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Abstract. The amplituhedron An,k,m was introduced by Arkani-Hamed and Trnka (2014)
in order to give a geometric basis for calculating scattering amplitudes in planar N = 4 su-
persymmetric Yang–Mills theory. It is a projection inside the Grassmannian Grk,k+m of the
totally nonnegative part of Grk,n. Karp and Williams (2019) studied the m = 1 amplituhe-
dronAn,k,1, giving a regular CW decomposition of it. Its face posetRn,l (with l := n−k−1)
consists of all projective sign vectors of length n with exactly l sign changes. We show
that Rn,l is EL-shellable, resolving a problem posed by Karp and Williams. This gives a
new proof thatAn,k,1 is homeomorphic to a closed ball, which was originally proved by Karp
and Williams. We also give explicit formulas for the f -vector and h-vector ofRn,l, and show
that it is rank-log-concave and strongly Sperner. Finally, we consider a related poset Pn,l

introduced by Machacek (2019), consisting of all projective sign vectors of length n with at
most l sign changes. We show that it is rank-log-concave, and conjecture that it is Sperner.
Keywords. Amplituhedron, shellability, Eulerian number, log concavity, Sperner property
Mathematics Subject Classifications. 06A07, 14M15, 81T60, 05A19

1. Introduction

Let Gr⩾0
k,n denote the totally nonnegative Grassmannian [Pos07, Lus94], comprised of all k-

dimensional subspaces of Rn whose Plücker coordinates are nonnegative. Motivated by the
physics of scattering amplitudes, Arkani-Hamed and Trnka [AHT14] introduced a generaliza-
tion of Gr⩾0

k,n, called the (tree) amplituhedron and denoted An,k,m(Z). It is defined as the
image of Gr⩾0

k,n under (the map induced by) a linear surjection Z : Rn → Rk+m whose
(k +m)× (k +m) minors are all positive. While the definition of An,k,m(Z) depends on the
choice of Z, it is expected that its geometric and combinatorial properties only depend on n,
k, and m. The amplituhedron may be regarded as a generalization of both a cyclic polytope

∗S.N.K. was partially supported by an NSERC postdoctoral fellowship.
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(which we obtain when k = 1) and the totally nonnegative Grassmannian Gr⩾0
k,n (which we

obtain when k +m = n).
When m = 4, the amplituhedron An,k,4(Z) gives a geometric basis for computing tree-level

scattering amplitudes in planarN = 4 supersymmetric Yang–Mills theory, but it is an interesting
mathematical object for any m. In [KW19], Karp and Williams carried out a detailed study
of the m = 1 amplituhedron An,k,1(Z). They gave a regular CW decomposition of An,k,1(Z),
whose face poset, which we denote byRn,l (with l := n−k−1), can be described as follows.1 The
elements ofRn,l are projective sign vectors of length n (i.e. elements of {0,+,−}n\{(0, . . . , 0)}
modulo the relation (v1, . . . , vn) ∼ (−v1, . . . ,−vn)) with exactly l sign changes. The order
relation in Rn,l is such that

(v1, . . . , vn) ⩽ (w1, . . . , wn) ⇐⇒ vi ∈ {0, wi} for 1 ⩽ i ⩽ n. (1.1)

For example, R3,1 is depicted in Figure 1.1.
Karp and Williams posed the problem [KW19, Problem 6.19] of showing that the poset Rn,l

is shellable. We resolve this problem:

Theorem 1.1. The poset Rn,l with a minimum and a maximum adjoined is EL-shellable.

The motivation behind [KW19, Problem 6.19] was the following. Karp and Williams showed
that the m = 1 amplituhedron An,k,1(Z) is a regular CW complex which can be identified
with the bounded complex of a certain generic arrangement of n hyperplanes in Rk (namely,
a cyclic arrangement). It then follows from a general result of Dong [Don08] that An,k,1(Z)
is homeomorphic to a k-dimensional closed ball. Karp and Williams observed that rather than
appealing to [Don08], one could reach the same conclusion by showing that the face poset Rn,l

is shellable, using a result of Björner [Bjö84, Proposition 4.3(c)]. (This relies on the regular
CW decomposition, along with the fact that every cell of codimension one is contained in the
closure of at most two maximal cells.) Therefore, as a consequence of Theorem 1.1, we obtain
a new proof that An,k,1(Z) is homeomorphic to a closed ball:

Corollary 1.2 ([KW19, Corollary 6.18]). The m = 1 amplituhedron An,k,1(Z) is homeomor-
phic to a k-dimensional closed ball.

