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1 Introduction

Dark matter (DM) is a major driving force in the fields of particle physics, cosmology
and astrophysics, and is potentially one of the best clues to physics beyond the Standard
Model (SM). The ΛCDM model of cosmology is currently the best model we have for
explaining many cosmological experiments involving big-bang nucleosynthesis (BBN), the
cosmic microwave background (CMB) and large scale structure (LSS), which occur at scales
of O(1 Mpc) and larger. However, several observations of small scale structure are hard
to explain with collisionless cold DM. Some of the most studied small scale puzzles are
known as ‘core vs. cusp’ [1–4], ‘missing satellites’ [5, 6], ‘too big to fail’ [7, 8], and the
‘diversity of rotation curves’ [9]. Several proposed solutions to these small scale structure
puzzles exist, such as warm dark matter and the inclusion of dissipative baryonic processes
into the numerical simulations [10–13]. One such compelling notion is self-interacting dark
matter (SIDM): it has been known for some time that if dark matter self-interacts, these
self-interactions can potentially solve the small scale puzzles [14–17].

Importantly, these small scale puzzles occur at several different length scales, or effec-
tively, several different velocity scales. If one assumes that the DM self-interactions are
velocity independent, then it is difficult to explain all small scale structure puzzles with
SIDM while not violating experimental upper limits of the self-interaction strength. An
alternative path is to invoke moderate velocity dependence in the self-interaction cross
section [18]. This allows the accommodation of constraints on DM self-interactions set at
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relative velocities of O(103−104 km/s) while still allowing the self-interactions to be strong
enough to explain the small scale puzzles which have velocities of O(102−103 km/s).

A simple method for producing velocity dependent cross sections is through an s-
channel resonance [19]. One mechanism for producing these resonances naturally involves
dark mesons that are composed of combinations of light and heavy dark quarks. The
process of interest is then analogous to the Υ(4s)−BB̄ resonance exploited in B−factory
colliders [20].

In this paper we introduce a supersymmetric SIDM model, which we call Super-
Resonant Dark Matter (SRDM). The main features of the model are:

1. SUSY : a supersymmetric dark sector that is compatible with the Minimal Super-
symmetric Standard Model (MSSM) and is UV complete in the sense of introducing
no new naturalness problems beyond the “little hierarchy problem” present in the
MSSM. SRDM is assumed to couple to the MSSM via a dark photon.

2. SQCD: the UV description of the dark sector is supersymmetric QCD (SQCD), while
the low-energy effective theory is one of mesons with an Affleck-Dine-Seiberg (ADS)
superpotential [21]. Degenerate supersymmetric quark masses, enforced via flavor
symmetry, are introduced to stabilize the potential.

3. Resonance: like non-SUSY QCD, the model experiences chiral symmetry breaking.
The extra control over the dynamics that is provided by SUSY ensures that the
flavor singlet and adjoint mesons come in a 2:1 mass ratio at tree level. This is a new
mechanism for naturally producing resonances.

4. Splitting: to account for small scale structure puzzles at different velocities the above
mass ratio must be shifted by an O(10−7) amount. In SRDM, this extremely small
mass ratio splitting is achieved naturally by 1-loop corrections from meson self-
interactions.

5. Predictive: resonant SIDM models generally have three continuous parameters which
determine self-interactions and need to be fixed, giving them flat directions in χ2-fits.
For a fixed number of flavors, our model has only two and picks out a specific dark
matter mass and self-interaction strength.

6. Charged to Neutral Ratio: the relic DM is produced via freeze-in. It can be completely
neutral under the dark U(1) or can have an O(1) fraction of charged DM, depending
on the value of the dark photon coupling.

The structure of the paper is as follows. In section 2 we describe the details of the model
and how the crucial mass ratio is generated via chiral symmetry breaking. We also describe
how the model is coupled to a spontaneously broken U(1)D gauge symmetry, and how this
massive dark photon is coupled in turn to the Standard Model. Additionally, we analyze
the effect of supersymmetry breaking. In section 3 we study the DM self-interactions and
determine the parameter space which could allow our SRDM model to account for certain
small scale structure puzzles. In section 4 we calculate the relic abundance and determine
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through which mechanisms the correct relic abundance can be achieved. In section 5 we
summarize our results and discuss possible ways of extending the analysis of the paper. We
also include in appendix A a calculation of the 1-loop mass corrections and in appendix B
we discuss anomaly matching as it relates to dark meson stability.

2 Model

2.1 Model overview

The model consists of a visible sector coupled weakly to a dark sector via a dark photon.
The visible sector is identified with the Minimal Supersymmetric Standard Model (MSSM),
into which our SM is embedded. The scale of superpartner masses is taken sufficiently large
such that all direct collider bounds are evaded (at the price of some sub-percent level fine
tuning). We assume that a supersymmetry (SUSY) breaking sector is coupled indirectly to
the visible sector, giving rise to the soft breaking mass terms of the MSSM. Importantly,
we assume that the only coupling of the dark sector to SUSY breaking is via the MSSM,
leading to an almost completely supersymmetric dark sector, with small calculable SUSY
breaking effects that we explain in section 2.4. This will allow us to reliably predict the
spectrum of the dark sector in a theory that has underlying strong interactions. It will also
make degeneracies in the spectrum natural. Note that the mass scales we find in the dark
sector are small compared to the scale of SUSY breaking in the MSSM.

