservation
equation ∂ fN /∂t = LfN , where L is the relevant dynamical
operator specific to the microscopic equations-of-motion, e.g.,
Eq. 14. Conservation equations needed to describe the density
field (at a minimum, the continuity equation and linear mo-
mentum conservation) can be directly obtained through this
dynamical operator and distribution function. For example,
the continuity equation for the ensemble-averaged microscopic
density ρ(x; t) =

〈
ρ̂(x)

〉
=

〈∑N
α=1 δ(x− rα)

〉
is given by

∂ρ/∂t =
∫
γ
ρ̂LfN d�, where γ is the phase-space volume.

An expression for linear momentum conservation and all other
required conservation equations can be similarly obtained.

In the case of ABPs,L is the Fokker–Planck (or Smoluchowski)
operator. For brevity, this operator and the conservation equa-
tions resulting from it are provided in Materials and Methods,
and a complete derivation can be found in SI Appendix. Here,
we include only the necessary results to obtain the MIPS phase
diagram.

The linear momentum balance for overdamped ABPs is found
to simply be 0 = ∇ ·� + b, where the inertial terms on the left-
hand-side of Eq. 3 are identically zero. The stress is identified as
� = �C, where �C is the stress generated by the conservative
interparticle forces. The body forces are given by b = −ζ jρ +
ζU0m, where −ζ jρ is the drag force density and ζU0m is the
active force density arising from the polarization density field
m(x; t) =

〈∑N
α=1 qαδ(x− rα)

〉
. For the quasi-1d system, the

active force density is the sole body force as jρ = 0, reducing the
linear momentum balance to

0 = ∇ · �C + ζU0m. [15]

Activity thus manifests as a body force (41–44) rather than a true
stress.

An added complexity for ABP coexistence is that we now
require an additional conservation equation for the polarization
density field m as it appears in Eq. 15. This is given by

m = −
τR

d − 1
∇ · jm. [16]

The form of Eq. 16 allows us to write an effective stress for the
system as

� = �C + �act, [17]

where we have defined the active or “swim” (45) stress as �act =
−ζU0τRjm/(d − 1) (44). It is important to note here that the
effective stress we define here is not a true stress just as the Maxwell
stress tensor is not a true stress tensor (46). This distinction
between true stresses (�C) and effective stresses (�) was found to
be crucial (44) in computing the surface tension of ABPs (47–49),
which requires the true stress tensor (44, 50).

In our derivation of the effective stress, Eq. 17, we have made
no approximations. However, to utilize our nonequilibrium
coexistence criteria, we must be able to express 6 = σC

zz + σ act
zz

in terms of bulk equations-of-state and density gradients. A
gradient expansion of the conservative interparticle stress σC

zz
results in the bulk interaction pressure pC(ρ) and Korteweg-like
terms with coefficients related to the pair-interaction potential
and pair-distribution function (38). In SI Appendix, we show

the coefficients on the gradient terms associated with σC
zz scale

as ζU0D—the stress scale for active hard-particle collisions—
while, as we demonstrate next, the gradient terms in the active
stress scale as ζU0`0. As MIPS occurs at `0/D � 1, we can
safely discard the Korteweg-like terms and approximate the
conservative interparticle stress as σC

zz ≈ −pC(ρ).
We now turn our focus to an expression for the active stress

σ act
zz in terms of bulk equations-of-state and density gradients.

Deriving a constitutive equation for the polarization flux jm
results in σ act

zz taking the following form:

σ act
zz (z) = −

ζ`0U0U (ρ)
d(d − 1)

(ρ(z) + dQzz(z)) , [18]

where Qzz is the normal component of the traceless nematic den-
sity field Q(x; t) =

〈∑N
α=1((qαqα − I/d)δ(x− rα)

〉
. U0U (ρ)

is the density-dependent average speed of the particles. In
the absence of interparticle interactions, the normalized speed
U (ρ) = 1 as particle motion is unencumbered. An equation-of-
state for U (ρ) is required to describe this bulk contribution of
the active stress. The nematic field satisfies its own conservation
equation, which takes the following form at steady-state:

Qzz(z) = −
τR

2d
d
dz

jQzzz , [19a]

jQzzz = U0U (ρ)Bzzz(z) +

(
3U (ρ)
d + 2

−
1
d

)
U0mz(z) +

1
dζ

dpC

dz
,

[19b]

where Bzzz is the relevant component of the traceless third
orientational moment B =

