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Abstract

Evaluating impacts of forests and forest policy: methods and applications using satellite

data

by

Alberto Gabriel Garcia

Forests provide ecosystem services at a variety of scales, from local to global. Re-

cent attention has focused on forests’ potential to mitigate climate change because of

their ability to store carbon. They also provide substantial local benefits, as trees can

mitigate pollution, reduce extreme temperatures, and enhance psychological well-being.

Unfortunately, threats such as logging and commodity agriculture have led to substantial

deforestation of primary forest. Other factors such as drought, fire, and insects also pose a

threat, impeding the provision of ecosystem services and undermining climate mitigation

potential. In order to design policies that can effectively deliver on the promise of forests,

better evidence is needed to 1) quantify the social costs and benefits that forests provide;

and 2) understand how policy can be best designed to support both forest ecosystems

and local actors.

Advances in earth observation have made more data detailing the dynamics of land

cover and land use change available than ever before. In response, a growing body of

work has emerged that integrates econometric methods of causal inference with these big

data in order to evaluate the effectiveness of various policy designs. This has become

particularly true in the context of forest conservation, where these quasiexperimental im-

pact evaluations are increasingly used to inform new policy. However, factors inherent to

their structure such as measurement error and irreversibility may affect the performance

of common econometric approaches. Further work is needed to help researchers grapple
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with how these data can be best integrated with econometric methods of causal inference,

thereby providing more informative insight into policy design.

This dissertation seeks to answer three distinct but intertwined questions. In the

first chapter, my co-author, Robert Heilmayr, and I ask how binary and irreversible

data, a structure found in most deforestation datasets, affects the performance of panel

econometric estimators. While the application of quasiexperimental impact evaluation

to remotely sensed measures of deforestation has yielded important evidence detailing

the effectiveness of conservation policies, researchers have paid insufficient attention to

structure of these deforestation datasets. We use analytical proofs and simulations to

demonstrate that many commonly employed panel econometric models are biased when

applied to binary and irreversible outcomes. The significance, magnitude and even direc-

tion of estimated effects from many studies are likely incorrect, threatening to undermine

the evidence base that underpins conservation policy adoption and design. To address

these concerns, we provide guidance and new strategies for the design of panel econo-

metric models that yield more reliable estimates of the impacts of forest conservation

policies.

The second chapter asks how policymakers can best design forest policy in order to

capitalize on the potential of forest-based climate solutions, while supporting livelihoods.

In order to address the intertwined challenges posed by climate change, biodiversity loss,

and rural poverty, policymakers throughout the world have begun to adopt policies that

pay private landowners to protect or restore forests. However, relatively little evidence

exists documenting the impacts these payments have had, and how incentives can be best

structured to achieve multiple objectives. I evaluate the land cover impacts of a forest

restoration subsidy included in Chile’s Native Forest Law, which prioritized the participa-

tion of rural smallholders and indigenous communities. I find that 68.12% of landowners

who had applied for the subsidy did not comply with their stated forest management
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commitments. However, verification protocols included as part of the conditional cash

transfer program prevented nearly $30 million USD in unconditional transfers to these

non-compliant landowners. Compliant landowners who were paid for forest restoration

did expand native forests on their properties relative to a robust counterfactual. I find

that the program has expanded Chile’s native forests and paid the average landowner

an estimated $36.78 USD per tonne CO2 stored in aboveground biomass. In contrast to

many studies on avoided deforestation, complying smallholders in regions of high poverty

generated the greatest tree cover gains per enrolled hectare. These findings illustrate that,

in contrast to payments for avoided deforestation, targeting for social development may

enhance the environmental effectiveness of payments for restoration.

In the third and final chapter, I ask whether ecosystem degradation, specifically inva-

sive species induced tree cover loss, has impacts on education outcomes in metropolitan

United States. I leverage variation from the introduction of an invasive insect that ex-

clusively targets ash trees, the emerald ash borer, to the Chicago Metropolitan area.

Exploiting the staggered and idiosyncratic spread of the borer, I show how tree canopy

cover and education outcomes were affected using difference-in-differences methods robust

to general treatment effect heterogeneity. My findings indicate that ash borer infestation

reduced canopy cover in affected areas by 1.4% on average, stemming from both increases

in tree cover loss and declines in tree cover gain. Further, the ash borer reduced stan-

dardized test performance at exposed schools. Infestation exposure led to an average

1.86% fewer students meeting or exceeding the state benchmark at the typical school,

with impacts concentrated among low-income students. This paper shows that invasive

species can substantially impact ecosystem service provision and ultimately, education

outcomes, adding to the damages known to be caused by human-induced environmental

change.
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Chapter 1

Conservation impact evaluation using

remotely sensed data

1.1 Introduction

Policymakers often need to understand the causal impacts of conservation interven-

tions. Can payments for ecosystem services encourage lasting reforestation? Do marine

protected areas stop unsustainable harvesting of fish? While randomized experiments

are the gold standard for the identification of causal relationships (Edwards et al., 2020;

Jayachandran et al., 2017), conservation often poses questions that are prohibitively ex-

pensive, unethical or impossible to pursue through experimentation. In such settings, a

growing portfolio of statistical techniques enable researchers to draw causal conclusions

using observational data (Larsen et al., 2019; Ferraro and Hanauer, 2014; Miteva et al.,

2012). Increasingly, these econometric approaches to impact evaluation are being used to

disentangle the causal relationships that underpin conservation decision-making (Butsic

et al., 2017a; Baylis et al., 2016; Williams et al., 2020).

Conservation has seen a proliferation of panel impact evaluation studies that detail the
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Conservation impact evaluation using remotely sensed data Chapter 1

impacts of conservation interventions on land use change. This has been enabled, in part,

by the increasing prevalence of remotely sensed datasets detailing forest cover outcomes

through time (Blackman, 2013; Jones and Lewis, 2015). As a result, a scientist hoping

to quantify the impacts of a land use policy adopted decades ago can assemble data for

treated and control units that span multiple years both pre- and post-implementation

periods (Jain, 2020). Deforestation is often measured using data with a similar structure

to the Hansen Global Forest Change product (Hansen et al., 2013). These data yield

binary observations detailing the first year in which each 30 by 30m pixel was deforested.

Most studies that evaluate the effectiveness of forest conservation policies use these re-

motely sensed pixels as the unit of observation (Börner et al., 2020). Importantly, the

data are unable to detect repeated deforestation events in the same location, so when

converted to a panel structure, researchers have no information about a pixel beyond the

year it is first cleared. In response, it has often been advised to drop pixels in the years

after they are first cleared (Jones and Lewis, 2015; Alix-Garcia and Gibbs, 2017). This

yields an unbalanced panel dataset of binary, irreversible deforestation events.

In this paper, we investigate whether this irreversible, binary data structure affects

the performance of panel econometric methods typically used in conservation impact

evaluation. Specifically, we focus on methods typically used in difference-in-differences

(DID) settings, where the researcher observes land use change in treatment and control

areas, both prior to and after some intervention of interest. DID and two-way fixed effects

(TWFE) regression are among the most popular econometric approaches in observational

panel data settings (de Chaisemartin and D’Haultfœuille, 2020; Sant’Anna and Zhao,

2020; Goodman-Bacon, 2021), and this extends to the conservation context.

We use a combination of analytical proofs and Monte Carlo simulations to demon-

strate that many econometric analyses are likely biased when applied to panel data with

this structure- significance, magnitude and even direction of estimated effects might be
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Conservation impact evaluation using remotely sensed data Chapter 1

incorrect. The resulting biases arise even when researchers follow common guidance to

adopt "rigorous" research designs with valid counterfactuals (Blackman, 2013; Jones and

Lewis, 2015). While we focus primarily upon impact evaluation of forest conservation

policies, our findings are relevant to a wider audience. Specifically, these results apply

to diverse settings in which the outcome of interest represents an irreversible, binary

event. Such events include recidivism (e.g. Agan and Makowsky, 2018; Mastrobuoni and

Pinotti, 2015), mortality (e.g. Friedman and Schady, 2013), and unilateral technology

adoption (e.g. Bollinger et al., 2022).

Our core result shows that TWFE regressions with individual unit fixed effects do

not identify the desired treatment effect parameter when applied to panel datasets with

binary, irreversible outcomes. This is the case even when typical common trends as-

sumptions hold and in the absence of general treatment effect heterogeneity. It has been

widely stated that the standard DID estimator is numerically equivalent to the linear

TWFE estimator in the case of two-periods (each of which can consist of multiple years)

and two-groups (2x2), where treatment is administered to only some units in the second

period (Imai and Kim, 2021; Goodman-Bacon, 2021). However, when applied to binary,

irreversible panel data with the structure we describe, we demonstrate that the TWFE

estimator is distinct from the standard DID estimator. We show that the coefficient of

interest in TWFE specifications instead recovers an ex-post difference in deforestation

rates between treatment and control areas. This is particularly worrisome in the context

of forest conservation, where interventions often target areas with high deforestation rates

(e.g., Brazil’s blacklisted Priority Municipalities) or low opportunity costs (e.g., protected

areas). Papers published in both conservation science and economics journals frequently

use this problematic specification to recover treatment effect estimates. This concern also

extends to many recently developed DID estimators that estimate treatment effects in

staggered adoption settings (e.g. Callaway and Sant’Anna, 2020; Borusyak et al., 2021;
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Gardner, 2021), meaning that researchers cannot simply adopt a different estimator to

avoid the issue. To help guide future impact evaluations, we identify multiple ways in

which this bias can be reduced or even eliminated. In the land use context, one easily

implemented solution is to aggregate the binary pixels spatially. Both pixel-level TWFE

specifications with spatially aggregated unit fixed effects and TWFE specifications with

spatially aggregated units of analysis recover the expected treatment effect parameter.

Researchers often account for irreversible, binary outcomes by adopting non-linear

survival models. However, many invoke the traditional linear common trends assumption

in this context. We demonstrate that this is not appropriate, as the survival analog to the

traditional DID estimator relies instead on a proportional trends assumption. In general,

this proportional trends assumption cannot simultaneously hold with the common trends

assumption typically invoked in linear models. We develop a new survival-based DID

estimator that relies on the more traditional common trends assumption.

We then explore non-random selection that arises due to irreversibility in the defor-

estation setting and how this feature of the data may lead to bias. Finally, we reflect

on the econometric benefits that emerge when researchers are able to match their model

structure to the relevant scale of the deforestation process and explore how area weighting

may change the interpretation of researchers’ treatment effect estimates.

This work makes important contributions to several literatures. First, our research

contributes to an emerging literature aimed at better understanding how best to integrate

remotely sensed data and econometric methods of causal inference (Jain, 2020; Gibson

et al., 2021). Several studies have begun to document measurement error in satellite-

based measurements and explore its implications for econometric analysis (e.g. Proctor

et al., 2023). For example, Alix-Garcia and Millimet (2022) address misclassification in

the context of a remotely sensed binary forest cover outcome and propose a solution

for unbiased causal inference. Our paper implicitly assumes away issues of non-classical
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measurement error but demonstrates that researchers may still recover biased treatment

effect estimates when using an irreversible, binary forest cover outcome.

We contribute to work in environmental economics and conservation science seeking

to rigorously estimate the impacts of conservation policy. Causal impact evaluation in

nature conservation has emerged relatively recently (Börner et al., 2020), and a wide array

of papers has called for researchers to improve the rigor of their approaches in this space

(Ferraro et al., 2019a; Avelino et al., 2016; Baylis et al., 2016; Miteva et al., 2012). While

a burgeoning literature of quasiexperimental conservation impact evaluation has sought

to meet this call, this study identifies key obstacles when integrating these econometric

methods with frequently used sources of land cover data.

Finally, we add to the emerging literature on empirical practices in difference-in-

differences settings. We complement the growing literature on the causal interpretation

of coefficients from TWFE models, showing that individual unit-level TWFE regressions

may not identify the expected treatment effect parameter when applied to binary, irre-

versible outcomes. While much of the recent work on TWFE models identifies concerns in

the staggered adoption setting (e.g. Callaway and Sant’Anna, 2020; de Chaisemartin and

D’Haultfœuille, 2020; Goodman-Bacon, 2021), our results apply even in the 2x2 setting.

We further show that the TWFE and DID estimators are numerically distinct in the

two-period, two-group context in this setting. Further, we show that recently developed

estimators suffer from similar issues to TWFE regressions in the context of irreversible,

binary outcomes.
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1.2 Empirical context

1.2.1 Analysis setting

We focus on the case in which a researcher would like to quantify the impact an

intervention has had on deforestation rates. We assume that the intervention has clearly

defined boundaries (e.g., a protected area, certified concession, or indigenous territory),

and that the researcher has access to spatially explicit observations of forest cover and

forest loss spanning multiple years over the periods before and after the intervention was

adopted. This general setting describes a broad array of studies that apply panel methods

to remotely sensed data. Table 1.1 shows an unsystematic review of avoided deforesta-

tion impact evaluation studies using panel econometric methods and data accessed as

pixelated binary deforestation. There also exist a vast array of studies using matching

as the primary identification approach (e.g. Pfaff et al., 2014; Robalino et al., 2015; Pfaff

et al., 2015), but Table 1.1 focuses on only those incorporating panel approaches.

In each of the studies detailed in Table 1.1, the researcher’s goal is to measure the

impact that a specific policy had on deforestation within treated units, also known as

the average treatment effect on the treated (ATT ). The ATT estimates the difference

between the average deforestation rate of treated units with treatment, and the average

deforestation rate of treated units without treatment. The fundamental challenge is that,

for every treated unit, the researcher is unable to observe the value that the outcome

would have taken in the absence of treatment (Holland, 1986). In our case, this means

that the researcher cannot observe the deforestation that would have occurred in treated

units had they not received treatment.
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Table 1.1: Panel econometric methods used in avoided deforestation impact evalua-
tions. All included studies use data accessed as pixelated binary deforestation.

Paper Panel method Unit of analysis Unit FE
Alix-Garcia and Gibbs 2017 TWFE binary point/pixel pixel
Alix-Garcia et al 2018 TWFE binary point/pixel pixel
Anderson et al. 2018 matched DID binary point/pixel
Araujo et al. 2009 TWFE instrument state state
Arriagada et al. 2012 matched DID farm
Baehr et al. 2021 TWFE binary pixel/grid pixel
Baylis et al. 2012 DID grid cell
BenYishay et al. 2017 TWFE grid cell grid cell
Blackman 2015 unit FE model binary point/pixel county
Blackman et al. 2017 TWFE community community
Blackman et al. 2018 matched TWFE mgmt. unit mgmt. unit
Busch et al. 2015 matched TWFE grid cell grid cell
Butsic et al. 2017 TWFE binary point/pixel pixel
Carlson et al. 2018 (1) matched TWFE plantation plantation
Carlson et al. 2018 (2) Cox PH DID pixel
Heilmayr and Lambin 2016 matched DID property
Heilmayr et al. 2020 Triple DID/FE binary point/pixel municipality
Herrera et al. 2019 matched regression binary point/pixel
Holland et al. 2017 matched TWFE property property
Jones and Lewis 2015 (1) matched TWFE binary point/pixel pixel
Jones and Lewis 2015 (2) matched TWFE property property
Jones et al. 2017 matched TWFE household household
Koch et al. 2018 matched DID municipality
Nolte et al. 2017 DID property
Panlasigui et al. 2018 TWFE binary point/pixel pixel
Rico-Straffon et al. 2022 staggered DID grid cell
Ruggiero et al. 2022 TWFE municipality municipality
Sales et al. 2022 Cox PH DID pixel
Shah and Baylis 2015 DID grid cell
Sims and Alix-Garcia 2017 TWFE locality locality
Tabor et al. 2017 TWFE fokontany fokontany
Wendland et al. 2015 matched TWFE binary point/pixel pixel
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We model deforestation (yivt) as a binary choice by a landowner to clear a small plot

of land i within their larger property v in year t, where t ∈ T . The decision to deforest

depends upon a latent variable (y∗ivt) that represents the returns from the plot of land in

its cleared state (V cleared
ivt ) relative to the returns from its forested state (V uncleared

ivt ), such

that:

y∗ivt = V cleared
ivt − V uncleared

ivt (1.1)

yivt =


1 if y∗ivt > 0

0 otherwise
(1.2)

This generic clearing rule underpins a broad class of more specific static and dynamic

models that have been used to explore the determinants of deforestation (e.g. Pfaff, 1999;

Kerr et al., 2003; Pfaff and Sanchez-Azofeifa, 2004).

However, this basic model makes an assumption that the decision to deforest is re-

versible. In reality, a number of characteristics of both the process of deforestation,

as well as the methods used to detect deforestation in individual plots, complicate this

assumption. First, the goal of many conservation interventions is to prevent the loss of

mature forests that may take decades, if not centuries, to regrow. In such cases, deforesta-

tion itself may be considered irreversible in human time scales, focusing the researchers’

attention upon the first instance in which a plot is deforested. Even when deforesta-

tion of secondary forests is an object of interest, constraints imposed by remotely sensed

datasets may force empirical researchers to treat deforestation as irreversible. Gradual

processes of reforestation are inherently harder to identify than abrupt losses of forest

cover (Hansen et al., 2013). In addition, determining the precise year in which the ex-

tended process of forest regrowth began is currently an active area of research for the
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remote sensing community, and often requires many years of post-regrowth observations.

As a result, commonly used deforestation datasets such as the Global Forest Change

product often only identify the first year in which a pixel was cleared. Whether desired,

or due to technical limitations, the resulting inability to observe repeated deforestation

means that deforestation is, in effect, an irreversible process in most conservation impact

evaluations. To incorporate this irreversibility into our model, we denote Ci as the first

year in which y∗ivt > 0, where yivt is not observed when t > Ci.

In response to this irreversibility, studies including Jones and Lewis (2015) and Alix-

Garcia and Gibbs (2017) have suggested that deforested pixels should be dropped in

the periods after they are first cleared. We follow this guidance, further modifying our

outcome, yoivt, the observed binary deforestation variable:

yoivt =


1 t = Ci

0 t < Ci

− t > Ci

(1.3)

Here, − indicates that the outcome for pixel i in time t has been dropped from the

panel in years where t > Ci.

Our parameter of interest, the ATT , is the average effect of an intervention on treated

pixels. Let yivt(1) and yivt(0) denote the potential outcomes of pixel i in property v in

year t with and without the treatment, respectively. In addition, let t0 denote the first

year in which the intervention of interest is implemented and let Di represent a dummy

indicating whether pixel i is ever treated. The ATT can now be expressed as:

9
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ATT = E[yivt(1)− yivt(0)|t ≥ t0, Di = 1] (1.4)

DID and TWFE methods have become popular in part, because the researcher does

not need random assignment of treatment to generate convincing estimates of a program’s

impact on avoided deforestation. Instead, the researcher must make a common trends

assumption, under which we evaluate each method.

Assumption 1: (Common trends)

E[yivt(0)|t ≥ t0, Di = 1]− E[yivt(0)|t < t0, Di = 1]

=

E[yivt(0)|t ≥ t0, Di = 0]− E[yivt(0)|t < t0, Di = 0]

Assumption 1 requires that pixels in treated and untreated areas would have experi-

enced the same change in their probability of deforestation across the two periods had

no intervention occurred. While fundamentally untestable, researchers can take steps to

address the plausibility of this assumption (Butsic et al., 2017a; Roth, 2022).

We also make the following stable unit treatment value assumption (SUTVA)

Assumption 2: (SUTVA)

∀d ∈ {0, 1} : if Di = d and t ≥ t0, then yivt(d) = yivt

Assumption 2 requires that the potential outcomes for pixel i, yit(1) and yit(0), do not

depend on the treatment status of any other pixel. There also cannot exist unobserved

versions of treatment that may affect the potential outcomes.

10
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1.2.2 Candidate empirical models

We present several empirical model specifications that we will evaluate and refer

to throughout the remainder of the paper. These models have all been used in the

forest conservation literature to estimate the ATT of specific conservation interventions.

While some approaches, such as survival-analysis, are only beginning to emerge in the

deforestation case, they are popular in other literatures in which the researcher wants to

estimate the impact of an intervention on the occurrence of binary, irreversible events.

Traditional difference-in-differences estimator

Under the above two assumptions, perhaps the most popular panel approach to esti-

mate the ATT in conservation impact evaluation is the traditional DID regression:

Regression 1: (DID regression) Let βDID denote the coefficient of the interaction

between Di and an indicator for whether the intervention has been implemented in time

t, 1{t ≥ t0}, in the following (population) OLS regression:

yoivt = α0 + α1Di + α21{t ≥ t0}+ βDID ×Di1{t ≥ t0}+ ϵivt

Conceptually, the DID estimator calculates the treatment effect as the difference be-

tween the differences of the treated and untreated observations before and after treatment

(Butsic et al., 2017a).

βDID = E[yoivt|t ≥ t0, Di = 1]− E[yoivt|t < t0, Di = 1]

−(E[yoivt|t ≥ t0, Di = 0]− E[yoivt|t < t0, Di = 0])

When the yoivts are i.i.d. and Assumptions 1 and 2 hold, it is straightforward to show
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that

βDID = ATT

Individual unit-level TWFE regression

Researchers often want to estimate the ATT in a setting that does not fit the two-

group, two-period case covered by the standard DID model. In such cases, TWFE

regressions are frequently used to apply DID methods to multiple groups or treatment

periods (Imai and Kim, 2021; Goodman-Bacon, 2021). This amounts to estimating a

regression that includes individual unit and time fixed effects to control for unobservable

confounding variables that vary across units or through time.

Regression 2: (Individual unit TWFE regression) Let βTWFE denote the coefficient

of the interaction between Di and 1{t ≥ t0} in the following (population) OLS regression:

yoivt = βTWFE x Di1{t ≥ t0}+ λt + γi + ϵivt

Here λt and γi represent the year and individual unit fixed effects, respectively. In the

context of forest conservation, the individual unit i represents the pixel.

In the case of two groups and two time periods, the TWFE regression typically yields

an estimate of the ATT that is numerically equivalent to the estimate generated by the

DID model (Wooldridge, 2010; Imai and Kim, 2021). With this in mind, many researchers

have used the TWFE model as a “generalized DID" that can be estimated not only in

the 2x2 case, but also in settings where different units are exposed to treatment in more

than two distinct time periods (Table 1.1). For example, a researcher may use a TWFE

regression model to examine the effectiveness of a network of protected areas where the

protected areas were created at different times, or a payment for ecosystem services (PES)
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program that enrolled properties in annual cohorts.

