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PERSPECTIVE

Implementing differentially pigmented skin 
models for predicting drug response variability 
across human ancestries
Sophie Zaaijer1,2* and Simon C. Groen2* 

Abstract 

Persistent racial disparities in health outcomes have catalyzed legislative reforms and heightened scientific focus 
recently. However, despite the well-documented properties of skin pigments in binding drug compounds, their 
impact on therapeutic efficacy and adverse drug responses remains insufficiently explored. This perspective examines 
the intricate relationships between variation in melanin-based skin pigmentation and pharmacokinetics and -dynam-
ics, highlighting the need for considering diversity in skin pigmentation as a variable to advance the equitability 
of pharmacological interventions. The article provides guidelines on the selection of New Approach Methods (NAMs) 
to foster inclusive study designs in preclinical drug development pipelines, leading to an improved level of translat-
ability to the clinic.

Keywords Diversity, Equity, Inclusivity, Melanin, Phototoxicity, Drug Bioavailability, Pharmacokinetics, 
Pharmacodynamics, NAM, AI, Cell model, IVIVE

Background
In the field of drug development, there is an increasing 
emphasis on human diversity in clinical trials and genetic 
mapping studies. The heightened focus on inclusivity 
during clinical trials is spurred on by the recently enacted 
Diverse and Equitable Participation in Clinical Trials 
(DEPICT) Act (2022), which mandates demographic 
diversity reporting and creation of Diversity Action Plans 
by sponsors. This shift necessitates substantial work 
to identify appropriate clinical endpoints that inform 
treatment strategies and reduce adverse drug effects 
(ADE) for specific ancestral genetic backgrounds.  Cur-
rently, a few hepatotoxicity-related endpoints leverage 

genetics-guided treatment strategies. These are mostly 
based on allelic variants of large effect that have higher 
prevalence in one genetic ancestry group compared to 
others. Genotyping of specific alleles for drug metabo-
lism-related enzymes including the cytochrome P450 
monooxygenases (CYPs) CYP2C9, -2C19, -2D6, and -4F2 
is currently used in clinical practice to inform treatment 
strategies and guide dosage optimization [1, 2].

However, the influence of other ancestry-biased dif-
ferences – such as in skin pigmentation levels – on 
inter-individual variation in the pharmacokinetics and 
-dynamics of new drug compounds remains understud-
ied [3]. This is particularly surprising for pigmentation, 
given that many drug compounds have significant bind-
ing affinity for melanin skin pigments. Variation in skin 
pigmentation levels could therefore potentially influence 
the bioavailability of drugs in the body. While bioengi-
neers leverage this phenomenon for localized slow drug 
release methodologies [4, 5], the potential impact of skin 
pigments on drug kinetics and possible ADEs has been 
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insufficiently considered by the pharmaceutical industry 
[3] partially due to previously limited technical resources.

In recent years, a confluence of innovations and regula-
tory changes opened the doors for studying the effects of 
melanin types on pharmacokinetics:

1. Advances in complex cell systems, such as micro-
physiological systems (MPS), facilitate recreation 
of the multicellular nature of the human skin in an 
in  vitro laboratory setting [6]. Additionally, follow-
ing Organization for Economic Cooperation and 
Development (OECD) Guidelines 432 and 439, 3D 
reconstructed human epidermis (RHE) models were 
accepted by the Center for Drug Evaluation and 
Research (CDER) and the Food and Drug Admin-
istration (FDA) as NAMs for dermal irritation and 
phototoxicity testing to support regulatory applica-
tions demonstrating safety for Investigational New 
Drug (IND) submissions [7].

2. Significant reductions in DNA and RNA sequenc-
ing costs have enabled: a) large-scale genome-wide 
association studies (GWAS) in human populations, 
elucidating the genetic basis of variation in skin pig-
mentation [8, 9]; b) efficient determination of genetic 
ancestry, allowing accurate annotation and reporting 
of this important metadata for advanced cell models 
[10].

3. Computational and artificial intelligence (AI)-sup-
ported modelling accelerate the fields of biochemi-
cal toxicology and drug target development [11, 12]. 
Such modelling approaches are actively used to scale 
up operations and to aid internal decision making.

These advances provide tailwind for investigations into 
skin pigmentation-dependent effects on drug permeabil-
ity, bioavailability, and toxicity, enabling the development 
of enhanced predictive models and risk mitigation strat-
egies prior to clinical trials [3]. Subsequent sections will 
uncover the rationale behind the need for considering 
inter-individual diversity in cutaneous pigmentation as a 
variable influencing the pharmacokinetics and -dynamics 
as well as efficacy of topically applied and orally ingested 
compounds.

Main text
Melanin biology across skin tones
While melanin pigments are found in various parts of the 
body including the skin, hair, eyes, and brain, this article 
focusses on how differences in skin melanin content may 
influence drug pharmacokinetics and -dynamics.

The key cell types contributing to human skin tone 
are melanocytes, that synthesize melanosomes, and 
keratinocytes, that store these melanin-containing 

packages.  The quantity and characteristics of melano-
somes within skin layers determine variation between 
light to dark skin tones. Dark skin contains a higher pro-
portion of individual large melanosomes (about 93%), 
whereas light skin contains higher levels of mini-melano-
core clusters (approximately 55%) [13, 14] (Fig.  1A). In 
light skin, melanosomes are concentrated in the stratum 
basale, while in dark skin they become distributed more 
diffusely throughout the layers [13].  The primary differ-
ence between light and dark skin, however, is the number 
of melanosomes present. Dark skin can contain up to ten 
times more melanosomes compared to light skin [15, 16]. 
Interestingly, constitutive differences in pigmentation are 
encoded in the genome as exemplified by an experiment 
in which fibroblasts isolated from individuals with light 
and dark skin were reprogrammed into melanocytes. The 
resulting reprogrammed melanocytes successfully rep-
licated the original human skin phenotypes under the 
same culture conditions [17]. Indeed, rigorous GWAS 
demonstrate the contributions of numerous genes to the 
heritability of skin pigmentation, annotating it as a com-
plex, polygenic trait [8, 9].