〈∑N
α=1((qαqαqα−� ·qα/(d + 2))

δ(x − rα)
〉
, where � is a fourth-rank isotropic tensor (Materials

and Methods or SI Appendix). As we are interested in density
gradients up to second order, we can safely close the hierarchy of
orientational moments by setting B = 0. We also recognize from
linear momentum conservation Eq. 15 that ζU0mz− dpC/dz =
0, allowing us to substitute pC in place of mz in Eq. 19b. Our
expression for the effective stress is now:

−6 = pC + pact −
3`2

0
2d(d − 1)(d + 2)

U (ρ)
d
dz

(
U (ρ)

dpC

dz

)
,

[20]

where pact = ρζ`0U0U (ρ)/d(d − 1) is the active pressure (43–
45, 51–54)—an effective pressure emerging from the active body
force density.

The mechanical terms needed to apply our nonequilibrium co-
existence criteria, for a given activity `0, can now be identified as

P(ρ) = pC + pact, [21a]

a(ρ) =
3`2

0
2d(d − 1)(d + 2)

U 2 ∂pC

∂ρ
. [21b]

b(ρ) =
3`2

0
2d(d − 1)(d + 2)

U
∂

∂ρ

[
U
∂pC

∂ρ

]
, [21c]

Eqs. 13c, 21a, and 21b allow us to identify E(ρ) = pC(ρ).
The coexistence criteria for MIPS is therefore

P(pliq
C ) = P(pgas

C ) = Pcoexist, [22a]
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A B

Fig. 2. Predicted homogeneous equation-of-state for 2d athermal ABPs (61) with `0/D ≈ 31.2. (A) The equal-area Maxwell construction in the P − �−1 plane
overestimates the coexistence pressure as predicted from (B) the equal-area construction in P − pC established by our nonequilibrium theory. P and pC are
made dimensionless by �U0D/vp.

∫ pliq
C

pgas
C

[
P(pC)− Pcoexist] dpC = 0. [22b]

Furthermore, the spinodal criterion is indeed found to be
(∂P/∂ρ) < 0 (SI Appendix for details).

To apply this coexistence criterion, we need to know the
functional form of pC(ρ, `0) and pact(ρ, `0) (or equivalently
U ) as a function of volume fraction φ (in place of ρ) and activity
`0/D. A detailed theoretical treatment for these equations-of-
state will require a theory for the pair-distribution function g(r, q)
where r and q are the separation vector and relative orientation
vector between particle pairs, respectively. The description of
nonequilibrium pair-correlations is an active area of investigation.
Theories applicable in the dilute limit have been proposed (55),
and recent developments have been made toward our un-
derstanding of strongly interacting systems (56, 57). Closure
relations rooted in ideas from dynamical density functional
theory (58) have also been proposed for a variety of active
systems, including ABPs (24, 49), hydrodynamically interacting
microswimmers (59), and active rods (60), to name a few.

An alternative approach is to obtain these equations-of-state
directly from particle-based simulations in regions of the φ − `0
plane where the system remains homogeneous. This measured
behavior can then be extrapolated to regions of the φ − `0
plane where the equations-of-state cannot be directly obtained
by leveraging a number of physical considerations (e.g., pC
is a monotonically increasing function of both φ and `0), as
detailed in ref. 61. In two dimensions (2d), we utilize the
equations-of-state developed in ref. 61 and follow a similar
procedure to develop three-dimensional (3d) versions, provided
in SI Appendix. We note that in both 2d (62) and 3d (63), ABPs
can exhibit an order-disorder transition. The theory presented
here applies only to scenarios where the sole order parameter is
density. We therefore limit our focus to polydisperse ABPs in 2d
(eliminating any potential ordered phase) and, in 3d, recognize
that the liquid–gas transition is metastable with respect to a fluid–
crystal transition for much of the phase diagram (63).

Fig. 2 compares the results of performing the equal-area
construction in the P − pC plane with the naive application
of the Maxwell (equilibrium) equal-area-construction in the
P − υ plane (where υ ∼ 1/φ). The equilibrium construction
overestimates the coexistence pressure in comparison to our
nonequilibrium theory, resulting in less disparate coexisting
densities. This trend holds in both two and three dimensions
(binodals presented in Fig. 3) and is exacerbated with increasing
activity.

