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Abstract

Purpose: Compressive sensing based image reconstruction methods have proposed random 

under-sampling schemes that produces incoherent, noise-like aliasing artifacts, which are easier 

to remove. The denoising process is critically assisted by imposing sparsity-enforcing priors. 

Sparsity is known to be induced if the prior is of the form of Lp (0 ≤ p ≤ 1) norm. CS methods 

generally use a convex relaxation of these priors like the L1 norm, which may not exploit the full 

power of CS. An efficient, discrete optimization formulation is proposed which works not only 

on arbitrary Lp norm priors as some non-convex CS methods do, but also on highly non-convex 

truncated penalty functions, resulting in a specific type of edge preserving priors. These advanced 

features make the minimization problem highly non-convex, and thus call for more sophisticated 

minimization routines.

Theory and Methods: The work combines edge-preserving priors with random under-

sampling, and solve the resulting optimization using a set of discrete optimization methods called 

Graph Cuts. The resulting optimization problem is solved by applying graph cuts iteratively within 

a dictionary, defined here as an appropriately constructed set of vectors relevant to brain MRI data 

used here.

Results: Experimental results with in vivo data are presented.

Conclusion: The proposed algorithm produces better results than regularized SENSE or 

standard compressive sensing for reconstruction of in vivo data.

Keywords

Parallel Imaging; SENSE; Compressive Sensing; Graph Cuts

INTRODUCTION

Undersampled MRI acquisitions can speed up MRI scan time, but it also introduces aliasing 

artifacts due to sub-Nyquist sampling in k-space, if reconstructed using a simple inverse 

FFT of zero-filled k-space data. Aliasing is removed during reconstruction using advanced 

methods like parallel imaging, which uses the redundancy provided by multiple receiver 

coils, and by Compressive Sensing (CS), which exploits the noise-like aliasing artifacts 
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resulting from random acquisition schemes. Traditional parallel imaging reconstruction 

algorithms include Sensitivity Encoding (SENSE) (1–3), simultaneous acquisition of spatial 

harmonics (SMASH) (4), (5), and generalized auto-calibrating partially parallel acquisitions 

(GRAPPA) (6). Although these methods can be adapted for the case of arbitrary under-

sampling patterns, their usual implementation is for uniform Cartesian under-sampling. Such 

under-sampling results in structured aliasing artifacts called image folding, whereby many 

shifted copies of the true image are folded on top of each other. Uniform Cartesian parallel 

imaging methods can allow for acceleration of up to 2–4 times, but further acceleration is 

limited by the ill-conditioning of the inverse problem (7). Although numerical conditioning 

is frequently improved by Tikhonov regularization schemes (8), (9), this reduces the 

effectiveness of anti-aliasing, and produces unrealistically smooth images. In contrast, CS 

generally relies on unstructured or incoherent artifacts resulting from randomized k-space 

under-sampling schemes (10–12), which are usually removed by imposing sparsity-inducing 

prior terms within an energy minimization framework, commonly via the L1 norm of the 

desired image (such as angiograms) or of a certain sparsifying transform, such as the first 

difference transform or the wavelet transform (11–13).

In this paper, we present, for the first time, a discrete optimization algorithm for effectively 

combining PI and CS approaches based on graphcuts (14), a well-established algorithm for 

solving binary optimization problems. Although some previous work on combining CS and 

PI has been reported (15), (16), the motivation of the current work is that current CS or PI 

methods cannot effectively impose arbitrary non-convex penalty functions. Indeed, it is well-

understood that in general, convex L1 penalties used in CS (such as lasso (17)) are not the 

most appropriate means of imposing sparsity measured by the L0 norm. Although CS theory 

proves that under certain conditions, solving the L1 problem also solves the L0 problem (18), 

such conditions are not consistently met in MRI. For instance, a strict requirement is that 

the linear system given by the matrix E must have strictly uncorrelated rows. Even under 

random undersampling in MRI, usually the center of k-space is more densely sampled than 

its periphery in order to take advantage of higher SNR in the center. However, this usually 

violates the strict non-correlation condition. Therefore, most CS algorithms cannot directly 

minimize these truly sparsifying functions; instead, much work has focused on identifying 

conditions under which sparsity may be obtained from convex approximations (19).

Although this approach has proved successful, further progress in the field will require 

accommodation of truly non-convex functions. Specifically, sophisticated non-convex “edge 

preserving priors” (EPP) involving sub-linear norms with truncated penalties have been 

shown to be very powerful in low-level computer vision applications (20–22), statistics (23), 

and image processing (24). Compared to conventional Tikhonov regularization, EPPs are a 

general class of spatial smoothness priors that do not indiscriminately blur tissue boundaries. 

These non-convex and non-smooth EPPs are natural models of robust image statistics, and 

have a close relationship with outlier resistance (25–27). While these priors have a strong 

tradition in computer vision, their use in medical imaging is scarce, such as brain MRI 

(28) and cardiac MRI (29). Certain CS algorithms, such as (30–33), can handle limited 

non-convexity, but not the kind of EPP regularization terms that are our specific focus here – 

those that allow for sub-linear or truncated behavior at high edge-related intensity gradients. 