Aggregated unit fixed effects

One can also use aggregated units in the TWFE specification. Regression 3 outlines

the use of unit fixed effects at the level of an aggregated unit rather than the individual

binary unit. In the forest conservation context, aggregation is generally done spatially,

aggregating pixels into larger units such as a grid cell (e.g. Rico-Straffon et al., 2023),

property (e.g. Heilmayr and Lambin, 2016), or larger administrative unit (e.g. Pfaff,

1999). Individual unit-level TWFE models with aggregated fixed effects are all in the

form of Regression 4.

Regression 3: (Individual unit-level TWFE regression with aggregated unit fixed

effects) Let βFE,j denote the coefficient of the interaction between Di and 1{t ≥ t0} in

the following (population) OLS regression:

yoivt = βFE,j x Di1{t ≥ t0}+ λt + γj + ϵivt

, where λt denotes year fixed effects and γj denotes fixed effects at the level of an aggre-

gated unit. If k differs from the level of treatment assignment, one must also include a

treatment group indicator or fixed effects at the level of the unit at which treatment is

assigned.

Aggregated units of analysis

Another potential solution to the bias associated with TWFE models is for researchers

to aggregate multiple binary unit-level observations into larger units of analysis. Regres-

sion 4 details specifications of this type. The researcher must now calculate the event

rate (i.e., deforestation rate) in each time period within the relevant unit.

13
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Regression 4: (TWFE regression with aggregated unit of analysis) Let βj denote

the coefficient of the interaction between Dj and 1{t ≥ t0} in the following (population)

OLS regression:

zjt = βj x Dj1{t ≥ t0}+ λt + γj + ϵjt

, where λt denotes year fixed effects and γj denotes fixed effects at the level of the

aggregated unit. Regression 5 differs from Regression 4 in both the treatment variable,

Dj and the outcome variable, zjt. The treatment variableDj =
1
Nj

∑Nj

i=1Di, is the average

treatment value amongst all pixels in unit j. If treatment is assigned at the level of j,

Dj = 1. The outcome variable, zjt, denotes the event rate within unit j in period t.

Arguably the most commonly used formula in the deforestation literature to calculate

zjt, the deforestation rate in unit j in time t, uses the share of unit j with forest cover

and its lag (e.g. Carlson et al., 2018; Busch et al., 2015):

zjt =
Fj,t−1 − Fj,t

Fj,t−1

(1.5)

, where Fj,t and Fj,t−1 are the share of spatial unit j with forest cover at times t and

t− 1, respectively.

Survival analysis

Survival analysis has emerged as a common approach to modeling irreversible events

(Emmert-Streib and Dehmer, 2019). It used frequently to model events such as mortality

(e.g. Puterman et al., 2020) and recidivism (e.g. Luallen et al., 2018), but can also be

applied to deforestation contexts. Survival models, such as the Cox Proportional Hazards

model, quantify how covariates relate to changes in the length of time that a unit remains
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in a sample. In the case of deforestation, survival analyses can be used to explore how

policy adoption changes the duration that treated, forested pixels survive until they are

first cleared.

Despite the theoretical appeal of using survival models to study deforestation, they

are still relatively uncommon in conservation impact evaluation. One emerging approach

introduces the intuition of a difference-in-differences research design into a Cox Pro-

portional Hazards model (e.g. Heilmayr et al., 2020b; Sales et al., 2022). Specifically,

researchers estimate a Cox proportional hazards model of the following general form

(e.g. Mastrobuoni and Pinotti, 2015):

Regression 5: (Cox DID regression) Let βcoxDID denote the coefficient of the inter-

action between Di and 1{t ≥ t0} in the following (population) OLS regression:

h(t) = δ0(t)exp(α0 + α1Di + α21{t ≥ t0}+ βcoxDID x Di1{t ≥ t0}+ ϵit)

, where h(t) is the hazard rate of deforestation, t years into the study period; and

δ0(t) is the baseline hazard function.

1.3 Methods

1.3.1 Analytical proofs

The rapid growth of the conservation impact evaluation literature has resulted in a

diversity of model structures that all attempt to estimate the effectiveness of conservation

interventions (Table 1.1). However, researchers have not adequately considered how the

irreversible, binary structure of these data may affect the properties of some estimators.

We use analytical proofs to demonstrate several concerns that arise with the use of

specific model specifications in the context of an irreversible, binary outcome. All of our
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analytical results apply to any setting with an irreversible, binary outcome, and we have

indeed identified several studies outside of the forest conservation literature that fall prey

to the issues we present.

For our analytical results, we restrict ourselves to the case where t ∈ {1, 2} and t0 = 2.

We can then denote y0iv1 and y0iv2 as the outcomes for individual unit i in the first and

second periods, respectively. In this setting, y0iv1 ∈ {0, 1} and y0iv2 ∈ {0, 1,−}, meaning

that although only outcomes in the second period are dropped, there exists variation in

deforestation across both periods. We present the core analytical results in the main

text, and the detailed proofs can be found in the Appendix.

1.3.2 Simulation models

To verify our analytical results and explore the relative performance of different mod-

els frequently used in conservation impact evaluation, we employ a series of Monte Carlo

simulations. Specifically, we randomly generate synthetic landscapes with known policy

effectiveness and analyze the performance of different econometric models in estimating

the policy’s known impact.
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Landscape configuration

Figure 1.1: A map of a simulated landscape depicting patterns of deforestation under
an effective conservation intervention, as well as counterfactual deforestation illustrat-
ing what would have happened in the absence of the intervention.

Figure 1.1 displays a simulated conservation intervention that reduced deforestation

rates in treated areas — the landscape is depicted as observed by the researcher at

the end of the observation period, including the unobservable counterfactual of what

would have happened if the conservation intervention had not been adopted. Note that

in untreated areas, there is no counterfactual deforestation, since no intervention ever

took place. We begin each Monte Carlo simulation by creating a synthetic landscape

consisting of 150 rows and 150 columns of square pixels (22,500 total pixels), equivalent

to a raster that is four times larger than what is illustrated in Figure 1.1. We assume that

each pixel has a resolution of 30 meters, comparable to the resolution of many Landsat-

based, remote sensing analyses. The landscape thus represents an area of approximately
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20.25 km2. We then divide this landscape into a variety of spatial units, composed of

either uniform aggregations of pixels (i.e. large or small “grid cells"), or randomly spaced

Thiessen polygons (i.e. “counties" or “properties"). Grid cells are intended to represent

arbitrary units of spatial aggregation imposed by the researcher. In contrast, counties

and properties are intended to represent simulated administrative units over which policy

or land use decisions are made. Table 1.2 summarizes the relative scale of each of these

spatial units under our baseline specifications.

Table 1.2: Spatial unit structure and size

Spatial unit Spatial structure Avg. number of pixels Area (hectares)
Property Thiessen polygons 100 9
County Thiessen polygons 900 81
Large grid Uniform square 900 81
Small grid Uniform square 100 9

Data generating process

Each of our simulated landscapes consists of administrative units that are either

untreated (Di = 0) or are assigned to a conservation treatment (Di = 1). We observe

deforestation in two even-length periods, each of which consists of multiple years.

We follow Equation 1.1 and model these binary deforestation events as a function of

each pixel’s unobservable value along the continuous, latent variable (y∗ivt) indicating the

return to clearing pixel i, in property v, in year t.

y∗ivt =V
cleared
ivt − V uncleared

ivt

=β0 + β1Di + β2,0(1−Di)1{t ≥ t0}+ (β2,1 + β3)Di1{t ≥ t0}+ αi + uit + ρv

That is, the returns to deforestation evolve over the two time periods (1{t ≥ t0}), and

differ across the control (Di = 0) and treated pixels (Di = 1). In addition, we assume that
18
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the value of deforestation is influenced by time-invariant random disturbances at the scale

of individual pixels (αi ∼ N(0, σ2
a)) or properties (ρv ∼ N(0, σ2

p)), as well as time-varying,

pixel-scale disturbances (uit ∼ N(0, σ2
u)). These disturbances can represent a variety of

spatial and temporal processes including, for example, the biophysical characteristics of

a location, or the preferences of a property owner.

The potential outcomes for the latent variable, y∗ivt, are as follows:

y∗ivt(0) =β0 + β1Di + β2,0(1−Di)1{t ≥ t0}+ β2,1Di1{t ≥ t0}+ αi + uit + ρv (1.6)

and

y∗ivt(1) =β0 + β1 + β2,1 + β3 + αi + uit + ρv (1.7)

The ATT in our simulated setting is, therefore, defined:

ATT =P (y∗ivt(1) > 1|Di = 1, t ≥ t0)− P (y∗ivt(0) > 1|Di = 1, t ≥ t0)

=P (β0 + β1 + β2,1 + β3 + αi + uit + ρv > 1)

− P (β0 + β1 + β2,1 + αi + uit + ρv > 1)

Assumed parameter values and evaluation criteria

For the remainder of the paper, we explore a guiding example that has been parame-

terized to represent an impactful intervention in a high deforestation setting. Conserva-

tion interventions often have annual treatment effects smaller than a 1 percentage point

reduction in the annual deforestation rate (e.g. Robalino and Pfaff, 2013; Jones et al.,
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2017). These modest reductions in the annual deforestation rate, however, can amount

to large landscape-scale effects. For example, Alix-Garcia et al. (2018) find that environ-

mental land registration in Brazil’s Amazonian states of Mato Grosso and Para reduced

the annual deforestation rate by an average of 0.5 percentage points, which has resulted

in an overall reduction in deforestation of 10%.

Our initial simulated landscape has the following characteristics: 6 years in each of the

pre-treatment and post-treatment periods (T = 12, t0 = 7); a pre-treatment deforestation

rate of 2% in the control area; a pre-treatment deforestation rate of 5% in the intervention

area; a decrease in the deforestation rate of 0.5 percentage points between the first and

second period in the absence of treatment; and an average reduction of 1 percentage point

in the deforestation rate in treated units due to the intervention (ATT = −0.01). We

assume that σu = 0.5. Finally, we begin by assuming away time invariant pixel (σa = 0)

and property-level disturbances (σp = 0) but relax this assumption in Section 1.5.6. Note

that Assumptions 1 and 2 are satisfied by construction. The derivations detailing the

mapping from the landscape characteristics to the corresponding parameters in y∗ivt can

be found in Appendix A.1.7.

We compare econometric models using a combination of estimate bias, root mean

squared error (RMSE), and coverage probability based on 500 replications of each set of

parameters. Using our Monte Carlo simulations, we calculate estimate bias as the differ-

ence between each model’s mean estimate of the ATT and the known ATT parameter.

RMSE describes the distribution of estimates around the ATT . Coverage probability is

defined as the proportion of simulations in which the true ATT lies within the simula-

tion’s 95% confidence interval (CI). As such, we would expect the ATT to lie within this

CI 95% of the time, however, factors such as the bias of the estimates, their distribution,

and treatment of standard errors may impact coverage.
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1.4 Analytical results

1.4.1 Irreversible Point FE bias: TWFE does not identify ATT

with binary, irreversible outcomes

Despite widespread use of pixel-level analyses of deforestation, the application of

TWFE models to a binary, irreversible process yields a biased estimate of the ATT .

Specifically, we show that, the coefficient of interest from the point TWFE model (βTWFE)

estimates the post-treatment difference in outcomes (single difference), rather than the

desired ATT (full proof contained in Appendix A.1.2).

Result 1: (Irreversible unit FE bias)

βTWFE = ATT + E[yiv1(0)|Di = 1]− E[yiv1(0)|Di = 0]︸ ︷︷ ︸
pre-treatment difference in deforestation rates

(1.8)

Regression 2 thus forgoes the benefits that panel methods provide, and if the treated

area has a different baseline deforestation rate than the control, will generate a biased

estimate of the intervention’s impact. Many conservation interventions are specifically

targeted towards locations with either low opportunity costs for conservation or high

threats of conversion. As a result, it is likely that many conservation impact evalu-

ations will have treatment and control units that experienced different pre-treatment

deforestation rates. It is important to note that this bias could even lead to changes in

the estimated treatment effect’s sign, in addition to errors in the effect’s magnitude and

significance.

Intuition for this result stems from the use of point unit fixed effects in the regression

specification. By including point fixed effects in TWFE regressions, researchers hope to

control for local confounders, including pre-treatment differences in the outcome. How-
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ever, when following common guidance to drop observations in the periods after the

irreversible event is first realized, these fixed effects do not behave as the researcher ex-

pects. Observations that realize the event (i.e. are deforested) in years prior to treatment

are by definition not observed for the entire panel. Implicitly, the pre-treatment outcomes

get assigned as 0 for both the treatment and control groups.

The next section verifies this result and shows that the traditional DID does not

suffer from similar concerns in the context of our simulated landscapes and forest con-

servation intervention. In section A.1.6, we also show that β̂TWFE is equivalent to the

coefficient from a TWFE regression on a dataset where any pixel deforested in years prior

to treatment is simply dropped from the dataset completely.

1.4.2 Alternative construction of yoivt

Although dropping previously deforested pixels from the panel introduces bias into the

TWFE estimate of the ATT , keeping observations in the panel after initial deforestation

introduces its own questions, particularly if researchers are interested in deforestation

rates. The ATT as defined in Section 1.2 is an estimate of the impact of an intervention

on the frequency of deforestation events (i.e. the decision to clear). Keeping the defor-

ested pixel in the panel beyond the first period in which it was observed as deforested

would incorrectly imply that it has actively been deforested in each subsequent time pe-

riod, when in fact, no new deforestation event or clearing decision has occurred. This

is intuitively problematic, because the deforestation rate in each period would be mono-

tonically increasing by construction, which is not necessarily the case. In the context

of deforestation, this approach estimates an intervention’s impact on deforested area,

rather than on deforestation rates. However, economists are often interested in an in-

terventions effect on clearing behavior, which is better represented by the deforestation
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rate or clearing event. Further, when reforestation timing is unaccounted for, as is the

case with most data products using a binary measure of deforestation, it is not clear that

this approach of keeping deforested pixels recovers the true measure of interest. Rather

than measuring deforested area at any given time, this outcome variable measures the

stock of ever-deforested area through the current time period. Primary forest may be the

exception, where this loss truly is irreversible. In any case, this should not be interpreted

as the deforestation rate (Appendix A.1.4).

There may be cases in which researchers do want to keep observations in the panel

dataset after an irreversible event is realized. For example, consider educational attain-

ment, where a researcher is interested in how an intervention impacts the education

levels of a population. In this case, one likely wants to construct an outcome reflecting

the proportion of the population educated rather than an “education rate". An example

reflecting the opposite scenario may be mortality, where the researcher is interested in

mortality rates, not overall mortality.

1.4.3 Survival analysis

Hazard rate ratios from a single survival model do not estimate the ATT

under common trends

Multiple studies across a wide variety of settings have interpreted the resulting ex-

ponentiatated coefficient exp(βcoxDID) as a hazard ratio that is indicative of the impact

that treatment has had on the relative likelihood of survival. Specifically, based on the

way this hazard ratio is interpreted in multiple papers, it appears that many researchers

expect this hazard ratio to represent the ratio of the hazard rates in the treatment group

post-treatment, relative to the counterfactual in that group had treatment not occurred.

This desired hazard ratio measuring the relative impact of treatment on the treated,
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which we denote as the HRTT , can be considered a reframing of the traditional ATT as

a ratio rather than a difference:

HRTT =
E[yiv2(1)|Di = 1]

E[yiv2(0)|Di = 1]

Both in conservation and alternative settings, researchers using Regression 3 have

made Assumption 1, and evaluate whether it is plausible in their setting. However,

Appendix A.1.3 shows that exp(βcoxDID) only identifies the HRTT under an alternative

assumption:

Assumption 3: (Proportional trends)

E[yiv2(0)|Di = 1]

E[yiv1(0)|Di = 1]
=
E[yiv2(0)|Di = 0]

E[yiv1(0)|Di = 0]

Assumption 3 requires that pixels in treated and untreated areas would have experi-

enced the same ratio of change in their probability of deforestation across the two periods

had no intervention occurred. Note that Assumption 1 and Assumption 3 cannot simul-

taneously hold (unless there is no trend at all). This means that researchers estimating

Regression 3 under the traditional common trends assumption (Assumption 1) will not

recover the HRTT , the relevant treatment effect parameter.

Proposing a new survival analysis-based estimator of the ATT

To the best of our knowledge, no prior studies have successfully combined the Cox

Proportional Hazards model and the difference in differences research design to recover

an unbiased estimate of the ATT under the traditional common trends assumption (As-

sumption 1). Here we outline a new estimation approach that first recovers an unbiased

estimate of the HRTT and then translates this into an estimate of the ATT that holds

under Assumption 1. First, we note that the desired HRTT can be re-written as a
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combination of three different hazard ratios:

HR1 =
E[yiv2(1)|Di = 1]

E[yiv1(0)|Di = 1]
(1.9)

HR2 =
E[yiv2(1)|Di = 1]

E[yiv2(0)|Di = 0]
(1.10)

HR3 =
E[yiv2(0)|Di = 0]

E[yiv1(0)|Di = 0]
(1.11)

HRTT =
E[yiv2(1)|Di = 1]

E[yiv2(0)|Di = 1]
=

1

1/HR1 + 1/HR2 − 1/(HR2 ∗HR3)
(1.12)

Each of the three hazard ratios, HR1, HR2, and HR3, can be estimated through

separate Cox Proportional Hazards models estimated on subsets of the larger dataset.

Specifically:

* HR1 = exp(α), where α is estimated by subsetting to observations from the treated

group (Di = 1), and estimating the hazard rate of deforestation at time t as h(t) =

λ0(t)exp(α1{t ≥ t0}); and

* HR2 = exp(β), where β is estimated by subsetting to observations from the post-

treatment period (t ≥ t0), and estimating the hazard rate of deforestation at time t as

h(t) = γ0(t)exp(β1{Di = 1});

* HR3 = exp(δ), where δ is estimated by subsetting to observations from the un-

treated group (Di = 0), and estimating the hazard rate of deforestation at time t as

h(t) = ψ0(t)exp(δ1{t ≥ t0}).

Because the numerator of HRTT , E[yiv2(1)|Di = 1], can be estimated as the mean of

post-treatment deforestation rates in the treated group (denoted d̂eforDi:1,t≥t0), we can

estimate the ATT using this estimated deforestation rate and our estimate of HRTT :
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ÂTTCox = d̂eforDi:1,t≥t0 −
d̂eforDi:1,t≥t0

ĤRTT
(1.13)

We have shown that the simple extension of the traditional DID to the survival setting

only recovers an easily interpretable measure of a policy’s impact under an assumption

that cannot simultaneously hold with the traditional common trends assumption, the

“Proportional Trends" assumption. In contrast, our proposed estimator, which relies on

separate estimation of relevant hazard ratios, does recover the relevant analog of the

ATT under the traditional common trends assumption (Assumption 1). We explore the

performance of ÂTTCox relative to the proposed OLS regressions under various circum-

stances likely to arise in the deforestation setting in the next sections. If a researcher

opts to use survival analysis to recover an intervention’s impact, their choice of estimator

should depend on which trends assumption is plausible in their specific setting.

1.4.4 Non-random sample selection can generate bias in irre-

versible settings

Irreversibility in observed deforestation creates the potential for non-random sample

selection. Specifically, deforested pixels are no longer at risk of clearing in the periods

after they are first deforested. This means the “at risk" set of pixels changes through time

as more pixels become deforested. As such, the distribution that describes the returns

to clearing the at-risk pixels may change through time as well, leading to non-random

selection of the sample through time. For example, pixels with extremely high returns

to clearing are more likely to be cleared early on, regardless of treatment status. In

subsequent periods, therefore, these high return pixels are less likely to be present in

26



Conservation impact evaluation using remotely sensed data Chapter 1

the sample at all. In the context of two-groups and two-periods, only the second period

suffers from this non-random sample selection. We express the bias introduced from

non-random sample selection below.

Result: Under Assumptions 1 and 2, in the two-group, two-period case, βDID suffers

from non-random sample selection bias when the yoivts are not i.i.d.

βDID =ATT + E[yoiv2|Di = 1]− E[yiv2|Di = 1]− (E[yoiv2|Di = 0]− E[yiv2|Di = 0])︸ ︷︷ ︸
bias emerging from non-random sample selection

(1.14)

Proof: Appendix A.1.5 Q.E.D.

In essence, the first and third expectations in the bias term are conditional on the

pixel remaining forested after the first period.

1.5 Simulation results

1.5.1 TWFE bias

TWFE models have risen to prominence due to their flexibility in applying DID

methods to settings with multiple groups and variation in treatment timing. However,

we have shown that TWFE models with pixel fixed effects are not a viable approach to

estimate the ATT . Figure 1.2 shows the bias associated with Regression 2, a pixel-level

TWFE regression with pixel unit fixed effects. In our guiding example, the ex-post single

difference is 0.02 (the ATT plus the post-treatment group difference in deforestation

rates), when the true ATT is equal to -0.01. This means that a positive bias of 0.03

results from the use of this regression model.
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Figure 1.2 explicitly contradicts the common wisdom that 2x2 TWFE and DID esti-

mators are numerically equivalent, a finding unique to this setting. We further examine

this finding in section A.1.6 and show that the coefficient of interest from Regression 2

is numerically equivalent to that from the same regression on a dataset where all pixels

deforested in the first period are dropped completely.

Figure 1.2: This figure shows the mean bias along with the 0.05 to 0.95 quantile range
for estimates from the pixel-level DID and TWFE with pixel unit fixed effects. It is
clear that the two are numerically distinct and that the coefficient of interest from
the TWFE regression suffers from significant bias in this context. Standard errors are
clustered at the pixel.
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1.5.2 Traditional difference-in-differences model

In the two-group, two-period case the traditional DID (Regression 1) is an unbiased

estimator of the ATT , as shown in Figure 1.2 and column 1 of Figure 1.3 (The traditional

DID is equivalent to including treatment fixed effects). However, researchers often want

to use TWFE models because of their flexibility in situations that do not fall under the

simplest DID setting. Therefore, we explore the trade-offs below when using aggregated

units of analysis and fixed effects when using TWFE models for impact evaluation with

binary irreversible outcomes.