We now compare our theory with extensive simulations of
polydisperse hard disks (2d) performed in this study, Fig. 3A
and simulations of monodisperse hard spheres (3d) conducted
in ref. 63, Fig. 3B. The agreement between our theory and

A

B

Fig. 3. Coexistence curves for athermal active Brownian (A) disks (2d) and
(B) spheres (3d). Coexisting densities were obtained from slab simulation
data collected in this work (2d) and from ref. 63 (3d). Critical points displayed
were estimated from simulations in refs. 64 (2d) and (63) (3d). Regions of
coexistence and homogeneity are shaded on the basis of our theoretical
predictions.
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simulation data is nearly perfect in 2d and, while there is
less agreement in 3d, the nonequilibrium theory provides a
substantially improved binodal in comparison to that predicted
by the equilibrium Maxwell construction. We note that, just as in
equilibrium theories for coexistence, the quantitative accuracy of
any theory for nonequilibrium coexistence will of course depend
on the quality of the equations-of-state, a potential source of the
discrepancy in 3d.

Nonequilibrium Interfacial Phenomena

At this point, let us now consider physically why our nonequilib-
rium mechanical theory consistently predicts a wider binodal
when compared to the equilibrium Maxwell construction in
the p − υ plane. We first note that Eq. 1c has a clear
mechanical interpretation. The integrand p(υ)− pcoexist isolates
the contribution to the pressure arising solely due to interfacial
forces. The integral can thus be interpreted as the mechanical
work exerted by the interfacial forces on a particle as it moves
from one phase to the other. In equilibrium, this (reversible)
work is identically zero: Moving a particle from liquid to gas
(or gas to liquid) requires no work. In the case of ABPs,
performing the equilibrium Maxwell construction in the p − υ
plane with the coexistence pressure Pcoexist determined from
the nonequilibrium theory, Fig. 2A, the interface works against
particle removal from the liquid phase:

W liq→gas
interf =

∫ υgas

υ liq

[
P(υ)− Pcoexist] dυ ≥ 0, [23]

where the equality holds only at the critical point. This physical
picture is consistent with the unique interfacial structure of MIPS,
where ABPs within the interface are polarized facing into the
liquid phase. As activity increases, this interfacial polarization
intensifies and so, too, does the departure from the equilibrium
Maxwell construction.

The above discussion makes clear that nonequilibrium in-
terfacial forces play a determining role in the phase behavior
of driven systems. We can investigate this interfacial structure
in greater detail as our mechanical theory, by its very nature,
makes predictions about the structure of the interface that can
be compared with simulation. We emphasize that, just as is the
case for equilibrium systems, a small gradient theory may fail to
quantitatively capture the precise structure of the interface while
accurately describing the binodal. A solution of Eq. 20 is shown
in Fig. 4, where we find good qualitative agreement between
our mechanical theory and simulation results for the density φ,
polarization mz , and nematic order Qzz profiles. Additionally, we
observe that the polar order is proportional to dφ/dz, and the
nematic order is proportional to dmz/dz, as predicted by their
conservation equations.

The polarization density, implicated above in the violation
of the equilibrium Maxwell construction, can be understood
as follows. From the momentum balance, the difference in pC
between the two phases is balanced by the integral of the active
force density: pC(ρ liq) − pC(ρgas) =

∫ zliq

zgas ζU0mzdz. Particles
at the interface are oriented and exert active forces toward the
phase with a higher interaction pressures or density, suppressing
the removal of particles from the liquid phase. In the absence
of these interfacial active forces (and in the absence of attractive
cohesive forces keeping the liquid intact), there would be nothing
to prevent the complete dissolution of the liquid phase.

The internally generated active force density engenders a
unique nonmonotonic trend in the interfacial width (Materials

Fig. 4. Comparison of the one-body orientational moments obtained from
simulation and theory for 3d ABPs with `0/D ≈ 44.5. Snapshot represents an
instantaneous system configuration. Only a narrow slice (in the out-of-plane
direction) of particles is shown for clarity. Polar and nematic order profiles are
made dimensionless by the particle volume. Spatial integral of mz (shaded)
is directly proportional to the difference in liquid and gas phase pressures,
coupling the interfacial structure to the bulk phase behavior.

and Methods), predicted by our theory (Fig. 5). This behavior
was first observed in the simulations of Lauersdorf et al. (50)
and reproduced here in our simulations of active spheres (Fig. 5,
Inset). This trend is in stark contrast to interfaces in equilibrium

Fig. 5. Theoretical interfacial width w of 3d ABPs as a function of the
critical parameter (where `c

0 is the critical activity) with simulations (Inset)
corroborating the predicted nonmonotonicity. Stars denote local minima.
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systems where the width of the interface decreases monotonically
as the system is taken deeper into the coexistence region. Again,
while a small gradient theory is not expected to quantitatively
capture the structure of the interface, our theory is able to capture
this effect qualitatively.