These algorithms are also not natively non-convex, but instead rely on successively closer 
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convex approximations or greedy approaches, causing them to be susceptible to convergence 

to weak or inappropriate local minima.

In contrast, graphcut routines (14), (34), (35) were developed to solve the challenging 

non-convex minimization problems, and have found success in applications such as stereo 

matching (36), segmentation (37) and reconstruction (38). Although graphcut routines 

cannot provide global optimal discrete/quantized solution in general (39), they can converge 

to “strong local minima”, the best solution within a large radius (40). These strong 

properties motivate us to apply graphcut techniques to the combined PI+CS problem with 

the complicated EPP prior. Our proposed graphcut algorithm can handle much more general 

non-convex functions in practically feasible compute times, and works for arbitrary k-space 

sampling schemes and arbitrary number of parallel receiver coils. Our work combines, 

for the first time, the strengths of graphcuts (via edge preserving priors, ability to solve 

non-convex problems, and fast convergence to strong local minima) with those of CS (via 
arbitrary sampling schemes, incoherent aliasing, and sparsity prior in transform domains). 

Our algorithm performs reconstruction on the entire volumetric data, so it can take 

advantage of true 3D reconstructions.

Our work is related to previous graphcut algorithm called “Edge-preserving Parallel Imaging 

with Graph-cut Minimization” (EPIGRAM) (28), which deployed EPPs for improving the 

reconstruction of uniform Cartesian undersampled parallel imaging data and proved that 

such priors are suitable models for MR images. Uniform Cartesian under-sampling yields a 

unique sparse block-diagonal matrix structure, whose features were exploited by EPIGRAM 

to obtain a sparse graph on which graphcut operations are very efficient. A variant of 

EPIGRAM (29) has also appeared that speeds up the EPIGRAM process using jump 
moves (41). Although both EPIGRAM and the current proposal use graphcuts, moving from 

uniform Cartesian to arbitrary sampling trajectories necessitates a very different formulation, 

because the graph is no longer sparse, and a direct application of EPIGRAM would be 

computationally prohibitive.

Our algorithm works as follows. The PI+CS problem is posed as the minimization of 

an energy function imposing a data fidelity term and an EPP term. Since this energy 

function cannot be directly minimized due to non-convexity, we reformulate it as a series 

of binary minimization problems. We start from an initial image obtained from regularized 

SENSE. Each binary optimization problem is posed as a dictionary search, such that each 

member of a pre-constructed dictionary has a chance of contributing to the desired image 

– a binary choice for each member. We show that this dictionary search constitutes a 

binary optimization problem efficiently solvable with graphcut techniques called “Quadratic 

Pseudo-Boolean Optimization” (QPBO) (35). Dictionary based methods have been used 

in learning (42) and image denoising (43), where a large number of patches from many 

artifact-free pristine images are treated as members of the dictionary. In this work, we obtain 

a dictionary of high frequency image features like edges, but unlike other methods, our 

dictionary comes directly from the undersampled dataset at hand. Our dictionary search 

strategy greatly reduces the number of binary moves necessary for convergence, and 

dramatically reduces the size and complexity of each binary problem. We show that the 

resulting algorithm can efficiently solve the combined CS+PI problem, even for highly non-
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convex penalty functions. We demonstrate that our algorithm produces in vivo results with 

higher numerical and visual acuity compared to regularized SENSE and CS. Subsequent 

brain volumetric analysis produced lower error rates compared to other methods. We believe 

this is the first graphcut algorithm for solving arbitrary non-convex problems involving 

random sampling schemes. Although the current application is for accelerated MRI, due 

to its generality, we believe this algorithm has important applicability to a host of other 

imaging problems.

THEORY

Parallel Imaging Summary

Suppose the MRI machine has c coils that sample, in Cartesian space, a m-by-n-by-s image. 

Let M=mns. Then the joint PI/CS problem can be written as a discretized linear system

y = GFSx + noise [1]

x is the vectorization of the target m-by-n-by-s image. S is a Mc-by-M block matrix with 

diagonal blocks that encode the sensitivity responses from all coils. F is a Mc-by-Mc 
block diagonal matrix where each block is a discretized 2D Fourier transform matrix. G 
is Mc-by-Mc 0–1 diagonal matrix that encodes the under-sampling scheme defined on a 

Cartesian grid. Thus, each voxel in x is first multiplied by sensitivity response of each coil, 

which then undergoes a 2D Fourier transform into k-space, giving FSx. Finally the signals 

are sampled with G to obtain the phased array signal GFSx, or y. Fig 1 gives a visual 

demonstration of the structure of these matrices.

Let E = GFS. Eq.1 simplifies to Ex = y. SENSE reconstructs the image via the pseudo-

inverse xSENSE = (EH E)−1 EH y. Unfortunately, inverse problems of this form become 

progressively ill-posed with increasing acceleration, leading to noise amplification and 

insufficient anti-aliasing.