1.5.3 Models using spatial aggregation

We proposed using aggregation as a way to avoid the issues associated with integrating

TWFE models with binary outcomes when the outcome is irreversible. Columns 2-4 of

Figure 1.3 show that in pixel level TWFE regressions in the form of Regression 3, βFE,j

is an unbiased estimator of the ATT . These regressions use grid, county, or property

fixed effects rather than pixel fixed effects. We also see that, in the absence of property

level perturbations (i.e. σp = 0 in the DGP), all three models provide similar estimates

and estimate distributions.

Similarly, columns 5-7 show that that βj from TWFE regressions in the form of

Regression 4 is an unbiased estimator of the ATT . These TWFE regressions use an

aggregated unit of analysis, where the deforestation rate for unit j is explicitly calculated

in each time t. The following results are based on Equation 1.5. Neither the bias nor

RMSE of the estimates vary dramatically across different levels of aggregation.
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1.5.4 Survival analysis

Survival analysis provides an appealing alternative to traditional linear estimators

when studying irreversible changes such as deforestation. The simple, single-regression

DID framing of the Cox Proportional hazards model (Regression 5), however, is not a

viable solution (Section 1.4.3) under the typical common trends assumption (Assumption

1). Column 8 of Figure 1.3 shows the bias associated with this model in our parameter-

ization where Assumption 1 holds but Assumption 3 does not. In light of the fact that

the simple Cox DID is not a viable analog to the traditional DID, we explore whether

our proposed estimator, ÂTTCox, recovers relevant treatment effect parameters in the

deforestation setting. We see in column 9 that ÂTTCox indeed recovers our parameter of

interest, the ATT .

Although our proposed, survival analysis-based approach to estimation yields a good

estimate of the true ATT in this simple setting, multiple considerations raise questions

about the utility of this non-linear model in more complex settings. One of the primary

reasons for the use of survival analysis is censoring. This occurs when the researcher

has partial information about the subjects’ survival times but does not have access to

precise event times. While the researcher may not observe all pixels until they are

deforested, many other common forms of censoring are rarely a concern in the context

of deforestation since remote sensing typically enables the creation of balanced panels.

Further, the proposed strategy to drop pixels in the periods after they are first deforested

successfully addresses irreversibility in deforestation events. Finally, as we show in the

following sections, survival analysis is likely to suffer from bias when the data generating

process underpinning deforestation is influenced by unobservable characteristics of more

aggregated spatial units such as the preferences of a property-owner. While researchers

can account for this in OLS specifications, there is no clear solution in survival analysis.
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Figure 1.3: This figure shows the mean bias along with the 0.05 to 0.95 quantile
range for estimates from each of our candidate models. RMSE and coverage of can-
didate models with clustered standard errors are shown below. Candidate models are
separated by color according to whether they incoporate aggregated fixed effects in
pixel-level specifications, aggregated units of analysis, or survival analysis.

1.5.5 Non-random sample selection

We now explore how the non-random sample selection described in section 1.4.4 may

influence estimates in our simulated landscapes. Non-random sample selection did not

bias our initial simulations as presented in Figure 1.3 because we assumed away time-
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invariant pixel and property-level disturbances. The sample of at risk pixels in each

time period did not depend on the deforestation that occurred the previous period,

since the yoivts were i.i.d.. However, once time-invariant disturbances enter the DGP, the

distribution of the yoivts is potentially different in each year of the panel. This is likely to

be the case in reality, since each plot of land will have time-invariant characteristics such

as slope, elevation, market access, agricultural suitability, etc. that impact its expected

returns to clearing.

In order to see how this non-random selection influences estimates in our simulated

setting, we set σa, the standard error of the time-invariant pixel-level disturbances equal

to 0.1. Figure 1.4 shows that non-random selection introduces a slight downward bias

across every specification.

In practice, researchers cannot recover the second and fourth terms of the bias term

in equation 20, meaning that the magnitude of this bias is unknown to the researcher.

However, this bias is likely to be of a smaller magnitude than in our simulated setting if

deforestation rates are lower or more similar across treated and control groups.
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Figure 1.4: This figure shows the mean bias along with the 0.05 to 0.95 quantile range
for estimates from each of our candidate models after allowing for non-i.i.d. pixel-level
outcomes through time. RMSE and coverage of candidate models with clustered stan-
dard errors are shown below. Candidate models are separated by color according to
whether they incoporate aggregated fixed effects in pixel-level specifications, aggre-
gated units of analysis, or survival analysis.
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1.5.6 Selecting the appropriate spatial structure

Model structures that match the spatial process of deforestation can reduce

bias

Connecting the econometric model to the process by which land use change occurs

on the ground has clear benefits for estimation and inference in deforestation impact

evaluation. Table 1.1 shows that researchers often use an arbitrary spatial unit such as

a point, pixel, or grid cell as the unit of analysis. While this may be a useful way of

structuring data, it can lead to biased results if land use change is determined through a

process that is mediated by other spatial structures.

In reality, property level unobservables such as the preferences and resources of a

landowner may drive significant variation in land use across a landscape. These differ-

ences will impact both treatment effect estimates and coverage probabilities. To illustrate

this effect, we introduce property-level perturbations to the returns from forest clearing

by varying σp, the standard deviation of time-invariant property level disturbances in the

DGP.

The introduction of σp changes the relative performance of each specification. The

traditional DID does not account for the spatial nature of the deforestation process, and

in Figure 1.5, we see that the pixel-level DID begins to suffer in terms of bias, RMSE, and

coverage as these property-level unobservables play a larger role in the data generating

process.
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Figure 1.5: This figure shows how the mean bias and 0.05 to 0.95 quantile range from
estimates based on the pixel-level DID model change as the relative scale of property
level disturbances increases.

In Figure 1.6 we see that, by incorporating spatially aggregated units into the model

structure, the researcher can reduce bias relative to the simple pixel-level DID in settings

where property-level perturbations are relatively large (σp = 0.3). This improvement

is apparent across specifications that either control for spatially aggregated fixed effects

(Regression 3; left panel) or use a spatially aggregated unit of analysis (Regression 4; right

panel). That said, specifications with a spatially aggregated unit of analysis consistently

outperform their counterpart with spatially aggregated fixed effects. Further, we see that

the scale of aggregation plays a role. Analyses incorporating the property or grid cells

near the size of the average property outperform models using larger or smaller scales.
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Ultimately, all models that incorporate spatial aggregation suffer from relatively little

bias and incur less bias than the simple pixel-level DID. In Appendix A.1.9, we see that

specifications incorporating the property as the unit of analysis continue to outperform

other models in alternate parameterizations.

Figure 1.6: This figure shows the mean bias and 0.05 to 0.95 quantile range for speci-
fications with aggregated unit fixed effects (left panel), and specifications with aggre-
gated units of analysis (right panel) when σp = 0.3.

Although spatial aggregation can improve the performance of OLS-based model spec-

ifications, there is no clear analog for survival models. Figure A.1 in the appendix shows

that the performance of ÂTTCox suffers as σp increases. When unobserved, spatial pro-

cesses contribute to the underlying DGP, linear models that effectively control for these

processes are likely to outperform survival analysis-based estimates of the impact of con-
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servation interventions. Survival analysis-based estimators may perform better when the

preferred unit of analysis is actually the individual point (i.e., mortality, recidivism).

1.5.7 Weighting by area recovers landscape scale estimates

As researchers transition towards spatially aggregated units of analysis, interpretation

of the estimated ATT can become more complicated. Authors frequently choose to use

a set of evenly-sized pixels or grid cells as their preferred units of analysis in order

to simplify the interpretation of their estimated ATT (Alix-Garcia and Gibbs, 2017).

For example, when researchers estimate a model with pixel-level units of analysis, the

coefficient of interest can be interpreted as a population average for all treated, forested

pixels. In contrast, if a property is used as the unit of analysis, the coefficient should be

interpreted as the effect of the intervention on the characteristic property in the sample.

In order to obtain a landscape-scale interpretation, one must weight the regression by

the area of each unit of analysis (i.e. property).

Weighting does not have a large impact on bias, RMSE, or coverage probability when

the treatment effect is constant across properties (even with property-level unobserv-

ables). The use of area weights is likely to be most useful when the treatment effect in

the characteristic property differs from the landscape’s ATT . To illustrate this effect, we

consider a landscape in which treatment effects are correlated with property size. The

full DGP for this case can be found in Appendix A.1.7.

The treatment effect now varies across properties, and properties with greater areas

experience treatment effects of a lower magnitude than smaller properties. For clarity of

definitions, we assign treatment at the property level in this subsection. We consider two

sample ATT s: the landscape ATT and the property-level ATT . They can be defined as

follows:
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* ATTls = 1
ni:Di=1

∑
i:Di=1(yiv2(1) − yiv2(0)), where ni:Di=1 is the number of treated

pixels in the simulated landscape; and

* ATTproperty = 1
nv:Dv=1

∑
v:Dv=1(

1
niv

∑niv

i=1(yiv2(1)−yiv2(0))), where nv:Dv=1 is the num-

ber of treated properties in the simulated landscape; and niv is the number of pixels in

property v.

Note that neither ATTls nor ATTproperty can be calculated directly, because y(0)iv2 is

not observable for treated units.

Because the treatment is more effective in properties of a smaller size, the treatment

effect for the average property is greater than the average treatment effect experienced

across the landscape. Figure 1.7 shows the sample ATT s for both the property and land-

scape. In our simulation, ATTproperty = −0.0136, and ATTls = −0.0092. The property-

level TWFE regression recovers the ATT relative to the characteristic property when

area weights are not used and the landscape scale ATT when they are used. Researchers

should use these area weights when they are interested in the impact of the intervention

across the landscape. In cases where the researcher is interested in how an intervention

affects incentives at the property level, using these weights may not be necessary.
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Figure 1.7: Weighting recovers landscape scale interpretation.

1.6 Estimating the ATT under staggered treatment

1.6.1 Staggered setup

The traditional DID regression applies to settings with two groups and two time

periods. However, researchers often use TWFE regressions to exploit variation across

groups of units that receive treatment at different times. Recent work has shown that,

in these staggered treatment settings, TWFE regressions identify a weighted average of

all possible two-group/two-period DID estimators in the data (Goodman-Bacon, 2021).

Further, when estimating the ATT , some weights on each group-time treatment effect

parameter may actually be negative (de Chaisemartin and D’Haultfœuille, 2020). Newly

developed DID estimators seek to produce unbiased estimates of the ATT in settings
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with multiple groups and time periods. These estimators do so through a variety of

strategies including imputation (Borusyak et al., 2021), two-stage least squares (Gardner,

2021), and the re-weighting of group-time ATT s (Callaway and Sant’Anna, 2020). Some

researchers might hope that these new estimators would solve the bias detailed in Section

1.4.1.

1.6.2 New DID estimators are biased when applied to binary,

irreversible outcomes

Although the new class of DID estimators effectively address concerns about stag-

gered treatment timing and heterogeneous treatment effects, they continue to yield biased

treatment effect estimates when applied to binary, irreversible, outcomes. To illustrate

this, we introduce a setting in which groups of units receive treatment at different times

(full DGP can be found in Appendix A.1.10). We consider three groups: an early group,

a late group, and a never-treated group, where the early and late groups undergo treat-

ment in years three and four, respectively. Each group experiences differing pre-treatment

deforestation rates (7%, 4%, and 2% for the early, late, and never-treated groups, respec-

tively) and no time trend. The ATT for both treated groups is −0.02. Common trends

is satisfied by construction, and we do not introduce any dynamic effects. Figure 1.8

shows the observed deforestation rates (E[yoivt]) from one iteration of our simulation in

this setting.
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Figure 1.8: Observed deforestation in simulated example with multiple groups and periods.

The left panel of Figure 1.9 shows that the estimators developed in Callaway and

Sant’Anna (2020), Gardner (2021), and Borusyak et al. (2021) suffer from similar bias to

TWFE regressions with pixel unit fixed effects if the pixel is used as the unit of analysis.

All methods yield a treatment effect greater than or equal to 0 in all post-treatment pe-

riods, reflecting the fact that pre-treatment period deforestation rates are unaccounted

for by the estimators. This is particularly clear in the Callaway and Sant’Anna (2020)

estimator in which pre-treatment periods are all precisely zero, indicating that the esti-

mator could only compute treatment effects using pixels that survived until the end of

the observation period. The right panel of Figure 1.9 shows that this bias is eliminated

when one uses an aggregated unit of analysis with binary treatment (e.g., county). We

do not include pixel-level TWFE regressions with spatially aggregated fixed effects, be-

cause most recently developed estimators do not allow for a comparable implementation.

Therefore if the researcher wants to obtain a landscape-scale interpretation, they must
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aggregate to a uniform spatial area (e.g. grid cell) or weight the regression by the unit

area.

Figure 1.9: New estimators, similar to TWFE regressions with pixel unit fixed effects,
cannot identify ATT with pixel as unit of analysis.

1.6.3 New DID estimators can yield unbiased estimates of het-

erogeneous treatment effects

Finally, we examine the performance of the new DID estimators relative to a tradi-

tional TWFE regression when treatment effects vary across time and across groups. We

again work with an early, late and untreated group. The full parameterization and DGP

can be found in Appendix A.1.10. Figure 1.10 shows deforestation rates in each of the

three groups through time.
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Figure 1.10: Observed deforestation in simulated example when treatment effects vary
across groups and through time.

Figure 1.11 shows the event study estimates produced by each of the three estimators

as well as the “truth" for both pixel and county-level analyses. Again, none of the

estimators yield the ATT with pixel-level analyses. In the county-level estimates, we see

that the newer estimators slightly outperform the TWFE estimator. This is evidence of

the weighting that has become a concern with TWFE estimators in these type of settings.

While TWFE estimates represent a weighted average of all possible 2x2 DID estimates,

the weights may not always be intuitive (Goodman-Bacon, 2021). In contrast, newer

estimators do not suffer from this concern.
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Figure 1.11: TWFE regressions suffer from weighting concerns when treatment effects
vary across groups and through time.

1.7 Conclusions

By applying econometric methods of causal inference to remotely-sensed measure-

ments of land use change, researchers have advanced society’s understanding of the im-

pacts of conservation interventions. However, this interdisciplinary research community

has insufficiently considered how the data generating processes underpinning land use

change and its measurement might affect the performance of standard econometric mod-

els. The analytical proofs and simulations presented in this paper highlight that the

conclusions made in many prior studies may be biased.

Researchers can take several practical steps in the design of their econometric mod-
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els to more accurately measure the impacts of conservation policies. First, despite past

guidance to the contrary, researchers should recognize that pixel-level, TWFE models

are unable to yield unbiased estimates of a policy’s impact when applied to irreversible,

binary outcomes. Researchers can easily avoid this bias by aggregating either the units

of observation, or the scale at which fixed effects are estimated. Second, while survival

models provide an appealing empirical framework with which to study deforestation,

past studies have typically overlooked implicit assumptions made when applying survival

models to the difference-in-differences research design. To resolve this challenge, we pro-

pose a new, survival-based estimation procedure that enables researchers to recover an

unbiased estimate of the ATT under the traditional parallel trends assumption. Because

this estimator underperformed when heterogeneity entered the landscape at a scale dif-

ferent than the unit of analysis, it is likely to be most useful when the researcher can

justify the individual unit as the desired unit of analysis. Finally, we provide evidence

suggesting that researchers should seek to align the structure of their econometric models

to match the real-world units at which land use decisions are being made. For example,

if unobservable, property-level characteristics are thought to be an important driver of

deforestation, the inclusion of property-level fixed effects can improve the accuracy of

model estimates and inference. Ultimately, context plays a role in what is feasible, and

researchers should make clear the limits to their impact evaluation strategy.

This paper complements an emerging literature calling for a deeper understanding of

the interdependencies between the creation of remotely sensed data, and the interpre-

tation of that data through econometric models (Jain, 2020; Alix-Garcia and Millimet,

2022; Proctor et al., 2023). However, we have largely abstracted away from prior concerns

that characteristics of the remote sensing data collection process, including sensor proper-

ties, atmospheric conditions, and image processing methods, may influence the structure

of output data products. Of particular concern is the potential for these processes to give
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rise to non-classical measurement error, which can lead to biased estimates of the ATT

(Wooldridge, 2010). Importantly, our study implicitly assumes that pixel-level outcomes

are measured without any non-classical measurement error.

This paper focuses upon efforts to identify the impacts of conservation policies on

deforestation. However, the lessons we highlight are relevant to a wider audience, and

many of our key findings apply to diverse settings in which the outcome of interest

represents an irreversible, binary event. For example, studies exploring the drivers of

unidirectional technology adoption or recidivism may fall prey to the same issues we have

identified in the context of deforestation. Moving forward, researchers should carefully

consider the underlying structure of their data, and ensure that their chosen models

minimize bias and allow inference at expected levels of confidence. Misleading causal

inference may lead policymakers to avoid effective policies, or to adopt interventions that

worsen environmental damages.
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Chapter 2

Targeting in payments for forest

restoration: evidence from Chile’s

Native Forest Law

2.1 Introduction

In order to achieve the warming targets set by the IPCC, both emissions reductions

and removals of carbon from the atmosphere will be necessary (Masson-Delmotte et al.,

2018). Reforestation and forest restoration have been lauded as potentially near term,

large scale and low-cost options to achieve these carbon removals (Busch et al., 2019).

Global initiatives such as the Bonn Challenge, Trillion Trees Campaign, and UN Decade

on Ecosystem Restoration highlight the enthusiasm for forest restoration as a climate so-

lution (Chazdon and Brancalion, 2019). However, there is limited evidence documenting

the effectiveness of policies seeking to encourage restoration at large scales. Payments

for ecosystem services (PES), which pay private landowners in exchange for providing

environmental benefits, have been used extensively in the context of avoided deforesta-
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tion (Börner et al., 2017), and are likely to play a major role as countries begin to scale

up forest restoration in line with global commitments (Gichuki et al., 2019).

Political processes often lead policymakers to design programs aimed at multiple ob-

jectives (Tinbergen, 1952). PES programs are no different, and are frequently designed

to achieve social development goals in addition to environmental gains (Zilberman et al.,

2008; Lipper et al., 2009; Pagiola et al., 2008). This is done by targeting payments to-

ward landowners or communities with the greatest need for poverty alleviation (Wunder,

2008). However, subsidies that reflect political processes have the potential to undermine

environmental benefits (Jack et al., 2008), and this strategy of targeting for social devel-

opment has proven to create tradeoffs in payments for avoided deforestation programs

(Alix-Garcia et al., 2015).

The effectiveness of payments for avoided deforestation is driven by the presence

of deforestation risk (Alix-Garcia and Wolff, 2014), but the drivers of effectiveness in

payments for restoration is less clear. In the deforestation context, targeting payments

toward households unlikely to deforest in the absence of payments generates relatively

little additional forest cover relative to the no-payment scenario (Pfaff, 1999; Cisneros

et al., 2022). It is well documented that poverty is associated with lower levels of de-

forestation (Busch and Ferretti-Gallon, 2017), and as a result of this broad finding, it

has been shown that enrollment of landowners in high-poverty areas generates relatively

fewer environmental benefits (Pfaff et al., 2007). Further, credit constrained and low-

income landowners may be prone to leakage, meaning that they deforest unenrolled land

upon enrolling part of the property (Jack and Cardona Santos, 2017; Alix-Garcia et al.,

2012).

While evidence detailing the pitfalls of targeting for "win-wins" in payments for

avoided deforestation is widespread, there is a need for rigorous evidence in the restora-

tion setting. This lack of evidence is important because theory indicates that targeting
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within the context of payments for reforestation might have fundamentally different im-

pacts than in the context of payment for avoided deforestation. Private information

about the costs to providing forest often make targeting difficult (Jack, 2013), and the

underlying correlation between targeted characteristics and costs of producing forest

may be different in the deforestation and restoration cases. For example, relatively poor

households may be unlikely to deforest in the absence of payments, but it may also be

infeasible for them to produce new forest without payments due to credit constraints or

lack of technical capacity. In this scenario, payments may not generate any behavior

change in the deforestation case, but lead landowners to begin providing forest in the

restoration case. Second, non-compliance often plays a role in the restoration context.

Landowners may enroll in a PES program but fail to complete contracted activities if,

for example, landowners are uncertain about restoration costs and benefits (Oliva et al.,

2020). If targeted characteristics are positively correlated with non-compliance, tension

may arise between participation of priority groups and program effectiveness.

Chile’s Native Forest Law provides us a unique setting in which to explore the poten-

tial of payments for restoration to achieve low-cost carbon removals and whether targeting

for social development undermined environmental effectiveness. The Native Forest Law

provided subsidies for native forest restoration and explicitly sought co-benefits such as

economic development of smallholder, indigenous, and rural communities. Program ad-

ministrators did so through an annual competition for subsidies to support new projects

aimed at either restoring existing native forest or planting new forests. Applications to the

competition were split into two separate contests based on property size and landowner

assets. They were then explicitly scored to determine priority, where the score is based

not only on project-specific characteristics, but also social characteristics that we show

to have a clear positive association with poverty. Few PES programs explicitly score

applications by social characteristics, giving us a unique look at the explicit targeting of

49



Targeting in payments for forest restoration: evidence from Chile’s Native Forest Law Chapter 2

certain priority characteristics.

In this paper, we use novel data to quantify the land cover impacts of Chile’s Native

Forest Law for ten cohorts (2009–2018) using annual data from 2000 to 2018. Temporally

consistent annual landcover data detailing tree cover and other land classes such as

grasslands and croplands provide a unique opportunity to evaluate restoration outcomes

using panel difference-in-differences approaches. Using the estimates of program impact,

we calculate the carbon impacts of the policy and the price paid to the average landowner

per tonne of CO2 stored in aboveground biomass through native forest restoration. We

then evaluate the Native Forest Law’s strategy to prioritize participation of marginalized

landowners by examining treatment effect heterogeneity across contest, social score, and

poverty.