For the dark sector, we simply use supersymmetric quantum chromodynamics (SQCD)
with Nc colors and Nf flavors. In the UV, the matter content is just Nf copies of quark and
anti-quark chiral superfields transforming in the fundamental representation of the SU(Nc)
non-abelian gauge group. The quark masses mq are assumed to be degenerate and below
the confinement scale, mq � Λ. The light degrees of freedom in SUSY gauge theories
always correspond to holomorphic gauge invariants (gauge invariants formed without the
use of complex conjugation)—in the case of SQCD, these will be the meson (and when
Nc ≤ Nf , baryon) superfields.1 When Nc ≤ Nf these composite fields are interpreted
as actual confined degrees of freedom, while when Nc > Nf (this work) the gauge group
is partial broken and the mesons are the remaining uneaten massless degrees of freedom
describing the “moduli space”. The couplings between these mesons is non-perturbative at
the confinement scale but become calculable at scales below the confinement scale, as we
will explain in detail below.

2.2 The supersymmetric spectrum of resonant models

First we give a brief overview of the supersymmetric spectrum of our hidden sector based on
quarks and anti-quarks with SU(Nf )L×SU(Nf )R flavor symmetry in the fundamental (and
anti-fundamental) of SU(Nc), with masses below the strong coupling scale. As explored
in the 1990’s, the detailed form of the low-energy dynamics of these theories depends on
the exact relation between the number of flavors Nf and the number of colors Nc. For

1We will generally use the term meson to mean the meson superfield, not just the scalar component.
Similarly with the term quark.
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Nf < Nc, non-perturbative dynamics gives rise to an Affleck-Dine-Seiberg (ADS) type
superpotential

WADS = (Nc −Nf )
(

Λ3Nc−Nf

H
det M̃

) 1
Nc−Nf

(2.1)

M̃ij = Qai Q̄a j (2.2)

where ΛH is the holomorphic dynamical scale,2 M̃ denotes the Nf ×Nf meson matrix, Q
and Q̄ are the underlying chiral quark superfields, and a is a color index while i, j are flavor
indices. Note that M̃ has (non-canonical) dimension 2. In the absence of other terms, the
dependence of the potential on inverse powers of the meson field implies the expectation
values of the fields will run off to infinity.

In order to stabilize the potential, we introduce the quark mass term

Wmass = mij
q QiQ̄j = TrmqM̃ (2.3)

As the quark mass increases towards the dynamical scale, the meson VEV decreases towards
the dynamical scale thereby increasing the gauge coupling at the point where the gauge
group is broken.

Just like the quark mass term in the superpotential, the quark kinetic terms in the
Kähler potential can also be written in terms of the meson fields. At tree level it is given
by [22] substituting the gauge field V equations of motion into the quark Kähler potential
Q†eVQ+ Q̄†e−V

T
Q̄ and projecting onto the meson field

Ktree = 2 Tr
√
M̃ †M̃ . (2.4)

We will work throughout with the quark mass far below the confinement scale. The squark
VEVs are therefore large and hence break the gauge group well above the confinement
scale. Being at weak coupling, eq. (2.4) is an excellent approximation.

In the following, we will decompose the meson matrix into its singlet and adjoint
components

M̃ = 1√
Nf

S · 1 +M (2.5)

where TrM = 0. We take a supersymmetric (flavor universal) quark mass matrix mij
q =

µδij . The flavor symmetry will be critical in producing the 2:1 mass ratio.3 Our theory
2This is the scale dynamically generated by the running of the holomorphic gauge coupling, which

appears in front of the gauge kinetic term and whose beta function is 1-loop exact. The true dynamical
scale Λ is obtained by canonically normalizing the gauge kinetic term, and is given by the NSVZ beta
function. The two differ by an O(1) irrelevant for our purposes and we will interchange them freely.

3For readers ideologically inclined against global symmetries, one can very weakly gauge SU(Nf/2) ×
SU(Nf/2)×Z2 to ensure the flavor universality, as long as the gauge coupling is small enough to avoid the
annihilation of dark matter pions into gauge bosons α� 10−5 which does not contradict the weak gravity
conjecture.
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then takes the form

K = 2 Tr
√
M̃ †M̃ (2.6)

W = (Nc −Nf )
(Λ3Nc−Nf

det M̃

) 1
Nc−Nf +

√
NfµS (2.7)

We first consider the Kähler potential. Since we know that the superpotential will
give the singlet a VEV, let us implement this with the shift M̃ → v2 + M̃ , or equivalently
S →

√
Nfv

2 + S. Expanding around this VEV gives

K = 2 Tr
√
M̃ †M̃

= 1
2v2 Tr M̃M̃ † − 1

8v4

(
Tr M̃2M̃ † + Tr M̃M̃ †2

)
+ · · ·

(2.8)

where we have discarded the sub-quadratic terms that do not contribute to the Lagrangian.
Rescaling the mesons M̃ →

√
2 vM̃ to get canonically normalized fields leaves us with

K = Tr M̃M̃ † − 1
2
√

2 v

(
Tr M̃2M̃ † + Tr M̃M̃ †2

)
+ · · · (2.9)

We now consider the superpotential and expand the superpotential around the meson
VEV as above. We ignore the constant term. For the potential expanded about the SUSY
ground state, the term linear in S must cancel, which yields the relation