Melanin pigments exist in two primary chemical forms: 
pheomelanin and eumelanin. Both types appear to be 
present in constant ratios in skins of all tones [15]. How-
ever, it is eumelanin that plays a particularly significant 
role in drug interactions due to its distinctly poly-ionic 
nature featuring numerous carboxyl and hydroxyl groups. 
This chemical composition gives eumelanin a high bind-
ing affinity for various substances including basic or neu-
trally charged drugs and metal ions (examples in Table 1).

Clinical implications of drug‑melanin interactions
The clinical impact of drug affinity binding to eumela-
nin has been evaluated most rigorously in retinal toxicity 
studies. The human eye, particularly the retinal pigment 
epithelium, contains the highest eumelanin concentra-
tion of all tissues in the body. Pharmacokinetic studies 
focusing on ocular melanin have led to valuable insights: 
(1) Some eumelanin-associated compounds can impose 
ocular toxicities such as vision loss, color vision defects, 
and corneal deposits. These types of drugs include the 
antimalarial hydroxychloroquine, the antibiotic cipro-
floxacin, and the antipsychotic chlorpromazine (reviewed 
by [20]). (2) For other drugs, local sequestration by 
eumelanin can be used as a protective mechanism to 
minimize possibly harmful exposure in systemic tis-
sues [30]. (3) Finally, eumelanin binding has been lever-
aged for its slow drug release properties to prolong drug 
action [23, 31]. These mechanisms may be just as relevant 
for eumelanin in the epidermis and therefore, elucidating 
the effects of skin pigmentation on the bioavailability of 
drugs, irrespective of whether they are topically applied 
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or orally administered, could be crucial for addressing 
safety concerns, optimizing drug delivery mechanisms, 
and establishing appropriate dosing regimens.

Skin‑specific drug‑melanin interactions that alter 
pharmacokinetics
The skin, despite being the largest organ in the body, 
has been relatively overlooked for potential interactions 
between eumelanin and drugs or xenobiotics [3]. While 
the concentration of eumelanin per skin cell may be 
lower than that found in retinal pigment epithelium cells, 
the sheer number of cells that constitute skin in a human 

body contributes to a higher absolute eumelanin content 
overall. The impacts of human variation in epidermal 
eumelanin levels on drug pharmacokinetics and -dynam-
ics may be obscured by those of better-studied ances-
try-biased genetic polymorphisms in drug metabolic 
enzymes such as CYPs [2]. However, as we will see below, 
epidermal eumelanin and drug metabolic enzymes can 
both potentially contribute to altering the bioavailability 
of drug compounds (Fig. 1B).

For example, clozapine is an antipsychotic agent pri-
marily indicated for treatment-resistant schizophre-
nia patients. Its known risk for causing adverse effects 

Fig. 1 A The skin is composed of multiple layers, from the innermost stratum basale that contains the melanocytes to intermediate layers 
dominated by keratinocytes and the outermost stratum corneum. The melanocytes produce the melanin-containing melanosomes, which show 
an approximately 10 times difference in accumulation between individuals with dark and light skin tones. The melanosomes are transferred 
to the keratinocytes, where they surround the nucleus and protect DNA from UV-induced damage. B This simplified model posits that differential 
drug responses between human genetic ancestry groups [1] could result from influences of a combination of both the genotype for drug 
metabolic enzymes and skin eumelanin level of an individual (visible as skin tone) on the bioavailability of drugs. The empty block in the model 
represents known and/or unknown other variables that may further influence drug bioavailability



Page 4 of 10Zaaijer and Groen  Human Genomics          (2024) 18:113 

necessitates regular plasma concentration monitoring 
by clinicians after prescribing specific doses.  Pardiñas 
et  al. (2023) analyzed clozapine pharmacokinetics in 
4,495 individuals from five genetic ancestry groups 
and found that at the same dose, sub-Saharan African 
ancestry was associated with lower clozapine concen-
trations in the plasma compared to European ancestry 
[32]. GWAS attributed this variation to several genetic 
polymorphisms linked to the drug metabolic enzymes 
CYP1A1/1A2 (rs2472297) and UDP-glucuronosyltrans-
ferases of the UGT1A family (rs3732218). Polygenic 
risk  scores generated  from these genetic loci  explained 
7.26% of variation in clozapine metabolism.

Coincidentally, the compound clozapine is also known 
to bind eumelanin [19, 27]. Given that individuals of sub-
Saharan African ancestry on average show relatively high 
levels of epidermal eumelanin [8], the lower plasma con-
centrations of clozapine observed among individuals of 
this ancestry could therefore potentially be influenced by 
clozapine affinity for eumelanin [32] (Fig. 1B).

The effect of eumelanin on the bioavailability of certain 
drugs is further supported by animal studies: a study in 
rats led by GlaxoSmithKline  (GSK) demonstrated that 
eumelanin recruited active drug compounds with basic, 
but not acidic, pH to the skin and eyes [33]. This affected 
the bioavailability of the basic drugs as demonstrated by 
increased tissue-to-plasma ratios. Another study per-
formed a time course analysis on the bioavailability of 
radiocarbon-labelled levofloxacin after 1 hour, 24 hours, 
and 1 week [22]. Tissues with highly pigmented cells 
exhibited a significant increase in the tissue-to-serum 

ratio of the drug, indicating localized drug deposits. 
Notably, while pigmented hair retained active com-
pounds the longest, pigmented skin and eyes released 
them slowly over time, extending beyond the serum 
depletion of the circulating levofloxacin.