A key concern with evaluations of programs with voluntary participation is that

apparent effectiveness may actually be due to different participation costs (Jack and

Jayachandran, 2019). The typical enrollee to the Native Forest Law competition was

already increasing forest cover prior to enrollment in the program. If we were to simply

compare enrolled and unenrolled properties after enrollment, we would likely overestimate

the effect of the subsidies, since enrollees were producing new forest cover even without

payments. In order to alleviate concerns surrounding selection, we use pre-processing

techniques to construct a set of control properties from a pool of all rural properties in

the major forested regions of Chile. These matched control properties are much more

comparable to enrollees than the typical unenrolled property based on a detailed set of

land use and property characteristics. These characteristics include pre-program land-

uses, which are likely to drive enrollment decisions. Difference-in-differences methods

further allow us to control for fixed differences in land cover between enrollees and the

control group as well as time trends affecting both groups. Using this strategy to estimate

treatment effects for properties that dropped out after the first six months and never
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received payment yields no statistically or economically meaningful treatment effect,

lending creedence to our estimates for program beneficiaries.

We find that the program increased tree cover on the properties of landowners who

received payment, coming largely from land that was previously cropland or grassland.

Subsidization of the typical property through the Native Forest Law contest led to a

0.21% increase in the share of the property covered in forest. This estimate suggests

that the average landowner was paid an estimated $36.78 USD per tonne CO2 stored in

aboveground biomass through the subsidy competition. Event study estimates based on

weaker identification assumptions show that dynamic effects play a significant role and

that the program led to a more substantial increase in tree cover for cohorts observed for

several years post-enrollment. Based on only the earliest cohorts, enrollment ultimately

increased the share of the typical property covered in forest by 1.00%. Based on this

fact and several other moderating factors, we feel comfortable interpreting the estimated

$36.78 USD per tonne CO2 as an upper bound estimate. On one hand, this estimated

price assumes that newly established forest matures. On the other hand, this price

ignores the fact that recent cohorts may continue to provide new forest in a similar

fashion to the earliest cohorts. Moreover, subsidized restoration in already standing

native forest is not likely to be reflected in our satellite-derived measures of tree cover

extent, and environmental benefits may be understated if landowners substitute away

from plantation forest into native forest, which is not observable in our study.

Non-compliance in the Native Forest Law was high, as over two-thirds of applicants

never received payment. Landowners with higher application social scores complied at

relatively lower rates, however, program administrators avoided unconditional payments

by requiring verification of activity completion. This allowed the program to target

priority characteristics without increasing the probability of unconditional cash transfers.

That said, recent work by Jack et al. (2022) shows that conditional payments in PES
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can reduce compliance, meaning that the conditional nature of the Native Forest Law

payments may have had tradeoffs.

We find that smallholders drive the main treatment effect, while larger, wealthier

landowners in the other interested party contest provided no positive tree cover benefits

at all. Increased community-level poverty was associated with greater tree cover impacts,

for which the program’s scoring mechanism was a good predictor. This implies that the

strategy to prioritize the participation of smallholders and those with priority social

characteristics improved the program’s environmental effectiveness. These findings are

in contrast to the expectation in payments for avoided deforestation, where wealthier

landowners with high deforestation risk often provide the greatest additionality.

Contributions. Our results make several contributions to the literature. First,

we add to the limited existing evidence on the environmental effectiveness of large-scale

native forest restoration programs. Between 2009 and 2019, the National Forest Corpora-

tion (CONAF) allocated approximately US $58 million to enroll more than 235 thousand

hectares of land through the Native Forest Law, making it one of the largest native forest

restoration programs in the world. There are relatively few studies evaluating payments

for forest restoration and even fewer quantifying the impacts of large-scale or national

policies. Notable exceptions include Uchida et al. (2005), who examine land enrolled in

China’s Grain for Green program. While unable to examine land cover outcomes explic-

itly, they find that payments were relatively well targeted toward plots with low costs of

conversion and high potential for erosion reduction. Heilmayr et al. (2020a) use econo-

metric simulation to evaluate the land cover impacts of Chile’s Decree Law 701, which

subsidized monoculture plantations of exotic eucalyptus and pine. They find that addi-

tionality was quite low, and further, that native forest extent was reduced as landowners

substituted toward plantation forest. España et al. (2022) is one of the few studies of

which we are aware that quantifies land cover impacts of a national-scale afforestation
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or reforestation policy using quasiexperimental methods. They quantify the effects of

Chile’s Decree Law 701 using difference-in-difference methods and find that the policy

led to a 13% increase in forest plantations amongst subsidy participants. To our knowl-

edge, our paper is the first to provide an ex-post, causal assessment of the land cover

impacts of a national payment for native forest restoration program.

Our second contribution is to highlight key differences between targeting in payments

for reforestation in contrast to payments for avoided deforestation. Several studies find

that targeting for social development has come at the cost of environmental gains in

payments for avoided deforestation. Alix-Garcia et al. (2015) find that the landowners

for which PES most effectively reduced poverty provided the least avoided deforestation.

In another study, Alix-Garcia et al. (2012) identify leakage amongst capital-constrained

landowners in Mexico’s National PES program, reducing program benefits in high-poverty

areas. No study to our knowledge has addressed whether targeting for social development

is costly in the reforestation or restoration setting. In this study, we identify a poten-

tial opportunity for win-wins in the restoration context. Smallholders in high-poverty

areas actually yielded greater tree cover gains than larger, wealthier landowners. De-

scriptive evidence suggests that this may be due to the fact that wealthier landowners

were already expanding tree cover at relatively higher rates prior to program enrollment.

This highlights that poor landowners may experience relatively greater obstacles to pro-

ducing new forest in the restoration setting. Although prioritized characteristics were

associated with increased non-compliance, non-complying landowners were never paid,

avoiding unconditional cash transfers.
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2.2 Background: Chile’s Native Forest Law

Chile’s long history of public policies supporting tree cover expansion provides an

incredibly useful setting in which to measure the impacts of payments for restoration.

Chile’s decree law no. 701 (DL 701) is one of the world’s longest operating afforestation

subsidies, but mainly promoted even-aged mococulture plantations of eucalyptus and

pine that had negative effects on biodiversity and native forest extent (Heilmayr et al.,

2020a).

In an attempt to encourage the recovery and protection of native forests, Chile sought

to pass the Ley de Recuperación del Bosque Nativo y Fomento Forestal (Native Forest

Law) as a successor to DL701 (Clapp, 1998). Initially expected in 1994, it became frozen

in legislature before finally passing in 2008. In addition to protections for native forests,

the law established an annual competition for grants to support private landowners in

their efforts to manage, restore, or reforest their land using native species. Between 2009

and 2019, more than $58 million were allocated through these competitions for projects

covering 235 thousand hectares. Much of this allocated funding has not been paid to

landowners, however, as program follow-through is low.

The subsidy component of the law encourages three types of activities: 1) the re-

generation, restoration or protection of native forests for conservation; 2) silvicultural

activities aimed at restoring native forests for timber production purposes; and 3) silvi-

cultural activities aimed at restoring native forests for non-timber production purposes.

Of the 12,889 projects enrolled between 2009 and 2019, 10,912 (84.66%) restored native

forest for the purposes of timber production. Examples of subsidized activities include

thinning, enrichment planting (introduction of trees to degraded forest), and establish-

ment of new forest via tree planting. Few estimates of the impacts of the Native Forest

Law on land cover currently exist. CONAF estimated the carbon impacts of the Native
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Forest Law through 2019 as it relates to Chile’s Nationally Determined Contribution

(NDC) as part of the Paris Agreement (CONAF, 2020). These estimates, however, as-

sume that the carbon stored by every eligible subsidized hectare is the direct result of

the law. These types of estimates ignore the concept of additionality, since some of this

forest would likely exist even in the absence of the law.

The Native Forest Law prioritizes not only forest cover in line with Chile’s NDC goal of

managing 200,000 hectares of native forest, but also the participation of underrepresented

groups. By prioritizing native forest rather than monocultures of pine or eucalyptus,

the law seeks to incentivize the preservation of biological diversity. Prioritizing carbon-

plantings without consideration of other co-benefits may result in negligible biodiversity

co-benefits (Bryan et al., 2016). In fact, DL701 resulted in the decline of native forest

and biodiversity, landowners replaced native forest with plantation forest, which provide

significantly less biodiversity than native forests in Chile (Heilmayr et al., 2020a).

The Native Forest Law explicitly states that it seeks to meet the dual objectives of

rural economic development in addition to protection of the environment. In the case

of the Native Forest Law subsidy competition, this is done by prioritizing applications

of landowners deemed to be of social importance. This is done in two main ways: 1)

holding separate contests for smallholders and wealthier, larger properties; and 2) a

scoring mechanism that gives higher scores to indigenous peoples, smaller properties,

and those in rural regions. We further explore the ramifications of this targeting strategy

in Section 2.5.

Upon having an application selected through the Native Forest Law’s competition,

landowners must clear two key administrative hurdles in order to receive payment. First,

landowners must provide an updated native forest management plan, detailing the specific

activities to be performed on the property, a timeline for activity completion, and a

georeferrenced map of the property. Landowners generally have six months from the
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date of selection to provide the management plan or be dropped from the program. The

second hurdle is to have the project’s completion verified by a third party. The timeframe

for activities generally lasts multiple years, and landowners are not eligible to receive

payment until a minimum of two years after enrollment. Conditional on submitting the

management plan, the rate of payment is relatively high at 75.44%, however, only 37.05%

of enrollees submit the management plan within the required six month window. This

means that ultimately, only 31.88% of projects enrolled between 2009 and 2019 have

actually been paid out on. Program administrators have cited both credit constraints

and a lack of labor supply as potential causes for such high rates of non-compliance.

Submission of cartography with the management plan may also deter some landowners

who struggle with the administrative hurdle itself.

2.3 Data and descriptive statistics

We have obtained property boundaries for all rural properties in the major forested

regions of Chile as of the year 2009. Data on the awarded properties are available

through CONAF and reflect aspects of the property and projects such as project objec-

tive, project surface area, bonus amount, and whether a management plan was submitted

within six months. Also included is each property’s parcel identifier, which is unique to

each property within a comuna, Chile’s level 3 administrative unit. We match the enrolled

properties to their corresponding boundaries via this unique parcel identifier. In addi-

tion, we observe payment recipients, which are matched to the corresponding program

application, indicating whether a project was successfully completed.
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Figure 2.1: Properties enrolled through the Native Forest Law subsidy competition.

In order to quantify environmental impacts of the Native Forest Law, we use annual

measures of land cover. Our primary outcomes of interest come from annual Landsat

(30m) resolution maps of land cover developed in Graesser et al. (2022). These maps

classify pixels into one of the following classes for each year between 2000 and 2018:

forest, crop, grassland, shrub, and bareground. These land cover maps provide a unique

opportunity to examine restoration outcomes. While many studies use satellite derived

measures of deforestation to generate annual panels of forest loss, very few studies leverage

annual variation in specific land cover types outside of those focused on North America

and Europe. Further, the Graesser et al. (2022) product was developed specifically to pro-
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duce more consistent estimates of land cover change over long time periods and gradual

change events such as restoration, making it the ideal data product for our analyses.

Second, Landsat resolution land-use classification maps of these regions in Chile de-

veloped in Heilmayr et al. (2020a) allow us to distinguish the proportion of each property

engaged in specific land uses prior to the existence of the Native Forest Law. Of partic-

ular interest is the distinction between plantation forest and native forest, which cannot

be distinguished in the Graesser et al. (2022) product. In contrast to native forest, high

levels of plantation forest may indicate greater ability to manage forest and undertake

contracted activities. All of our satellite derived measures cover the extent of the major

forested areas of Chile, representing the regions that contain the vast majority of Native

Forest Law enrollees.

Summary statistics for enrolled properties are shown in Table 2.1. Most enrollees

enroll less than 15% of their property through the competition, and typical enrollee

properties already have quite a large area of native forest cover and some plantation

forest prior to the existence of the Native Forest Law. Section A.2.1 in the Appendix

shows how descriptive statistics vary across subgroupings of the data such as contest type

and compliance. Notable statistics include the fact that enrollees in the other interested

party contest have a greater share of the property with both native forest and plantation

forest prior to enrollment, possibly indicating that it is less costly for larger wealthier

properties to maintain tree cover.
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Table 2.1: Summary statistics for enrollees in Native Forest Law subsidy contest

Statistic Mean Median Std. Deviation

Property size (ha) 201.116 45.120 514.733
Subsidized surface (ha) 15.460 5.840 39.632

Proportion of property subsidized 0.233 0.143 0.240
Bonus amount (UTM) 84.589 34 202.193

Received payment 0.319 0 0.466
Submitted management plan 0.371 0 0.483
Timber production objective 0.842 1 0.365
Received extensionist support 0.499 0 0.500
Pct. tree cover change (00-08) 0.074 0.001 1.365

Native forest 0.430 0.432 0.305
Plantation 0.151 0.026 1.223
Tree cover 0.683 0.774 0.302

Crop 0.024 0 0.102
Grassland 0.272 0.191 0.267

Dist. to native timber processing (km) 21.235 15.141 17.359
Dist. to any timber mill (km) 10.730 9.092 7.774

Figure 2.2 shows the average change in tree cover in the 5 years leading up to enrollees’

application to the subsidy competition. The left panel shows the raw trends in tree cover

for the typical property across both the smallholder and other interested party contests.

The right panel shows the rate of tree cover change in the years leading up to enrollment

across the two contests. In both contests, we see that tree cover was already increasing on

the typical enrollee’s property prior to enrollment. This is evident by the raw trends (left

panel) and the positive rate of tree cover change (right panel) for all years immediately

leading up to enrollment. The right panel of Figure 2.2 shows that the rates of tree cover

gain across both contests was similar until the three years leading up to enrollment. At

this point, the typical property in the other interested party contest increases the rate

of tree cover gain. This means that by the time of application, landowners in the other

interested party contest are already increasing forest cover at a rate nearly four times

higher than enrollees in the smallholder contest. Smallholders on the other hand do
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not change their rate of tree cover gain at any point leading up to the enrollment year.

This observation raises the question of whether landowners in the other interested party

contest applied to the competition with the hopes of subsidizing tree cover expansion

that they were already undertaking without any subsidization.

Figure 2.2: This figure shows rates of change by land cover type for enrollees in the
years leading up to their application and enrollment in the Native Forest Law subsidy
competition.

2.4 Program evaluation

2.4.1 Constructing a counterfactual

To quantify the environmental impacts of the Native Forest Law subsidy contest, we

focus on landowners who complied with program requirements and received payment. As

is the problem with many PES impact evaluations, enrollment is non-random. Landown-

ers choose to enroll in the program and, in theory, have an opportunity cost equal to

or lower than program payment. This means that the average enrollee likely has lower

participation costs than the average unenrolled landowner. It is then ill-advised to sim-

ply use unenrolled properties as the counterfactual, since unobservable factors affecting
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enrollment could drive changes in forest cover outcomes, not enrollment.

In order to move toward a more convincing counterfactual, we first use matching as

a pre-processing technique to generate a control group from amongst all unenrolled rural

properties in the major forested regions of Chile. This should yield control properties

with more similar opportunity costs to enrollees than amongst the general population.

This approach is similar to many recent studies in the literature (e.g. Cisneros et al.,

2022).

The covariates used for matching include environmental and economic character-

istics likely to determine enrollment decisions and project performance. We include

pre-enrollment property land-use including levels of native forest, plantation forest, and

pasture. Landowners with similar levels of plantation forest, native forest, and other

land uses on the property should face a similar decision about whether to enroll in a

program involving native forest management. Other included covariates give a sense of

a property’s productive potential, remoteness, and timber market access. We also match

on land cover pre-trends to help us build confidence in the common trends identification

assumptions we make in the next section. In doing so, we use land cover trends leading

up to the first Native Forest Law subsidy competition. This helps to avoid concerns of

overfitting and should still allow us to see any major anicipatory land cover changes in

our pre-trend analyses. Thus, seeing that pre-enrollment trends hold should lend fur-

ther creedence to the matching process. Matches are made with replacement based on

nearest neighbor propensity scores from a logit model. We include the two unenrolled

nearest-neighbors for each program enrollee in the control group.

Prior to pre-processing, enrolled and unenrolled properties differ significantly. The

typical enrollee had significantly less land engaged in pasture or agriculture and signifi-

cantly more native forest already relative to the typical unenrolled property. Table 2.2

displays balance checks for all covariates used. The normalized mean difference and vari-
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Table 2.2: Covariate balance before and after matching

Norm. mean diff. Variance diff.

Covariate Unmatched Matched Unmatched Matched

Tree cover trend (05-08) 0.01 0.00 5.66 4.17
Crop trend (05-08) -0.06 -0.01 6.78 3.51

Grassland trend (05-08) 0.06 0.02 13.90 3.12
Native forest (2001) -1.32 0.12 0.37 1.35

Plantation forest (2001) 0.09 0.04 2.31 1.48

Tree cover -1.03 0.20 1.42 1.04
Grassland -0.37 -0.13 0.06 1.25

Crop -0.15 -0.09 0.04 0.35
Shrubs -0.12 -0.06 0.77 0.77

Development 0.02 -0.03 292.44 0.10

Water 0.01 -0.02 17819.17 1.78
Slope -1.04 0.04 0.34 1.57

Elevation -1.12 -0.08 0.24 1.41
Lattitude -0.15 -0.09 0.80 1.00

Area -0.37 -0.10 0.15 1.93

Dist. to industry -0.60 -0.01 0.53 1.98
Dist. to native specific industry -0.07 -0.02 0.98 1.10

ance were reduced for nearly every covariate after the matching process. Figure A.6 in the

Appendix shows how comparability between selected covariate distributions drastically

improved between treatment and control properties after matching. After processing,

balance improved on every included covariate, and the normalized mean difference fell

below the often-used threshold of 0.25 for every covariate.

One concern may be our decision to exclude rejected applicants from the control

group. Given that these properties have revealed their intention to enroll in the program,

it seems that they may have opportunity costs similar to program enrollees. However,

the composition of the rejected applicants differs between smallholders and other inter-

ested parties depending on year, and the composition of the rejected applicant group is
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relatively unstable through time. Further, it would be difficult to make claims about

the differences between the smallholders and other interested parties, it is much easier to

be rejected in the other interested party contest for most contest years. We discuss the

rejected applicants in more detail in Appendix A.2.7.

2.4.2 Main specification

We take advantage of our panel data setting and estimate the following equation to

reveal the land cover impacts of the Native Forest Law subsidy contest:

outcomeit = β0 + β1 × intensityit + γi + λt +Xit + ϵit (2.1)

where outcomeit represents the share of property i engaged in a specific land cover

outcome in year t; intensityit represents the proportion of property i enrolled through

the Native Forest Law subsidy contest in year t; and γi and λt represent property and

year fixed effects, respectively. Property fixed effects (γi) control for unobserved time

invariant characteristics such as landowner preferences. Year fixed effects (λt) control

for time-varying shocks that are common across all properties such as changes in other

environmental policies. Conditional on covariates and fixed effects, β1 recovers the impact

of enrollment in the Native Forest Law contest, conditional on compliance.

Because Equation 2.1 relies on property and year fixed effects, it falls under the

umbrella of two-way fixed effects (TWFE) estimators. This literature has received ample

attention in recent years, particularly in the case of binary treatment (i.e., whether a

property enrolled) (Roth et al., 2022; de Chaisemartin and D’Haultfœuille, 2022). In this

context, binary treatment would ignore the proportion of the property enrolled through

the contest. Equation 1 is valuable in our context, because the median landowner enrolls
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less than 15% of their land in the program, with significant variation across properties

(Table 2.1).

Importantly, intensityit represents a continuous treatment in the context of TWFE

estimation. Callaway et al. (2021) decompose TWFE estimators when treatment is con-

tinuous and show that β1 represents the weighted average change in outcomes from

incremental changes in land enrollment across and within periods. Thus, our identifica-

tion relies on the following assumption: properties that enrolled an additional increment

of land in the Native Forest Law contest, must experience the same evolution in out-

comes as properties that never enrolled the increment. We evaluate the plausibility of

this common trends assumption based on both raw trends and an event study approach

in Appendix A.2.4.

2.4.3 Event study

The dynamics of payments for ecosystem services are important, and perhaps moreso

in the restoration context. Tree cover is not established instantaneously, including in

satellite-derived measures of tree cover, where a pixel is generally only classified as tree

cover if it exceeds a threshold of canopy cover. Survivorship of trees is also key, as many

planting initiatives have led to minimal long-term success (Coleman et al., 2021). These

factors are echoed in the Native Forest Law payment scheme, where landowners are not

even eligible to receive their payment in the first year of enrollment.

We use the estimator developed in Callaway and Sant’Anna (2020) to generate event

study treatment effects. It is important to note that this estimator relies on binary treat-

ment. While this cannot account for the fact that properties enroll only a selected pro-

portion of a property, it provides robustness properties not true of Equation 1. First, our

event study estimates rely on a relatively weaker conditional common trends assumption.
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Common trends need only hold after conditioning on our detailed set of time-invariant

pre-treatment characteristics. The Callaway and Sant’Anna (2020) estimator is also ro-

bust to general treatment effect heterogeneity, which, in severe cases, could flip the sign of

our main specification’s treatment effect estimates (de Chaisemartin and D’Haultfœuille,

2020).

2.4.4 Program evaluation results

Table 2.3 shows that using the matched control group, tree cover expands on the

characteristic enrolled property after enrollment relative to the counterfactual. It also sees

a decline in grassland and cropland. Since intensityit is the proportion of the property

enrolled, β1 can be interpreted as the impact of enrolling the average landowner’s full

property through the Native Forest Law competition. For the average property, enrolling

the full property leads to a 0.63 percentage point (0.91%) increase in the share of the

property with tree cover. However, since the average landowner enrolls 23% of their land

(Table 2.1), the impact for the typical enrollee is closer to a 0.14 percentage point (.21%)

increase. It also led to a 0.19 (6.55%) and 0.45 (1.79%) percentage point decline in the

share of the typical enrollees’ property with crop and grassland, respectively. Standard

errors are clustered at the property, the level of the decision-making unit and at which

treatment is assigned.