We expect that for any m ⩾ 1, the amplituhedron An,k,m(Z) has a shellable regular CW
decomposition and is homeomorphic to a closed ball, thereby generalizing the situation which
holds when n = k +m. Indeed, in this case An,k,n−k(Z) is the totally nonnegative Grassman-
nian Gr⩾0

k,n; Williams [Wil07] showed that the face poset of Gr⩾0
k,n is EL-shellable, and Galashin,

Karp, and Lam [GKL22b, GKL22a] showed that Gr⩾0
k,n is a regular CW complex homeomor-

phic to a closed ball. See Remark 2.10 for further discussion of related work. In the case we
consider here, m = 1, we make use of the explicit description of the face poset Rn,l of a cell
decomposition of An,k,m(Z). No such description is known as yet for general m. For work in

1For simplicity, we use an equivalent but slightly different labeling of the face poset than in [KW19]. Namely, in
[KW19], the face poset is denoted PSignn,k,1, and is obtained from Rn,l by applying the involution (v1, . . . , vn) 7→
(v1,−v2, v3,−v4, . . . , (−1)n−1vn).
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(+,−, 0) (+, 0,−) (0,+,−)

(+,−,−) (+,+,−)

({1}, {2}) ({1}, {3}) ({2}, {3})

({1}, {2, 3}) ({1, 2}, {3})

Figure 1.1: The Hasse diagram of the poset R3,1, with elements labeled as sign vectors (left)
and as tuples of sets (right).

this direction, see [KWZ20, EZLT21] for the case m = 4, and [Łuk19, BH19, ŁPW20] for the
case m = 2.

Another consequence of Theorem 1.1 is that the poset Rn,l has a nonnegative h-vector. In
particular, by a result of Björner [Bjö80] and Stanley [Sta72], hi equals the number of maximal
chains of Rn,l with exactly i descents with respect to the EL-labeling of Theorem 1.1 (see The-
orem 3.5). We give an alternative description of the h-vector using generating functions (see
Theorem 3.14), which is explicit but non-positive.

We observe that when l = 0, the poset Rn,l is the Boolean algebra Bn (consisting of all sub-
sets of {1, . . . , n} ordered by containment) with the minimum removed. Maximal chains of Rn,0

correspond to permutations of {1, . . . , n} with the usual notion of descent, and hi is the Eulerian
number

〈
n
i

〉
(see Proposition 3.9). Therefore the h-vector of Rn,l provides a generalization of

the Eulerian numbers.
Two further well-known properties of the Boolean algebra Bn are that its rank sizes form a

log-concave sequence and that it is strongly Sperner (see e.g. [Eng97]). We show that Rn,l also
has these properties:

Theorem 1.3. The poset Rn,l is rank-log-concave. It also admits a normalized flow, and hence
is strongly Sperner.

Finally, we consider a poset closely related to Rn,l, denoted Pn,l, introduced by Machacek
[Mac19]. It consists of projective sign vectors of length n with at most (rather than exactly) l
sign changes, under the relation (1.1). For example, P3,1 is depicted in Figure 5.1. The poset Pn,l

can be regarded as a quotient of the face poset of a certain simplicial complex B(l, n) studied by
Klee and Novik [KN12]. Notice that Pn,l also specializes to Bn when l = 0. Machacek [Mac19]
showed that the order complex of Pn,l is a manifold with boundary which is homotopy equivalent
to RPl, and homeomorphic to RPn−1 when l = n− 1. Although P̂n,l is not shellable in general,
Bergeron, Dermenjian, and Machacek [BDM20] showed that when l is even or l = n − 1, the
order complex of Pn,l is partitionable. This is a weaker property which still implies that the
h-vector is nonnegative, and they showed that the h-vector counts certain type-D permutations
with respect to type-B descents.