Similar animal studies comparing pigmented and 
albino rats demonstrated that nicotine accumulated to 
20 times higher levels in pigmented hair [29]. This con-
tributed to the hypothesis that variation in epidermal 
eumelanin levels between humans might influence nico-
tine use and dependence [34]. Links between variation in 
skin pigmentation and tobacco use were indeed found in 
a study with individuals of African–American ancestry 
[35], with a smaller study finding no significant correla-
tion [36]. Furthermore, a follow-up study with individu-
als of African- and European-American ancestries 
confirmed an association between smoking cessation and 
skin pigmentation among males in particular [37]. These 
observations may have implications for the optimization 
of nicotine replacement therapies, particularly trans-
dermal delivery systems, depending on individuals’ skin 
tones. If variation in epidermal eumelanin levels indeed 
influences nicotine bioavailability, then this would neces-
sitate tailored drug regimens to ensure successful thera-
peutic outcomes for every patient group.

Despite these examples, differences in skin eumela-
nin levels may not influence the pharmacodynamics 
of all compounds that have an affinity for eumelanin. 
A study on acetaminophen – a drug that binds mela-
nin [19] – found no difference in total plasma levels of 
acetaminophen between individuals of African- and 

Table 1 Examples of compounds with binding affinity for eumelanin

Compound class Compound High affinity binding in 
biochemical assays—literature 
reference

Metal ion Iron [18]

Analgesic Acetaminophen [19]

Anesthetic Pantocain [20]

Antibiotic Ampicillin, ciprofloxacin, gentamicin A, kanamycin, levofloxacin, penicillin G [12, 20–22]

Anticancer medicine Sunitinib [23]

Antidepressant Clomipramine, imipramine, nortryptiline [20]

Anti-inflammatory compound Brimonidine, celecoxib, triamcinolone acetonide [20, 24, 25]

Antihypertensive Carazolol, propranolol, timolol [4, 12, 20, 21]

Antimalarial Chloroquine, doxycycline, hydroxychloroquine, quinidine [4, 20, 21, 26]

Antipsychotic Azaperone, chlorpromazine, clozapine, fluphenazine, haloperidol, perphena-
zine, trifluoperazine, trifluopromazine

[19, 20, 27]

Antispasmodic Tizanidine [21]

Urinary retention drug Tamsulosin, terazosin [12, 20]

Vasodilator Papaverine [12]

Stimulating drug Cocaine, nicotine [28, 29]
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European-American ancestries [38]. Oxidation clearance 
of acetaminophen did show ancestry-based differences 
and was 37% lower in African–versus European-Ameri-
cans, which could have been partially explained by poly-
morphisms in CYP2E1 [38].

Taken together, however, and as with all parameters 
evaluated in preclinical studies that aim to obtain a holis-
tic predictor for the efficacy and safety of a new drug 
compound, epidermal eumelanin content should be 
included as a variable just as relevant polymorphisms in 
drug metabolic enzymes are included as a variable. Inclu-
sion of both will potentiate enhancement of the predic-
tive power of preclinical experiments to generate more 
robust, generalizable clinical outcomes across patients 
from diverse racial and ethnic groups and with different 
skin phenotypes.

INDs and diversity
For INDs, the mandated efficacy and safety testing in the 
preclinical phase is undergoing significant shifts away 
from using traditional animal-based models towards 
using NAMs such as advanced 3D human cell models 
[39]. Major efforts involving industry, academia, non-
governmental organizations, and international regula-
tory bodies are working collaboratively to benchmark 
novel tissue-specific NAMs that ensure accurate and 
reproducible endpoint measurements suitable for IND 
submissions.

This transition offers a unique opportunity not only 
to advance towards using human-based in vitro systems 
for efficacy and safety testing but also to incorporate cell 
models from a diverse range of human ancestral back-
grounds – a feat not achievable with inbred animal mod-
els [40]. An inclusive NAM-based strategy would bring 
much-needed improvements to the translatability of pre-
clinical testing results into clinical research, potentially 
leading to more accurate predictions of drug efficacy and 
safety across various demographic groups.

The first CDER/FDA-approved NAMs for IND submis-
sions are 3D skin cell models. These are models for ocu-
lar irritation testing with human cornea-like epithelium, 
dermal irritation testing with 3D reconstructed human 
skin models, and phototoxicity testing via 3T3 Neutral 
Red Uptake (NRU) assays.

Of the skin endpoints, the FDA guidelines mention 
melanin only for phototoxicity testing [41]. The guide-
lines acknowledge that “Compound binding to tissue 
components (e.g., melanin, keratin) is one mechanism by 
which tissue retention and/or accumulation can occur” 
and propose that a “single-dose tissue distribution study, 
with animals assessed at multiple timepoints after dosing” 
will provide an adequate assessment. However, the guide-
lines also posit that “experience with melanin binding 

drugs suggests such binding alone does not present a pho-
tosafety concern“. This is surprising, not only since exist-
ing evidence suggests that certain compounds with high 
binding affinity for eumelanin can effect phototoxicity 
[42], but also because there is a notable scarcity of pub-
licly available research articles addressing this scientific 
question, particularly in the context of diverse skin pig-
mentation profiles [3].

Here, we propose that NAM-based systems could be a 
valuable additional endpoint measure in relation to how 
much skin pigmentation could influence the bioavailabil-
ity of drug compounds with binding affinity for eumela-
nin. Given the numerous safety and efficacy analyses 
that need to be performed for IND submissions, adding 
an endpoint measure may cause worry that performing 
more experiments will involve additional time and costs. 
However, a few strategies can be employed for stratifica-
tion, potentiating a cost-effective analysis pipeline.

