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Abstract

Background and aims: We sought to assess the performance of a comprehensive machine 

learning (ML) risk score integrating circulating biomarkers and computed tomography (CT) 

measures for the long-term prediction of hard cardiac events in asymptomatic subjects.

Methods: We studied 1069 subjects (age 58.2±8.2 years, 54.0% males) from the prospective 

EISNER trial who underwent coronary artery calcium (CAC) scoring CT, serum biomarker 

assessment, and long-term follow-up. Epicardial adipose tissue (EAT) was quantified from CT 

using fully automated deep learning software. Forty-eight serum biomarkers, both established and 

novel, were assayed. A ML algorithm (XGBoost) was trained using clinical risk factors, CT 
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measures (CAC score, number of coronary lesions, aortic valve calcium score, EAT volume and 

attenuation), and circulating biomarkers, and validated using repeated 10-fold cross validation.

Results: At 14.5±2.0 years, there were 50 hard cardiac events (myocardial infarction or cardiac 

death). The ML risk score (area under the receiver operator characteristic curve [AUC] 0.81) 

outperformed the CAC score (0.75) and ASCVD risk score (0.74; both p=0.02) for the prediction 

of hard cardiac events. Serum biomarkers provided incremental prognostic value beyond clinical 

data and CT measures in the ML model (net reclassification index 0.53 [95% CI: 0.23–0.81], 

p<0.0001). Among novel biomarkers, MMP-9, pentraxin 3, PIGR, and GDF-15 had highest 

variable importance for ML and reflect the pathways of inflammation, extracellular matrix 

remodeling, and fibrosis.

Conclusions: In this prospective study, ML integration of novel circulating biomarkers and 

noninvasive imaging measures provided superior long-term risk prediction for cardiac events 

compared to current risk assessment tools.

Keywords

Machine learning; artificial intelligence; serum biomarkers; cardiac computed tomography; 
cardiovascular risk stratification

INTRODUCTION

Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality 

in the United States, and early risk stratification of individuals for cardiovascular events is 

crucial in determining treatment strategies. Traditional risk assessment tools utilize 

demographic, anthropometric, and clinical patient characteristics1, 2. The ASCVD risk score 

is a reliable predictor of the 10-year risk of cardiac death, non-fatal myocardial infarction 

(MI), or stroke2. Coronary artery calcium (CAC) scoring using noncontrast cardiac 

computed tomography (CT) improves risk stratification over and above traditional risk 

assessment3. Further, CT-derived epicardial adipose tissue (EAT) volume has incremental 

prognostic value beyond the CAC score4. Circulating markers such as C-reactive protein 

(CRP) and low-density lipoprotein cholesterol (LDL) are established predictors of future CV 

events5, and novel serum biomarkers have recently been used to risk stratify individuals with 

ischemic heart disease6 and heart failure7. However, few studies have combined serum 

biomarker levels with clinical and imaging variables for prognostication. The EISNER 

(Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) trial8 

consisted of asymptomatic subjects who underwent baseline CAC scoring CT scans and 

serum biomarker assessment, with 14-year follow-up. We previously trained a ML model 

using noncontrast CT parameters from this cohort for prognostication9. In the present 

EISNER substudy, we sought to determine if a comprehensive ML-based model integrating 

clinical risk factors, quantitative CT measures, and circulating biomarkers could outperform 

current risk assessment tools for the long-term prediction of hard cardiac events.
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PATIENTS AND METHODS

Study population

The prospective EISNER trial8 comprised 1424 subjects who underwent baseline CAC 

scanning and blood sample collection at Cedars-Sinai Medical Center (CSMC) from May 

2001-May 2005. Inclusion criteria for EISNER were: age 45–80 years and intermediate risk 

of CAD based on age (>55 years in men, >65 years in women) or the presence of ≥1 CAD 

risk factor in younger subjects (age 45–54 years in men or 55–64 years in women). 

Exclusion criteria were: history of cardiac disease or cerebrovascular disease or chest pain, 

prior CAC scanning or invasive coronary angiography, or significant medical comorbidity 

(including malignancy, infection, or a severe inflammatory condition). For the present 

substudy, we included 1069 patients who completed long-term follow-up and had CT 

images and comprehensive serum biomarker data available. Supplemental Figure 1 outlines 

the patient selection and study design. All subjects underwent clinical assessment at 

baseline, including measurements of blood pressure and body mass index (BMI). The 

ASCVD risk score was calculated using the Pooled Cohort Equation2.