We prove thatPn,l is rank-log-concave (see Theorem 5.2), and we conjecture that it is Sperner
(see Conjecture 5.3). We prove this conjecture when l equals 0, 1, or n − 1 by constructing a
normalized flow (see Proposition 5.4).
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The remainder of this paper is organized as follows. In Section 2 we give some background
on poset topology and prove Theorem 1.1 (see Theorem 2.8). In Section 3 we consider the
f -vector and h-vector of Rn,l. In Section 4 we give background on unimodality, log-concavity,
and the Sperner property, and prove Theorem 1.3. In Section 5 we consider the poset Pn,l.

2. EL-labeling

2.1. Notation and background

We let N denote {0, 1, 2, . . . }. For n ∈ N we define [n] := {1, 2, . . . , n}, and for 0 ⩽ k ⩽ n we
let
(
[n]
k

)
denote the set of k-element subsets of [n]. We let Sn denote the symmetric group of all

permutations of [n].
We assume the reader has some familiarity with posets; we refer to [Sta12, Wac07] for further

background. We use ⋖ to denote cover relations in a poset, i.e., x ⋖ y if and only if x < y and
there does not exist z such that x < z < y.

Definition 2.1. Let P be a finite poset. We say that P is graded (or pure) if every maximal chain
has the same length d, which we call the rank of P .

Definition 2.2. Let P be a poset. We define the bounded extension as the poset P̂ obtained
from P by adjoining a new minimum 0̂ and a new maximum 1̂.

We now recall the definition of an EL-labeling, due to Björner [Bjö80, Definition 2.1]. We
slightly modify the original definition, following Wachs [Wac07]; see [Wac07, Remark 3.2.5]
for further discussion.

Definition 2.3 ([Wac07, Definition 3.2.1]). Let P be a finite graded poset. An edge labeling
of P is a function λ from the set of edges of the Hasse diagram of P (i.e. the cover relations
of P ) to a poset (Λ,⪯). An increasing chain is a saturated chain x0 ⋖ x1 ⋖ · · ·⋖ xr in P whose
edge labels strictly increase in Λ:

λ(x0 ⋖ x1) ≺ λ(x1 ⋖ x2) ≺ · · · ≺ λ(xr−1 ⋖ xr).

We call λ an EL-labeling of P if the following properties hold for every closed interval [x, y]
in P :

(EL1) there exists a unique increasing maximal chain C0 in [x, y]; and

(EL2) if x⋖ z ⩽ y such that z ̸= x1, where x⋖ x1 is the first edge of C0, then λ(x⋖ x1) ≺
λ(x⋖ z).2

Björner showed that a finite graded poset with an EL-labeling is shellable [Bjö80, Theo-
rem 2.3].

2One may replace (EL2) by the condition that C0 is lexicographically minimal among all maximal chains of
[x, y]; see [Bjö80, Proposition 2.5].
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2.2. Edge labeling

We now study the bounded extension R̂n,l of Rn,l. Recall that Rn,l consists of all projective sign
vectors of length n with exactly l sign changes, under the relation (1.1). We begin by giving an
alternative definition of Rn,l.

Definition 2.4. Let 0 ⩽ l < n. We may equivalently define Rn,l as follows. Its elements
are (l + 1)-tuples (A1, . . . , Al+1) of nonempty subsets of [n] (called blocks) such that
max(Ai) < min(Ai+1) for all i ∈ [l]. The order relation on (l+1)-tuples is given by component-
wise containment:

(A1, . . . , Al+1) ⩽ (B1, . . . , Bl+1) ⇐⇒ Ai ⊆ Bi for i ∈ [l + 1].

We may verify that this is equivalent to the definition of Rn,l from (1.1), where an (l + 1)-tuple
of subsets records the positions of the consecutive runs of +’s and −’s in a sign vector. That is,
(A1, . . . , Al+1) corresponds to the sign vector (v1, . . . , vn) such that for 1 ⩽ i ⩽ n,

vi =

{
(−1)j−1, if i ∈ Aj for some j ∈ [l + 1];

0, if i /∈ A1 ∪ · · · ∪ Al+1.

For example, in R9,2, the tuple of sets ({1, 2, 4}, {6, 8}, {9}) corresponds to the sign vector
(+,+, 0,+, 0,−, 0,−,+). Also see Figure 1.1.

We observe that the bounded extension R̂n,l of Rn,l is graded. Explicitly, the minimum 0̂ has
rank 0, the maximum 1̂ has rank n− l + 1, and (A1, . . . , Al+1) has rank |A1|+ · · ·+ |Al| − l.