A four‑pillar workflow for predicting melanin‑based 
differential drug responses in preclinical research
A cost-effective and translatable approach to predicting 
potential effects of epidermal eumelanin on the phar-
macokinetics and -dynamics of INDs can be constituted 
by four pillars of which the first three are preclinical: (a) 
biochemical analysis, (b) inclusive in silico analysis and 
prediction, (c) inclusive analysis of cellular kinetics using 
NAMs, and (d) clinical trials (Fig. 2). Each preclinical pil-
lar contributes to identifying the probability that drug-
eumelanin interactions may have consequences for drug 
bioavailability using AI modeling. The last pillar involves 
testing in humans for validation of the impact predicted 
in pillars a-c. Integrating clinical data for in vitro-in vivo 
extrapolation (IVIVE) will confirm and enhance the 
models’ predictive power, enable more accurate clinical 
endpoint stratification, and improve translational rel-
evance for a diverse group of people over time. We dub 
this inclusive-IVIVE (i-IVIVE).

Execution of this workflow in a manner that promotes 
the inclusivity of drug development requires a considera-
tion of patients’ ancestries in each step:

Biochemical assays Testing of purified eumelanin from 
various animal species is the most established method 
in biochemical affinity assays (reviewed by [20]). Impor-
tantly, these assays offer a first-line indication of poten-
tial drug compound-eumelanin interactions and form a 
scalable method for compound competition assays [20]. 
There is no evidence for human ancestry-based differ-
ences in the quality of eumelanin synthesized. Therefore, 
for biochemical affinity assays human ancestry does not 
have to form a key consideration.

Cellular pharmacokinetics assays In  vitro testing 
of drug compound-eumelanin interactions through 
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multilayered cellular assays provides essential insights 
into the roles of intricate cell architectural features on 
drug binding dynamics [43]. For instance, pilocarpine 
has only moderate binding affinity to isolated eumela-
nin in biochemical assays, yet exhibits a significant 3-10 
times higher affinity for eumelanin when evaluated in 
ocular cell systems [12, 44]. This discrepancy under-
scores the necessity of considering features of the entire 
cellular ecosystem, including dual entry kinetics into 
the cytoplasm and melanosomes, as critical variables 
that can be assessed in cell models [45]. Cellular mela-
nin affinity binding is critical in phototoxicity assays, 
while affinity binding and dissociation assays are crucial 
to generate inclusive predictors for drug bioavailability.

A key technological advance has been the ability to 
model the continuous transfer of eumelanin from mel-
anocytes to keratinocytes in an in vitro environment. 
A range of advanced in vitro 3D skin cell models are 
available (reviewed by [7, 46] and Table 2). RHE mod-
els, such as  SkinEthicTM (EpiSkin, France) and Mel-
anoDerm™ (MatTek, USA), accurately recapitulate the 
morphology, biochemical markers, and lipid composi-
tion of native human skin and are available with vary-
ing pigmentation levels.

What are critical variables to consider when selecting 
an appropriate skin cell model? (also summarized 
in Table 2)
Considerations for the genetic backgrounds of cell models
No single biomarkers have been identified that are indic-
ative for different levels of skin pigmentation across and 
within human ancestral groups [8, 9]. Therefore, genetic 
ancestry of cell models is not a selection criterion when 
it comes to eumelanin-based traits. Nevertheless, obtain-
ing metadata on the genetic ancestry of all cells used in 
human skin models is still important and supports the 
four-pillar workflow (Fig.  2). Specifically, knowing the 
genetic ancestry of melanocytes will enhance the cur-
rently limited understanding of population structure-
related variation in drug-eumelanin binding kinetics 
and may prevent researchers from missing (possibly 
unknown) genetic contributors that can be uncovered by 
AI. The genetic ancestries of the cell models used should 
therefore be captured as metadata (Table 2).

Considerations for determining the pigmentation phenotype 
of skin cell models in vivo and in vitro
For each cell model, an accurate classification of the cor-
responding donor pigmentation phenotype requires 

Fig. 2 An inclusive NAM for predicting the consequences of drug compound-eumelanin interactions on drug bioavailability. Biochemical analysis: 
This initial step provides a probability estimate of the binding kinetics of drug compounds towards eumelanin in a simplified and highly controlled 
environment [11]. Cellular binding kinetics: This phase involves measuring eumelanin-related drug binding and dissociation properties in a cellular 
context. Metadata about the cell models used is critical input for in silico models and predictions. In silico analysis: This computational (AI) step 
integrates drug compound properties, eumelanin characteristics, biochemical data, in vitro cellular data (including metadata on the cell models 
used – Table 2), and curated data from the literature (for example on the effects of enzymatic polymorphisms on drug compound metabolism). 
The computational models process these diverse inputs to refine predictions. Clinical trials: Data obtained in human testing provides continuous 
feedback loops between model iterations that can help to improve predictions and promote inclusive in vitro-in vivo extrapolation (i-IVIVE). Bold 
arrows indicate the weight of the initial data flows
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objective, quantitative measures. While the Fitzpatrick 
scale has been widely used [47], it is limited by its focus 
on variations among light skin tones associated with 
European ancestry and its subjective nature. In contrast, 
spectrometer-based L*a*b* measurements provide quan-
titative Individual Typology Angle (ITA) values that were 
shown to correlate with melanosome quantity in the skin 
[48].

Melanocytes can lose their ability to synthesize mela-
nosomes when grown in vitro. Certain characteristics of 
the in vitro environment, including the pH and  CO2 levels 
of culture media, can significantly influence melanosome 

biology [20] and should be monitored for maintenance 
of physiologically relevant conditions. Vendors such as 
EpiSkin provide a turn-key solution by offering media 
alongside their cell models, promoting reproducibility 
and inter-laboratory standards.

To validate that an in vitro skin cell model accurately 
represents the donor’s in vivo pigmentation profile it 
is necessary to quantify eumelanin levels and assess 
melanosome quality and distribution within different 
skin layers (Table  2). Both the level and distribution of 
melanosomes vary distinctly across different skin tones 
(Fig. 1). AI is especially good at interpreting image data 

Table 2 Minimal cellular data requirements for inclusive model development

Cell model selection Currently done? Needed? Specifics

Genetic biomarkers for ancestry
(donor/cell model)

No No No single biomarker available, pigmentation is a poly-
genic trait [8, 9].