Prognostic follow-up

Subjects were prospectively followed up during a mean of 14.5±2.0 years for hard cardiac 

events, defined as myocardial infarction (MI) or cardiac death. Follow-up was via clinical 

visits, detailed questionnaires sent by mail, or telephone contact. Reported event information 

was also verified by the National Death Index query and by comprehensive review of 

electronic medical, hospital, and death records by 2 independent cardiologists blinded to 

clinical data. The research was approved by the CSMC Review Board and all subjects 

provided written informed consent.

Biomarker analysis

Serum samples were collected at the time of CT, immediately centrifuged, and stored in a 

−80°C freezer until assayed. Fasting total cholesterol, high-density lipoprotein (HDL), low-

density lipoprotein (LDL), triglycerides, and glucose were measured using standard 

techniques. Serum biomarkers including adiponectin, angiotensinogen, creatine kinase MB 

(CKMB), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), matrix 

metalloprotease 9 (MMP-9), myoglobin (MYO), endothelial plasminogen activator inhibitor 

1 (PAI-1), soluble intercellular adhesion molecule 1 (sICAM-1), vascular cell adhesion 

molecule 1 (VCAM-1), neutrophil gelatinase-associated lipocalin (NGAL), macrophage 

inflammatory protein 3 (MIP3), chemokine (C-X-C motif) ligand 1 (CXCL1) and ligand 2 

(CXCL2), peptidoglycan recognition proteins (PGRPs) and caspase 3 were measured by an 

independent and blinded laboratory (Biosite, San Diego, CA, USA) using sandwich enzyme-

linked immunosorbent assays (ELISA) on a microtiter plate. Troponin I, brain natriuretic 

peptide (BNP), proBNP (3–108), high-sensitivity C-reactive protein (hs-CRP), D-dimer, 

myeloperoxidase (MPO), endothelial cell-selective adhesion molecule (ESAM), 

lymphotoxin beta receptor (LTBR), growth differentiation factor 15 (GDF-15), mesothelin, 

neuropilin 1 (NRP-1), atrial natriuretic peptide (ANP) propeptide, N-terminal pro C-type 

natriuretic peptide (NTProCNP), osteopontin, procalcitonin, pentraxin 3, periostin, 

polymeric immunoglobulin receptor (PIGR), pro-adrenomedullin, prosaposin B (PSAP-B), 
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receptor for advanced glycation end products (RAGE), soluble ST-2, syndecan-1, tumor 

necrosis factor receptor 1 alpha (TNFR1A), vascular endothelial growth factor receptor 1 

(VEGFR1), cystatin C and WAP four-disulfide core domain protein 4 (WAP4C) were 

measured using sandwich ELISAs on a Luminex® platform at a second independent 

laboratory (Alere™ Inc., San Diego, CA, USA).

Calcium assessment on CT

Noncontrast CT was performed using either an Electron Beam CT scanner (e-Speed, GE 

Healthcare, Milwaukee, WI, USA) or a 4-slice CT scanner (Somatom Volume zoom, 

Siemens Medical Solutions, Erlangen, Germany) with prospective ECG-triggering and a 

tube voltage of 120 kVp; slice thickness was either 2.5 or 3.0 mm. Each scan was analyzed 

by an experienced cardiologist using commercially available semi-automated software 

(ScImage Inc., Los Altos, CA, USA). The CAC score (Supplemental Figure 2A), number of 

calcified coronary lesions, and the aortic valve calcium score were calculated according to 

the Agatston method10.

Deep learning-based EAT quantification

EAT was defined as all adipose tissue within the visceral pericardium. EAT volume and 

attenuation were quantified from noncontrast CT using a fully automated deep learning (DL) 

algorithm11 incorporated into research software (QFAT version 2.0, CSMC, Los Angeles, 

CA) (Supplemental Figure 2B). This DL algorithm has been validated and tested in a large 

multicenter study, demonstrating high agreement with expert readers for quantification of 

EAT11. In this DL method, the pericardium was automatically segmented and the limits of 

the heart were automatically defined as the pulmonary artery bifurcation (superior limit) to 

the posterior descending artery (inferior limit). EAT volume (cm3) and attenuation 

(Hounsfield units [HU]) were automatically calculated from 3D fat voxels between the HU 

limits of (−190, −30 HU) within the visceral pericardium. The processing time for EAT 

quantification was approximately 25 s per case.