We now divide the cover relations of Rn,l into two types; see Remark 2.7 for motivation.

Definition 2.5. Let 0 ⩽ l < n, and let x = (A1, . . . , Al+1) ∈ Rn,l. Note that the elements
of Rn,l which cover x are precisely those that can be obtained from it by adding some element
a ∈ [n] \ (A1 ∪ · · · ∪ Al+1) to the ith block Ai, where i ∈ [l + 1] such that

max(Ai−1) < a < min(Ai+1).

(We take the inequality above to be a < min(A2)when i = 1, andmax(Al) < awhen i = l+1.)
We say that such a cover relation is of type α if a < max(Ai), and of type β if a > max(Ai).

Definition 2.6. Let 0 ⩽ l < n. We define a total order (Λn,l,⪯) on the disjoint union of
{α, β} × [l + 1]× [n+ 1] and

(
[n]
l+1

)
, as follows (where ∗ denotes an arbitrary number):

• (α, ∗, ∗) ≺ I ≺ (β, ∗, ∗) for all I ∈
(
[n]
l+1

)
;

• (α, i, ∗) ≺ (α, j, ∗) and (β, i, ∗) ≻ (β, j, ∗) for all i < j in [l + 1];

• (α, i, a) ≺ (α, i, b) and (β, i, a) ≺ (β, i, b) for all i ∈ [l + 1] and a < b in [n+ 1]; and

•
(
[n]
l+1

)
is ordered lexicographically: {1, . . . , l + 1} ≺ · · · ≺ {n− l, . . . , n}.

We define an edge labeling on R̂n,l, with label set Λn,l, as follows.
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0̂

({1}, {2}) ({1}, {3}) ({2}, {3})

({1}, {2, 3}) ({1, 2}, {3})

1̂

{1, 2} {1, 3} {2, 3}

(β, 2, 3) (α, 2, 2) (β, 1, 2) (α, 1, 1)

(β, 2, 4) (β, 2, 4)

Figure 2.1: The edge labeling of R̂3,1 in Definition 2.6.

(i) We label the edge 0̂⋖ ({a1}, . . . , {al+1}) by {a1, . . . , al+1} ∈
(
[n]
l+1

)
.

(ii) Let 0̂ < x ⋖ y < 1̂. Then as in Definition 2.5, y is obtained from x by adding some
element a to the ith block of x, in a cover relation of type γ (where γ ∈ {α, β}). We label
the edge x⋖ y by (γ, i, a).

(iii) We label the edge x⋖ 1̂ by (β, l + 1, n+ 1).

For example, see Figure 2.1.

Remark 2.7. We were led to the construction in Definition 2.6 in part so that the following
property holds (though we will not end up using it). Let x ∈ R̂n,l such that x is not covered
by 1̂, and let y1, . . . , yr be the elements of R̂n,l which cover x, ordered so that the labels of
x ⋖ y1, . . . , x ⋖ yr are increasing in (Λn,l,⪯). Then y1, . . . , yr are in increasing order in the
lexicographic order on (l + 1)-tuples. For example, see Figure 2.2. In fact, one can show that
ordering the atoms of [x, 1̂] lexicographically for all x ∈ R̂n,l defines a recursive atom ordering
of R̂n,l (see e.g. [Wac07, Section 4.2]), where the order of the atoms of [x, 1̂] does not depend
on a choice of maximal chain of [0̂, x]. Li [Li21, Lemma 1.1] showed that any finite, bounded,
and graded poset admitting such a recursive atom ordering is EL-shellable, so this provides an
alternative way to prove Theorem 1.1. We omit the proof of this fact, and instead find it simplest
to work only with the edge labeling in Definition 2.6.

Theorem 2.8. The edge labeling of R̂n,l in Definition 2.6 is an EL-labeling.

Proof. We must verify that (EL1) and (EL2) hold for every closed interval [x, y] in R̂n,l. We
consider four cases, depending on whether x = 0̂ and y = 1̂. When x ̸= 0̂ we write x =
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(24, 6, 8)

(124, 6, 8) (234, 6, 8) (24, 56, 8) (24, 6, 78) (24, 6, 89) (24, 67, 8) (245, 6, 8)

(α, 1, 1) (α, 1, 3) (α, 2, 5) (α, 3, 7) (β, 3, 9) (β, 2, 7) (β, 1, 5)

Figure 2.2: The element ({2, 4}, {6}, {8}) ∈ R̂9,2, and the elements covering it ordered by
increasing edge label (equivalently, ordered lexicographically as (l + 1)-tuples).