Colorimetric categorization
(donor)

“Light”, “Moderate”, “Dark” Yes 
(absolute 
measures)

• CIELAB color space was defined by the Commission 
Internationale de l’Eclairage (CIE) and uses the L*, a*, 
b* axes;
• Individual Topology Angle (ITA) metric uses the L* 
and b* axes and is correlated to melanosome count 
and distribution as described by [48];
• Product DermaSpectrometer “Colorimeter DSM” 
by Cortex Technology used in [8, 9].

Melanosome count/quality (cell model) No Yes • Image analysis on Fontana–Masson-stained cell 
tissue*;
• Spectrophotometry;
• HPLC.
*Methods described in [15, 51, 52].

Distribution of melanin in model layers (cell model) Occasionally Yes Image analysis on Fontana–Masson-stained cell 
tissue [52]*.
*Analysis should be done by computational image 
characterization and quantification.

Cell model metadata Relevant for each cell type used in RHE/3D cell model
(e.g., melanosomes, keratinocytes, fibroblasts, or others)

Ancestry
(donor/cell model)

Not often Yes At minimum, annotation of genetic ancestry 
to the five major continents—Africa (AFR), Americas 
(AMR), East-Asia (EAS), South-Asia (SAS), and Europe 
(EUR)[53]. Indicate the admixture percentages 
and admixed population annotations.
Vendors:
• MelanoDerm™ (MatTek, Ashland, MA, USA) offers 
melanocytes of European, African, and Asian descent 
(note: missing ancestry annotation for the keratino-
cytes).
•  SkinEthicTM RHPE (EpiSkin, Lyon, France) offers three 
different phototypes of human skin, no ancestry 
annotation for specific cells available online.
• NeoDerm (TegoScience, Seoul, Korea). Very minimal 
information on pigmentation (“Melanocytes” vs “Dark 
Melanocytes”) given, no ancestry annotation avail-
able online.
• Phenion (Henkel, Düsseldorf, Germany). No pigmen-
tation information or ancestry annotation available 
online.

Sex (donor/cell model) No Yes Genetically male or female.

Age (donor) Frequently Yes Melanin biosynthesis changes with age [54].

Tissue of origin (donor) Yes Yes
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[49] and can be leveraged to standardize image analysis 
and categorization.

Incorporating these inclusive variables is the first step 
in the development of diverse in vitro skin models that 
accurately represent variation in human skin pigmenta-
tion (Table 2). The next step would be to leverage these 
for obtaining novel insights. For example, EpiDerm™ skin 
models (MatTek)  have been previously combined with 
liver spheroids that actively express drug metabolism 
enzymes such as CYPs in a multi-organ-on-a-chip model 
[50]. Such model systems could be employed to study 
drug pharmacokinetics and bioavailability in the con-
text of human ancestral differences in both skin pigmen-
tation and CYP variants present (Fig.  1B). The genetic 
ancestries of the melanocytes and hepatocytes, including 
allelic variants for relevant drug metabolism enzymes, 
form important metadata to move towards more inclu-
sive preclinical research workflows.

The utilization of commercially sourced in vitro skin 
models significantly enhances the reproducibility of 
results compared to in-house constructions. Commer-
cial vendors, leveraging high-throughput production 
capabilities, can implement standardized procedures 
and phenotypes while conducting comprehensive qual-
ity assurance testing. However, it is imperative that prod-
uct documentation includes extensive metadata such as 
ancestry information and quantified pigmentation status 
for each in vitro model (Table 2).

Computational models Given the provision of high-
quality preclinical testing data, AI models can expedite 
the stratification of further preclinical experiments and 
clinical trials. However, omitting certain variables from 
the input data will result in a lack of interpretable infor-
mation on potential effects of these missing variables for 
the model output (Table 2). Therefore, the current pau-
city in cell model metadata [10] constrains the potential 
of inclusive AI-supported predictions and experiment 
stratification.

The efficacy of AI lies in its capacity to establish cor-
relations between diverse data types and derive logical 
inferences. Therefore, underpowered studies that, for 
example, only utilize two cell models in a single experi-
ment (e.g., one of European descent and one of African 
descent) are insufficient to demonstrate statistical sig-
nificance. However, the accumulation of properly anno-
tated additional experiments over time, conducted by 
various laboratories that may even be addressing dif-
ferent scientific questions, enhances the power of AI 
models to extrapolate patterns and identify risk predic-
tors. The fewer variables added to the model, the lower 
its holistic view and predictive power, necessitating a 
higher number of resource-intensive laboratory experi-
ments. This type of AI-focused data aggregation may 

empower larger pharmaceutical laboratories that have 
the resources to standardize metadata collection and 
integrate experimental data from various departments. 
For academic laboratories, consistently publishing rel-
evant metadata alongside experimental data as outlined 
in Table  2 will ultimately enable bulk data aggrega-
tion and foster AI model development by specialized 
researchers [55, 56].

A team led by Roche developed a comprehensive in 
silico model for predicting the biochemical binding of 
drug compounds to eumelanin with a 91% accuracy. The 
basicity, lipophilicity, and aromaticity of compounds 
were factors that drove binding affinity [11]. Biochemi-
cal assays have the advantage of being relatively low-cost 
and being able to control most input variables. Cellular 
assays introduce a cornucopia of new variables, from cell 
characteristics and physiology to varying culture condi-
tions. AI models can help us learn how complex variables 
in human physiology  alter  melanin’s  influences on drug 
kinetics. Providing AI models with as much metadata as 
possible will ultimately help to extract the information 
we seek.