Λ3Nc−Nf = µNc−Nf v2Nc (2.10)

For the remaining terms, with the required meson rescaling M̃ →
√

2 vM̃ , and by employing
eq. (2.5) and Tr M̃2 = S2 + TrM2, we arrive at

W = µ

(
Nc

Nc −Nf
S2 + TrM2

)

−
√

2µ
3v

(
Nc(2Nc −Nf )√
Nf (Nc −Nf )2S

3 + 3 2Nc −Nf√
Nf (Nc −Nf )

S TrM2 + 2 TrM3
)

+ · · ·
(2.11)

Notice that the adjoint meson mass is twice the quark mass, m ≡ 2µ. Additionally,
we can see the tree level mass ratio of the singlet to the non-singlet mesons

r = Nc

Nc −Nf
. (2.12)

We have also verified this result using an explicit parameterization of the quark superfields
along the D-flat directions.

Since we want the singlet to provide an s-channel resonance in adjoint meson scattering,
we will require r = 2 or Nc = 2Nf . With the definition (2.12) the superpotential becomes

W = 1
2m(rS2 + TrM2)−

√
2µ

3v

(
r(r + 1)√

Nf
S3 + 3r + 1√

Nf
S TrM2 + 2 TrM3

)
+ · · · (2.13)
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In appendix A we use eq. (2.9) and eq. (2.13) to compute the one-loop mass corrections
of the mesons. For the relevant case of r = 2, the one-loop corrections give

r1-loop = mS/m ≡ 2(1− δ) = 2
(

1− µ2

16π2v2
104 + 41N2

f

Nf
log v

2µ

)
(2.14)

where mS is the mass of the singlet and we have introduced the mass splitting δ. Note that
we are being agnostic about the renormalization scheme as we are only interested in the log
running. We see that the singlet sits below threshold so that the adjoint-adjoint scattering
matrix element is maximal at zero velocity. Finally, we will refer to the dimensionless
Yukawa coupling

y ≡ µ/v. (2.15)

While in this work we focus on the gauge group SU(Nc), the phenomenology is qual-
itatively the same for the gauge groups SO(Nc) with Nf flavors and Sp(2Nc) with 2Nf

flavors. The different Dynkin indices change the power of det M̃ in the superpotential, and
thus change eq. (2.12). With SO gauge groups one simply replaces Nc → Nc − 2 while for
Sp the replacement is Nc → Nc + 1.

2.3 U(1)D gauge interaction

A dark photon, which we denote by A′, is the means by which the SM and dark sectors are
coupled. It comes from gauging the U(1)D subgroup of the flavor symmetry group. There
is then a kinetic mixing between the dark photon and the SM U(1)Y gauge boson. The
SUSY breaking effects of this coupling are explored in the next subsection.

In our model we take Nf to be even and a quark charge matrix Q such that Q2 ∝ 1.
This choice is sufficient to forbid a neutral meson from decaying to two dark photons (see
appendix B and [23]). Therefore we have an equal number of positively and negatively
charged quarks. We also define gD as the U(1)D coupling strength, in a normalization
where charged dark mesons have charge ±1.

The dark photon gives a one-loop mass renormalization to charged mesons. In the
case of a dark photon with mass mA′ below the cutoff v this becomes

m± = m0

(
1 + g2

D

8π2 log v

mA′

)
(2.16)

In this paper we will generally take gD to be larger than the DM self-coupling y, which
we will find in section 3 to be ∼ 5 × 10−4. This mass correction is thus larger than the
mass shift in eq. (2.14) and the charged dark matter is not expected to take part in the
resonant interaction fundamental to our model. However, the analysis can be repeated
when gD is small and the charged DM is approximately degenerate with the neutral DM.
This case is qualitatively very similar. Therefore, the low velocity, resonant part of the DM
self-scattering cross section is dominated by neutral DM, while the high velocity part will
be dominated by dark photon exchange between charged DM (since the U(1)D coupling is
greater than the DM self-coupling).
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2.4 Effect of SUSY breaking

Supersymmetry, while critical for producing a resonance for neutral meson scattering, is
not essential as an exact symmetry for a working model. Moreover, SUSY breaking is a
necessary result of the coupling between the visible and hidden sectors. Since the visible
sector is the MSSM with a sizeable amount of SUSY breaking, it is inevitable that at least
some of this SUSY breaking will be transmitted to the hidden sector, even if we assume no
direct coupling between the hidden sector and dynamical SUSY breaking sector.4 In this
section we explain what the leading SUSY breaking effects in the hidden sector are, some
of which will be important for the determination of the relic density and indirect detection
constraints.