(A1, . . . , Al+1), and when y ̸= 1̂ we write y = (B1, . . . , Bl+1). In each case, we explicitly
describe the unique maximal chain of [x, y], thereby proving (EL1). It will then be apparent
from the form of this maximal chain that (EL2) holds.

Case 1: x ̸= 0̂, y ̸= 1̂. The maximal chains of [x, y] are obtained by adding, in some order, all
the elements of Bi \ Ai to the ith block (for i ∈ [l + 1]). The unique increasing chain is given
by adding these elements in the following order:

• for i = 1, . . . , l + 1, we add the elements of Bi \ Ai which are less than max(Ai) to the
ith block, in increasing order (in cover relations of type α);

• for i = l+1, . . . , 1, we add the elements of Bi \Ai which are greater than max(Ai) to the
ith block, in increasing order (in cover relations of type β).

We see that (EL2) holds.

Case 2: x = 0̂, y ̸= 1̂. The first edge of any maximal chain of [0̂, y] is labeled by an el-
ement of

(
[n]
l+1

)
, and so if it is increasing, after the first edge it must pass through edges only

of type β. Therefore the unique increasing maximal chain of [0̂, y] begins with the edge 0̂ ⋖
({b1}, . . . , {bl+1}), where bi := min(Bi) for i ∈ [l + 1] (whence (EL2) is satisfied), and after
that follows the unique increasing chain from ({b1}, . . . , {bl+1}) to y, as in Case 1.

Case 3: x ̸= 0̂, y = 1̂. The last edge of any maximal chain of [x, 1̂] is labeled by (β, l+1, n+1),
and so if it is increasing, before the final edge it must pass through edges only of type α or with
a label (β, l+ 1, ∗). Therefore the unique increasing maximal chain of [x, 1̂] ends with the edge
(C1, . . . , Cl+1)⋖ 1̂, where

C1 := {1, 2, . . . ,max(A1)}, C2 := {max(A1) + 1,max(A1) + 2, . . . ,max(A2)}, . . . ,
Cl+1 := {max(Al) + 1,max(Al) + 2, . . . , n},

and before that follows the unique increasing chain from x to (C1, . . . , Cl+1), as in Case 1. We
see that (EL2) holds.
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Case 4: x = 0̂, y = 1̂. Reasoning as in Cases 2 and 3, the unique increasing maximal
chain of [0̂, 1̂] begins with the edge 0̂ ⋖ ({1}, . . . , {l + 1}), ends with the edge ({1}, . . . , {l},
{l + 1, . . . , n}) ⋖ 1̂, and in between follows the unique increasing chain as in Case 1. As in
Case 2, (EL2) holds.

Remark 2.9. There are results in the literature which imply that various special families of posets
are shellable. However, as far as we know, R̂n,l is not contained in such a family. For example,
Provan and Billera [PB80, Section 3.4.2] showed that all distributive lattices (cf. [Sta12, Sec-
tion 3.4]) are shellable. While R̂n,l is a lattice, it is not distributive unless l = 0 (in which
case Rn,l is the Boolean algebra Bn with the minimum removed) or l = n − 1 (in which case
Rn,l has a single element). For example, one can see from Figure 2.1 that R̂3,1 is not distribu-
tive. Also, Björner [Bjö80, Theorem 3.1] showed that all semimodular lattices (cf. [Sta12, Sec-
tion 3.3]) are shellable. However, R̂n,l is not upper-semimodular unless l = 0 or l = n− 1, and
R̂n,l is not lower-semimodular unless l = 0, l = n− 1, or (n, l) = (3, 1). For example, one can
see from Figure 2.1 that R̂3,1 is not upper-semimodular. We omit the proofs of these claims.
Remark 2.10. Recall that Rn,l is the face poset of the amplituhedron An,k,m(Z) when m = 1.
Another interesting special case of An,k,m(Z) is n = k + m, whence it becomes the totally
nonnegative Grassmannian Gr⩾0

k,n. Williams [Wil07] and Bao and He [BH21, Theorem 4.1]
showed that the face poset of Gr⩾0