In order to gauge the plausibility of the matched control group as a counterfactual,

we consider a similar estimation strategy using program enrollees who never submitted

a management plan. These non-compliant properties had applications selected through

the competition, however, they failed to provide a management plan within the required

six-month window following selection. Therefore, they were dropped from the program.

Because these landowners dropped from the program within such a short time-frame and
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Table 2.3: Estimates of subsidy impact using matched control group

Tree cover Crop Grassland

Intensity 0.00628** -0.00188** -0.0045*
(0.00239) (0.00076) (0.00225)

Num.Obs. 183521 183521 183521
R2 0.970 0.899 0.958
Control group matched 2-to-1 matched 2-to-1 matched 2-to-1
2008 mean 0.699 0.029 0.251

Standard errors are clustered at the property level.
* p < 0.1, ** p < 0.05, *** p < 0.01

never submitted a management plan indicating exact project details, it is unlikely they

engaged in sustained restoration activity. We use the same pre-processing techniques to

generate a matched control group for these non-compliers and again estimate Equation

2.1. Table 2.4 shows that the estimated tree cover treatment effect is not only statistically

insignificant, but also of no meaningful magnitude. Although there is a statistically

significant effect for crop, the magnitude is very small. It may be the case that landowners

in this group shifted away from crop cover in response to having their application selected,

but never could establish tree cover in its place. Finding no meaningful effect amongst

properties that engaged with the program but dropped out soon after enrollment lends

credence to our main estimation strategy.

Figure 2.3 shows event study treatment effects based on the estimator developed in

Callaway and Sant’Anna (2020). Similar to results based on Equation 2.1, these estimates

indicate that the Native Forest Law subsidies increased tree cover, while reducing crop

and grassland. These graphs indicate that most of the increased tree cover seems to

have come from grassland conversion. Pre-treatment estimates in Figure 2.3 represent

pseudo-ATT s, which are all indistinguishable from zero across the three land cover types.

The conditional common trends assumption on which these estimates rely, thus, seems
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Table 2.4: Estimates of subsidy impact on non-compliers using matched control group

Tree cover Crop Grassland

Intensity 6e-05 -1e-04** 5e-05
(5e-05) (4e-05) (5e-05)

Num.Obs. 321309 321309 321309
R2 0.970 0.893 0.957
Control group matched 2-to-1 matched 2-to-1 matched 2-to-1
2008 mean 0.699 0.023 0.258

Standard errors are clustered at the property level.
* p < 0.1, ** p < 0.05, *** p < 0.01

plausible. Our event study estimates are robust against concerns surrounding general

treatment heterogeneity and do not rely on assumptions as stringent as those from our

main specification, so seeing that these results are similar to those from Equation 2.1 lends

confidence to our main results. Similar to the main TWFE specification, estimates are

based relative to both the control group and not-yet-treated properties. In the Appendix

(Figure A.9), we include similar results based on inclusion of only the never-treated

control properties in the control group.
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Figure 2.3: This figure shows event time treatment effects of the Native Forest Law
subsidy contest for beneficiary properties. The three panels show event time treatment
effects based on binary treatment for three land cover types: Tree cover, Crop, and
Grassland.

Looking at Figure 2.3, the treatment effect has not leveled-off. This could be due to a

couple different factors. First, landowners may still be establishing new tree cover 9 years

after initial enrollment (10th year of treatment). In this case, the estimates from both

Equation 2.1 and the event study will underestimate the carbon and land cover impacts

of the subsidies. However, it may also be the case that this sustained effect is due to

the changing composition of cohorts in each event-time window. Appendix A.2.6 shows

that there is no clear systematic relationship between cohorts and treatment effect. We

also present results of a "balanced" event study, proposed in Callaway and Sant’Anna

(2020), in Figure 2.4. This balanced event study estimates event-time treatment effects

for cohorts that are observed for at least 8 years post-enrollment (i.e., the 2009 and 2010

cohorts). The benefit of the balanced event study is that there is no change in treatment
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unit composition across event-time windows. The major cost of balancing is that fewer

groups are used to compute these event-study-type estimands, which can lead to less

informative inference (Callaway and Sant’Anna, 2020).

As expected, both types of event study results do imply that the treatment effect is

increasing over time, suggesting that the estimates based on Equation 2.1 may underes-

timate the ultimate impact of the program. We believe that the balanced event-study

estimates represent a more informative path of tree cover impacts through time than

those presented in Figure 2.3. As expected, there is no clear effect for the first few years

following enrollment. The subsidized activities often take several years to complete, and

newly planted trees will not be picked up instantaneously in the outcome variable. While

we expect biomass accumulation to continue through time, tree cover extent is not likely

to continue to be established infinitely far in the future as a direct result of subsidized

projects, as suggested by Figure 2.3. We see in Figure 2.4 that balanced treatment effect

estimates do increase through time but seem to level off 7 years post-enrollment. Tree

cover is largely established 4 to 7 years after enrollment. The final event-time estimate

from the balanced event study suggests that enrollment led to a 0.70 percentage point

(1.00%) increase in the share of the property with forest cover on average. If we assume

that all of the forest cover gain ocurred in the subsidized proportion of the property, this

effect is closer to 3.04 percentage points (4.34%), much greater than the effect suggested

by results in Table 2.3.
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Figure 2.4: This figure shows balanced event time treatment effects of the Native Forest
Law subsidy contest for beneficiary properties. Only estimates cohorts experiencing
treatment for at least 8 years are included, so there is no change in the composition of
treatment cohorts by event-time window. The three panels show event time treatment
effects based on binary treatment for three land cover types: Tree cover, Crop, and
Grassland.

2.4.5 Carbon impacts

Previous work identifies the potential for restoration to remove significant amounts

of carbon from the atmosphere at a relatively low carbon price (e.g. Busch et al., 2019).

Many of these estimates, however, do not account for social viability (Austin et al.,

2020) and cannot be interpreted as causal. Moreover, there exists little evidence on the

ex-post costs of real-world policy to achieve these removals. We present back of the

envelope estimates of the carbon price achieved on the average property through the

subsidy competition. We provide these estimates of the carbon price based on estimates

of carbon per hectare for native forest cover, crop, and grasslands by region in Chile.

We estimate that the subsidy competition paid the average enrollee $36.78 USD per
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tonne CO2 stored in aboveground biomass. While this estimate relies on assumptions

about the carbon content of additional tree cover, we believe it to be relatively conserva-

tive. Estimates of carbon content per hectare of native forest used in this calculation are

based on mature native forests by region in Chile. This means that this estimate assumes

all additional tree cover extent is mature native forest. While this number may overesti-

mate the current carbon content in newly established native forest subsidized through the

Native Forest Law, we believe it is reasonable to assume subsidized forest will eventually

mature and attain these levels of carbon content. Moderating factors include the fact

that our estimates are unable to capture carbon benefits achieved through restoration

of already standing forest, which is relatively common amongst subsidized projects. As

seen in our event study estimates (Figures 2.3 and 2.4), tree cover impacts are increasing

through time. Estimates from Equation 1 do not account for these dynamics and may

further underestimate the ultimate carbon impacts of the program if recent cohorts see

dynamic effects similar to the earliest cohorts. A similar exercise using only treatment

effects from the 2009 and 2010 cohorts (Figure 2.4) yields a much lower price of $12.35

USD per tonne CO2. These factors lend confidence that our primary estimate is not a

significant underestimate of the true final cost.

2.5 Targeting for social development

Payments for ecosystem services programs have often targeted payments toward prior-

ity groups with the hopes of achieving both environmental gains and poverty alleviation.

The Native Forest Law follows a similar strategy, prioritizing the applications of small-

holders and landowners with other priority social characteristics. In this section, we

examine whether this strategy undermined the environmental effectiveness of payments,

as it often has in the avoided deforestation setting.
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Chile’s Native Forest Law targets in two primary ways: 1) separating applicants into

a smallholder and other interested party contest; and 2) scoring applications based on

both social and project characteristics. In order to qualify for the smallholder contest,

landowners must have assets and a property size below a set threshold for each region.

The benefits of qualifying for the smallholder contest include 15% higher payments as well

as increased odds of having an application selected through the contest. Landowners in

the smallhoder contest are also significantly more likely to receive extensionist support.

Extensionists often helped landowners understand the potential for different activities

on the property and assisted landowners to complete and submit an application. In

2019, CONAF also began offering technical assistance to selected landowners through

the smallholder contest. While the Native Forest Law used these separate contests to

alleviate concerns that large corporations with significant assets would reap the rewards

from the program, smallholder classification is still quite broad. In the typical region,

properties up to 200 hectares can qualify for the smallholder contest. Figure A.4 shows

that while many applicants in the smallholder contest are truly landowners with small

properties, many larger properties are able to enter the smallholder contest (Full eligibility

rules in Appendix A.2.2).

The program used a scoring system in order to assign project funding priority within

each contest. Projects were granted funding in descending order of score until the allo-

cated funding had been assigned. This meant that projects sometimes went unfunded

because of a low score, although no ex-ante cutoff existed. This was particularly common

in the other interested party contests, which were granted funding after the smallhold-

ers. In some years, a second smallholder contest was held, causing smallholders to go

unfunded because of low scores. The scoring criteria include factors related both to

landowner, property, and project characteristics. This score, although not always critical

for smallholder applicants, provides insight to program administrators’ preferences for

72



Targeting in payments for forest restoration: evidence from Chile’s Native Forest Law Chapter 2

project prioritization. It amounts to a sum of social and project specific characteristics:

scorei = sociali + projecti

where sociali represents components of the score deemed to be of social importance by

program designers; and projecti represents components of the score representing project

specific characteristics unrelated to the landowner themselves. The social score, sociali

and the project score, projecti can be further broken down as follows:

sociali = γtV I + βtV PS

projecti = λtV P + ψtV T

, where

- V I = social characteristics of interest, including property size (higher scores to

smaller properties) and total subsidy amount (penalizing particularly large projects)

- V PS = other priority social characteristics, including indigenous status (higher

scores to indigenous landowners or communities)

- V P = project characteristics

- V T = land characteristics

, and γt, βt, λt, and ψt represent the weights given to each category in year t.

This score demonstrates the specific project characteristics prioritized by program ad-

ministrators. While the score does not explicitly target high-poverty landowners, if the

objective is to promote rural economic development and poverty alleviation, we are inter-

ested in whether the score actually helps administrators target low-income landowners.

While we cannot observe individual landowner poverty, we examine whether comuna-level
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poverty is associated with social and project scores:

ln(ComunaPovi) = ρ0 + ρ1 × ln(sociali) + ρ2 × ln(projecti) + ei (2.2)

The results are shown in Table 2.5 and indicate that sociali is associated with in-

creased comuna-level poverty, holding projecti constant. We also see that projecti is

associated with greater levels of poverty, perhaps indicative of less profitable alternate

uses of the land in high-poverty comunas. Including region fixed effects in the model

eliminates the clear association of the project score with poverty, however. While we

cannot observe whether sociali is predictive of landowner-specific poverty, it did help

Native Forest Law administrators prioritize participation of landowners in high-poverty

comunas.

Table 2.5: Social score is associated with relatively higher comuna level poverty

Outcome var. ln(ComunaPov)

(1) (2) (3) (4)

ln(Social score) 0.09601*** 0.14969*** 0.07363*** 0.19827***
(0.01847) (0.02249) (0.01293) (0.01679)

ln(Project score) 0.13323*** 0.13470*** -0.01432 -0.00567
(0.01367) (0.01721) (0.00907) (0.01097)

Num.Obs. 12828 8750 12828 8750
R2 0.009 0.009 0.617 0.645
Subsample Full sample Smallholder Full sample Smallholder
Region FE No No Yes Yes

Standard errors are clustered at the property level.
* p < 0.1, ** p < 0.05, *** p < 0.01
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2.5.1 Targeting’s impact on program effectiveness

To answer the question of whether the Native Forest Law’s strategy to target for

social development undermined environmental impacts, we consider several variables that

correspond to application prioritization and socioeconomic status. We first consider

treatment effect heterogeneity based on the contest into which projects were admitted:

the smallholder or other interested party contest. Table 2.6 shows that payments through

the smallholder contest were more effective than those through the other interested party

contest, and further, that payments to the average enrollee in the other interested party

contest did not yield any positive tree cover impacts at all. Landowners in the other

interested party contest were not eligible for the smallholder contest, either because they

had assets exceeding the allowable threshold or a particularly large property (generally

greater than 200 hectares). This means that the wealthiest and largest properties were

generally cost-ineffective enrollees.

This implies that the decision to separate applicants into the smallholder and other

interested party contests was helpful. Applicants to the other interested party contest

were much more likely to be rejected. In most years of the competition, smallholders were

unlikely to be rejected unless they did not submit proper paperwork or proposed activities

that were not eligible to be subsidized. Prioritizing the participation of properties in the

smallholder contest, therefore, seems to increase the average effectiveness of payments

relative to the case where no targeting exists across contests.
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While Table 2.6 shows that the average smallholder generates more tree cover per per-

cent of the property enrolled in the Native Forest Law than the average other interested

party, smallholder qualification is quite broad. Many in the smallholder contest had large

properties or relatively high levels of wealth (i.e., assets). In order to understand how the

effectiveness of payments varied across finer-grain measures of vulnerability, we explore

heterogeneity based on comuna-level poverty. Although poverty was not explicitly used

by program administrators to target, higher values of sociali are associated with higher

comuna-level poverty (Table 2.7), and poverty alleviation is generally the primary goal

of targeting payments to marginalized groups. We use the following regression:

outcomeit =α0 + α1 × intensityit + α2 × intensityit × ln(ComunaPovi)+ (2.3)

γi + λt +Xit + eit (2.4)

where ComunaPovi represents the percent of poverty in the Comuna where landowner

i resides. Here, α2 represents the parameter of interest, indicating the association of

ComunaPovi with the treatment effect of the Native Forest Law subsidies. We see

that projects located in comunas with higher rates of poverty actually yielded higher

treatment effects. While we cannot make claims that increased poverty actually caused

these increased treatment effects, it was predictive of increased treatment effects per

enrolled hectare in the Native Forest Law subsidy competition, and thus, targeting these

marginalized landowners did presumably improve program outcomes.

In order to better interpret the association of comuna-level poverty with program

impacts, Figure 2.5 displays marginal effect plots for tree cover. These plots reveal how

the treatment effect varies across values of comuna-level poverty. The left panel shows

how the tree cover treatment effect varies across the percent of comuna households in
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poverty, while the right shows how the treatment effect varies across values of its natural

log. Again, we see that increased levels of comuna-level poverty are associated with

greater program impacts on tree cover. The average percent of poverty within comunas

of enrolled properties was 19.80% (blue line), above the country average of 16.11%.

While the Native Forest Law subsidies have greater tree cover impacts with increased

poverty, the subsidies are predicted to have non-positive effects on tree cover only within

particularly low poverty comunas.
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Figure 2.5: Marginal effects plots show how treatment effects vary across different
values of comuna-level poverty. Increased comuna poverty is associated with increased
treatment effects, although treatment effects are expected to be positive except within
particularly low-poverty comunas. The vertical blue dashed line shows mean comu-
na-level poverty within each panel.

2.5.2 Understanding the role of non-compliance

Non-compliance in the Native Forest Law subsidy competition is high. There are

multiple reasons why non-compliance may influence the effectiveness of program admin-

istrators’ strategy to target for social development in payments for restoration programs.

First, targeting payments toward groups that suffer from high levels of non-complance

may be costly if compliance is not verified, as is often the case in low-income countries

(Alix-Garcia and Wolff, 2014). This is because targeting priority groups would increase

the probability of unconditional cash transfers. As discussed, CONAF verified compli-

ance in the Native Forest Law subsidy competition. By requiring both the submission of

a management plan as well as third-party verification of activity completion to receive
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payment, CONAF saved significant resources by never paying landowners who did not

complete contracted activities. These compliance checks prevented payment of $28.73

million USD to landowners who never completed their planned forest restoration activ-

ities. As seen in Table 2.4, these projects led to no meaningful tree cover impacts, so

compliance checks greatly improved overall cost-effectiveness of the program relative to

the case where non-compliers were paid.

Second, if targeted characteristics are positively correlated with both program impacts

and non-compliance, administrators may want to better understand how to improve com-

pliance amongst these groups. In the Native Forest Law, nearly two-thirds of applicants

fail to engage meaningfully with the program after having an application approved in the

subsidy competition. These landowners showed interest in participating but ultimately

chose to drop out or were unable to meet administrative hurdles. Non-compliers are

inherently different than compliers, so even if priority characteristics are associated with

increased non-compliance, we cannot claim that they would have produced the same tree

cover benefits as similarly prioritized compliers.

Although CONAF avoided unconditional cash transfers, the association of priority

characteristics with compliance is informative to our understanding of the effectiveness of

the program’s design. In order to examine how prioritization of social characteristics in

the Native Forest Law scoring system was correlated with compliance, we use regressions

of the following form:

compliedi = ψ0 + ψ1 × ln(sociali) + ψ2 × ln(projecti) +Xi + ui

where compliedi is a dummy variable equal to 1 if landowner i followed through and

received payment for successful project completion.

Table 2.8 shows the results of these regressions. Our coefficient of interest is ψ1,
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which captures the association of an increase in sociali on compliance, holding the other

parts of the project component constant. We see that higher values of sociali are asso-

ciated with a decreased probability of compliance in the smallholder contest, indicating

that landowners who were prioritized by the program were less likely to comply. This

association does not hold in the other interested party contest, however. That said, the

smallholder contest saw increased levels of compliance on average, possibly due to higher

payments and greater use of extensionists. Comuna-level poverty is not clearly associ-

ated with reduced compliance, holding sociali and projecti constant. Column 5 shows

that extensionists were associated with large increases in compliance probability, perhaps

indicating that some of the risk of non-compliance by priority groups can be mitigated.

The results of Table 2.8 suggest a few lessons for the design of payments for restoration

programs where non-compliance is high. First, even when priority characteristics are

associated with greater levels of non-compliance, administrators can still target these

groups without sacrificing cost-effectiveness if compliance is checked. CONAF checked

compliance in an inexpensive way, simply requiring submission of a management plan

and verification that landowners completed the expected activities. This allowed them

to target for social development without increasing unconditional cash transfers. Second,

the most cost-effective enrollees conditional on compliance were also the enrollees least

likely to follow-through. One possible concern is that ex-post payments may actually

reduce compliance if landowners are liquidity constrained (Jack et al., 2022). While

untestable, if non-compliers would have provided environmental benefits comparable to

similar compliers, efforts to support these landowners early in the program or relieve

liquidity constraints could improve overall impacts without sacrificing effectiveness.
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2.6 Discussion and conclusion

Prominent initiatives such as the Bonn Challenge, Trillion Trees Initiative, and UN

Decade on Ecosystem Restoration hope to address the intertwined challenges of rural

poverty, climate change and biodiversity loss through large-scale afforestation and refor-

estation. Initial national plans indicate that many countries will follow Chile’s earlier

model for tree cover expansion, relying heavily upon subsidies and plantation forests to

achieve their commitments (Lewis et al., 2019). In light of the fact that this model may

have negative impacts on native forest extent, biodiversity, and other outcomes, pay-

ments for native forest restoration may provide a more sustainable and socially beneficial

path forward. Further, this may lead to increased additionality if alternative policies

simply subsidize plantation forests that would have been planted anyways.

We analyze the land cover and carbon impacts of payments for native forest restora-

tion through Chile’s Native Forest Law competition. To control for selection bias, we

match enrolled properties to similar unenrolled properties and use difference-in-differences

methods that rely on common trends assumptions. We find that the payments led to

native forest expansion and reduced the extent of cropland and grassland on the average

beneficiary property. Back of the envelope calculations suggest that payments achieved

carbon removals a relatively low carbon price of $36.78 USD per tonne CO2. These

findings indicate that large-scale payments for native forest restoration may be a viable

approach to achieve carbon removals as countries search for policies to help scale-up tree

cover in line with their commitments.

Targeting for poverty alleviation in payments for avoided deforestation has often led

to tradeoffs in terms of environmental efficacy (e.g. Alix-Garcia et al., 2015). The ef-

fectiveness of payments for avoided deforestation depends on deforestation risk, and a

large literature shows that enrollment of areas with low deforestation pressure tend to
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generate minimal additional forest cover gains (Cisneros et al., 2022; Alix-Garcia et al.,

2019). For example, enrollment of many landowners in low deforestation pressure areas

led to low additionality in Costa Rica’s national PES program (Hanauer and Canavire-

Bacarreza, 2015) and in several PES programs in Brazil (Giudice et al., 2019; Cisneros

et al., 2022). Deforestation pressure is often negatively correlated with poverty, and

therefore, targeting payments toward these areas often generates little avoided defor-

estation. Moreover, capital constraints may undermine environmental effectiveness when

targeting low-income landowners (Alix-Garcia et al., 2012).

The question of whether this strategy similarly undermines environmental effective-

ness in payments for reforestation and restoration has gone unstudied. Land owned by

smallholders may not suffer from deforestation risk in the absence of payments, but rel-

atively poorer landowners may not produce new forest without payments. This may be

due to credit constraints or a lack of technical capacity that prevent smallholders from

scaling up restoration activities. In Chile’s Native Forest Law subsidy competition, we

find that socially prioritized landowners generated the greatest environmental benefits

conditional on compliance. Smallholders in high-poverty comunas actually saw the great-

est tree cover gains per enrolled hectare. In contrast, paying larger, wealthier landowners

to restore forests generated no additional tree cover or carbon benefits. This may be due

to the fact that larger wealthier property owners had scaled-up reforestation even prior

to applying for Native Forest Law subsidies. Future work should focus on the degree to

which this targeting improved livelihoods, as participation does not necessarily guarantee

poverty alleviation (Jayachandran, 2022). Non-compliance was relatively higher amongst

prioritized landowners, which could have been exacerbated by ex-post payments to liq-

uidity or credit constrained landowners. Verifying project completion prior to payment

did allow administrators to target priority groups without increasing the probability of

unconditional cash transfers, which would degrade program cost-effectiveness. These
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findings indicate that targeting marginalized groups was not detrimental to environmen-

tal effectiveness, as has often been seen in payments for avoided deforestation, but was

in fact beneficial.
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Chapter 3

Education impacts of metropolitan tree

cover: evidence from invasive species

induced tree loss

3.1 Introduction

There is a growing recognition of the need for research on the economic and social

impacts of ecosystem disruption (Ferraro et al., 2019b; Fenichel et al., 2014). A vast

literature has sought to quantify the value of ecosystem services (Farber et al., 2002),

however, causal evidence detailing how changes in biological features of the environment

affect human behavior is scarce (Frank and Sudarshan, 2023). This is particularly true

for the relationship between economic outcomes and invasive species induced ecosystem

changes. Economists have only recently started to study the pathways through which

invasive species affect economic outcomes (Jones, 2020).