The actual link to the visible sector will be as usual a small kinetic mixing between
the dark photon and U(1)Y gauge boson B of the (MS)SM. This kinetic mixing itself can
be fully supersymmetric of the form

ε

∫
d2θWDαW

α
Y + h.c. = ε(−FDαβFαβY + 4iλ̄D/∂λY + 2DDDY) (2.17)

where the Wαs are field strength chiral superfields. Abelian vector superfields contain a
photon, a photino, and an auxiliary D-term. Treating ε perturbatively, the largest effect
on the dark spectrum comes from the mixing of the D-terms given by

L ⊃ 1
2D

2
D +DDJD + 1

2D
2
Y +DYJY + 2εDDDY (2.18)

where the Js are the usual D-terms g
∑
i qi|φi|2 formed from the scalar components φi of the

chiral superfields charged under the U(1)’s. After integrating out the auxiliary D-terms one
obtains the Lagrangian for the physical degress of freedom. In the ε = 0 case of no mixing
one just obtains the usual two independent D-terms (two terms quadratic in the respective
Js), giving rise to the expected scalar quartic terms. However in the presence of mixing a
third term is introduced, which at linear order in ε is equal to 2εJDJY. Importantly, JY is
quadratic in the MSSM Higgs VEV vh and generates a mass term for scalar fields charged
under U(1)D,

2εgY2 (|Hu|2 − |Hd|2)gD
∑
i

qiφ
∗
iφi (2.19)

where the Hs are the up- and down-Higgses of the MSSM and the sum is over the dark
degrees of freedom. Using the MSSM identities |Hu|2 − |Hd|2 = v2

h
2 cos 2β and gY = e

cos θW
,

this mass term is

≈ εgD
e

cos 2β(56GeV)2∑
i

qiφ
∗
iφi (2.20)

4In particular, we assume the gravity-mediation [24, 25] or anomaly mediation [26, 27] is negligible in
the hidden sector. For example, low-energy gauge mediation [28, 29] or vector mediation [30, 31] models
belong to this category.
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Figure 1. SUSY breaking contribution from dark charged meson mass correction.

Note that ε, gD, and β are all free parameters. This shifts the mass-squared of charged
bosons (no effect on fermions at tree level), so that combined with the result of the previous
subsection we have

m2
±,bos = m2

0

(
1 + g2

D

4π2 log v

mA′
± εgD

e
cos 2β (56GeV)2

m2
0

)
(2.21)

The competition between the SUSY preserving and SUSY breaking term leads to two
situations. When the SUSY preserving term dominates, we have lighter neutral DM and
heavier charged DM. When the SUSY breaking term dominates the lightest particles in
the dark sector are charged bosons, and U(1)D charge conservation ensures their stability.
It is important in this case for the neutral DM not to be too much heavier, otherwise it
will be depleted and unable to participate in the resonant self-interaction. For simplicity
we will therefore insist that the lightest dark particle (LDP) is neutral, whereby the SUSY
preserving term must be larger than the SUSY breaking term.5 In fact, we are interested
in ε ≈ 10−12 as we will discuss later (see figure 5), and hence this is indeed the case.6

All other effects of the D-term on the dark spectrum are subleading. The largest
additional correction is expected to come from the large SUSY breaking bino mass mB̃.
Adding a (SUSY preserving) Stückelberg mass mD to the dark photon we obtain the
gaugino mass matrix (

/p−mD 2ε/p
2ε/p /p−mB̃

)
(2.22)

This yields a corrected dark photino mass mD(1− 4ε2 mD
mB̃−mD

) at leading order in ε. Due
to the ε2 suppression of the correction and the expected smallness of the dark photon mass
in comparison to the SM photino mass, the effect on the dark meson spectrum is negligible.
A more important source of SUSY breaking is a dark charged meson mass correction from
the diagram in figure 1,

∆m2 ∝ αD
4π ε

2m2
B̃

log
m2
B̃

m2 (2.23)

As a loop correction at order ε2, this is negligible when compared with the tree level D-term
SUSY breaking.

5This is a somewhat conservative bound. It is possible to be above this bound if the dark QED and
SUSY breaking contributions to the charged bosons mass cancel. This would allow the lightest charged
bosons to be the SIDM as it would be resonantly enhanced. We don’t discuss this situation further.

6A discussion of how such small kinetic mixings can be achieved is discussed in [32].
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Figure 2. The velocity dependence of the DM self-interaction cross section. The red, blue, and
green data points come, respectively, from the analysis of dwarf galaxies, LSB spiral galaxies, and
galaxy clusters. These are taken directly from [18]. There also exist error bars for 〈v〉, which are
relevant for the χ2 test in figure 3, but these are not shown. The dashed gray lines represent the
values of 〈σv〉 /m if σ/m were the velocity independent values labeled by the line. The orange,
cyan, and magenta curves correspond to the points in parameter space shown in figure 3.

3 Self-interactions

As mentioned in the introduction, one of the key features of SRDM is that it allows for
velocity dependent self-interactions capable of resolving small scale puzzles seen in the dark
matter halos of dwarf galaxies. DM halos seen in dwarf galaxies, low surface brightness
(LSB) spiral galaxies, and relaxed galaxy clusters whose halos are appropriately spherical
were studied in [18]. There, specific ranges of the cross section at given average relative
velocities were shown to be a potential resolution to the small scale puzzles. This data is
included in figure 2. In this section, we calculate the resonant self-interaction cross section
and find the parameter space of the model which is consistent with their analysis.

In our model, we will have two general types of dark matter: those charged under
U(1)D and those that are neutral. The charged DM, as we shall see, will be completely
negligible when it comes to self-interactions in dark matter halos, as their dark QED mass
corrections of order αD prevent a maximally enhanced resonant cross section. We shall also
see that the abundance of charged DM is suppressed relative to the neutral DM because
of the dark QED mass correction.