k,n with a minimum 0̂ adjoined is EL-shellable, and Knutson,
Lam, and Speyer [KLS13, Section 3.5] showed that the face poset (without 0̂ adjoined) is dual
EL-shellable. We point out that Rn,l with 0̂ adjoined (but not 1̂) is an induced subposet of the
face poset of Gr⩾0

k,n with 0̂ adjoined [KW19, Theorem 5.17], and so it is EL-shellable by [Wil07,
BH21]. Therefore the main difficulty in proving Theorem 1.1 is in dealing with the adjoined
maximum 1̂. Our EL-labeling of R̂n,l does not use the labelings of [Wil07, KLS13, BH21], and
it is not clear to us how our labeling is related to these. We plan to study this further in future
work.

3. f -vector and h-vector

In this section we examine the f -vector and h-vector of Rn,l, as well as their refinements by
ranks, namely the flag f -vector and flag h-vector. We give a combinatorial interpretation for
the h-vector in terms of the EL-labeling of Section 2.2, and also prove explicit formulas for the
f -vector and h-vector.

3.1. Background

We refer to [Sta96, Sta12] for background on the f -vector and h-vector.

Definition 3.1 ([Sta12, Section 3.13]). Let P be a finite graded poset of rank d− 1, with ranks
labeled from 1 to d. For S ⊆ [d], we let αS be the number of chains of P supported exactly at
the ranks in S; we call α the flag f -vector of P . We also define the flag h-vector β of P by

βS :=
∑
T⊆S

(−1)|S\T |αT , or equivalently, αS =:
∑
T⊆S

βT (S ⊆ [d]).
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Alternatively, let PS denote the induced subposet of P consisting of all elements whose rank
lies in S. Then αS is the number of maximal chains of PS , and (−1)|S|+1βS is the Möbius
invariant µ(P̂S) of the bounded extension of PS .

We define the f -vector (f−1, f0, . . . , fd−1) and h-vector (h0, . . . , hd) of P by

fi−1 :=
∑

S∈([d]i )

αS and hi :=
∑

S∈([d]i )

βS (0 ⩽ i ⩽ d).

Defining the generating functions3

F (t) :=
d∑

i=0

fi−1t
i and H(t) :=

d∑
i=0

hit
i,

the f -vector and h-vector are related by the equation

H(t) = (1− t)dF ( t
1−t

). (3.1)

Remark 3.2. Let P be a finite graded poset of rank d − 1, with ranks labeled from 1 to d.
Let P̂ denote the bounded extension of P , with ranks labeled from 0 to d + 1. Then for
all S ⊆ {0, . . . , d+ 1}, we have [Sta12, p. 294]

αS(P̂ ) = αS\{0,d+1}(P ) and βS(P̂ ) =

{
0, if 0 ∈ S or d+ 1 ∈ S;

βS(P ), otherwise.

In particular, P and P̂ have the same (flag) h-vector, and the (flag) f -vector of P̂ is easily
determined from P . Therefore enumerative results for Rn,l apply as well to R̂n,l, and vice-versa.
Keeping this connection in mind, we will label the ranks of Rn,l from 1 to n − l (rather than
from 0 to n− l − 1).

Example 3.3. Consider the poset R3,1, shown in Figure 1.1. Then d = 2, and

α∅ = 1, α{1} = 3, α{2} = 2, α{1,2} = 4, (f−1, f0, f1) = (1, 5, 4), F (t) = 1 + 5t+ 4t2;

β∅ = 1, β{1} = 2, β{2} = 1, β{1,2} = 0, (h0, h1, h2) = (1, 3, 0), H(t) = 1 + 3t.

3.2. Combinatorial interpretations

Björner [Bjö80, Theorem 2.7], based on work of Stanley [Sta72, Theorem 1.2], gave a combi-
natorial interpretation for the flag h-vector of any poset with an edge labeling satisfying (EL1).
We state it here in the special case of R̂n,l, with the edge labeling defined in Definition 2.6.