Compressive sensing methods exploits the sparsity of the solution, and have demonstrated 

promising results (11), (13), (15), (16). In particular, (13) has proposed an objective with 

both total variation penalizers and sparsity penalizers in the wavelet domain:

argminx Ex − y 2 + λ1 TV x + λ2 W x 1 [2]

Instead of TV and sparsity penalizers, a different class of edge-preserving priors (EPP) 

assumes piecewise-smoothness of medical images. In particular, EPIGRAM introduces a 

truncated Lp-norm prior in the image domain, which leads to the following objective:

argminx Ex − y 2 + GEP x [3]

The EPP prior is GEP x = λ∑i, jmin xi − xj
p,  T , where T and p are constant. This is the 

same non-convex prior used in EPIGRAM. The idea behind this prior lies in penalizing 
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non-smoothness of neighboring voxels, but the introduction of the truncation parameter T 

prevents over-penalization of discontinuous voxel intensity across image edges.

Graphcut and QPBO

Unfortunately, Eq.3 is highly non-convex. Graphcut algorithms address this problem by 

converting the original energy minimization into a sequence of binary minimization 

problems. The EPIGRAM (28) method used binary problems arising from the so-called 

expansion moves. Here we employ more general moves of the form:

argminbk E xk − 1 + Ukbk − y 2 + GEP xk − 1 + Ukbk [4]

where xk−1 is the solution of (3) at (k-1)-th iteration, Uk is a matrix, and bk = {0, 1}n is 

an unknown binary vector, to be solved at iteration k. If Uk is a M-by-M diagonal matrix 

with Ui,  i
k = αk − xik − 1 for some constant αk, then Eq.4 is equivalent to the α-expansion 

move variant used in EPIGRAM, where each binary variable can choose to stay at xik − 1 or 

move to αk. If Uk is a M-by-M diagonal matrix with equal diagonal entries βk, then Eq.4 is 

equivalent to jump moves, where each binary variable can choose to stay at xik − 1 or jump to 

xik − 1 + βk. If Uk is an arbitrary M-by-M diagonal matrix, then Eq.4 is equivalent to fusion 

moves (44) where each binary variable can choose to stay at xik − 1 or move to xik − 1 + Ui,  i
k . 

Eq.4 was expressed as a summation of unary and pairwise terms of unknown variables bk. A 

sparse weighted graph was then constructed, whose vertices represented unknown variables 

plus two special “source” and “sink” vertices, and whose weighted edges represented the 

unary and pairwise terms, as described in (28) and (29). Once the graph was constructed, 

a minimum-cut (45) on this graph was generated, which provably provided the globally 

optimal solution to Eq.4 when the energy function satisfy the sub-modularity property (39). 

Of course, optimal solution of successive expansion or jump moves would not normally 

guarantee optimal solution of the original energy function, yet it is well documented that 

successive jump moves do generate strong local minima for many image-level applications 

(46), (47). Traditional graphcut algorithm can only handle a certain class of non-convex 

functions called submodular functions (39), but recent advances have introduced a new class 

of algorithm called Quadratic Pseudo-Boolean Optimization (QPBO) (34), which expands 

the graphcut algorithm to handle non-submodular functions. While QPBO is not guaranteed 

to find global optimum for non-submodular functions, it performs well in practice.

The major limitation of EPIGRAM, whether using expansion, jump or fusion moves, is 

the requirement of efficiently constructing a graph – one which cannot be met for random 

under-sampling patterns used in CS. In this work, we replace the diagonal matrix Uk with a 

dictionary, a matrix with more rows than columns. This greatly reduces the dimensionality 

of bk and the problem size, allowing graphcut to be applied to the resulting problem.

Algorithm Overview

During the minimization of [4], E*E is computed. With Cartesian under-sampling, this 

matrix is sparse due to the special way Cartesian sampling was done (28). Thus, the 
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EPIGRAM technique can be applied. However, with random under-sampling, E*E is dense, 

so the number of pairwise terms is quadratic in the number of variables. E*E is dense 

because edges of the graph are related to entries of the system matrix E, which in turn is 

sparse under regular undersampling but dense under random undersampling. This precludes 

EPIGRAM from being applied directly due to the prohibitive cost of constructing a dense 

graph with millions of vertices. To overcome this constraint, we introduce a dictionary V0 

and an initial solution x0 into Eq.3 and reformulate it as

α = argminα E x0 + V 0α − y 2 + GEP x0 + V 0α [5]

x = x0 + V 0α

where x is the final solution and α is an unknown vector of coefficients which, if it could be 

efficiently found, would provide the lowest energy weighted combination of the dictionary 

members. Despite a significant reduction of problem size due to V0, the minimization 

problem Eq.5 is still non-convex and difficult to solve. To overcome these challenges, we 

rely on a series of smaller and more plausible dictionaries Vk, chosen with a heuristic in 

step 5a below, whose members are mutually disjoint (the support of each member does 

not overlap), and perform a series of fast binary minimizations to solve Eq.5. We note 

that our use of the term “dictionary” is not entirely consistent with its usage in dictionary-

based learning; nonetheless we use it here due to the intuition that feature vectors may be 

precomputed from available data that may be collected in a dictionary of features.