To compare the effectiveness of the SRDM model in describing small scale puzzles
in dark matter halos, we must calculate the thermally averaged cross section 〈σv〉, where
the incoming and outgoing particles are neutral DM. Using only neutral relic DM is an
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assumption that will be justified a posteriori for a wide range of dark photon couplings.
However, for large values of αD we will find that a sizeable fraction of the DM is charged.
Including these extra degrees of freedom and their dark QED interactions will lead to at
most O(1) changes in the best fit values of m and y.

For all of the experimental data of interest, we are well within the non-relativistic
regime. We also assume the self-interactions are strong enough such that the velocity
distribution is roughly Boltzmannian. Then the thermally averaged cross section can be
written as

〈σv〉 ≈ 1
(
√

2πv0)3

∫
d3vσint(v)ve−v2/2v2

0 (3.1)

where v is the relative speed of the incoming particles and the mean relative speed is given
by 〈v〉 =

√
8v0/
√
π. We have also defined σint to be the average two-to-two cross section

given by

σint(v) ≈ 1
64πm2

1
2!N 2

neutral

neutral∑
i1,i2,f1,f2

|Mi1,i2→f1f2 |2 (3.2)

where the indices i1, i2, f1, f2 go over all neutral DM states (including helicities), and
Nneutral is the total number of such states. We have also made the approximations s→ 4m2,
t → 0, u → 0; however, we must be careful to preserve the terms in the denominator of
the form (s−m2

S). We can therefore write the cross section as

σint(s) = σ0 + σ1m
2

s−m2
S

+ σ2m
4

(s−m2
S)2 (3.3)

In the denominator, we must be a little more careful with our non-relativistic approximation
and write s ≈ 4m2 + m2v2. Using mS = 2m(1 − δ) we get s −m2

S ≈ m2(8δ + v2). Since
both δ and v2 will be very small in the non-relativistic regime, the final term of eq. (3.3)
is dominant.

The thermally averaged cross section is given by

〈σv〉 ≈ 16σ2

π2 〈v〉3
×
(
−1− (1 + ξ)eξEi(−ξ)

)
with ξ = 32δ

π 〈v〉2
(3.4)

where Ei(−ξ) is the exponential integral function. For the purpose of intuition, it is helpful
to note the following limiting behavior

〈σv〉 ≈


σ2〈v〉
64δ2 〈v〉 �

√
δ

16σ2
π2〈v〉3

(
log

(
π〈v〉2
32δ

)
− γM − 1

) √
δ � 〈v〉 � 1

(3.5)

where γM is the Euler-Mascheroni number. Using the data in figure 2 to estimate the
low- to high-velocity transition to be around vtrans ∼ 500 km/s, we can estimate that
δ = v2

trans/8 ∼ 10−7. For Nf = 2, this will imply y ∼ 10−3.
Also, since σ2 ∝ y4/m2 and δ ∝ y2 log

(
y−1), we see that for fixed Nf the thermally

averaged cross section is a function of 〈v〉 with only two parameters, m and y. This is
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Figure 3. Results of a χ2-fit to the data from [18] for Super-Resonant Dark Matter with Nf = 2,
Nf = 4 and Nf = 10. The red, blue, and green shaded regions are the 95% confidence level regions
for fitting to the data from dwarf galaxies, LSB spiral galaxies, and galaxy clusters, respectively.
The black contours correspond to 90%, 95%, and 99% confidence levels for the equally weighted
combination of all three data sets. The orange, cyan, and magenta dots on the Nf = 2 plot
correspond to the curves shown in figure 2. We pick some of these slightly offset from the best fit
point to show variation in figure 2. The actual best fit points are (m = 3.55MeV, y = 5.2× 10−4)
for Nf = 2,(m = 1.74MeV, y = 4.4 × 10−4) for Nf = 4, and (m = 0.54MeV, y = 2.8 × 10−4) for
Nf = 10.

different than many other SIDM models where the mass splitting depends on an additional
continuous parameter. Using only neutral DM external particles, σ2 can be calculated by
hand or with a combination of FeynRules [33, 34], FeynArts [35], and FormCalc [36]. The
result is

σ2 = 8
πN2

f

y4

m2 . (3.6)

The χ2-fits of the thermally averaged cross section for Nf = 2, 4, 10 to the data are
shown in figure 2. The viable parameter space around the best fit values are shown in
figure 3. The main result is that the dark matter has a mass in the MeV range and is
weakly coupled, as expected. This mass range and coupling are also quite constrained.

For example, for Nf = 2 we find best fit values of m = 3.55MeV and y = 5.2× 10−4.
However, a reasonable range for these parameters is a mass between 2.5−5MeV and a
self-interaction coupling between 3× 10−4−10−3. The relation Λ = y−4/5µ (see eq. (2.10))
tells us the dynamical scale of the gauge theory sits around a few GeV. Taking larger values
of Nf while maintaining the mass splitting δ fixed, eq. (2.14) tells us that y must scale as
N
−1/2
f . To maintain 〈σv〉 /m the mass must therefore scale as N−4/3

f . Thus, we cannot
take arbitrarily high values of Nf due to a lower bound on the mass from the neutral LDP
condition (below).
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⊗
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Figure 4. Diagrams for freeze-out and freeze-in via a dark photon.