To illustrate that the origins of this unique nonequilibrium
effect are again rooted in the interfacial active force density,
consider the following. As one moves deeper into the two-
phase region, the difference in interaction pressures (or densities)
between coexisting phases increases and so must the total active
force provided by the particles at the interface to maintain this
density difference. For sufficiently low activities, the active force
required can be achieved by amplifying the active force density,
ζU0mz = ζU0ρ〈qz〉, by better alignment of particle orientations
〈qz〉 toward the liquid phase, which results in a more compact and
thinner interface. However, this reinforcement mode is limited
due to the upper bound of the magnitude of the active force
density imposed by perfect alignment 〈qz〉 = 1. To supply the
large required active force needed at high activity, the width of
the interface must increase with activity—once a packed layer of
particles is fully aligned, more layers are necessary to produce the
required active force.

Discussion and Conclusions

The nonequilibrium mechanical theory presented in this work
allows for the determination of phase diagrams from bulk
equations-of-state without making any assumptions regarding
the distribution of microstates. Our theory identifies the effective
pressureP , which includes the pressure arising from conservative
interactions and those arising from nonequilibrium body forces,
as the critical mechanical quantity in determining the phase
behavior of nonequilibrium systems. Using MIPS as a case
study, we find that using a true nonequilibrium coexistence
theory results in significantly better predictions than the binodal
obtained through the naive use of the equilibrium coexistence
criteria.

In equilibrium, the coexistence criteria for phase separation
are independent of the system details. All that is required is
the equation-of-state (the pressure or chemical potential) to
determine the phase diagram. For nonequilibrium systems, the
interfacial stresses must be determined to derive the coexistence
criteria, which will generally result in system-specific coexistence
criteria [i.e., a system specific E(ρ)]. Moreover, while the order at
which the density-gradient expansion is truncated for equilibrium
systems will not affect E(ρ), there is no such guarantee for
nonequilibrium systems. This is a result of the coefficients for
a nonequilibrium system generally not emerging from a varia-
tional principle as in equilibrium. These considerations might
suggest that the equilibrium coexistence criteria, while both
rigorously and quantitatively incorrect, might at least provide
a rough pragmatic estimate for the binodal of a nonequilibrium
material (19, 34). However, any departure from the equilib-
rium Maxwell construction likely indicates the significance of
nonequilibrium interfacial forces. Indeed, our theory reveals that
the internally generated active force density—present only within
the interface—dictates the interface’s structure and, in turn, the
appropriate coexistence criteria.

Finally, the mechanical theory for nonequilibrium phase
separation presented in this work applies to scenarios where
density is the sole order parameter. A myriad of other nonequi-
librium phase transitions have been observed in recent years,
including symmetry-breaking transitions [such as active crys-
tallization (63)], transitions with nonconserved order param-

eters (14), and transitions with multiple order parameters,
including traveling states (65–68). A general mechanical theory,
such as that developed here, for these and other phase transitions
would provide a much-needed framework for constructing and
characterizing nonequilibrium coexistence.

Materials and Methods

Here, we briefly summarize the simulation and theoretical details, while a
detailed derivation of the ABP conservation equations is provided inSIAppendix.