Denote |x| as the image obtained by taking the absolute value of each component of the 

complex image x. Our proposed algorithm is sketched below (details are discussed in the 

next section):

1. Compute an initial solution x0 with regularized SENSE by minimizing the 

following problem:

x0 = argmin
x

Ex − y 2 + x 2
2

2. Use |x0| to construct image segmentation S = {sj, j = 1, …, J} consisting of J 

segments where each sj is a binary vector denoting the jth segment

3. Construct a master dictionary V0 using x0 and segmentation S

4. Precompute the matrix M0 = V 0*E*EV 0 (In this paper, A* denotes conjugate 

transpose of matrix A). Note that the dimension of M0 equals the total number 

of columns in V0, the total number of dictionary vectors. By only choosing a 

moderate number of dictionary vectors M0 is not prohibitively expensive to be 

computed and used in following steps, and this precomputation will not be very 

time consuming.

5. Iterate over k=1, 2, …:
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a. Minimize the following simple, convex problem:

α = argminα E xk − 1 + V 0α − y 2 + λ D xk − 1 + V 0α 2
[6]

where λ is a regularization parameter and D is a first difference 

operator which penalizes the intensity difference between neighbouring 

voxels

b. Use α and the segments j = 1, …, J to construct a mutually disjoint 

dictionary V k = v1
k,  …,  vJ

k  , such that vjk =  sj ⋅ V 0α  (element-wise 

multiplication)

c. Solve the following binary minimization problem using QPBO

b k = argminb E xk − 1 + V kb − y 2 + GEP xk − 1 + V kb [7]

Where b k
 is a binary vector whose values are either 0 or 1

d. Update xk =  xk − 1 + V kb k

6. Terminate when converged, and output x =  xk. We consider the algorithm 

converged if b k
 is all zero (no moves are committed), or a maximum number 

of iterations have passed

We begin with an initial image and its segmentation S, which is used to tile the image and 

dictionary members into a set of J disjoint segments. We precompute M0 = V 0*E*EV 0 to 

accelerate step 5c of our algorithm. We use the solution to Eq.6 to construct a mutually 

disjoint dictionary Vk that stores move proposals for each segment. A non-convex binary 

minimization problem is formulated using Vk to determine whether these plausible move 

proposals are committed or not – a problem efficiently solved by QPBO. It is worth noting 

that if the move proposals in Vk are implausible (i.e. they result in a higher energy if 

committed), then most of b k
 will be zero and xk will be similar to xk−1. Define the 

ratio of number of ones in b k
 to its dimension as PAR, Proposal Acceptance Ratio. The 

minimization in Eq.6 helps to quickly generate plausible move proposals, which lead 

to high PAR to meaningfully evolve xk at each iteration. Note that upon convergence, 

x = x0 + V 0α = x0 + ∑k = 1
N V kb k

. α can thus be interpreted as combined contributions from 

each dictionary vector. Such contribution is iteratively summed up from the binary vectors 

b k
 and their dictionaries Vk

In summary, our algorithm can be viewed as fusion moves with segments of the image as 

unknown variables instead of individual voxels.

The mutually disjoint property of dictionary Vk is necessary for computational reasons. 

Recall that GEP xk − 1 + V kb = λ∑i,  jmin xi + ∑qV i,  q
k bq − xj + ∑rV j,  r

k br
p,  T , where 

xi and xj are the i-th and j-th intensity value of xk−1, and V i,  q
k  and V j,  r

k  are the (i,q)-the 
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and (j,r)-th element of Vk, respectively. To minimize Eq.7 with QPBO, all possible energy 

contributions need to be computed from each summation term. If the i-th and j-the rows of 

Vk have m and n non-zero entries respectively, then m+n binary variables will be involved 

for the pair of voxels (xi, xj) in the smoothness term, which leads to 2m+n possible energy 

terms. Although QPBO can be applied to energy functions whose terms have arbitrarily 

large number of binary variables, in practice they work best for cases where there are no 

more than 2 or 3 binary variables in any term. The above mutually disjoint design of Vk 

limits the number of binary variables per term to at most 2, such that all summation terms 

in the binary energy function are either unary or pairwise. This is necessary for efficiently 

constructing the graph that represents Eq.7.

Details of implementation

Segmentation.—We use (48) for segmentation. The algorithm defines a predicate for 

measuring evidence of boundary with a graph-based representation of the image, and 

segments the image based on this predicate. The algorithm is modified slightly to handle 3D 

data. Although the purpose of obtaining mutually disjoint dictionary vectors could be met 

by an arbitrary tiling of the image, we chose to use an actual image segmentation algorithm 

because this ensured grouping of spatially contiguous voxels into the same segment. This 

restricts neighboring voxels to move together and prevents unrealistic or incoherent jump 

moves from being proposed.