Machine learning model creation

In designing our predictive model for hard cardiac events, we aimed to integrate: i) clinical 

variables used in traditional risk scoring; ii) established prognostic parameters from CAC 

scoring CT; and iii) the most relevant serum biomarkers based on feature selection. Hence, 

our ML model included 12 individual components of the ASCVD risk score (age, gender, 

systolic and diastolic blood pressure, total cholesterol, LDL, HDL, diabetes, smoking, 

antihypertensive treatment, statin, aspirin), 5 quantitative CT measures (CAC score, number 

of calcified coronary lesions, aortic valve calcium score, EAT volume, EAT attenuation), and 

the top 15 serum biomarkers according to ML information gain. As a common feature 

selection method for decision tree algorithms, information gain is defined as a measure of 

the effectiveness of a feature in classifying the training data. It is calculated as the amount by 

which the entropy of the class decreases, and is hence a reflection of additional information 

about the class provided by the feature12.

Models were then built using XGBoost, a state-of-the-art ensemble boosting ML algorithm 

which has demonstrated high performance in cardiac CT-based risk stratification9, 13. The 
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advantage of using a boosted ensemble algorithm is that it combines multiple weak 

classifiers (one-level decision trees) to produce a single strong classifier, which can improve 

prediction modeling. For each subject, the algorithm computed an individualized ML risk 

score according to the weighting of each variable.

Machine learning model training

To avoid reporting biased results and limit overfitting, we validated our ML algorithm using 

10-fold cross-validation14. This involved stratifying and dividing the data into 10 folds of 

equal size: eight folds (80%) were used for training, one fold (10%) was used for tuning 

model parameters, and one fold (10%) was used for testing. Stratification was used to ensure 

a similar distribution of events across the 10 folds. This process was repeated 10 times, 

always using a different fold for model training, tuning, and testing. The ML risk scores 

were concatenated from all 10 testing data folds to allow assessment of model performance 

over the entire dataset. The set of hyperparameters that led to the highest overall area under 

the receiver-operating characteristic curve (AUC) was chosen for the final ML model.

Explainable individualized ML risk prediction

To demonstrate the clinical applicability of the ML model and explain how it provides 

accurate predictions for this cohort, we provide a detailed description of individualized risk 

prediction made by the ML algorithm. The model allows identification of important patient-

specific variables and the role of the variable in the predicted score. We analyze the specific 

path a subject takes in the model; in each decision stump (or split) of the model, the 

individual lands in one of two leaves. Each leaf is associated with a weight: one leaf 

decreasing the risk of the event occurring, and the other one increasing the risk. These 

weights are associated with the variables used to generate the corresponding split. By 

cumulating all the weights used to refine per-patient prediction for each variable in the 

model, we can determine whether or not a parameter has a protective influence, depending 

on the weight sign. By considering the absolute values of cumulated weights, we can also 

obtain the global contribution of each parameter.

Statistical analysis

Continuous variables are presented as mean ± standard deviation or median (interquartile 

range), as appropriate. The two-sample t-test or Wilcoxon rank-sum test was used to 

compare continuous variables. A Chi-square or Fisher’s exact test was used to compare 

categorical variables. Distributions of CAC score and EAT volume were not normally 

distributed and hence normalized using logarithmic adjustment; base-2 logarithmic 

transformation was this represents doubling of the variable. Multivariable Cox regression 

with backward stepwise selection was used to identify independent predictors of cardiac 

events among the serum biomarkers which were statistically significant on univariable 

analysis, with adjustment for the ASCVD risk score and CAC score, and EAT volume. 

Receiver-operating characteristic curve analysis was used to assess the performance of the 

ML model, and AUC values were compared with the DeLong test15. The continuous net 

reclassification index (NRI)16 was used to measure the incremental prognostic value of 

adding serum biomarkers to a ML model with only clinical risk factors and CT measures. 

The highest Youden’s J index (J = sensitivity + specificity - 1) was used to identify an 
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optimal cutoff for the ML score and stratify subjects into ‘high’ or low’ ML risk. Kaplan-

Meier analysis was performed according to this threshold, and survival curves were 

compared with the log-rank test. Statistical analysis was performed using Stata/IC 15.1 

(StataCorp LP, College Station, TX, USA), with SAS 9.4 (SAS 207 Institute, Cary, NC, 

USA) used for NRI computation. A p-value of <0.05 indicated statistical significance.