4 Relic abundance

We have so far presented a model with a natural resonance that is capable of explaining the
small scale puzzles. The final step in producing a viable dark matter model is explaining
the present-day relic abundance. Beyond this, it must be ensured that an O(1) fraction of
the relic DM is neutral and can participate in the resonant interaction (for small enough
αD the charged DM can participate too).

In this section we constrain the parameters of the model by trying to produce the
correct relic abundance for both freeze-out and freeze-in scenarios, which we describe be-
low (detailed calculations can be found, for example, in [37]). We find that freeze-out is
excluded, while freeze-in is viable.

In both scenarios, a dark photon lighter than the dark mesons is ruled out as the
mesons would down-scatter to dark photons, which do not experience the desired resonant
self-interaction. For simplicity we will further assume throughout that mA′ > 2m so that
an on-shell dark photon can decay to two dark mesons.

The first mechanism we consider to produce the DM relic abundance is freeze-out. In
this scenario the SM and dark sectors of the early universe are in thermal equilibrium.
The dominant equilibrating process is pictured on the left of figure 4, where χ± denotes
the charged fermionic mesons and f± SM fermions (electrons). The contributions from
bosonic mesons are subdominant because their cross section is p-wave suppressed, having
an additional factor of v2.7 Note the factor of ε2 arising from dark-SM photon mixing. As
the universe cools below the DM mass, its number density becomes Boltzmann suppressed.
This suppression eventually lowers the rate of the equilibrium process below the Hubble
rate, at which time we say that the dark sector freezes out from the SM sector. With no
more DM number changing processes, its abundance is fixed.

The parameters leading to the correct freeze-out relic abundance for Nf = 2 and
mA′ = 3m are plotted in blue in figure 5, which has been adapted from [37]. In the mass

7One subtlety: for the range of ε relevant to freeze-out, the SUSY breaking mass correction of eq. (2.21)
dominates SUSY preserving term. Therefore, the density of the lighter charged bosonic DM is Boltzmann
enhanced when compared with the heavier fermions. This can overcome the p-wave suppression and thus
put charged bosons in control of the freeze-out process. However, they will be also be Boltzmann enhanced
with respect to the neutral DM and the small relative fraction of neutral DM in the dark sector will be
unable to reproduce the small scale anomalies.

– 12 –



J
H
E
P
1
1
(
2
0
2
2
)
1
6
2

10-1 100 101 102 103
10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

��� (���)

ϵ
����� ��������� ��� � � = �

���� �� �� �����
����� �������

������-��

����

������-�
��

���
����

���
���

��

������ α�=���� ���=����

������� α�=��
-�� ���=����

Figure 5. Constraints on kinetic mixing ε as a function of dark matter mass for Nf = 2 and
mA′ = 3m. The blue freeze-out scenario relic abundance line, green freeze-in relic abundance line,
and teal Neff bound (constraint from effective number of degrees of freedom present during BBN)
are taken from [37]. In magenta, we have added the neutral LDP bound requiring the neutral DM
is lighter than the charged DM. Note that we have assumed the largest possible SUSY breaking
correction with | cos 2β| = 1, which arises in the large tan β limit. The vertical gold-shaded area
indicates the region of parameter space where the SRDM model best fits the data from [18]. The
plot exhibits very weak Nf dependence; in particular, the neutral LDP bound and freeze-in lines
do not depend on Nf while the DM mass decreases for increasing Nf .

range found in section 3 (vertical gold band), and for αD = 0.5, one finds that ε ∼ 10−6.
A smaller dark photon coupling necessitates a larger ε. Also shown is the teal-colored
Neff bound on the effective number of degrees of freedom during Big Bang Nucleosynthesis
(BBN). This bound lies well below the freeze-out line in the mass range of interest and
therefore eliminates the possibility of a freeze-out scenario in our model. The freeze-
out scenario is also excluded by the aforementioned neutral LDP condition (magenta).
Choosing larger Nf or mA′ does not remedy the situation.

The second possibility we explore is the freeze-in scenario. In this case the dark and
SM sectors are never in equilibrium, and the dark sector is populated by decays from the
SM. Specifically, SM particles annihilate to produce dark meson pairs as pictured on the
left of figure 4. This process is dominated by the contribution at temperatures of order
mA′ , when the dark photon is on-shell. One can think of this as two-processes in which
a dark photon is produced (suppressed by ε2) and then decays overwhelmingly to dark
mesons. Plasmon decay, shown on the right of figure 4, also contributes to freeze-in [38]
but is only important at lower DM masses.
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Figure 6. Left: maximum value of the dark photon mass as a function of the dark photon coupling
αD, for several different values of the dark meson mass. Lower meson masses are applicable for
a great number of flavors Nf . Right: the ratio of charged to neutral DM density for Nf = 2
after mutual decoupling, as a function of αD. A smaller coupling leads to a smaller charged mass
splitting and therefore a more resonant self-interaction. As a result, a greater amount of Boltzmann
suppression is required before the DM decouples.

The parameters producing the correct relic abundance in the freeze-in scenario were
calculated8 in [37] and are also plotted in green in figure 5. The result is a viable dark
matter model with ε ∼ 10−12 × (mA′/3mχ)1/2. While only mA′ = 3m is plotted, there is
in fact a wide range of viable dark photon masses. The upper bound on the dark photon
mass comes from the fact that both the freeze-in and Neff lines in the mass range of interest
move up with dark photon mass as ε ∝ m

1/2
A′ . However, the neutral LDP bound exhibits

only weak dependence on mA′ . For αD = 0.5 we have mA′ . TeV while for smaller αD the
bound decreases. For a number of dark meson masses, the maximum viable dark photon
mass as a function of αD is shown in the left panel of figure 6.