We observed that arbitrary tiling leads to consistently low PAR and extremely slow 

convergence. We believe this is because arbitrary tiling does not consider natural segments 

presented in the initial image and group voxels from spatially noncontiguous regions. On the 

other hand, more expensive and accurate segmentation routines did not significantly improve 

convergence rate or final image compared to (48). We also observed that a moderate amount 

of segments (around 100) are necessary to generate high quality final images, but more 

segments are discouraged as it required disproportionally higher processing time and it did 

not improve the final image.

Master Dictionary Construction.—We crucially assume that linear combinations of 

high frequency feature extracted from the initial solution are sufficient to generate a 

dictionary of plausible move proposals, because it is the high frequency component (edges, 

corners, noise) where the edge-preserving priors differ from conventional smoothness priors. 

Therefore, a set of moves encapsulating this high frequency content would be effective in 

removing noise and preserving edge-related details.

Therefore, we construct the master dictionary of high frequency information by applying a 

filter bank F(x, θ) to the initial image. We extract high frequency information by subtracting 

the initial image from the filtered images. Let Ω = {θ1, θ2, …, θn} denote the set of 

parameters which could represent various frequency bands, orientations and textures (49). 

Then each of the n high frequency dictionary vector is simply computed as zi = F(x0, 

θi) − x0. We employ bilateral filter bank (50) of varying parameters. We perform three-

dimensional bilateral filtering separately on the real and imaginary components of x0 with 

parameters θi, and add up the separately filtered components to obtain the complex filtered 
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image F(x0, θi). Once zi are extracted, we further impose a mutually disjoint tiling of these 

feature images based on segmentation S. Formally, given the set Z = {zi} and set of image 

segments S = {sj}, we form the dictionary V0 = {zi⋅sj} (element-wise multiplication). For 

notational simplicity we also denote by V0 the matrix whose columns are given by the 

members of the set V0.

Heuristic for generating move proposals.—As has been demonstrated in (51), 

plausible move proposals can significantly speed up convergence even if they cannot 

solve the non-convex objective directly. Step 5a generates a solution to Eq.6, which 

provides us the coefficients to linearly combine all dictionary vectors to generate plausible 

move proposals in step 5b. Our motivation is that Eq.6 can be considered a rough 

convex approximation to Eq.7 and is quickly solved with LSQR (52). In practice, move 

proposals resulting from Eq.6 yields high PAR per iteration. This is just a heuristic; 

individual dictionary elements could also serve as proposal moves, but at the cost of 

slower convergence. Note that the solution to Eq.6 is only used to generate plausible 

move proposals, not to solve the non-convex problem. For this limited purpose, we found 

that a simple L2 function such as Eq.6 suffices. We stop the LSQR routine well before 

convergence, as absolute optimality of Eq.6 is unnecessary. Replacing the L2 norm in 

Eq.6 by a L1 norm produced slightly higher PAR since the L1 norm is a closer convex 

approximation to Eq.7, but it required disproportionally higher processing time without 

commensurate image quality improvement, and was dropped.

Constructing unary and pairwise terms from Eq.7.—Solving Eq.7 with QPBO 

requires rewriting it as a summation of unary and pairwise terms. Denote Mk = (Vk)*E* 

EVk. The data fidelity term in Eq.7 is expressed as

E xk − 1 + V kb − y 2 = bT V k *E*EV kb + 2 Exk − 1 − y *EV kb + Exk − 1 − y * Exk − 1 − y

= ∑ibi Mi,  ik + ci + ∑i,  j
i ≠ jbiMi,  jk bj + constant

where ci is the ith element of the vector 2(Exk−1 − y)* EVk and constant = (Exk−1 − 

y)* (Exk−1 − y). The first summation contains all unary terms and the second summation 

contains all pairwise terms. Note that ∑ibiMi, i
k bi = ∑ibiMi, i

k  as bi is binary.

Mk is efficiently computed from the precomputed M0. Recall that we produce n dictionary 

vectors for each of the J segments. Let gj be a Jn-by-1 binary vector such that 

gi
j = 1, j − 1 n < i ≤ jn

0, otℎerwise , for 1 ≤ j ≤ J. Let A = α1,  …,  αJ  where αj = gj ⋅ α. It is not 

difficult to verify that V k = V 0A. Therefore, Mk = (V k)*E*EV k = A*(V 0*E*EV 0)A = A*M0A, 

which is fast to compute as the dimensions of these matrices are small and A is sparse 

and structured. As can be clearly seen, the reason that we use predefined dictionaries 

and segmentation instead of using more dynamic elements such as iteratively changing 

dictionaries, segments, or the technique proposed in (51) is because introducing these 

dynamic elements require a computation of (Vk)* E* EVk from scratch per iteration, which 

is prohibitively costly.
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As columns of Vk are mutually disjoint, let σ(i) denote the column index of the only 

non-zero entry in the i-th row of Vk. The smoothness term is expressed as

GEP xk − 1 + V kb = λ∑
i,  j

min xi + ∑mV i,  mk bm − xj + ∑nV j,  nk bn
p,  T

= λ∑i,  jmin (xi + V i,  σ i
k bσ i ) − (xj + V j,  σ j

k bσ j )
p
,  T

= λ∑i,  j
σ i = σ j min (xi − xj) + V i,  σ i

k − V j,  σ i
k bσ i

p
,  T

+  λ∑i,  j
σ i ≠ σ j min (xi − xj) + V i,  σ i

k bσ i − V j,  σ j
k bσ j

p
,  T

The first summation contains all unary terms and the second summation contains all 

pairwise terms. We thus express Eq.7 as a summation of constant, unary and pairwise terms, 

and QPBO can be applied to solve the resulting problem.