Prior research has established environmental drivers of educational outcomes includ-

ing the impacts of temperature (e.g. Park et al., 2020a) and pollution (e.g. Marcotte,
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2017) on learning. Vegetation and greenery has long been associated with improved

educational outcomes (e.g. Kweon et al., 2017), however, much of this work is purely cor-

relational. Prior work has struggled to establish causality in this context, because tree

cover is often positively associated with income and other factors that drive educational

achievement. Because of these challenges, there exists little to no evidence detailing

the causal relationship between tree cover and education outcomes outside of laboratory

settings. Trees have been shown to mitigate extreme temperatures and air pollution in

addition to providing psychological benefits (Turner-Skoff and Cavender, 2019), each of

which are mechanisms through which tree cover may affect education outcomes.

In this paper, I recover the causal impacts of the emerald ash borer on both tree

cover and education outcomes in the metropolitan Chicago region. To overcome the

aforementioned challenges previous studies have faced to establish causality in similar

contexts, I take advantage of the idiosyncratic spread and detection of a forest-attacking

pest, the emerald ash borer. The emerald ash borer represents one of the most destructive

invasive species in the United States. A beetle that exclusively targets ash trees, the ash

borer has decimated the primary street tree used in many US cities. This includes

metropolitan Chicago, where prior to the arrival of the ash borer, ash were the most

common non-invasive tree species in the region’s streets and parks (Morton Arboretum,

2020). The staggered spread of the ash borer throughout the region provides changes to

the provision of tree cover and associated ecosystem services throughout the region.

Using a difference-in-differences approach robust to general treatment effect hetero-

geneity, I find that ash borer infestation led to a 1.4% percent reduction in the canopy

cover of affected areas. Infestation led to not only increased tree cover loss but also

declines in tree cover gain in affected areas. Further, infestation led to relatively poorer

standardized test performance at schools within the direct vicinity of a confirmed infes-

tation site. Infestation reduced the share of students that met or exceeded benchmarks
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by 1.86% at the average exposed school. Low-income students’ test performance was

affected most, while there was little to no impact on the non-low income group.

The causal interpretation of these results is supported by several factors. First, I

provide event study estimates showing the time-varying tree cover and test score impacts.

Treatment and control groups showed similar trends in outcomes prior to the arrival of

the ash borer, lending credence to the conditional common trends assumption needed

for causal interpretation. While ash borer arrival leads to an initial spike in rates of

tree cover loss, longer term canopy cover decline comes, in part, from reduced tree cover

gain in affected areas. This is consistent with work showing that tree planting budgets

and priorities changed following the arrival of the pest (e.g. Hauer and Peterson, 2017).

Further, the canopy cover impacts are greatest in areas where ash make up a greater

proportion of an area’s tree population. There are no impacts of ash borer infestation on

school enrollment, something that we wouldn’t expect to change.

This work makes several key contributions. First, this paper complements the litera-

ture on the economic impacts of invasive species (e.g. Epanchin-Niell, 2017). Recent work

in economics has explored the impacts of the emerald ash borer (e.g. Jones, 2023), but to

my knowledge, my work is the first to measure the ash borer’s impact in a concentrated

metropolitan region. It is also the first to examine invasive species’ impacts on education

outcomes. I also contribute to the literature detailing the environmental drivers of educa-

tion performance, causally linking invasive species and subsequent changes in vegetation

to education outcomes for the first time outside of a laboratory setting.
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3.2 Background

3.2.1 Emerald ash borer in the Chicago region

One major threat to metropolitan and urban tree populations is the introduction of

insect pests. The emerald ash borer is one such pest, first detected in North America in

2002. While it is one of several introduced pests that has affected US tree cover, it may

represent a worst-case scenario (Herms and McCullough, 2014). The ash borer was first

detected in North America in 2002 and has been referred to as the most destructive forest

pest ever introduced to the United States (Nowak et al., 2016). Ash borer exclusively

target ash trees, and infestation is essentially fatal to any infested tree, so the arrival of

the pest has meant the death or removal of millions of ash trees across the country.

The Chicago region is the third-largest metropolitan region in the United States, and

lies in a region heavily affected by emerald ash borer. The impacts on the region’s ash

populations has been well recognized. Prior to the arrival of the ash borer, ash trees were

the most numerous non-invasive tree species in the region (Morton Arboretum 2020).

However, a Chicago region tree census revealed that the area’s standing ash population

nearly halved between 2010 and 2020, dropping from an estimated 13 million to under 7

million (Morton Arboretum 2020). Of those 7 million remaining standing trees, 4 million

are either dead or in decline. Further, as of 2020, more than 30% of ash trees in the

region are saplings, likely having regenerated from removed adults. Although many ash

trees were replaced with alternative species and canopy cover broadly increased across

the region, the overall number of large trees (> 6 inch diameter) dropped as mature ash

were replaced by smaller trees.

There exists previous work on impacts of ash borer and other forest attacking pests in

the economics literature. For example, Tan (2022) uses staggered county-level ash borer

detection to show its impact on mortality, through a channel of increased pollution. Jones
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and McDermott (2018) show that ash borer arrival led to increased rates of mortality

and morbidity, stemming from increased high temperatures. Druckenmiller (2020) in-

struments for tree mortality in the American West using the temperature threshold at

which bark beetles experience winter die-off. They find that beetle-induced tree mortal-

ity decreased the value of timber tracts and home values and reduced hazard protection

from air pollution, flood risk, and burn area.

3.2.2 Educational responses to ecosystem disturbance and vege-

tation

Trees provide substantial ecosystem services, particularly in metropolitan settings.

These benefits include reduction of traffic pollution, psychological benefits, and moder-

ation of hot temperatures. The association between the amount of trees and improved

educational attainment and performance has been well documented. For example, Kweon

et al. (2017) find that Washington DC schools with more trees had a higher percentage

of proficient or advanced standardized test scores. However, despite vast amounts of cor-

relational research, there exists scant causal evidence outside of the laboratory setting.

Children exposed to more green vegetation show enhanced cognitive development and

higher scores on cognitive development tests (Dadvand et al., 2015). Green environments,

such as open spaces with big trees, are even related to reduced symptoms of ADD and

ADHD (Faber Taylor and Kuo, 2009).

These improved outcomes may operate through several different channels. Urban tree

cover is known to mitigate traffic-related air pollution (Nowak et al., 2006). Trees may

also reduce noise, allowing students to better focus (Gidlöf-Gunnarsson and Öhrström,

2007). There are also psychological benefits associated with increased tree cover in neigh-

borhoods and surrounding schools. Li and Sullivan (2016) found that students who had
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views of trees and green environment from their classrooms, as compared to being in a

room without windows or a room with a view of a brick wall, scored substantially higher

on tests measuring attention. Studies consistently show a positive relationship between

natural landscapes and enhanced physical activity amongst younger students (Dyment

and Bell, 2007).

While causal studies detailing the effects of tree cover on educational outcomes are

difficult to find, there exists a significant literature on the education impacts of ecosystem

disturbances more broadly. High temperature has consistently been shown to affect

learning (e.g. Park, 2022; Park et al., 2020a). For example, Park et al. (2020b) show that

hotter school days in the years leading up to the PSAT reduce scores, with extreme heat

being particularly damaging. Pollution has also been shown to reduce performance on

tests. Wen and Burke (2022) find that wildfire smoke exposure in the year leading up to

a standardized test negatively affects performance.

3.3 Data and descriptive statistics

3.3.1 Emerald ash borer survey

While infestations expand over relatively short distances through natural dispersal,

infestations may go undetected for long periods. Long-distance spread occurs when in-

fested material such as nursery stock or firewood is moved, potentially spurring new

satellite populations. Ash borer infestation is fatal to all ash trees, however, it is diffi-

cult to detect until a tree is extensively damaged by the ash borer and begins to show

symptoms.

After the first ash borer detections in 2006, the Illinois Department of Agriculture

(IDA) initiated survey efforts to determine the extent of ash borer spread. The IDA
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survey consisted of destructive bark peeling of selected trees. Selected trees were generally

4-8 diameters in width and in areas of easy and clear right-of-way access, with efforts

to sample 1 tree per 4 square miles. The Chicago metropolitan region was the priority,

but other parts of the state were surveyed as well, particularly if an infestation was

suspected. Initially, damage was minimal as the detection method results were mostly

negative, but positive finds became more and more prevalent. Ultimately, the state

stopped survey efforts in 2015, as ash borer spread had become extensive. Figure 3.1

displays the locations of confirmed ash borer infestations by year throughout the seven-

county Chicago metropolitan region.

Figure 3.1: This map shows the location and timing of confirmed emerald ash borer
infestations within the Chicago metropolitan region based on the IDA and USDA
survey efforts.
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3.3.2 Chicago metropolitan area tree cover

I use two main data sources to understand how ash borer affected tree cover in the

Metropolitan Chicago region. I first use annual 30m resolution tree loss and tree gain

maps developed in McCabe et al. (2018). These maps span 2000 to 2015 and importantly,

allow me to differentiate changes in tree cover gain from tree cover loss. In order to

better understand overall canopy cover trends and impacts, I also use annual 30m maps

of canopy cover spanning from 1990 to 2017 developed in Hooper and Kennedy (2018).

These yield the random forest probability that a pixel is canopy cover in a given year.

The biggest concern with both of these data products is low resolution. Many ash

trees in metropolitan areas are street trees, the loss of which may not manifest in a 30m

resolution product. This fact makes the Hooper and Kennedy (2018) product particu-

larly valuable, because while small canopy cover changes may not manifest in a binary

canopy cover classification, they are likely reflected in the latent probability metric. Im-

posing a forest classification threshold would needlessly sacrifice information on possible

canopy cover changes, giving this product an advantage over typical binary canopy cover

classification products.

3.3.3 Education and test score data

Education data come from the Illinois State Board of Education (ISBE), which release

annual reports on the performance of each school in the state on a number of metrics. I

geocode locations of each public school in the state of Illinois using addresses provided

by ISBE. This allows me to know the location of each school relative to confirmed ash

borer infestations. I take advantage of two primary outcomes: 1) attendance rates; and

2) standardized test performance.

The main standardized test I use is the Illinois Standards Achievement Test (ISAT).
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The ISAT was instituted for the purpose of identifying failing schools, and students

were tested in reading and math from grades 3–8. ISBE reported composite school-level

performance on the test between 2003 and 2014, when the ISAT was retired. These data

include the percentage of students who meet or exceed standards set by the state for a

given year. Many schools also separately report these statistics across low vs. non-low

income students for each grade.

ISBE also reports annual descriptive statistics about each school. For example, these

data include low-income students, english-as-a-second language students, racial demo-

graphics, and enrollment. I use these as controls in my difference-in-differences estimation

strategy.

3.3.4 Descriptive statistics

The association between tree cover, income, and test scores has been well documented.

Often times, students in relatively higher income areas outperform their lower income

counterparts in low-income areas. Additionally, income and tree cover often have a

positive relationship in urban and metropolitan settings (Gerrish and Watkins, 2018).

Figure 3.2 shows this to be the case in metropolitan Chicago. Canopy cover in the

neighborhoods surrounding schools is positively correlated with performance on the ISAT

and negatively correlated with the share of the student population that is low-income.

95



Education impacts of metropolitan tree cover: evidence from invasive species induced tree loss
Chapter 3

Figure 3.2: This figure shows how canopy cover surrounding schools in the Chicago
metropolitan area is correlated with A) the percent of students who met or exceeded the
ISAT benchmark; and B) the share of the student population classified as low-income.
Both plots show canopy cover and education data for the year 2005, the year prior to
the arrival of the emerald ash borer to the region.

In order to learn about patterns of ash borer infestation, I explore how schools with

nearby ash borer infestations differ from those without. Figure 3.3 shows that prior to

the arrival of the ash borer to the region, areas that would have confirmed infestations

tended to have slightly greater levels of canopy cover. The second and third panels show

that schools near an infestation site had slightly higher ISAT performance and a lower

share of low-income students on average.
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Figure 3.3: This figure shows how A) mean canopy cover; B) the percent of students
who met or exceeded the ISAT benchmark; and C) the share of the student population
classified as low-income, differed between schools with a confirmed emerald ash borer
infestation site within 2 miles of the school prior to 2015 and those without.

3.4 Empirical strategy

3.4.1 Difference-in-differences methods

Given the idiosyncratic nature of ash borer spread through insect flight or accidental

transportation, the timing of confirmed detections can be thought of as quasi-random.

These quasi-random infestation confirmations provide me with a shock to tree commu-

nities and canopy cover. I define treatment status using confirmed infestations from the

IDA survey as described previously. An IDA confirmed infestation indicates that not

only are trees in the vicinity infested and ultimately likely to die, but that community

officials are aware of the need for tree removal and replacement. Because infestations

are often hard to detect and trees typically do not die from infestation immediately, a

confirmed infestation can be thought of as an exogenous event that spurs new removal
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and replacement activity.

I use difference-in-differences (DID) approaches to evaluate the contemporaneous and

dynamic effects of ash borer infestation. Identification relies on a common trends as-

sumption, which amounts to assuming that outcomes in the treatment group would have

followed the same evolution as those in the control and not yet treated groups, had

treatment never occurred.

Recent papers have shown that the typical two-way fixed effects estimator may gener-

ate biased results in the presence of treatment effect heterogeneity (e.g. Goodman-Bacon,

2021; de Chaisemartin and D’Haultfœuille, 2020). The estimator proposed in Callaway

and Sant’Anna (2020) computes each 2x2 group-time treatment effect (ATTg,t) individ-

ually, before aggregating them with intuitive weights. This estimator also allows causal

interpretation to rely on a conditional common trends assumption, meaning that common

trends need only hold after conditioning on relevant pre-treatment covariates.

Limitations to the DID approach arise from the distinction between confirmed ash

borer infestation and ash borer presence. It is possible, and perhaps even likely, that

ash borer are present in the area for some amount of time prior to confirmed infestation.

Further, nearby infestations may go unreported if survey efforts are stopped near already

confirmed infested areas. If this were the case, some infested areas may be incorrectly

classified as untreated. In the context of my DID approaches, this should underestimate

the impacts of the ash borer.
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3.5 Results

3.5.1 Region tree cover impacts

I begin by examining the impact of ash borer infestation on canopy cover outcomes.

This establishes the pathway through which ash borer detection is likely to affect educa-

tion outcomes. In other words, hypothesized mechanisms by which we expect infestations

to affect education outcomes operate first and foremost through a change in tree cover.

There are two main channels through which ash borer detection may result in tree

loss. The first is through the ash borer directly, as an ash tree will die between one

and four years following infestation, depending on the size and health of the individual

ash tree. The second is through intentional removal of infested trees. Many communities

declare any confirmed infested tree a public nuisance and require that the tree be removed

(e.g. Macomb EAB Readiness Plan, 2007). As such, a confirmed infestation is likely to

lead to manual removal of infested or dead trees in the vicinity.

Because removed trees are likely replaced with new trees, some may question why

canopy cover loss should be observed on an annual scale. Most replacement trees are

unlikely to generate the canopy cover of large healthy trees. A newly planted tree may

have trunk diameter as small as two inches and provide little to no canopy cover, while a

large healthy ash may grow 60 feet tall and 25 to 40 feet wide (Morton Arboretum). Ash

borer detection may also lead to lower levels of tree cover gain. Removal of damaged or

dead trees is costly to individuals and communities. Estimates suggest a cost near $1,000

to remove and replant a single tree. More broadly, ash borer had a massive impact on

forestry budgets across the United States (Hauer and Peterson, 2017). While budgets in

states with confirmed ash borer infestation saw sizable increases in tree removal budgets

relative to non-ash borer confirmed states, budgets for tree planting did not change.

Because most removed trees are likely replaced, it is plausible that trees that would’ve
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been planted in the absence of the pest were never established. In other words, funding

allocated for establishing new tree cover instead went toward replacement of ash borer

infested trees.

Table 3.1 shows estimates of the ash borer’s impact on tree cover outcomes using

the difference-in-differences approach described above. The unit of analysis is the grid

cell, where a grid cell is considered treatment in the years after an infestation is first

confirmed. My preferred grid cell size is 5× 5 km, but canopy cover impacts are robust

to grid cell sizes anywhere from 1 to 5 km (Section A.3.2). Confirmed infestation led

to an estimated 1.4% decline in canopy cover probability within treated grid cells on

average. The second and third columns further decompose this effect, exploring how

infestation affected rates of tree cover gain and loss. Confirmed infestations led to a loss

of nearly half an acre of tree cover per year (a 24.5% increase in rates of tree cover loss) in

affected areas. We also see that infestations led to an 18.6% decline in rates of tree cover

gain following infestation detection. These results align with perceptions that affected

areas saw noticeable declines in mature trees and plantings. Table A.2 in Section A.3.5

shows that areas with a greater share of ash trees as the total tree population saw greater

canopy cover declines, further supporting ash borer infestation as the driver of canopy

cover loss in affected areas.

3.5.2 School-level impacts

While the above section documented the effects of ash borer infestations on the tree

population in the broader Chicago metropolitan region, the main goal of this paper is to

identify effects of the ash borer on education outcomes. In order to understand how ash

borer induced tree cover changes influenced school-level outcomes, I use the individual

school as the unit of analysis. I control for factors including racial, language, and income
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Table 3.1: This table shows difference-in-differences estimates of the impact of ash
borer infestation on tree cover outcomes across the Chicago metropolitan region. All
estimates are based on the Callway and Sant’anna (2020) estimator and use both
not-yet-treated and never-treated grid cells in the control group.

Outcome

Canopy Loss (Acres/year) Gain (Acres/year)

ATT -0.292*** 0.467* -1.449**
(0.088) (0.253) (0.582)

Pre-treat mean 20.800 1.904 10.787
N grid cells 466 466 466

Note:
* p<0.1, ** p<0.05, *** p<0.01; standard errors clustered at grid level

characteristics related to the student population and school enrollment. A school is

considered treated in the years after an infestation is detected within 3.22km (2 miles)

of the school. This distance was selected based on guidance from the USDA Animal

Plant Health and Inspection Service. In the emerald ash borer program manual (USDA,

2020), surveyors are given the following guidance after confirmed detection of ash borer

infestation: "After detecting adult emerald ash borer in traps or finding an infested

tree, conduct a visual survey until symptomatic trees are no longer found. Continue

visual survey for a distance of two miles beyond the initial trap capture or infested tree

detection".

Estimates of the ash borer’s tree cover impacts within the 3.22km (2 miles) surround-

ing schools are displayed in Table 3.2. We see that confirmed infestations again lead to

a decline in canopy cover, an increase in rates of tree cover loss, and a decrease in rates

of tree cover gain, this time in the direct vicinity of schools. These results indicate that

students at schools exposed to ash borer infestations observe salient tree cover impacts in

the vicinity of their school. These tree cover impacts likely affect the provision of ecosys-

tem services such as pollution and high-temperature mitigation to students at exposed
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schools.

Table 3.2: This table shows difference-in-differences estimates of the impact of ash
borer infestation on tree cover outcomes within 3.22km (2 miles) of the school. All
estimates are based on the Callway and Sant’anna (2020) estimator and use both
not-yet-treated and never-treated schools in the control group.

Outcome

Canopy Loss (Acres/year) Gain (Acres/year)

ATT -0.112*** 0.431*** -1.872***
(0.042) (0.158) (0.412)

Pre-treat mean 20.365 2.346 10.076
N schools 2232 2232 2232

Note:
* p<0.1, ** p<0.05, *** p<0.01; standard errors clustered at school level

Table 3.2 now shows estimates of confirmed ash borer infestation on several education

outcomes of interest. The first column indicates that confirmed ash borer infestation

within 3.22km (2 miles) reduces the percentage of students at the school that meet or

exceed the ISAT benchmark on average. This amounts to a 1.86% reduction in the

share of students meeting or exceeding the benchmark for the characteristic school. The

second column indicates a similar impact on all standardized tests more broadly. The

primary additional test included in this metric is the PSAT. For comparison, Park et al.

(2020b) find that a 1°F hotter school year reduces learning by 1 percent, with impacts

disproportionately concentrated among low-income students. While the outcome in Park

et al. (2020b) is not identical to mine in this setting, the results suggest that ash borer

infestation may have an impact comparable to 1°F hotter temperatures.

While overall attendance does not appear to be affected by ash borer infestation,

attendance rates among low-income students do appear to decline slightly. Low-income

student attendance rates decline by 0.3%. Lastly, as a falsification test, I examine whether

infestation affects enrollment contemporaneously. The final column of Table 3.3 indicates
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that enrollment is unaffected by confirmed infestation.
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Event study estimates in Figure 3.4 show how treatment effects vary through time

for school-level A) Canopy cover; and B) composite ISAT performance. In both plots,

confirmed infestation does not have any effect on either outcome prior to the actual date

of confirmation. This lends credence to the conditional common trends assumption on

which causal interpretation of the difference-in-differences estimates relies. The canopy

cover impacts appear to stabilize 5 years post-infestation confirmation. Test score impacts

on the other hand, are sustained through the 7 year period post infestation confirmation.

This suggests that the impacts are not due to factors associated with detection, such as

noise caused by initial tree removal or increased presence of arborists. Instead, sustained

increases in temperature, pollution, or pesticide use are more plausible mechanisms.

105



Education impacts of metropolitan tree cover: evidence from invasive species induced tree loss
Chapter 3

Figure 3.4: This figure shows how estimates of infestation impacts vary across event
time for two outcomes: A) canopy cover; and B) the percent of students who met
or exceeded the ISAT benchmark. We see declines in both outcomes after confirmed
infestation detection within 3.22km (2 miles) of a school. There are no effects of
infestation prior to the actual date of detection.