RESULTS

Patient characteristics

The final study population comprised 1069 subjects with mean age 58.2±8.2 years and 

54.0% males. At mean follow-up of 14.5±2.0 years, 50 subjects experienced hard cardiac 

events. Subjects who experienced events were older and had higher mean systolic blood 

pressure and serum LDL cholesterol compared to subjects without events (both p <0.0001). 

CAC score and EAT volume were greater in subjects with events compared to those without 

events (both p <0.0001). Table 1 summarizes the baseline characteristics of subjects. There 

were no significant differences in clinical and CT parameters between the 1424 subjects who 

underwent baseline CAC scanning in the original EISNER trial and the 1069 subjects in the 

present substudy (all p>0.05).

Serum biomarker levels

Serum levels of the traditional biomarkers hs-CRP, D-dimer, PAI-1, CKMB, myoglobin, and 

BNP were higher in subjects who experienced events compared to subjects without events. 

Similar results were observed for more novel biomarkers such as MPO, MMP-9, pentraxin 

3, and PIGR (Supplemental Table 1).

Prediction of hard cardiac events

In multivariable Cox analysis, the serum biomarkers LDL (1.02 [95% CI: 1.01–1.03] per 1 

mg/dL increase, p=0.01), MMP-9 (HR 1.04 [95% CI: 1.01–1.08] per 1 ng/mL increase, 

p=0.02), and MPO (HR 1.01 [95% CI: 1.01–1.02] per 1 pmol/L increase, p=0.01) were 

independently associated with MACE risk. The ASCVD risk score, CAC score, and EAT 

volume also had independent predictive value (Supplemental Table 2).

Using ML, the clinical and imaging parameters that had greatest variable importance for 

hard cardiac event prediction were age, CAC score, systolic blood pressure, number of 

calcified coronary lesions, and aortic valve calcium score (Figure 1). Established circulating 

markers of ASCVD risk such as LDL, D-dimer, and PAI-1 were highly-ranked variables in 

the ML model. Among novel serum biomarkers, MMP-9, pentraxin 3, PIGR and, GDF-15 

had the greatest variable importance for ML risk prediction. The final ML score included 

other established inflammatory markers such as hs-CRP, MCP-1, and MPO.

Performance of the ML model

The comprehensive ML model integrating clinical risk factors, quantitative CT measures and 

circulating biomarkers had a significantly higher AUC (0.81 [95% CI: 0.75–0.87]) compared 

to CAC score (0.75 [95% CI: 0.68–0.81]) and ASCVD score (0.75 [95% CI 0.67–0.80]; both 

p=0.02) for long-term prediction of hard cardiac events (Figure 2). The comprehensive ML 
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model also had a numerically higher AUC (0.81) than an ML model containing only clinical 

variables and CT measures (AUC 0.77), with trend towards statistical significance (p=0.10). 

The addition of serum biomarkers to a ML model with only clinical risk factors and CT 

measures resulted in substantial event risk reclassification (NRI 0.53 [95% CI: 0.23–0.81], 

p<0.0001). This was driven primarily by reclassification of non-events (45%, p<0.0001) 

over reclassification of events (8%, p=0.37).

Categorization of the ML risk score

The study population was stratified into ‘high’ and ‘low’ ML risk scores according to the 

optimal cutoff of 0.075 as determined by Youden’s index. At this value, the ML score was 

associated with sensitivity of 78.6% (95% CI: 61.8–86.9), specificity of 76.0% (95% CI: 

73.1–78.7), and accuracy of 75.9% (95% CI: 73.1–78.6). Kaplan-Meier curves of hard 

events in subjects with high (≥0.075) versus low (<0.075) ML risk scores (log-rank 

p<0.0001) are shown in Figure 3.

Explainable individualized ML risk prediction

Figure 5 demonstrates case examples of individualized ML risk score prediction: one for a 

male with no observed event over 14 years(Figure 4A), and one for a female with an 

observed event at 8.8 years(Figure 4B). The x-axis corresponds to the ML risk score. The 

arrows represent the influence of each variable on the overall prediction; blue and red arrows 

indicate whether the associated parameters decrease (blue) or increase (red) the risk of future 

events. The combination of all variables’ influence provides the final ML risk score. The 

blue and red backgrounds denote the separation between low versus high ML risk.