Source Code.—A Matlab implementation of the above algorithm is available at https://

github.com/jiexunxu/Fast-MRI-Imaging-via-Graphcut

METHODS

Structural brain MRI from four healthy volunteers was acquired at 3T on Siemens Skyra 

whole-body scanner (Siemens, Erlangen, Germany) using a standard 16 channels head 

matrix coil. T1-weighted images were acquired using a three-dimensional Magnetization-

Prepared RApid Gradient Echo (MPRAGE) sequence (TE = 3ms, TI = 1000ms, TR = 

2000ms, flip angle = 9°, 1 mm3 isotropic voxel, acquisition time = 8min34 sec). The data 

dimensions were 256-by-176-by-256 voxels. Coronary MR Angiography using a 1.5T GE 

Excite 12 MR scanner was performed on a healthy volunteer. A commercially available 

eight-element phased array cardiac coil (4 anterior and 4 posterior elements) was used for 

signal reception. The subject was imaged supine with vector electrocardiography gating for 

cardiac synchronization. An ECG-triggered segmented k-space navigator gated 3D steady 

state free precession (SSFP) 3D pulse sequence was used at full sampling density. The 

imaging parameters were as follows: TR = 4.0 ms, TE = 1.2 ms, flip angle = 60°, readout 

bandwidth = 62.5 kHz, slice thickness = 3 mm, 16 slices, FOV = 26 cm, in-plane resolution 

= 1.0mm × 1.0mm, 32 partial echoes per heartbeat (corresponding to an acquisition window 

of 128ms), and centric view ordering along kz. To allow quantitative and qualitative 

performance evaluations, we acquired all data at full resolution with no acceleration; these 

served as reference images.

The aliased images were simulated by random k-space under-sampling in the axial plane. 

The k-space views perpendicular to the axial plane were fully sampled. The under-sampling 

strategy employed was variable density Poisson sampling used in (16). We used the self-

calibrating strategy for sensitivity estimation, whereby a small, central, circular shaped area 

(2.2% of the area of each slice) was acquired at full density to estimate low-frequency 

(relative) sensitivity maps. These scans were zero-padded to full resolution and inverse 

Fourier transformed to the image domain. In the image domain, these sensitivities were 

dilated with a disk structure element to obtain better sensitivity maps.
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Algorithmic parameters were chosen empirically. The ratio between the data term energy 

and smoothness term energy was 1:0.6. The truncation term was 0.3 * ‖x0‖∞. The exponent 

p in GEP((x0 + V0α)) was 0.8. We constructed 800 vectors in the master dictionary with 

around 100 segments. Most parameters are fixed through all experiments. A few parameters, 

such as the weighting between data-fidelity term and EPP prior, changed for different 

acceleration factors. We also observed that our experimental result was not sensitive to 

a reasonably small perturbation to these parameters, suggesting that our algorithm was 

not sensitive to parameter changes. Regularized SENSE and CS were implemented for 

comparison. The regularizer in regularized SENSE was simply the L2 norm on the image 

itself. We experimented with two different CS algorithms. We replaced GEP (x) in Eq.3 with 

an l1-norm, and solved the resulting objective with SPGL1 version 2.0 (53). We also used 

l1-SPIRiT (54) as another popular CS algorithm in recent works such as (55) and (56) In all 

three algorithms, parameters are tuned manually and the best results we got were presented.

RESULTS

Convergence Results

We ran our algorithm at 5x simulated acceleration on four brain datasets. Fig 2 plots the 

level of energy of Eq.5 achieved at various iterations. We tested all four algorithms on the 

Dell PowerEdge R910 system. All algorithms were implemented in Matlab. Our proposed 

algorithm took 1.5~2 hours to finish from step (1) to (6), whereas CS method took around 3 

hours.

In step 4 of our algorithm, we precomputed a dense matrix M0 = V 0*E*EV 0 before our 

graph-cut based minimization. While computing a dense matrix is discouraged in general, 

in our method, we have full control over the dimension of this matrix. Its dimension is 

the number of vectors in the master dictionary. Precomputing this matrix takes around 15 

minutes, which is not a major bottleneck compared to the overall runtime. Furthermore, 

we expect that the most attractive use case of our method will be in serial imaging during 

the same session, e.g. multiple modalities or multiple time points. This may also apply to 

multiple subjects as long as they are using the exact same coils/set up (although there are 

practical challenges in that). In these cases, the pre-compute time will be amortized over 

many acquisitions.