Implementation of AI in biology is hampered by lim-
ited data availability. Only through diligent long-term 
reporting and annotation of cell models and culture 
variables used (an activity that does not add additional 
costs) can AI models extrapolate logic and bring valuable 
insights that augment the insights we would otherwise 
only obtain through manual experimentation [55–57].

Broader impacts
The effects of inter-individual variability in interactions 
between chemicals and melanin pigments is a wider issue 
that extends to industries beyond the pharmaceutical 
industry. The cosmetics, cleaning, and agriculture indus-
tries (amongst others) also work with potentially toxic 
melanin-interacting substances. For example, the widely 
used herbicide paraquat was found to bind eumelanin 
nearly five decades ago already [58]. Negatively charged 
melanin is also capable of binding cations such as metals 
that are used for disease control in crop plants: copper is 
commonly used in control products for fungal and bacte-
rial pathogens in both organic and conventional agricul-
ture, while platinum is utilized in soil fertilizers and some 
pesticide formulations, and may confer toxicity [59]. 
One small scale study showed platinum to accumulate 
at higher levels in pigmented skin [3, 60]. Although the 
U.S.  Environmental Protection Agency (EPA) conducts 
comprehensive toxicity analyses, the potential accumula-
tion of compounds in the skin due to melanin interaction 
is not yet a variable explicitly considered in their assess-
ment protocols.
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Conclusion
To streamline the transition to diverse clinical trials it 
is essential to identify ancestry-specific clinical end-
points. This article explores the need for risk assess-
ment associated with skin tone differences and offers a 
scalable and potentially cost-effective inclusive strategy 
for predicting drug response variability across human 
population groups by leveraging cell-based assays, bio-
chemical screening, and computational modelling.

Acknowledgements
Much gratitude goes to Dr. Gladys Ouedraogo (L’Oreal) and Dr. Nathalie Seyler 
(Episkin) for the helpful information they provided. We also would like to 
thank the members of the Physicians Committee for Responsible Medicine 
(PCRM) for fostering environments that encourage productive discussions 
on enhancing preclinical discovery and benchmarking NAMs for improved 
(diverse) clinical translations while replacing animal experimentation. Lastly, a 
special thanks go to the MPS society and the MPS World Summit 2024 for the 
opportunity to receive valuable feedback from leaders in this field. SCG was 
funded by the National Institute of General Medical Sciences of the National 
Institutes of Health (grant R35GM151194) and University of California Riverside 
startup funds.

Author contribution
S.Z. conceptualized the manuscript. S.Z. and S.C.G. wrote the main manuscript 
text and prepared figures.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Received: 1 July 2024   Accepted: 21 September 2024

References
 1. Ramamoorthy A, Pacanowski MA, Bull J, Zhang L. Racial/ethnic differ-

ences in drug disposition and response: review of recently approved 
drugs. Clin Pharmacol Ther. 2015;97:263–73.

 2. De T, Park CS, Perera MA. Cardiovascular pharmacogenomics: does 
it matter if you’re black or white? Annu Rev Pharmacol Toxicol. 
2019;59:577–603.

 3. Salminen AT, Manga P, Camacho L. Race, pigmentation, and the human 
skin barrier-considerations for dermal absorption studies. Front Toxicol. 
2023;5:1271833.

 4. Rimpelä A-K, Hagström M, Kidron H, Urtti A. Melanin targeting for intra-
cellular drug delivery: Quantification of bound and free drug in retinal 
pigment epithelial cells. J Control Release. 2018;283:261–8.

 5. Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparti-
cles: as a naturally active platform for imaging-guided disease therapy. 
Mater Today Bio. 2023;23: 100894.

 6. Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, et al. 
3D cell culture models: drug pharmacokinetics, safety assessment, and 
regulatory consideration. Clin Transl Sci. 2021;14:1659–80.

 7. Avila AM, Bebenek I, Bonzo JA, Bourcier T, Davis Bruno KL, Carlson 
DB, et al. An FDA/CDER perspective on nonclinical testing strategies: 
Classical toxicology approaches and new approach methodologies 
(NAMs). Regul Toxicol Pharmacol. 2020;114: 104662.

 8. Crawford NG, Kelly DE, Hansen MEB, Beltrame MH, Fan S, Bowman SL, 
et al. Loci associated with skin pigmentation identified in African popula-
tions. Science. 2017;358:eaan8433.

 9. Martin AR, Lin M, Granka JM, Myrick JW, Liu X, Sockell A, et al. An unex-
pectedly complex architecture for skin pigmentation in Africans. Cell. 
2017;171:1340-1353.e14.

 10. Zaaijer S, Capes-Davis A. Ancestry matters: building inclusivity into pre-
clinical study design. Cell. 2021;184:2525–31.

 11. Jakubiak P, Reutlinger M, Mattei P, Schuler F, Urtti A, Alvarez-Sánchez 
R. Understanding molecular drivers of melanin binding to support 
rational design of small molecule ophthalmic drugs. J Med Chem. 
2018;61:10106–15.

 12. Bahrpeyma S, Reinisalo M, Hellinen L, Auriola S, Del Amo EM, Urtti A. 
Mechanisms of cellular retention of melanin bound drugs: Experiments 
and computational modeling. J Control Release. 2022;348:760–70.

 13. Hurbain I, Romao M, Sextius P, Bourreau E, Marchal C, Bernerd F, et al. 
Melanosome distribution in keratinocytes in different skin types: 
melanosome clusters are not degradative organelles. J Invest Dermatol. 
2018;138:647–56.

 14. Alaluf S, Atkins D, Barrett K, Blount M, Carter N, Heath A. Ethnic variation 
in melanin content and composition in photoexposed and photopro-
tected human skin. Pigment Cell Res. 2002;15:112–8.

 15. Del Bino S, Ito S, Sok J, Nakanishi Y, Bastien P, Wakamatsu K, et al. Chemi-
cal analysis of constitutive pigmentation of human epidermis reveals 
constant eumelanin to pheomelanin ratio. Pigment Cell Melanoma Res. 
2015;28:707–17.