DISCUSSION

In this study of asymptomatic subjects undergoing CAC scoring CT, our primary findings 

are: (1) an ML score integrating clinical risk factors, CT measures, and circulating 

biomarkers outperforms CAC score or ASCVD risk score for long-term prediction of hard 

cardiac events; (2) serum biomarkers provide incremental prognostic value over and above 

clinical and imaging variables in an ML model; (3) novel circulating markers of 

inflammation, extracellular matrix remodeling, and fibrosis have high variable importance 

for ML prediction.

There has been great interest in the identification of serum biomarkers, which can accurately 

risk stratify individuals for future major adverse cardiovascular events (MACE) and hence 

guide individualized medical therapy. Most studies have focused on cohorts with established 

CAD or heart failure6, 7, 17. Further, few have developed objective risk prediction scores 

from a comprehensive set of clinical variables, imaging metrics, and serum biomarkers. The 

present analysis is the one of the first to use ML to develop an integrated score that includes 

clinical and imaging parameters and novel circulating biomarkers for long-term 

prognostication in asymptomatic subjects.

CAC is a direct marker of coronary atherosclerosis and assessed noninvasively with low 

radiation dose noncontrast CT3. The CAC score is proportionally associated with increasing 

risk of MACE and outperforms traditional risk assessment tools such as the Framingham 
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Risk Score (FRS) and ASCVD risk score3, 18. Beyond CAC scoring, the number of calcified 

coronary lesions19 and aortic valve calcium score20 are established predictors of all-cause 

and cardiovascular mortality, respectively, in asymptomatic individuals. Furthermore, EAT 

volume and attenuation quantified from CAC scoring CT have independent prognostic value 

for cardiac events21. With respect to circulating biomarkers, CRP, IL-6, MCP-1 fibrinogen, 

and MPO have been shown to predict MACE in asymptomatic individuals5, 22. A multiple 

biomarker strategy has also been applied for prediction of ASCVD morbidity and mortality 

in high-risk populations23. However, biomarkers used either individually or in combination 

have largely failed to improve MACE prediction over traditional risk factors in 

asymptomatic cohorts24–26. In a study of 1286 subjects from the EISNER study, Rana et al.
24 showed that addition of multiple traditional biomarkers to FRS did not provide 

incremental predictive value for MACE at 4 years. By contrast, our ML technique 

integrating 48 traditional and novel blood biomarkers with comprehensive clinical and 

imaging data outperformed current risk assessment tools for predicting hard cardiac events 

at 14 years. While we have previously used XGBoost for risk prediction9, the present 

analysis is a unique EISNER substudy in which novel serum biomarkers were collected in 

addition to CAC scoring CT in asymptomatic subjects.

Among clinical risk factors, age and systolic blood pressure featured strongly in the ML 

score, consistent with traditional risk assessment tools. Notably, in our study, personalized 

clinical risk measures (such as systolic blood pressure, providing a more accurate indication 

of a subject’s hypertensive state) were more important than dichotomized risk factors (such 

as diabetes). As expected, LDL cholesterol, a causal risk factor for ASCVD27, was highly 

ranked in the ML algorithm. D-dimer and PAI-1, well-established inflammatory and 

thrombotic biomarkers of cardiac risk in asymptomatic populations28, had high variable 

importance in our ML model. The unique biomarkers with greatest contribution to ML risk 

prediction (MMP-9, pentraxin 3, PIGR and GDF-15) reflect the pathophysiological 

pathways of inflammation, extracellular matrix remodeling, and fibrosis. MMP-9 regulates 

pathological myocardial remodeling via degradation of the extracellular matrix and release 

of proinflammatory cytokines, and increased serum levels of this enzyme are observed in 

individuals with established CAD29 and heart failure30. Pentraxin 3, an acute phase 

inflammatory reactant, is expressed in coronary atherosclerotic lesions and associates with 

plaque vulnerability31. High serum levels of pentraxin 3 independently predict cardiac 

mortality in individuals with MI and heart failure32. PIGR is a transmembrane protein, 

which has been recently linked to CAC incidence and progression33. GDF-15, a stress-

responsive member of the transforming growth factor-β cytokine superfamily, is an 

emerging prognostic biomarker in heart failure34. The present analysis is the first to apply 

these novel serum biomarkers to cardiac event prediction in asymptomatic subjects, and to 

demonstrate their prognostic value when combined with traditional risk markers such as 

CAC score and LDL. Our findings lend further mechanistic support to the role of 

inflammation and vascular remodeling in coronary atherosclerosis.