Quantitative Results

One of the main applications of 3D T1 brain scans is for assessing regional atrophy patterns; 

hence, any reconstruction algorithm should preserve sufficient tissue contrast to allow 

error-free segmentation, registration and voluming. We performed downstream volumetric 

analysis on 6x reconstructed brain volumes with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), 

for all four algorithms: SENSE, SPGL1, l1-SPIRiT and Graphcut. Briefly, we parcellated 

the grey-matter regions of the reconstructed and reference images into 116 regions obtained 

from the Anatomic Annotated Labeled (AAL) atlas. For each region, if the reference image 

reported a volume of V0 and an under-sampled image reported a volume of V, then we 

computed the Relative Volumetric Difference (RVD) as |V – V0|/V0. Table 1 reports the 

average of these 116 RVD values.
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We performed SENSE, CS, and Graphcut reconstructions at simulated acceleration factors 

from 3x to 13x on four brain datasets. For each reconstruction, we calculated the normalized 

mean-square errors (NMSE) against the corresponding reference image. A plot of the NMSE 

against acceleration factors is shown in Fig 3.

We also demonstrated the stability of our algorithm by artificially adding uncorrelated 

Gaussian noise to coil outputs at different noise levels. We calculated the NMSE of the 

reconstructed images at 5x acceleration. A plot of the NMSE against noise level is shown in 

Fig 4.

Qualitative Results

Fig 5~Fig 7 show simulated results on three datasets, reconstructed using SENSE, SPGL1, 

l1-SPIRiT and Graphcut. All parameters were fixed through these three experiments. The 

bottom row show the corresponding difference images with enhanced contrast. The NMSE 

for each difference image is also displayed. Fig 5 and Fig 6 simulate 4x acceleration, and Fig 

7 simulates 5x acceleration.

To investigate how far we can push the acceleration factor, we attempted a reconstruction at 

7x acceleration (shown in Fig 8). We used CS image as our initial image because SENSE 

image was too noisy to work with at 7x.

In Fig 9 we reported preliminary experiments on the MR coronary Angiography dataset 

at 7x acceleration. Although this example, being a multi-slice acquisition, is not directly 

amenable to random under-sampling, our results should serve as a motivation for future 

applications in torso imaging.

DISCUSSION AND CONCLUSION

Discussion of Results

In this paper we have shown that the use of combinatorial optimization methods relying 

on graphcuts can successfully solve a challenging class of image reconstruction problems. 

The ability of the algorithm to handle non-convex regularization terms imparts it certain 

desirable properties from a practical point of view. In particular, the reconstructed images 

show better edge preservation and higher SNR compared to many other methods. These 

benefits come at the cost of higher complexity of the algorithm. In particular, the ability to 

handle EPPs as well as non-random acquisitions requires the constriction of a dictionary of 

image features. The algorithm then performs moves along these feature vectors, solving a 

succession of binary optimization problems.

In Fig 2, the energy is reduced drastically in the first few iterations, and decreases 

slowly thereafter – a typical behavior of graphcut algorithms. Such fast convergence 

allows our algorithm to beat CS in runtime. In the quantitative experiments, our algorithm 

(Graphcut) reports the lowest or close to the lowest average RVD and best overall NMSE 

scores compared to the other three methods. In Fig 5~Fig 7, results from our algorithm 

suppress more noise compared to competing methods, as can be seen visually and can be 

demonstrated by the difference images and NMSE values. Our results also produce slightly 
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sharper edges. Due to the EPP prior, our results demonstrate piecewise smoothness: noises 

are sufficiently suppressed in both the grey matter and white matter while edge sharpness is 

preserved. Although it is unclear whether highly accelerated images presented in Fig 8 can 

be diagnostically useful, the improved visual quality of our result over competing methods 

indicates our algorithm’s potential and promise. Fig 9, an application of our algorithm 

on another body part, also demonstrates improved noise suppression. This experiment 

shows that although our algorithm was specifically customized for neuroimaging, it can 

be profitably applied to other targets.

Limitations and Future Steps

One limitation of our algorithm is that the results have some staircasing artifacts, such as the 

white blocks in Fig 8. This is a well-known feature of the EPP prior. Such artifacts can also 

been seen in our previous EPIGRAM work. Staircasing represents one of the compromises 

made to achieve sharp edge boundaries. It is important to know this trade-off, and the user 

should carefully choose whether and how much they wish to enforce piece-wise smoothness, 

versus normal smoothness. While we believe that the staircasing effect is unlikely to lead to 

misdiagnosis of lesions, we must admit this as a possibility.

Our algorithm performance also depends on the quality of the initial image, and is prone to 

propagate artifacts. Another limitation is the need to generate good dictionary elements from 

a noisy and aliased initial image. The dictionary itself does not have to be perfect; however, 

the effect of various features were not thoroughly investigated in the current work. In the 

future, we will extensively explore other dictionary frames and features, such as wavelet and 

anisotropic diffusion. We consider such exploration to be an orthogonal problem to the one 

we are trying to solve in this paper. We will also implement atlas-based feature detection, 

but co-registering the image to anatomic atlases, which may provide higher quality edge or 

texture features than the initial image by itself, and may help against the staircasing artifact 

present in our results.