There is one important subtlety to take care of in the freeze-in scenario. The dark
photon decays only to charged DM, which is heavier than the neutral DM and does not
participate in the resonance. We must therefore ensure that the dark sector is at one point
in equilibrium with itself so that the charged DM can partially down-scatter to neutral DM.
How much charged DM remains will depend on when the dark sector leaves equilibrium
with itself. We make these estimates below.

Assuming a dark photon of mass mA′ > 2m, the dark matter is produced with tem-
perature9 TDM ∼ T ∼ mA′/2, where T is the SM sector temperature. Redshifting in a

8Note that we use the authors’ calculation of dark photon decay to fermions, while in our model there
are dark fermions and bosons. However because freeze-in is dominated by on-shell dark photons (that
overwhelmingly decay into the dark sector), the difference is unimportant on the scale of figure 5.

9Properly we should say energy and not temperature. However, we check that the dark sector comes
into equilibrium with itself and so use the terms interchangeably.
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radiation dominated era means that p ∝ T , so that while the DM remains relativistic we
have TDM ∼ T . Once the temperature crosses the DM mass threshold, v ≈ p/m ∼ T/m.
Therefore TDM ∼ mv2 ∼ T 2/m. From eq. (3.3) we have σ ≈ σ2/v

4 (before the charged me-
son mass splitting becomes relevant — what we call ‘saturation of the resonance’) and thus

〈σv〉 ∝ σ2

〈v〉3
∝ T−3 (4.1)

On the other hand, the dark matter number density at temperature T after the dark matter
has frozen in goes like

n(T ) = ΩDM,0 ρc,0
m

s(T )
s0
∝ T 3 (4.2)

where ΩDM,0 is the present-day energy fraction of dark matter, ρc,0 is the critical energy
density, and s is entropy density. Therefore, until the resonance saturates, the scattering
rate in the dark sector Γ = n 〈σv〉 is temperature independent. We have checked that for
all αD . 0.5 this exceeds the Hubble rate, which decreases like T 2, at some temperature
before the resonance saturates. The neutral and charged DM do indeed equilibrate.

The resonance saturates once mv2 ∼ 8(m±−m0) (recall the argument of section 3) at
which point the cross section no longer increases as the velocity decreases. At this time the
Boltzmann suppression of the charged DM abundance relative to neutral DM abundance
begins. Therefore, the charged to neutral annihilation rate will decrease exponentially with
decreasing temperature. Once Γ falls below the Hubble rate at dark matter temperature
TD,freezeout, the charged DM is frozen at relative abundance exp(−(m± −m0)/TD,freezeout),
shown in the right panel of figure 6. For αD . 0.01 the charged DM forms a small fraction
of the total relic DM. This justifies a posteriori not including the charged DM interactions
in the self-interaction calculation for a wide range of dark photon couplings.

5 Conclusion

We have proposed a SIDM model based upon supersymmetric QCD. Due to SUSY and
flavor symmetry, the low energy effective theory exhibits a natural 2:1 mass ratio leading
to a velocity dependent self-interaction cross section. Fitting to self-interaction constraints
and small scale puzzles fixes a weak self-coupling and a DM mass in the few MeV range.
We find that while freeze-out is excluded, the freeze-in scenario can reproduce the DM relic
abundance. For a dark photon with a mass just above the DM mass, we find a kinetic
mixing of ε ∼ 10−12, while with a heavier dark photon ε can be a few orders of magnitude
larger. Finally, αD controls the fraction of charged DM, which is O(1) for large αD and
exponentially suppressed for small αD.
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A 1-loop mass ratio calculation

In this appendix we present the details of the one loop adjoint and singlet meson mass
corrections. Recall that the UV SU(Nc) gauge theory is broken to SU(Nc − Nf ) by the
squark VEVs v. At this scale the gauge bosons corresponding to the broken generators eat
some of the quark superfields, with the remaining low energy degrees of freedoms being
the meson superfields. Therefore, the cutoff of the low energy meson theory is v, modulo
order one corrections.

We calculate superfield renormalizations via fermion self-energy diagrams. The leading
correction comes from the diagrams pictured below in figure 7 and 8.

The one-loop renormalization from any one particular diagram is of the form

δZ1-loop = − Cµ2

16π2v2

∫ 1

0
dz(1− z) log −z(1− z)M2

0 + (1− z)M2
bos + zM2

ferm
v2 (A.1)

Where C is a Lagrangian and group theory dependent prefactor.
We must find the Yukawa couplings of the theory to find the values of the prefactors.

We use eq. (2.9) to find the Christoffel symbols of the Kähler metric to be at leading order

Γijk = − 1
2
√

2 v
TrTi{Tj , Tk} (A.2)

With this the Lagrangian’s Yukawa term is

LYukawa= −1
2

(
∂2W

∂M̃jM̃k

− Γijk
∂W

∂M̃i

)
ψjψk + h.c.