By objectively integrating clinical data, quantitative CT measures, and serum biomarkers, 

our ML score provides superior performance for MACE prediction compared to CAC score 

or ASCVD risk score alone. We also used repeated 10-fold cross-validation to provide a 

robust estimation of prediction accuracy with minimal bias; a powerful alternative when 
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separate validation populations are not available35. Another advantage of using this ML 

model is the ability to explicitly describe the influence of each variable for individualized 

prediction. Such stratification of significant clinical parameters and serum biomarkers could 

potentially guide therapy targeted at the specific patient factors affecting cardiac outcomes. 

Further, combining different circulating biomarkers from distinct pathophysiological 

pathways enables the assessment of their interaction and independent contribution to risk. 

The recent advent of multiplex assays providing efficient and cost-saving multi-marker 

assessment will lead to more clinical studies of novel blood biomarkers, which may enhance 

outcome prediction and personalization of medical therapy. Finally, we used a rapid, fully 

automated deep learning method of EAT quantification from standard CAC scoring CT, 

which has the potential for integration into routine clinical practice, without additional 

radiation exposure to the patient or increased physician workload.

Limitations

Ours was a single center study of middle-aged asymptomatic subjects, hence limiting broad 

applicability of our findings to other populations. The limited number of hard cardiac events 

(50 events over 14.5±2.0 years) is typical of a low-risk patient group. We acknowledge the 

reduction in effective sample size and potential bias due to patients who were lost to follow-

up or had missing CT image data. XGBoost, being a gradient boosting decision tree 

algorithm, requires longer training times and is prone to overfitting. Our ML model also 

requires external validation in an independent cohort. However, this would require an 

asymptomatic population with CAC scoring CT images, comprehensive data on novel serum 

biomarkers, and long-term follow-up; which was not available within the timeline of the 

present analysis.

CONCLUSION

In this prospective study, ML integration of novel circulating biomarkers and noninvasive 

imaging measures provided superior long-term risk prediction for cardiac events compared 

to current risk assessment tools. Serum biomarkers showed incremental prognostic value 

over and above clinical data and CT measures in the ML model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• We used machine learning (ML) to integrate clinical data, imaging measures, 

and serum biomarkers for cardiac prognostication.

• The calculated ML risk score outperformed current risk assessment tools for 

the long-term prediction of hard cardiac events.

• Serum biomarkers provided incremental prognostic value beyond clinical and 

imaging features in a ML model.

• Novel biomarkers of inflammation, extracellular matrix remodeling, and 

fibrosis had high variable importance for ML prediction.

• Our ML model can provide individualized, patient-specific explanations of its 

predictions.
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Figure 1. 
Variable importance for the classification of hard cardiac events.

The top 25 variables are displayed: clinical risk factors in blue, quantitative imaging 

measures in grey, and serum biomarkers in red. The “gain” denotes how much a variable 

contributes to the prediction made by the XGBoost algorithm.

Tamarappoo et al. Page 14

Atherosclerosis. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Receiver operator characteristic curves for the prediction of hard cardiac events.

The machine learning model with serum biomarkers performed significantly better than the 

ASCVD risk score and CAC score (both p=0.02).
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Figure 3. 
Kaplan-Meier curves of hard cardiac events with a high versus low ML risk score.

Cumulative probability of survival was worse in subjects with a high ML score (log-rank 

p<0.0001).
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Figure 4. 
Individualized ML risk prediction with subject-specific variable importance.

(A) 62-year-old male with no event at 14 years and (B) 74-year-old female with an MI at 8.8 

years. The X-axis denotes the ML risk score. The arrows represent the influence of each 

variable on the overall prediction; blue and red arrows indicate whether the associated 

parameters decrease (blue) or increase (red) the risk of future events. The combination of all 

variables’ influence provides the final ML risk score. The subject in (A) has a low ML risk 

score (0.0167), with an ASCVD risk score of 7.25% and a CAC score of 0. The subject in 

(B) has a high ML risk score (0.1791), with an ASCVD risk score of 30.4% and a CAC 

score of 324. The blue and red background colors indicate low versus high ML risk 

according to the Youden’s index cutoff of 0.075, and the gray dashed line corresponds to the 

base risk obtained from the prevalence of events in the population (4.7%).