3.6 Heterogeneity

3.6.1 Impacts concentrated on low-income elementary students

ISAT performance is also provided by ISBE stratified by grade level, subject, low

versus non-low income, and benchmark categorizations. Figure 3.5 shows difference-in-

differences estimates across subsets of the data along these dimensions, where each of

the four plots represent the percent of students performing within one of the following

benchmarks: A) Academic warning; B) Below standards; C) Meets standards; and D)

exceeds standards.

The most notable pattern to emerge from Figure 3.5 is the disparity along the low

versus non-low income dimension. Impacts are consistently seen across each of the four

benchmark measures for low-income students (highlighted in blue) at exposed schools.

In contrast, non-low income students are not clearly affected at all.
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3.7 Conclusion

This study estimates the education impacts of a quasiexperimental shock to tree

cover induced by the invasive emerald ash borer. I first address the causal channel

through which student outcomes are impacted by showing that ash borer altered tree

cover dynamics in affected areas. Consistent evidence suggests that infestations led to

declines in overall canopy cover and that this was due to both increased rates of tree

loss and declines in tree gain. I then demonstrate that infestation led to reduced test

performance at schools in the immediate vicinity of infestations. Further, these education

impacts are concentrated almost entirely within the low-income student population at

impacted schools

This work presented here contributes to our understanding of the social impacts of

human-induced environmental change, particularly the introduction of invasive species.

I also make important advances to the literature on the benefits of vegetation and trees

to human well-being. Many studies have sought to establish the link between tree cover

and education outcomes, however, there exists scant causal evidence. The staggered and

idiosyncratic spread of the ash borer provides a setting in which causality can be plausibly

established. As such, my work is some of the first to use observational data to causally

address the tree cover-education link.
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Appendix

A.1 Chapter 1 appendix

A.1.1 Setup for analytical results

Let yit be the binary outcome of interest for individual unit i at time t. We assume

that researchers have access to outcome data pre-treatment (t = 1) and post-treatment

(t = 2). Some units (Di = 1) are exposed to a policy treatment in the second time

period (t0 = 2 denotes the time of first treatment for treated points). Let Wit = 1 if unit

i is treated before time t and Wit = 0 otherwise. Using the potential outcome notation,

denote yit(0) the outcome of unit i at time t if it does not receive treatment by time t

and yit(1) the outcome for the same unit if it receives treatment.

Thus, the realized outcome for unit i at time t is

yit = Wityit(1) + (1−Wit)yit(0)

.

The parameter of interest, the ATT is defined:
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ATT = E[yit(1)− yit(0)|Di = 1]

Make the following common trends assumption, under which we evaluate these meth-

ods:

E[yi2(0)− yi1(0)|Di = 1] = E[yi2(0)− yi1(0)|Di = 0]

Lastly, define Ci as the first year in which an irreversible event of interest (e.g.,

deforestation) is realized for individual unit i and suppose yit is not observable when

t > Ci.

A.1.2 TWFE regression models with point fixed effects do not

identify ATT

In settings with a binary and unrepeatable outcome variable, the commonly used

unit-level TWFE model yields the post-treatment difference in outcomes (single differ-

ence), rather than the desired ATT .

We define the observed outcome yoit:

yoit =


1 t = Ci

0 t < Ci

− t > Ci

(A.1)

, where yoit = − indicates that the outcome for pixel i has been dropped from the

panel in time t.
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Lastly, define the traditional individual unit level TWFE regression:

yoit = α + βTWFE x Wit + γi + λt + uit

, where

- γi indicate point fixed effects

- λt indicate year fixed effects

In the 2x2 case, we can write

yoi1 = α + γi + ui1

and

yoi2 =


α + βTWFE x Di + γi + ηt=2 + ui2 yoi1 = 0

− yoi1 ̸= 0

, where ηt=2, an indicator for the post-treatment period, subsumes λt. Note that we

substituted Wit for Di, since the two are equivalent post-treatment.

In the 2x2 case, the TWFE estimator is equivalent to the first differences estimator,

and yields:

yoi2 − yoi1 =


(α + βTWFE x Di + γi + ηt=2 + ui2)− (α + γi + ui1) yoi1 = 0

− yoi1 ̸= 0
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Focusing on the first case, where yoi1 = 0

yoi2 − yoi1 = (α + βTWFE x Di + γi + ηt=2 + ui2)− (α + γi + ui1)

= βTWFE x Di + ηt=2 +∆ui

The general expression can be restated as:

yoi2 − yoi1 =


βTWFE x Di + ηt=2 +∆ui yoi1 = 0

− yoi1 ̸= 0

With binary treatment (Di), β̂TWFE, the regression’s estimate of βTWFE can be ex-

pressed as the double difference in mean outcomes across treated / untreated units, and

across the two time periods:

β̂ =
1

ni:Di=1

∑
i:Di=1

yoi2 −
1

ni:Di=1

∑
i:Di=1

yoi1 − (
1

ni:Di=0

∑
i:Di=0

yoi2 −
1

ni:Di=0

∑
i:Di=0

yoi1)

However, this is only valid when yoi1 = 0. As a result, we can restate as:

β̂TWFE =
1

ni:Di=1

∑
i:Di=1

yoi2 − 0− (
1

ni:Di=0

∑
i:Di=0

yoi2 − 0)

=
1

ni:Di=1

∑
i:Di=1

yoi2 −
1

ni:Di=0

∑
i:Di=0

yoi2

Thus far, we have shown that β̂TWFE is equal to the ex-post difference in means

between treatment and control units.

We now examine what this means for estimating the parameter of interest, the ATT .
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Applying the potential outcomes notation to indicate whether we see the treated or

untreated outcome:

β̂TWFE =
1

ni:Di=1

∑
i:Di=1

yoi2(1)−
1

ni:Di=0

∑
i:Di=0

yoi2(0)

Adding and subtracting 1
ni:Di=1

∑
i:Di=1 y

o
i2(0) gives:

β̂TWFE =
1

ni:Di=1

∑
i:Di=1

yoi2(1)− yoi2(0)

+
1

ni:Di=1

∑
i:Di=1

yoi2(0)−
1

ni:Di=0

∑
i:Di=0

yoi2(0)

Taking the expectation gives:

E[β̂TWFE] = ATT + E[yi2(0)|Di = 1]− E[yi2(0)|Di = 0]

, where the expectation of the yoivts is equal to that of the yivts if they are i.id..

βTWFE = ATT + E[yi2(0)|Di = 1]− E[yi2(0)|Di = 0]

Now, imposing the common trends assumption, substituting for E[yi2(0)|Di = 1], and

simplifying:

βTWFE = ATT + E[yi1(0)|Di = 1]− E[yi1(0)|Di = 0]
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A.1.3 Cox PH DID identifies HRTT when proportional trends

assumption holds

Consider the cox proportional hazards model of the censored yit regressed on the

treatment dummy, Di, the post dummy, ⊮{t ≥ t0}, and their interaction:

h(t) = δ0(t)exp(α0 + α1Di + α2⊮{t ≥ t0}+ βcoxDID x Di⊮{t ≥ t0}+ ϵit)

, where h(t) is the hazard rate of deforestation, t years into the study period; and

δ0(t) is the baseline hazard function.

The exponentiated coefficient on the interaction between two binary variables, Di and

⊮{t ≥ t0}, exp(βcoxDID), is expressed as the ratio of the two pre-post hazard rate ratios

across the two groups:

exp(βcoxDID) =
E[yi2|Di = 1]/E[yi1|Di = 1]

E[yi2|Di = 0]/E[yi1|Di = 0]
(A.2)

Introducing potential outcomes and simplifying:

exp(βcoxDID) =
E[yi2(1)|Di = 1]E[yi1(0)|Di = 0]

E[yi2(0)|Di = 0]E[yi1(0)|Di = 1]
(A.3)

Now, operating under Assumption 1 (Proportional Trends) and substituting for the

right-hand side of (7):
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exp(βcoxDID) =
E[yi2(1)|Di = 1]E[yi1(0)|Di = 1]

E[yi2(0)|Di = 1]E[yi1(0)|Di = 1]
(A.4)

, showing that under proportional trends, exp(βcoxDID) = HRRT

A.1.4 Keeping pixels in periods after they are first deforested is

not a viable solution

Remotely sensed metrics of deforestation at the pixel level are often subject to the

dynamics of forest disturbance and regrowth. After a deforestation event occurs, the

deforested area is unlikely to revert to forest cover within the study period, as it takes

several years for forest to regenerate to a detectable level. Further, many data products

do not allow for the monitoring of forest regrowth. In the panel therefore, it is likely that

in the periods after a pixel is first realized as deforested, subsequent observations of the

pixel will also observe the pixel as deforested.

The logic for dropping binary pixels after they first become deforested is as follows.

A forested pixel switches from its assigned value of 0 to a value of 1 following a discrete

deforestation event. Keeping the deforested pixel in the panel beyond the first period in

which it was observed as deforested may imply that it has actively been deforested in

each subsequent time period. In fact, no new deforestation event has ocurred, but the

area simply remains deforested from the prior event. These pixels, therefore, contribute

positively towards the deforestation rate in each period they are left in the panel. As

such, the coefficient cannot recover the ATT .

Define an alternative observed outcome yaltit , where rather than dropping units from

the panel, the outcome is imputed as a 1 when t > C0.
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yaltit =


0 t < C0

1 t ≥ C0

(A.5)

Now, consider the difference-in-differences estimand with respect to outcome yaltit :

ψ =E[yalti2 |Di = 1]− E[yalti1 |Di = 1]− (E[yalti2 |Di = 0]− E[yalti1 |Di = 0])

Because yaltit is binary, psi can be re-expressed using probabilities:

ψ =P (yalti2 = 1|Di = 1)− P (yalti1 = 1|Di = 1)− (P (yalti2 = 1|Di = 0)− P (yalti1 = 1|Di = 0))

Because we observe yaltit = 1 anytime after C0, we can express the probability that

yaltit = 1 as a function of the probability that C0 occurred prior to time t. Then, the terms

with yalti2 s are re-expressed.

ψ =P (yi2 = 1|Di = 1) ∪ P (yi1 = 1|Di = 1)− P (yi1 = 1|Di = 1)−

(P (yi2 = 1|Di = 0) ∪ (P (yi1 = 1|Di = 0)− P (yi1 = 1|Di = 0))

Applying the potential outcomes notation:
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ψ =P (yi2(1) = 1|Di = 1) ∪ P (yi1(0) = 1|Di = 1)− P (yi1(0) = 1|Di = 1)−

(P (yi2(0) = 1|Di = 0) ∪ (P (yi1(0) = 1|Di = 0)− P (yi1(0) = 1|Di = 0))

The bias that results from using yaltit is expressed as the difference between the ATT

and ψ. After re-expressing the ATT in terms of probability:

ψ − ATT =P (yi2(1) = 1|Di = 1) ∪ P (yi1(0) = 1|Di = 1)− P (yi1(0) = 1|Di = 1)−

(P (yi2(0) = 1|Di = 0) ∪ (P (yi1(0) = 1|Di = 0)− P (yi1(0) = 1|Di = 0))

−[P (yi2(1) = 1|Di = 1)− P (yi2(0) = 1|Di = 1)]

Under the common trends assumption and substituting for the unobserved term,

P (yi2(0) = 1|Di = 1), yields

ψ − ATT =P (yi2(1) = 1|Di = 1) ∪ P (yi1(0) = 1|Di = 1)− P (yi1(0) = 1|Di = 1)−

(P (yi2(0) = 1|Di = 0) ∪ (P (yi1(0) = 1|Di = 0)− P (yi1(0) = 1|Di = 0))

− [P (yi2(1) = 1|Di = 1)− (P (yi2(0) = 1|Di = 0)− P (yi1(0) = 1|Di = 0)

+ P (yi1(0) = 1|Di = 1))]

=P (yi2(1) = 1|Di = 1) ∩ P (yi1(0) = 1|Di = 1) + P (yi2(1) = 1|Di = 1)−

(P (yi2(0) = 1|Di = 0) ∩ (P (yi1(0) = 1|Di = 0) + P (yi2(0) = 1|Di = 0))

− [P (yi2(1) = 1|Di = 1)− (P (yi2(0) = 1|Di = 0)− P (yi1(0) = 1|Di = 0)

+ P (yi1(0) = 1|Di = 1))]
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, where the second equality uses the definition of union operator.

Simplifying now yields:

ψ − ATT =P (yi2(1) = 1|Di = 1) ∩ P (yi1(0) = 1|Di = 1)−

(P (yi2(0) = 1|Di = 0) ∩ (P (yi1(0) = 1|Di = 0)

−[P (yi1(0) = 1|Di = 1)− P (yi1(0) = 1|Di = 0)]

A.1.5 Analytical expression of non-random sample selection bias

in two-period two-group setting

Consider again, the observed outcome, yoit. We begin with the DID estimand in the

two-group, two-period case:

βDID =E[yoivt|t ≥ t0, Di = 1]− E[yoivt|t < t0, Di = 1]

− (E[yoivt|t ≥ t0, Di = 0]− E[yoivt|t < t0, Di = 0])

Now the bias generated due to non-random sample selection can be represented as

the difference between this estimand and the ATT :

βDID − ATT =E[yoivt|t ≥ t0, Di = 1]− E[yoivt|t < t0, Di = 1]

− (E[yoivt|t ≥ t0, Di = 0]− E[yoivt|t < t0, Di = 0])

− (E[yivt(1)|t ≥ t0, Di = 1]− E[yivt(0)|t ≥ t0, Di = 1])

118



Appendix Chapter A

In the first period, the expectation of yoivt is the same as that of yivt, giving:

βDID − ATT =E[yoivt|t ≥ t0, Di = 1]− E[yivt|t < t0, Di = 1]

− (E[yoivt|t ≥ t0, Di = 0]− E[yivt|t < t0, Di = 0])

− (E[yivt(1)|t ≥ t0, Di = 1]− E[yivt(0)|t ≥ t0, Di = 1])

Applying potential outcomes:

βDID − ATT =E[yoivt(1)|t ≥ t0, Di = 1]− E[yivt(0)|t < t0, Di = 1]

− (E[yoivt(0)|t ≥ t0, Di = 0]− E[yivt(0)|t < t0, Di = 0])

− (E[yivt(1)|t ≥ t0, Di = 1]− E[yivt(0)|t ≥ t0, Di = 1])

Applying our common trends assumption:

βDID − ATT =E[yoivt(1)|t ≥ t0, Di = 1]− E[yivt(0)|t < t0, Di = 0]

− (E[yoivt(0)|t ≥ t0, Di = 0]− E[yivt(0)|t < t0, Di = 0])

− (E[yivt(1)|t ≥ t0, Di = 1]− E[yivt(0)|t ≥ t0, Di = 0])

Simplifying:

βDID − ATT =E[yoivt(1)|t ≥ t0, Di = 1]− E[yoivt(0)|t ≥ t0, Di = 0]

− (E[yivt(1)|t ≥ t0, Di = 1]− E[yivt(0)|t ≥ t0, Di = 0])

Extending to our simulations:

In the context of our monte carlo simulations, this can be extended:
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βDID − ATT =P [yoivt(1) = 1|t ≥ t0, Di = 1]− P [yoivt(0) = 1|t ≥ t0, Di = 0]

− (P [yivt(1) = 1|t ≥ t0, Di = 1]− P [yivt(0) = 1|t ≥ t0, Di = 0])

βDID − ATT =P [(yivt(1) = 1|t ≥ t0, Di = 1)|(yivt(0) = 0|t < t0, Di = 1)]

− P [(yivt(0) = 1|t ≥ t0, Di = 0)|(yivt(0) = 0|t < t0, Di = 0)]

− (P [yivt(1) = 1|t ≥ t0, Di = 1]− P [yivt(0) = 1|t ≥ t0, Di = 0])

βDID − ATT =P [(y∗ivt(1) > 0|t ≥ t0, Di = 1)|(y∗ivt(0) ≤ 0|t < t0, Di = 1)]

− P [(y∗ivt(0) > 0|t ≥ t0, Di = 0)|(y∗ivt(0) ≤ 0|t < t0, Di = 0)]

− (P [y∗ivt(1) > 0|t ≥ t0, Di = 1]− P [y∗ivt(0) > 0|t ≥ t0, Di = 0])

Here, we let t ∈ {1, 2} denote the first and second periods, respectively:
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βDID − ATT =P [(β0 + β1 + β2,1 + β3 + αi + ui2 + ρv > 0|t ≥ t0, Di = 1)

|(β0 + β1 + αi + ui1 + ρv ≤ 0|t < t0, Di = 1)]

− P [(β0 + β2,0 + αi + ui2 + ρv > 0|t ≥ t0, Di = 0)

|(β0 + αi + ui1 + ρv ≤ 0|t < t0, Di = 0)]

− (P [β0 + β1 + β2,1 + β3 + αi + ui2 + ρv > 0|t ≥ t0, Di = 1]

− P [β0 + β2,0 + αi + ui2 + ρv > 0|t ≥ t0, Di = 0])

A.1.6 Further Monte Carlo evidence that individual unit-level

TWFE is equivalent to coefficient from same regression on

dataset without pixels deforested pre-treatment

Table A.1 shows coefficient estimates from the Monte Carlo setup described in the

main text on altered datasets. It demonstrates that the coefficient of interest from

Regression 2 is numerically equivalent to that from the same regression on a dataset

where all pixels deforested in the first period are dropped completely. The estimated

coefficient is not numerically equivalent to the ex-post difference in means, although this

is true in the 2x2 case. This exercise provides further evidence that this commonly used

TWFE regression does not use the pre-treatment variation in deforestation at all, which

is necessary to recover the ATT in this setting.
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A.1.7 Initial Monte Carlo parameter to β coefficient mapping

The following five parameters and their definitions inform the simulation parameter-

izations.

baseline0 = E[yit(0)|t < t0, Di = 0]

baseline1 = E[yit(0)|t < t0, Di = 1]

trend0 = E[yit(0)|t ≥ t0, Di = 0]− E[yit(0)|t < t0, Di = 0]

trend1 = E[yit(0)|t ≥ t0, Di = 1]− E[yit(0)|t < t0, Di = 1]

ATT = E[yit(1)− yit(0)|t ≥ t0, Di = 1]

Note the following constraints on the parameters:

E[yit(0)|t ≥ t0, Di = 0] ≥ 0

E[yit(1)|t ≥ t0, Di = 1] ≥ 0

The parameters can be expressed as follows:
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ATT =E[yit(1)− yit(0)|t ≥ t0, Di = 1]

=E[yit(1)|t ≥ t0, Di = 1]− E[yit(0)|t ≥ t0, Di = 1]

=P (yit(1) = 1|t ≥ t0, Di = 1)− P (yit(0) = 1|t ≥ t0, Di = 1)

=P (y∗it(1) > 0|t ≥ t0, Di = 1)− P (y∗it(0) > 0|t ≥ t0, Di = 1)

=P (β0 + β1 + β2,1 + β3 + αi + uit > 0)− P (β0 + β1 + β2,1 + αi + uit > 0)

=P (−αi − uit < β0 + β1 + β2,1 + β3)− P (−αi − uit < β0 + β1 + β2,1)

=F (β0 + β1 + β2,1 + β3)− F (β0 + β1 + β2,1)

trend0 =E[yit(0)|t ≥ t0, Di = 0]− E[yit(0)|t < t0, Di = 0]

=P (yit(0) = 1|t ≥ t0, Di = 0)− P (yit(0) = 1|t < t0, Di = 0)

=P (y∗it(0) > 0|t ≥ t0, Di = 0|y∗it(0) < 0|t < t0, Di = 0)

− P (y∗it(0) > 0|t < t0, Di = 0)

=
(1− P (y∗it(0) > 0|t < t0, Di = 0))P (y∗it(0) > 0|t ≥ t0, Di = 0)

(1− P (y∗it(0) > 0|t < t0, Di = 0))

− P (y∗it(0) > 0|t < t0, Di = 0)

=P (−αi − uit < β0 + β2,0)− P (−αi − uit < β0)

=F (β0 + β2,0)− F (β0)
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trend1 =E[yit(0)|t ≥ t0, Di = 1]− E[yit(0)|t < t0, Di = 1]

=P (yit(0) = 1|t ≥ t0, Di = 1)− P (yit(0) = 1|t < t0, Di = 1)

=P (y∗it(0) > 0|t ≥ t0, Di = 1 ∩ y∗it(0) < 0|t < t0, Di = 1)

− P (y∗it(0) > 0|t < t0, Di = 1)

=P (−αi − uit < β0 + β1 + β2,1)− P (−αi − uit < β0 + β1)

=F (β0 + β1 + β2,1)− F (β0 + β1)

baseline0 =E[yit(0)|t < t0, Di = 0]

=P (yit(0) = 1|t < t0, Di = 0)

=P (y∗it(0) > 0|t < t0, Di = 0)

=P (−αi − uit < β0)

=F (β0)

baseline1 =E[yit(0)|t < t0, Di = 1]

=P (yit(0) = 1|t < t0, Di = 1)

=P (y∗it(0) > 0|t < t0, Di = 1)

=P (−αi − uit < β0 + β1)

=F (β0 + β1)
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, Where F () is the CDF of a N(0, σ2
a + σ2

u + σ2
p)

Now solving for the β coefficients:

solving for β0

baseline0 = F (β0)

⇔

β0 = F−1(baseline0)

solving for β1

baseline1 = F (β0 + β1)

⇔

β1 = F−1(baseline1)− β0

solving for β2,0

trend = F (β0 + β2,0)− F (β0)

⇔

trend+ baseline0 = F (β0 + β2,0)

⇔

F−1(trend+ baseline0) = β0 + β2,0

⇔

β2,0 = F−1(trend+ baseline0)− β0
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solving for β2,1

trend = F (β0 + β1 + β2,1)− F (β0 + β1)

⇔

trend+ baseline1 = F (β0 + β1 + β2,1)

⇔

F−1(trend+ baseline1) = β0 ++β1 + β2,1

⇔

β2,1 = F−1(trend+ baseline1)− β0 − β1

solving for β3

ATT = F (β0 + β1 + β2,1 + β3)− F (β0 + β1 + β2,1)

⇔

ATT + F (β0 + β1 + β2,1) = F (β0 + β1 + β2,1 + β3)

⇔

F−1(ATT + F (β0 + β1 + β2,1)) = β0 + β1 + β2,1 + β3

⇔

β3 = F−1(ATT + F (β0 + β1 + β2,1))− (β0 + β1 + β2,1)
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when treatment effects are correlated with property size

ATT = E(β0 + β1 + β2,1 + β3)− E(β0 + β1 + β2,1)

= P (−αi − uit − β3 < β0 + β1 + β2,1 + µ)− P (−αi − uit < β0 + β1 + β2,1)

= G(β0 + β1 + β2,1 + µ)− F (β0 + β1 + β2,1)

, where β3 ∼ N(µ, σ2
te) and G() is the CDF of a N(0, σ2

a + σ2
u + σ2

p + σ2
te) and

ATT = G(β0 + β1 + β2,1)− F (β0 + β1 + β2,1)

⇔

ATT + F (β0 + β1 + β2,1) = G(β0 + β1 + β2,1 + µ)

⇔

G−1(ATT + F (β0 + β1 + β2,1)) = β0 + β1 + β2,1 + µ

⇔

µ = G−1(ATT + F (β0 + β1 + β2,1))− (β0 + β1 + β2,1)

A.1.8 Full summary figure from all specifications and values of

σp

Using Figure A.1 to compare across all specifications and varying σp, we see that

RMSE tends to increase across all specifications as σp increases. The pixel-level TWFE

specifications with spatially aggregated unit fixed effects tend to have the lowest RMSE
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whenever σp is nonzero. In contrast, the specification with the property as the unit of

analysis and pixel-level DID tend to have the highest RMSE.