 16. Del Bino S, Duval C, Bernerd F. Clinical and biological characterization of 
skin pigmentation diversity and its consequences on UV impact. Int J Mol 
Sci. 2018. https:// doi. org/ 10. 3390/ ijms1 90926 68.

 17. Cohen C, Flouret V, Herlyn M, Fukunaga-Kalabis M, Li L, Bernerd F. Induced 
pluripotent stem cells reprogramming overcomes technical limitations 
for highly pigmented adult melanocyte amplification and integration in 
3D skin model. Pigment Cell Melanoma Res. 2023;36:232–45.

 18. Edge R, Riley PA, Truscott TG. Does iron chelation by eumelanin con-
tribute to the ethnic link with maternal mortality? Eur J Obstet Gynecol 
Reprod Biol. 2022;278:107–8.

 19. Temoçin Z, Kim E, Li J, Panzella L, Alfieri ML, Napolitano A, et al. The 
analgesic acetaminophen and the antipsychotic clozapine can each 
redox-cycle with melanin. ACS Chem Neurosci. 2017;8:2766–77.

 20. Rimpelä A-K, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, 
et al. Implications of melanin binding in ocular drug delivery. Adv Drug 
Deliv Rev. 2018;126:23–43.

 21. Pelkonen L, Tengvall-Unadike U, Ruponen M, Kidron H, Del Amo EM, Rein-
isalo M, et al. Melanin binding study of clinical drugs with cassette dosing 
and rapid equilibrium dialysis inserts. Eur J Pharm Sci. 2017;109:162–8.

 22. Tanaka M, Ono C, Yamada M. Absorption, distribution and excretion of 
14C-levofloxacin after single oral administration in albino and pigmented 
rats: binding characteristics of levofloxacin-related radioactivity to mela-
nin in vivo. J Pharm Pharmacol. 2004;56:463–9.

 23. Hsueh HT, Chou RT, Rai U, Liyanage W, Kim YC, Appell MB, et al. Machine 
learning-driven multifunctional peptide engineering for sustained ocular 
drug delivery. Nat Commun. 2023;14:2509.

 24. Cheruvu NPS, Amrite AC, Kompella UB. Effect of eye pigmentation on 
transscleral drug delivery. Invest Ophthalmol Vis Sci. 2008;49:333–41.

 25. Du W, Sun S, Xu Y, Li J, Zhao C, Lan B, et al. The effect of ocular pigmenta-
tion on transscleral delivery of triamcinolone acetonide. J Ocul Pharmacol 
Ther. 2013;29:633–8.

 26. Banning TP, Heard CM. Binding of doxycycline to keratin, melanin and 
human epidermal tissue. Int J Pharm. 2002;235:219–27.

 27. Kronstrand R, Roman M, Hedman M, Ahlner J, Dizdar N. Dose-hair con-
centration relationship and pigmentation effects in patients on low-dose 
clozapine. Forensic Sci Med Pathol. 2007;3:107–14.

 28. Borges CR, Roberts JC, Wilkins DG, Rollins DE. Cocaine, benzoylecgonine, 
amphetamine, and N-acetylamphetamine binding to melanin subtypes. 
J Anal Toxicol. 2003;27:125–34.

 29. Gerstenberg B, Schepers G, Voncken P, Völkel H. Nicotine and cotinine 
accumulation in pigmented and unpigmented rat hair. Drug Metab 
Dispos. 1995;23:143–8.

 30. Zemel E, Loewenstein A, Lei B, Lazar M, Perlman I. Ocular pigmentation 
protects the rabbit retina from gentamicin-induced toxicity. Invest Oph-
thalmol Vis Sci. 1995;36:1875–84.

https://doi.org/10.3390/ijms19092668


Page 10 of 10Zaaijer and Groen  Human Genomics          (2024) 18:113 

 31. Robbie SJ, von Leithner PL, Ju M, Lange CA, King AG, Adamson P, et al. 
Assessing a novel depot delivery strategy for noninvasive administra-
tion of VEGF/PDGF RTK inhibitors for ocular neovascular disease. Invest 
Ophthalmol Vis Sci. 2013;54:1490–500.

 32. Pardiñas AF, Kappel DB, Roberts M, Tipple F, Shitomi-Jones LM, King 
A, et al. Pharmacokinetics and pharmacogenomics of clozapine in an 
ancestrally diverse sample: a longitudinal analysis and genome-wide 
association study using UK clinical monitoring data. The Lancet Psychia-
try. 2023;10:209–19.

 33. Harrell AW, Sychterz C, Ho MY, Weber A, Valko K, Negash K. Interrogating 
the relationship between rat in vivo tissue distribution and drug property 
data for >200 structurally unrelated molecules. Pharmacol Res Perspect. 
2015;3: e00173.

 34. Yerger VB, Malone RE. Melanin and nicotine: a review of the literature. 
Nicotine Tob Res. 2006;8:487–98.

 35. King G, Moolchan ET, Bendel RB, Yerger VB. Tanning capacity and 
nicotine dependence among African Americans. J Natl Med Assoc. 
2018;110:358–66.

 36. Liakoni E, St Helen G, Dempsey DA, Jacob P 3rd, Tyndale RF, Benowitz NL. 
Relationship between skin melanin index and nicotine pharmacokinetics 
in African American smokers. Drug Alcohol Depend. 2019;204: 107474.

 37. Alexander AC, Nollen NL, Ahluwalia JS, Hébert ET, Businelle MS, Kendzor 
DE. Darker skin color is associated with a lower likelihood of smoking 
cessation among males but not females. Soc Sci Med. 2019;240: 112562.