Another potential for improvement lies in automatic parameter tuning. Currently we 

empirically pick the best parameter set for each imaging sequence, but thence onward no 

further tuning is required for individual subjects. Although our algorithm is not sensitive to 

parameter changes, they still need to be optimized by hand for different MR modalities and 

scanners. Therefore, automatic or adaptive parameter tuning would be beneficial for wider 

applicability.

We may also try to minimize the objective function with our EPP prior with other methods. 

Combinatorial algorithms like ours are not the only way to address non-convexity. Even 

continuous optimization methods can give reasonable solutions of non-convex problems, 

and can sometimes give a favorable trade-off between complexity, execution speed and 

performance. For example, a “greedy” approach, as detailed in Equation 3 in (57), can 

be used to minimize our EPP prior. Such method has been used in other publications for 

solving related non-convex problems. There are also published papers that solve Lp (p < 1) 

norms with L1 majorizers, such as (58), that we can use in our method. Additionally, some 

other published work, such as (59) and (60), solves the image reconstruction problem with 

different objective functions that are also non-convex. Depending on the specific formulation 
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desired by the user, these methods might prove simpler or superior to ours. A comparison of 

our algorithm against these methods would be another future work.

Furthermore, this paper is mainly concerned with an efficient combinatorial formulation of 

the CS problem, rather than with image modeling; but there is room for more complicated, 

higher-order priors involving non-local or patch-based features, which could complement 

the conservative, low-level neighborhood priors used here. Our dictionary-based approach 

is well placed to incorporate such models. However, higher-order or overly strong reference-

based priors meet with stronger resistance in the medical imaging field, and rightly so, due 

to the possibility of hallucinating artifacts. In future work we will consider whether some of 

these features could safely be deployed in MR.

Conclusion

We have presented a novel algorithm for combining CS and PI, and introduced a highly 

non-convex EPP prior to show that the minimizing the corresponding objective function 

can result in a higher quality MRI image. We also presented an algorithm, based on 

graphcut-based minimization techniques, to overcome the non-convexity of the problem. 

This provides an entirely new avenue for handling the challenges arising from CS. Although 

much more future work will be required to thoroughly quantify and characterize both our 

EPP prior and our algorithm on a variety of imaging applications, we believe our presented 

results provide preliminary but encouraging assessment of the potential of this novel 

approach. Our use of graph-cut based minimization techniques can also be a potentially 

new and useful algorithmic addition to the community.
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Fig 1: 
Visual explanation of Eq. 1. The G matrix consists of identical blocks of 0–1 diagonal 

matrices. The diagonal in each block is a column vectorization of the weighted random 

sampling matrix visualized on the left. A blue entry is 1 and a white entry is 0. The S matrix 

is a block diagonal matrix. The diagonal in the i-th block is a column vectorization of the 

sensitivity response of the i-th coil.
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Fig 2: 
Plot of total energy against graphcut iterations for four datasets. The energy decreases much 

faster within the first few iterations.
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Fig 3: 
Plot of NMSE against various acceleration factors
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Fig 4: 
Plot of NMSE against different noise levels in the coil data
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Fig 5: 
SENSE (1st column), SPGL1 (2nd column), l1-SPIRiT (3rd column) and Graphcut (4th 

column) reconstruction and reference image at 4x acceleration. The bottom row contains 

difference image with properly enhanced brightness and contrast
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Fig 6: 
SENSE (1st column), SPGL1 (2nd column), l1-SPIRiT (3rd column) and Graphcut (4th 

column) reconstruction and reference image at 4x acceleration. The bottom row contains 

difference image with properly enhanced brightness and contrast
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Fig 7: 
SENSE (1st column), SPGL1 (2nd column), l1-SPIRiT (3rd column) and Graphcut (4th 

column) reconstruction and reference image at 5x acceleration. The bottom row contains 

difference image with properly enhanced brightness and contrast
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Fig 8: 
SENSE (top left), SPGL1 (top middle), l1-SPIRiT (top right), Graphcut (bottom left) 

reconstruction and reference image (bottom right) at 7x acceleration.
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Fig 9: 
SENSE (top left), SPGL1 (top middle), l1-SPIRiT (top right and Graphcut (bottom left) 

reconstruction and reference image (bottom right) at 7x acceleration.
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Table 1:

SPM brain volumetric analysis: Average Relative Volume Difference scores for SENSE, CS and Graphcut on 

four brain MPRAGE scans. The lowest error is shown in boldface.

SENSE SPGL1 l1-SPIRiT Graphcut

Dataset 1 0.0745 0.0612 0.0588 0.0458

Dataset 2 0.0711 0.0582 0.0641 0.0630

Dataset 3 0.1220 0.0704 0.0753 0.0536

Dataset 4 0.0737 0.0673 0.0599 0.0547
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