Simulations. Particle-based simulations were conducted to determine the
binodal for 2d polydisperse disks equations-of-state for this system were
exhaustively determined in ref. 61 and the equations-of-state for monodisperse
3d hard spheres the binodal of this system was determined in ref. 63. In all
simulations, particles follow the equations-of-motion provided in the main text,
Eqs. 14a and 14b, and the interparticle force FC[rN; ε, σ ] is taken to result from
a Weeks–Chandler–Anderson (WCA) potential (69) (characterized by a Lennard-
JonesdiameterσLJ andenergyscaleε).Despite theuseofacontinuouspotential,
hard-particle statistics can be effectively achieved through careful consideration
of the different force scales, as discussed in ref. 63. Lacking translational Brownian
motion, which simply attenuates the influence of activity on the phase behavior,
these particles strictly exclude volume with a diameter D set by the potential
stiffnessS ≡ ε/(ζU0σLJ) as a measure of the relative strength of conservative
and active forces. Continuous repulsions act only at distances between D and
21/6σLJ, a range that quickly becomes negligible as the stiffness S increases.
We use a stiffness S = 50 for which D/(21/6σLJ) = 0.9997, effectively
achieving hard-sphere statistics. We therefore take the diameter to simply be
D = 21/6σLJ. Holding S fixed to remain in this hard-sphere limit, the system
state is independent of the active force magnitude and is fully described by two
geometric parameters: the volume fraction φ = NπD3/6V (or area fraction
φ = NπD2/4A) and the dimensionless intrinsic run length `0/D.

All simulations were conducted with a minimum of 54,000 particles using
the GPU-enabled HOOMD-blue software package (70). Additional details for the
construction of the 3d equations-of-state are provided in SI Appendix.

Fokker–Planck Equation. The Fokker–Planck (or Smoluchowski) describing
the N-body distribution of particle positions and orientations has the following
form:

∂ fN
∂ t

+
∑
α

∇α · jTα +
∑
α

∇
R
α · j

R
α = 0. [24a]

Here, fN(Γ , t) is the probability density of observing a configuration Γ ≡
(r1, r2, ..., rN, q1, q2, ..., qN) at time t, rα and qα (|qα | = 1) are the position
and orientation vectors of particle α, jTα and jRα are translational and rotational
fluxes of particleα, and∇α = ∂/∂rα and∇Rα = qα×∂/∂qα are translational
and rotational gradient operators. The fluxes are given by

jTα = U0qα fN +
1
ζ
FC
α fN, [24b]

jRα = −τ−1
R ∇

R
α fN. [24c]

The application of our nonequilibrium coexistence theory requires the steady-
state (and density flux-free) linear momentum balance and the conservation
equations of any field variable appearing in the momentum balance. Eq. 24
and the microscopic definition of the field variables can be used to obtain these
conservation equations (SI Appendix for details), which are summarized next.

Conservation Equations. Conservation of number density is simply the
continuity equation:

∂ρ

∂ t
+ ∇ · jρ = 0, [25]

which is coupled to linear momentum conservation:

0 = ∇ · �C + ζU0m− ζ j
ρ . [26]
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The polar order field m(x, t) satisfies its own conservation equation:

∂m
∂ t

+ ∇ · jm +
d − 1
τR

m = 0, [27a]

where the polarization flux follows:

jm = U0U
(
Q +

1
d
ρI
)
. [27b]

A microscopic expression for the dimensionless average active speed U is
provided in SI Appendix. An additional term, not included in Eq. 27b, also
appears but is found to have only a negligible quantitative effect on our findings
as detailed in SI Appendix.

The nematic order conservation and constitutive equations are found to be

∂Q
∂ t

+ ∇ · jQ +
2d
τR

Q = 0, [28a]

jQ = U0UB + U0m ·

(
U

d + 2
� −

1
d
II

)
−

1
dζ
∇ · �CI, [28b]

where� is an isotropic fourth-rank tensor. (In indicial notation,αijkl = δijδkl +

δikδjl + δilδjk , where δij is the second-rank identity tensor.) In Eq. 28b, the

microscopic expression for U differs from that in Eq. 27b. However, to good
approximation, these speeds can be taken to be the same, allowing us to
express the steady-state equations with only two equations-of-state: pC and U.

Interfacial Width Definition. The interfacial width is not a uniquely defined
quantity. Here, for both our theory and simulations, we compute the interfacial
width using the ensemble-averaged density profile, φ(z). We seek a definition
of interfacial width which does not presume a particular functional form of
φ(z). We therefore use the “10-90 thickness” (71) definition of interfacial width,
which defines the width as the distance between the two locations, z1 and
z2 (i.e., w = |z2 − z1|), at which φ(z1) = φgas + 0.1(φliq

− φgas) and
φ(z2) = φgas + 0.9(φliq

− φgas). The qualitative results were found to be
insensitive to the precise definition of interfacial width.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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