 38. Court MH, Zhu Z, Masse G, Duan SX, James LP, Harmatz JS, et al. Race, 
gender, and genetic polymorphism contribute to variability in acetami-
nophen pharmacokinetics, metabolism, and protein-adduct concentra-
tions in healthy African–American and European–American volunteers. J 
Pharmacol Exp Ther. 2017;362:431–40.

 39. Taylor K, Modi S, Bailey J. An analysis of trends in the use of animal and 
non-animal methods in biomedical research and toxicology publications. 
Front Lab Chip Technol. 2024;3:1426895.

 40. Wang M, Fang Z, Yoo B, Bejerano G, Peltz G. The effect of population 
structure on murine Genome-Wide association studies. Front Genet. 
2021;12: 745361.

 41. Center for Drug Evaluation, Research. S10 Photosafety Evaluation of 
Pharmaceuticals [Internet]. U.S. Food and Drug Administration. FDA; 2020 
[cited 2024 Jun 26]. Available from: https:// www. fda. gov/ regul atory- infor 
mation/ search- fda- guida nce- docum ents/ s10- photo safety- evalu ation- 
pharm aceut icals

 42. Reinen J, van Sas P, van Huygevoort T, Rubio L, Scase K, Wenker M. Devel-
opment of a Phototoxicity Testing Strategy for Accurate Photosafety 
Evaluation of Pharmaceuticals Based on the Assessment of Possible 
Melanin-Binding Effects. Int J Toxicol. 2018;37:296–307.

 43. Larsson BS. Interaction between chemicals and melanin. Pigment Cell 
Res. 1993;6:127–33.

 44. Jakubiak P, Cantrill C, Urtti A, Alvarez-Sánchez R. Establishment of an 
in vitro-in vivo correlation for melanin binding and the extension of the 
ocular half-life of small-molecule drugs. Mol Pharm. 2019;16:4890–901.

 45. Salminen L, Urtti A, Periviita L. Effect of ocular pigmentation on pilocar-
pine pharmacology in the rabbit eye. I. Drag distribution and metabo-
lism. Int J Pharm. 1984;18:17–24.

 46. Józsa L, Nemes D, Pető Á, Kósa D, Révész R, Bácskay I, et al. Recent options 
and techniques to assess improved bioavailability: in vitro and ex vivo 
methods. Pharmaceutics. 2023. https:// doi. org/ 10. 3390/ pharm aceut ics15 
041146.

 47. Fitzpatrick TB. Soleil et peau. J Med Esthet. 1975;2:33–4.
 48. Del Bino S, Sok J, Bessac E, Bernerd F. Relationship between skin 

response to ultraviolet exposure and skin color type. Pigment Cell Res. 
2006;19:606–14.

 49. Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow 
RA Jr, et al. Rethinking drug design in the artificial intelligence era. Nat 
Rev Drug Discov. 2020;19:353–64.

 50. Kühnl J, Tao TP, Brandmair K, Gerlach S, Rings T, Müller-Vieira U, et al. Char-
acterization of application scenario-dependent pharmacokinetics and 
pharmacodynamic properties of permethrin and hyperforin in a dynamic 
skin and liver multi-organ-chip model. Toxicology. 2021;448: 152637.

 51. Benito-Martínez S, Zhu Y, Jani RA, Harper DC, Marks MS, Delevoye C. 
Research techniques made simple: cell biology methods for the analysis 
of pigmentation. J Invest Dermatol. 2020;140:257-268.e8.

 52. Hall MJ, Lopes-Ventura S, Neto MV, Charneca J, Zoio P, Seabra MC, et al. 
Reconstructed human pigmented skin/epidermis models achieve 
epidermal pigmentation through melanocore transfer. Pigment Cell 
Melanoma Res. 2022;35:425–35.

 53. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Gar-
rison EP, Kang HM, et al. A global reference for human genetic variation. 
Nature. 2015;526:68–74.

 54. Kang HY, Lee JW, Papaccio F, Bellei B, Picardo M. Alterations of the 
pigmentation system in the aging process. Pigment Cell Melanoma Res. 
2021;34:800–13.

 55. For chemists, the AI revolution has yet to happen. Nature. 2023;617:438.
 56. Huerta EA, Blaiszik B, Brinson LC, Bouchard KE, Diaz D, Doglioni C, et al. 

FAIR for AI: an interdisciplinary and international community building 
perspective. Sci Data. 2023;10:487.

 57. Embedding AI in biology. Nat Methods. 2024;21:1365–6.
 58. Larsson B, Oskarsson A, Tjälve H. Binding of paraquat and diquat on 

melanin. Exp Eye Res. 1977;25:353–9.
 59. Zimmermann S, Wolff C, Sures B. Toxicity of platinum, palladium and 

rhodium to Daphnia magna in single and binary metal exposure experi-
ments. Environ Pollut. 2017;224:368–76.

 60. Franken A, Eloff FC, du Plessis J, Badenhorst CJ, Du Plessis JL. In vitro 
permeation of platinum through african and caucasian skin. Toxicol Lett. 
2015;232:566–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s10-photosafety-evaluation-pharmaceuticals
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s10-photosafety-evaluation-pharmaceuticals
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s10-photosafety-evaluation-pharmaceuticals
https://doi.org/10.3390/pharmaceutics15041146
https://doi.org/10.3390/pharmaceutics15041146

	Implementing differentially pigmented skin models for predicting drug response variability across human ancestries
	Abstract 
	Background
	Main text
	Melanin biology across skin tones
	Clinical implications of drug-melanin interactions
	Skin-specific drug-melanin interactions that alter pharmacokinetics
	INDs and diversity
	A four-pillar workflow for predicting melanin-based differential drug responses in preclinical research
	What are critical variables to consider when selecting an appropriate skin cell model? (also summarized in Table 2)
	Considerations for the genetic backgrounds of cell models
	Considerations for determining the pigmentation phenotype of skin cell models in vivo and in vitro


	Broader impacts
	Conclusion
	Acknowledgements
	References