Figure A.1: Bias, RMSE, and coverage for all candidate models with varying values of σp.
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A.1.9 Alternate landscape parameterizations

Figures A.2 and A.3 show model performance for two alternate landscape parameter-

izations in the presence of property unobservables (σp = 0.3), ordered from least to most

bias. Figure A.2 considers our initial parameterization, but switches the pre-treatment

deforestation rates for the two groups. This leaves a pre-treatment deforestation rate of

5% in the control area and 2% in the intervention area. Figure A.3 considers the initial

parameterization, but instead makes the ATT positive (i.e. ATT = 0.01 rather than

−0.01).

Figure A.2: Model performance under altrnate parameterization 1. Property-level
specification still outperform others in presence of property unobservables with alter-
native landscape parameterizations.
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Figure A.3: Model performance under alternate parameterization 2. Property-level
specification still outperform others in presence of property unobservables with alter-
native landscape parameterizations.

A.1.10 DGP for multiple groups and variation in treatment tim-

ing

The following parameters and their definitions inform the simulation parameteriza-

tions.
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baselinea = E[yit(0)|t < t0, Gi = a]

baselineb = E[yit(0)|t < t0, Gi = b]

baselinec = E[yit(0)|t < t0, Gi = c]

trend1 = E[yit(0)|t = 1, Gi = g]− E[yit(0)|t = 0, Gi = g]

trend2 = E[yit(0)|t = 2, Gi = g]− E[yit(0)|t = 1, Gi = g]

trend3 = E[yit(0)|t = 3, Gi = g]− E[yit(0)|t = 2, Gi = g]

trend4 = E[yit(0)|t = 4, Gi = g]− E[yit(0)|t = 3, Gi = g]

ATT = E[yit(1)− yit(0)|t ≥ t0, Gi = g]

Here, three groups, g ∈ {a, b, c} have different baseline deforestation rates, and all

three groups would experience the same trends in the absence of treatment. Group a

experiences treatment in time 2, group b experiences treatment in time 3, and group c is

never treated. The ATT is equal across the two treated groups and there are no dynamic

effects.

The DGP for each observation can be written as follows:

Group a:

y∗it =β0,a1{t = 0}+ β1,a1{t = 1}+ β2,a1{t = 2}+ β3,a1{t = 3}+ β4,a1{t = 4}

+ τa1{t ≥ 2}+ αi + uit
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Group b:

y∗it =β0,b1{t = 0}+ β1,b1{t = 1}+ β2,b1{t = 2}+ β3,b1{t = 3}+ β4,b1{t = 4}

+ τb1{t ≥ 3}+ αi + uit

Group c:

y∗it =β0,c1{t = 0}+ β1,c1{t = 1}+ β2,c1{t = 2}+ β3,c1{t = 3}+ β4,c1{t = 4}

+ αi + uit

, where the β and τ coefficients are calculated as follows:

β0,a = F−1(baselinea)

β1,a = F−1(trend1 + baselinea)− β0,a

β2,a = F−1(trend2 + F (β0,a + β1,a))− β0,a − β1,a

β3,a = F−1(trend3 + F (β0,a + β1,a + β2,a))− β0,a − β1,a − β2,a

β4,a = F−1(trend4 + F (β0,a + β1,a + β2,a + β3,a))− β0,a − β1,a − β2,a − β3,a

τa = F−1(ATT + F (β0,a + β1,a + β2,a))− β0,a − β1,a − β2,a
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β0,b = F−1(baselineb)

β1,b = F−1(trend1 + baselineb)− β0,b

β2,b = F−1(trend2 + F (β0,b + β1,b))− β0,b − β1,b

β3,b = F−1(trend3 + F (β0,b + β1,b + β2,b))− β0,b − β1,b − β2,b

β4,b = F−1(trend4 + F (β0,b + β1,b + β2,b + β3,b))− β0,b − β1,b − β2,b − β3,b

τb = F−1(ATT + F (β0,b + β1,b + β2,b + β3,b))− β0,b − β1,b − β2,b − β3,b

β0,c = F−1(baselinec)

β1,c = F−1(trend1 + baselinec)− β0,c

β2,c = F−1(trend2 + F (β0,c + β1,c))− β0,c − β1,c

β3,c = F−1(trend3 + F (β0,c + β1,c + β2,c))− β0,c − β1,c − β2,c

β4,c = F−1(trend4 + F (β0,c + β1,c + β2,c + β3,c))− β0,c − β1,c − β2,c − β3,c

, Where F () is the CDF of a N(0, σ2
a + σ2

u)

parameterization for heterogeneous treatment effects example

The following parameters and their definitions inform the simulation parameteriza-

tions.
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baselinea = E[yit(0)|t < t0, Gi = a]

baselineb = E[yit(0)|t < t0, Gi = b]

baselinec = E[yit(0)|t < t0, Gi = c]

trend1 = E[yit(0)|t = 1, Gi = g]− E[yit(0)|t = 0, Gi = g]

trend2 = E[yit(0)|t = 2, Gi = g]− E[yit(0)|t = 1, Gi = g]

trend3 = E[yit(0)|t = 3, Gi = g]− E[yit(0)|t = 2, Gi = g]

trend4 = E[yit(0)|t = 4, Gi = g]− E[yit(0)|t = 3, Gi = g]

ATT0,a = E[yit(1)− yit(0)|t = 2, Gi = a]

ATT1,a = E[yit(1)− yit(0)|t = 3, Gi = a]

ATT2,a = E[yit(1)− yit(0)|t = 4, Gi = a]

ATT0,b = E[yit(1)− yit(0)|t = 3, Gi = b]

ATT1,b = E[yit(1)− yit(0)|t = 4, Gi = b]

Here, three groups, g ∈ {a, b, c} have different baseline deforestation rates, and all

three groups would experience the same trends in the absence of treatment. Group a

experiences treatment in time 2, group b experiences treatment in time 3, and group c is

never treated. The ATT is equal across the two treated groups and there are no dynamic

effects.

The DGP for each observation can be written as follows:
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Group a:

yit =β0,a1{t = 0}+ β1,a1{t = 1}+ (β2,a + τ0,a)1{t = 2}

+ (β3,a + τ1,a)1{t = 3}+ (β4,a + τ2,a)1{t = 4}+ αi + uit

Group b:

yit =β0,b1{t = 0}+ β1,b1{t = 1}+ β2,b1{t = 2}

+ (β3,b + τ0,b)1{t = 3}+ (β4,b + τ1,b)1{t = 4}+ αi + uit

Group c:

yit =β0,c1{t = 0}+ β1,c1{t = 1}+ β2,c1{t = 2}

+ β3,c1{t = 3}+ β4,c1{t = 4}+ αi + uit

, where the β and tau coefficients are calculated as follows:
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β0,a = F−1(baselinea)

β1,a = F−1(trend1 + baselinea)− β0,a

β2,a = F−1(trend2 + F (β0,a + β1,a))− β0,a − β1,a

β3,a = F−1(trend3 + F (β0,a + β1,a + β2,a))− β0,a − β1,a − β2,a

β4,a = F−1(trend4 + F (β0,a + β1,a + β2,a + β3,a))− β0,a − β1,a − β2,a − β3,a

τ0,a = F−1(ATT0,a + F (β0,a + β1,a + β2,a))− β0,a − β1,a − β2,a

τ1,a = F−1(ATT1,a + F (β0,a + β1,a + β2,a + β3,a + τ0,a))− β0,a − β1,a − β2,a − β3,a − τ0,a

τ2,a = F−1(ATT2,a + F (β0,a + β1,a + β2,a + β3,a + τ0,a + τ1,a))− β0,a − β1,a − β2,a − β3,a

− τ0,a − τ1,a

β0,b = F−1(baselineb)

β1,b = F−1(trend1 + baselineb)− β0,b

β2,b = F−1(trend2 + F (β0,b + β1,b))− β0,b − β1,b

β3,b = F−1(trend3 + F (β0,b + β1,b + β2,b))− β0,b − β1,b − β2,b

β4,b = F−1(trend4 + F (β0,b + β1,b + β2,b + β3,b))− β0,b − β1,b − β2,b − β3,b

τb,0 = F−1(ATT0,b + F (β0,b + β1,b + β2,b + β3,b))− β0,b − β1,b − β2,b − β3,b

τb,1 = F−1(ATT1,b + F (β0,b + β1,b + β2,b + β3,b + τb,0))− β0,b − β1,b − β2,b − β3,b

− τb,0
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β0,c = F−1(baselinec)

β1,c = F−1(trend1 + baselinec)− β0,c

β2,c = F−1(trend2 + F (β0,c + β1,c))− β0,c − β1,c

β3,c = F−1(trend3 + F (β0,c + β1,c + β2,c))− β0,c − β1,c − β2,c

β4,c = F−1(trend4 + F (β0,c + β1,c + β2,c + β3,c))− β0,c − β1,c − β2,c − β3,c

, Where F () is the CDF of a N(0, σ2
a + σ2

u)
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A.2 Chapter 2 appendix

A.2.1 Descriptive statistics and figures

Property size distributions

Figure A.4: Distribution of property sizes amongst enrollees in both contests.
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Proportion of property subsidized

Figure A.5: Distribution of proportion of property enrolled amongst enrollees in both
contests.

Beneficiaries vs. non-compliers

Smallholder vs. other interested party contest

A.2.2 Smallholder eligibility rules

Smallholder:

Such is understood to be those who meet all of the following requirements:

- The person who has title to one or more rural properties whose surface area does

not exceed 200 hectares, or 500 hectares when they are located between regions I and IV

, including the XV; or 800 hectares for properties located in the comuna of Lonquimay,
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in Region IX; in the province of Palena, in the X Region; or in Region XI and XII, and

- That their assets do not exceed the equivalent of 3,500 unidades de fomento; and

- That his income comes mainly from agricultural or forestry exploitation and that

he directly works the land, on his property or on another third-party property.

They are also smallholders:

- Agricultural communities regulated by decree with force of law No. 5, of the Ministry

of Agriculture, of 1968,

- Indigenous communities governed by Law No. 19,253,

- Communities over common property resulting from the Agrarian Reform process,

- Societies dry land constituted in accordance with Article 1 of Decree Law No. 2,247

of 1978, and

- The companies referred to in Article 6 of Law No. 19,118, provided that at least

60% of the capital stock of such companies are in the hands of the original partners or

persons who have the status of small forest owners, as certified by the Agricultural and

Livestock Service.

A.2.3 Pre-processing

A.2.4 Common trends assumption

Raw trends

As mentioned in the main text, for β1 from Equation 1 to yield the causal effect of

the program, we need to rely on a common trends assumption. In order to evaluate the

plausibility of common trends in this setting, we examine the raw tree cover trends of

the complying enrollees relative to the matched control group. Figure A.7 shows that the

matched group had slightly higher levels of tree cover, but the trends are comparable prior
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Figure A.6: This figure shows how matching affected distribution balance for selected
covariates. The left panel shows distributions of covariates for treated and unenrolled
properties. The right panel shows distributions of covariates for treated and matched
control properties.
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to the existence of the Native Forest Law. This is made particularly clear in the right

panel, which adjusts for 2008 differences in tree cover to better evaluate the pre-trends

prior to the implementation of the program in 2009.

Figure A.7: Raw trends in tree cover shares between enrolled properties and matched
control properties. The right panel de-means the trends relative to 2008, the year prior
to the first Native Forest Law subsidy contest.

Unconditional pre-trend event study

We also use an event study to examine the plausibility of common trends. The event

study accounts for staggered treatment in a way that examining raw trends cannot.

No covariates are included, meaning that unconditional common trends are evaluated.

Figure A.8 displays pre-treatment pseudo-ATT estimates based on the event study.
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Figure A.8: This figure shows pre-treatment event time treatment effects of the Native
Forest Law subsidy contest for beneficiary properties based on unconditional common
trends. The three panels show three land cover types: Tree cover, Crop, and Grassland.

A.2.5 Event-study estimates

Callaway and Sant’anna estimator

Recent papers have shown that the typical two-way fixed effects estimator may gener-

ate biased results in the presence of treatment effect heterogeneity (e.g. Goodman-Bacon,

2021; de Chaisemartin and D’Haultfœuille, 2020). This could be particularly important

in our case, given that there are over 150 cohort-time cells. The estimator proposed in

Callaway and Sant’Anna (2020) computes each 2x2 cohort-time treatment effect (ATTg,t)

individually, before aggregating them with intuitive weights.

The estimand for each of the ATTg,ts is as follows:

ATTg,t = E[outcomeit(1)− outcomeit(0)|Gi = g, t ≥ to]

144



Appendix Chapter A

Each ATTg,t then represents the treatment effect for cohort g in time t. To generate

the ATTg,ts, we first subset the data to only contain observations at time t and g − 1,

from units with either Gi = g or that are in the control group. For example, for the

ATT2015,2019, we subset to only the 2015 cohort and control group for the years 2014

and 2019. Then using only the observations from this subset, we calculate ATTg,t using

the doubly robust difference-in-differences estimator developed in Sant’Anna and Zhao

(2020). This involves first estimating a propensity score using a logit model and allows

for common trends to hold only after conditioning on pre-treatment covariates. With this

method, we can identify the ATTg,ts if either (but not necessarily both) the propensity

score or outcome regression is correctly specified (Sant’Anna and Zhao, 2020).

We focus on event study measures of the ATT . Within each event time window, we

aggregate the ATTg,ts with weights corresponding to group size.

ATTes(e) =
∑
g∈G

1{g + e ≤ T }P (Gi = g|Gi + e ≤ T )ATTg,g+e

This is the average effect of participating in the treatment e time periods after a

characteristic property is enrolled in the program across all cohorts that are ever observed

to have participated in the treatment for exactly e time periods. The year a property

enrolls in the program is denoted by e = 0.

Balanced event study

Callaway and Sant’Anna (2020) discuss the fact that interpretation of ATTes(e) may

be complicated by compositional changes through time. In our case, this may impact

the interpretation of dynamic treatment effects if changes in the cohort composition

through event time create the appearance of increasing effects through time. To determine

whether this may affect interpretation of treatment effects through time, we also estimate
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ATTbal(e, e
′):

ATTbal(e, e
′) =

∑
g∈G

1{g + e′ ≤ T }P (Gi = g|Gi + e′ ≤ T )ATTg,g+e

The definition of ATTbal(e, e′) is very similar to ATTes(e) except that it calculates

the average group-time average treatment effect for units whose event time is equal to

e and who are observed to participate in the treatment for at least e′ periods. In our

context, we set e′ = 8, meaning that only properties observed at least 8 years after the

initial enrollment year are included. Differences in ATTbal(e, e′) across different values of

e, therefore, cannot be due to differences in the composition of groups at different values

of e (Callaway and Sant’Anna, 2020).

Event study estimates based on only never-treated units

We explore whether exclusion of not yet treated cohorts changes our estimates. Figure

A.9 shows that using only the matched control group as the control yields comparable

event study estimates.
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Figure A.9: This figure shows event time treatment effects of the Native Forest Law
subsidy contest for beneficiary properties including only the matched control group in
the control group. The three panels show event time treatment effects based on binary
treatment for three land cover types: Tree cover, Crop, and Grassland.
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A.2.6 Cohort treatment effects

Figure A.10: This figure shows tree cover treatment effects of the Native Forest Law
subsidy contest for beneficiary properties based on Equation 1, separated by cohort.

A.2.7 Rejected applicant histogram

During the annual Native Forest Law contest, applicants submit a management plan

detailing the specifics of the project to be considered for an award. Judges score each

application based on a number of criteria including the size of the property, project

extent, specific activities to be performed, and the cost of the project. After scores are

tallied, awards are dispersed in order of project score. Awards are given to the smallholder

contest first, and subsequently to the other interested party contest. Thus, in years when

the contest’s funds run out, other interested parties generally go unfunded. In years
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in which the contest does not exceed the funding threshold for both groups, a second

smallholder-only contest is held for any additional project applicants. These contests

generate unawarded smallholders. Projects can become rejected either by scoring below

the threshold that receives funding or because of unapproved proposed activities in the

application itself. Thus there are two ways to get rejected.

Figure A.11 shows the distribution of rejected applicants by contest across different

contest years. One thing to note is that many of the rejected applicants are able to adjust

their application, reapply, and enroll in subsequent years. We see that the two contests

see different trends in the number of rejected applicants through time.

Figure A.11: This figure shows rejected applicants by contest across years.
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A.3 Chapter 3 appendix

A.3.1 Time varying treatment effects of ash borer infestation on

tree cover across Chicago metropolitan region

Figure A.12: This figure shows how estimates of infestation impacts vary across event
time for tree cover outcomes with treatment defined at the 5 x 5km grid cell. The tree
cover outcomes represent: A) canopy cover; B) rate of tree cover loss in acres per year;
and C) rate of tree cover gain in acres per year
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A.3.2 Canopy cover effect robust to alternate grid cell size and

treatment assignment

Figure A.13: This specification chart shows difference-in-differences estimates of the
impact of infestation on canopy cover using a variety of grid cell size definitions.
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Figure A.14: This figure shows estimates of canopy cover infestation impacts across
event time when treatment is assigned at the city level. This is done in order to ensure
the estimates are robust in the case that surveyors avoid areas without a confirmed
infestation because one already exists in the city.

A.3.3 Event study estimator description

A.3.4 Event-study estimates

The estimand for each of the ATTg,ts is as follows:

ATTg,t = E[outcomeit(1)− outcomeit(0)|Gi = g, t ≥ to]

Each ATTg,t then represents the treatment effect for group g in time t. To generate

the ATTg,ts, we first subset the data to only contain observations at time t and g − 1,

from units with either Gi = g or that are in the control group. For example, for the

ATT2010,2013, we subset to only the group first treated in 2010 and control group (includes
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not-yet-treated groups) for the years 2009 and 2013. Then using only the observations

from this subset, we calculate ATTg,t using the doubly robust difference-in-differences

estimator developed in Sant’Anna and Zhao (2020). This involves first estimating a

propensity score using a logit model and allows for common trends to hold only after

conditioning on pre-treatment covariates. With this method, we can identify the ATTg,ts

if either (but not necessarily both) the propensity score or outcome regression is correctly

specified (Sant’Anna and Zhao, 2020).

Callaway and Sant’anna estimator

Here, we focus on event study measures of the ATT . Within each event time window,

we aggregate the ATTg,ts with weights corresponding to group size.

ATTes(e) =
∑
g∈G

1{g + e ≤ T }P (Gi = g|Gi + e ≤ T )ATTg,g+e

This is the average effect of exposure to treatment e time periods after a grid cell or

school (depending on section/unit of analysis) is exposed to ash borer infestation and

that has been exposed for exactly e time periods. The year in which the infestation is

first detected is denoted e = 0.

For high values of e, very few schools may be included in the calculation of ATTes(e).

This may lead to unrepresentative treatment effect estimates. I therefore, display es-

timates of ATTes(e) for event time windows which contain at least 10% of the total

ever-treated schools. Figure A.15 shows the event time windows included and excluded

in the event study plots.

154



Appendix Chapter A

Figure A.15: This figure shows which event times are included in the event study plots
throughout the paper for school-level outcomes. Event times that represent less than
10% of the total number of ever-treated schools are excluded from the plots.

A.3.5 Ash tree presence drives canopy cover declines

In order to understand how various factors affect the loss of canopy cover following

ash borer infestation, I use two-way fixed effect regressions of the following form:

canopyit = β0 × infestationit + β1 × infestationit × Zi + γi + λt + uit (A.6)

where Zi represents the covariate of interest. β1 is then the coefficient of interest

and represents how Zi moderates or exacerbates the canopy cover loss after infestation
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Table A.2 shows that as the number of ash trees per acre increases, the expected

canopy cover loss from the ash borer increases as well. This is in line with the fact that

only ash trees should be affected by the ash borer directly.

Table A.2: Heterogeneous canopy cover impacts of ash borer infestation

(1) (2) (3)

Infestation -2.4273*** -16.6830*** -13.8495***
(0.5898) (4.6411) (4.5719)

Infestation x ln(Ash per acre) -0.2763** -0.4197***
(0.0993) (0.1021)

Infestation x ln(Canopy baseline) 0.8522*** 1.0596***
(0.2176) (0.2190)

Infestation x ln(Med. income) 1.4612*** 0.9855**
(0.4152) (0.4173)

Num.Obs. 7056 4576 4560
R2 0.993 0.993 0.993

* p < 0.1, ** p < 0.05, *** p < 0.01
Standard errors are clustered at the grid level.
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