= 1
2

√
2µ
v

(
r(2r+1)√

Nf
Sψ2

S + r+2√
Nf

S Trψ2
M + 22r+1√

Nf
ψS TrMψM+3 TrMψ2

M

)
+h.c.

(A.3)
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Figure 7. Diagrams contributing to the mass correction of the singlet.
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Figure 8. Diagrams contributing to the mass correction of the adjoint.

The prefactors, dependent on the representation of the external, internal scalar, and
internal fermion respectively, are found to be

CS,S,S = 2r2(2r + 1)2

Nf
−→
r→2

200
Nf

(A.4)

CS,M,M =
2(N2

f − 1)(2r + 1)2

Nf
−→
r→2

50(N2
f − 1)
Nf

(A.5)

CM,M,M = 9
N2
f − 4
Nf

(A.6)

CM,S,M = 2(r + 2)2

Nf
−→
r→2

32
Nf

(A.7)

CM,M,S = 2(2r + 1)2

Nf
−→
r→2

50
Nf

(A.8)

Given that the Kähler potential and superpotential are expansions in powers of v−1

while the cutoff is v, higher derivative operators can also contribute to the one-loop
at O(µ2/v2). However, treating m as a spurion of the explicitly broken chiral symme-
try, one can show that these contributions come without the log(v/m) and are therefore
subdominant.

Putting this all together gives the 1-loop correction to the correction to the mass ratio
to be

δ1-loop =− (CSSS + CSMM )− (CMMM + CMSM + CMMS)
16π2

µ2

v2 log
(
v

2µ

)
+ finite

=−
104 + 41N2

f

16π2Nf

µ2

v2 log
(
v

2µ

)
+ · · ·

Here we expanded in µ/v � 1, which is shown to be a consistent approximation in the
region of parameter space fitting the self-interaction results of section 3.

– 17 –



J
H
E
P
1
1
(
2
0
2
2
)
1
6
2

B Anomaly matching for neutral meson decay

In this appendix we discuss the conditions required to avoid neutral meson decay. We find
the same condition as was found in a non-SUSY context by [23]. The decay of neutral
mesons in the SRDM model parallels the decay of SM neutral pions. Even without the
weak force, the decay π0 → γγ is not forbidden by U(1)EM charge conservation, and is
in fact realized via anomalies. The process comes from the Wess-Zumino-Witten (WZW)
term π0FF̃ in the pion effective Lagrangian. In the pion effective theory of the IR, a
chiral rotation effects a shift π0 → π0 + α. Thus the WZW term ensures that the chiral
anomaly produced by fermions (quarks) in the UV is matched in the IR where there are no
fermions. The story in our model changes only slightly with the addition of SUSY where
the IR mesons now have fermionic components.

We introduce a dark photon U(1)D that couples, in the UV theory, to the quark
superfields with diagonalNf×Nf charge matrixQ, which in the SM would be diag(+2

3 ,−
1
3).

Maintaining a vector-like theory, the anti-quarks couple with matrix −Q. Let us perform
an axial rotation using any diagonal generator T of SU(Nf )A × U(1)R (note in the SM
we have no U(1)R so that T must be the traceless σ3).10 This acts on the quarks and
anti-quarks of the UV theory. The U(1)TU(1)2

D anomaly in the UV is 2 Tr
(
TQ2). The

same quantity in the IR is

TrM TMQ
2
M =

∑
ij

(Ti + Tj)(Qi −Qj)2 = 2
∑
ij

(TiQ2
i − 2TiQiQj + TiQ

2
j )

= 2(Nf Tr
(
TQ2

)
− 2 Tr(TQ) TrQ+ TrT TrQ2)

(B.1)

The difference between the UV and IR anomalies must be made up by a WZW term
that transforms at linear order as

∼ 2((1−Nf ) Tr
(
TQ2

)
+ 2 Tr(TQ) TrQ− TrT TrQ2)FαβF̃αβ (B.2)

The meson field without the VEV subtracted off, M̃ ′ = v21 + M̃ , transforms as M̃ ′ →
eiT M̃ ′eiT ≈ M̃ ′ + 2iv2T . Instead of calculating the full WZW term, we simply note that
to reproduce the anomaly shift in eq. (B.2), at linear order in M̃ ′ we can have11

∼
(
c1 Tr

(
M̃ ′Q2

)
+ c2 Tr

(
M̃ ′Q

)
TrQ+ c3 Tr M̃ ′TrQ2

)
(WαW

α|θ2) (B.3)

Generically these terms would give rise to decays of non-singlet neutral mesons, via off-
shell dark photons, to SM particles. To avoid this, eq. (B.3) should vanish. It is sufficient
to require either that Q ∝ 1 (mesons are uncharged under U(1)D), or that Q2 ∝ 1 and
TrQ = 0 as noted in [23]. We assume the latter condition holds throughout the paper.

Note that it may also be possible to come up with non-trivial charge configurations,
depending on the coefficients ci, that conspire to make the non-singlet terms of eq. (B.3)
disappear. However, for large enough gD, the breaking of the quark degeneracy could be
sizeable and could lead to the destruction of the resonance present in the meson spectrum.

10We exclude U(1)A because it carries the U(1)ASU(Nc)2 anomaly.
11Note that these coefficients do not necessarily match those of eq. (B.2) because terms higher order in

M̃ ′ also transform at linear order in T .
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