ASCVD, atherosclerotic cardiovascular disease; BNP, brain natriuretic peptide; CAC, 

coronary artery calcium; CKMB, creatine kinase MB; CRP, C-reactive protein; EAT, 

epicardial adipose tissue; ESAM, endothelial cell-selective adhesion molecule; GDF-15, 

growth differentiation factor 15; HDL, high-density lipoprotein; LDL, low-density 

lipoprotein; MCP-1, monocyte chemoattractant protein 1; ML, machine learning; MMP-9, 

matrix metalloprotease 9; MPO: myeloperoxidase; PAI-1, plasminogen activator inhibitor 1; 

PIGR, polymeric immunoglobulin receptor.
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Table 1.

Baseline characteristics of the study population

Clinical characteristics Original EISNER (n 
= 1424)

Current substudy (n 
= 1069) Event (n = 50) No event (n = 1019) p-value

Age 56.9±8.9 58.2±8.2 63.8±10.2 57.9±8.0 <0.0001

Male gender 784 (55.1) 558 (52.2) 28 (56.0) 530 (52.0) 0.60

BMI (kg/m2) 27.1±5.1 27.5±5.3 28.5±5.9 27.5±5.3 0.30

Hypertension 751 (52.7) 589 (55.1) 39 (78.0) 550 (54.0) 0.001

Hyperlipidemia 978 (68.7) 720 (67.4) 37 (74.0) 683 (67.0) 0.30

Diabetes mellitus 94 (6.6) 70 (6.5) 3 (6.0) 67 (6.6) 0.87

Smoking 92 (6.5) 69 (6.5) 3 (6.0) 66 (6.5) 0.89

Family history 414 (29.1) 301 (28.2) 16 (32.0) 285 (28.0) 0.56

Systolic blood pressure (mmHg) 130.4±18.0 132.2±17.4 146.3±25.6 131.5±16.6 <0.0001

Diastolic blood pressure 
(mmHg) 79.3±11.5 81.7±10.7 84.4±11.2 81.6±10.7 0.07

Total cholesterol (mg/dL) 212.4±41.2 215.4141.9 223.0135.9 215142.2 0.19

HDL cholesterol (mg/dL) 55.0±17.1 54.4±16.7 51.1±15.9 54.5±16.8 0.16

LDL cholesterol (mg/dL) 132.6±38.4 135.6±39.6 150.9±57.8 134.8±38.3 <0.0001

Triglycerides (mg/dL) 106.0 (76.0–153.0) 111.0 (79.0–156.8) 136.0 (95.6–161.5) 108.0 (78.0–156.3) 0.19

Glucose (mg/dL) 95.8±17.4 94.6±16.1 98.2±14.9 94.4±16.1 0.10

ASCVD risk score (%) 6.1 (3.1–10.6) 6.3 (3.4–11.4) 15.0 (7.7–26.0) 6.0 (3.3–11.0) <0.0001

Medications

Beta blockers 77 (5.4) 70 (6.5) 8 (16.0) 62 (6.1) 0.01

ACE-I or ARB 206 (14.5) 167 (15.6) 11 (22.0) 157 (15.4) 0.03

Statin 326 (22.9) 255 (23.9) 11 (22.0) 244 (23.9) 0.76

Antihyperglycemic 46 (3.2) 31 (2.9) 2 (4.5) 29 (2.8) 0.08

Aspirin 147 (10.3) 131 (12.3) 11 (21.3) 120 (11.8) 0.05

Quantitative CT measures

CAC score 105.8±298.9 102.4±282.6 413.7±666.2 87.1±239.7 <0.0001

EAT volume (cm3)
a 87.5±40.0 90.4±40.9 111.4±43.8 89.3±40.5 <0.0001

EAT attenuation (HU)
a −74.2+4.8 −74.7±4.9 −76.8±4.6 −74.6±4.9 0.002

Values are expressed as n (%), mean ± SD or median (IQR).

a
Data available in 1406 subjects from the original EISNER study.

ACE-I, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; ASCVD, atherosclerotic cardiovascular disease; CAC, 
coronary artery calcium; EAT, epicardial adipose tissue; HDL, high-density lipoprotein; HU, Hounsfield units; LDL, low-density lipoprotein.
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