Definition 3.4. Given a maximal chain 0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xn−l ⋖ xn−l+1 = 1̂ of R̂n,l, we say
that i ∈ [n− l] is a descent of C when λ(xi−1 ⋖ xi) ≻ λ(xi ⋖ xi+1).4

3Our F (t) and H(t) are the reverses of the generating functions in [Sta12].
4For edge labelings of general posets, one should replace ‘≻’ with ‘⊀’ in the definition. There is no difference

for our edge labeling of R̂n,l, since the label set Λn,l is totally ordered and no label is repeated in any maximal
chain.
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S = ∅

0̂

({1}, {2})

({1}, {2, 3})

1̂

{1, 2}

(β, 2, 3)

(β, 2, 4)

S = {1}

0̂

({1}, {3})

({1}, {2, 3})

1̂

{1, 3}

(α, 2, 2)

(β, 2, 4)

S = {2}

0̂

({1}, {3})

({1, 2}, {3})

1̂

{1, 3}

(β, 1, 2)

(β, 2, 4)

S = {1}

0̂

({2}, {3})

({1, 2}, {3})

1̂

{2, 3}

(α, 1, 1)

(β, 2, 4)

Figure 3.1: The maximal chains of R̂3,1 and their descent sets S.

Theorem 3.5 (Björner and Stanley; cf. [Sta12, Theorem 3.14.2]5). Recall the edge labeling
of R̂n,l in Definition 2.6. For all S ⊆ [n − l], we have that βS equals the number of maximal
chains of R̂n,l with descent set S. Thus for all 0 ⩽ d ⩽ n− l, we have that hd equals the number
of maximal chains of R̂n,l with exactly d descents.

Example 3.6. The maximal chains of R̂3,1 and their descent sets are shown in Figure 3.1. Ac-
cording to Theorem 3.5, we have β∅ = 1, β{1} = 2, β{2} = 1, and β{1,2} = 0, consistent with
Example 3.3.

We also have the following explicit description of all the maximal chains of Rn,l (and hence
also R̂n,l):

Proposition 3.7. The number of maximal chains ofRn,l is fn−l−1 =
(
n+l
2l+1

)
(n−l−1)!. Explicitly,

given A ∈
(
[n+l]
2l+1

)
and a permutation π ∈ Sn−l−1, we associate a maximal chain C(A, π) of Rn,l

as follows:

• writing A = {c1 < · · · < c2l+1}, we set ai := c2i−1 − i + 1 for 1 ⩽ i ⩽ l + 1 and
bi := c2i − i for 1 ⩽ i ⩽ l;

• we take C(A, π) to have minimal element x := ({a1}, . . . , {al+1}) and maximal element
y := ({1, . . . , b1}, {b1 + 1, . . . , b2}, . . . , {bl + 1, . . . , n});

5Our conventions differ slightly from those in [Sta12], since in (EL1) we require edge labels to strictly (rather
than weakly) increase. Nevertheless, the result [Sta12, Theorem 3.14.2] and its proof transfer easily to our setting.
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• writing [n]\{a1, . . . , al+1} = {a′1, . . . , a′n−l−1} (in increasing order), C(A, π) is given by
adding the elements a′π(1), . . . , a

′
π(n−l−1) to x (in that order), each to the appropriate block

(determined by y).

Proof. We can verify that the map (A, π) 7→ C(A, π) gives a bijection from
(
[n+l]
2l+1

)
×Sn−l−1 to

the set of maximal chains of Rn,l.

For example, the maximal chains in Figure 3.1 are (from left to right)

C({1, 2, 3}, 1), C({1, 2, 4}, 1), C({1, 3, 4}, 1), and C({2, 3, 4}, 1).

While Proposition 3.7 gives a simple description of the maximal chains of R̂n,l, we are not
able in general to translate Definition 2.6 into a simple description of the descents of C(A, π)
in terms of A and π. However, in the special case l = 0, we do have such a simple description:
maximal chains correspond to permutations of [n] with the usual notion of descent, as we now
explain.

Definition 3.8. Given π ∈ Sn, we say that r ∈ [n − 1] is a descent of π if π(r) > π(r + 1).
For 0 ⩽ d ⩽ n, we define the Eulerian number

〈
n
d

〉
as the number of permutations in Sn with

exactly d descents.

For example,
〈
3
1

〉
= 4, corresponding to the permutations (in one-line notation) 132, 213,

231, and 312. We refer to [Pet15] for further details about Eulerian numbers.

Proposition 3.9. There is a bijection between maximal chains of R̂n,0 and permutations in Sn

which preserves descent sets. In particular, by Theorem 3.5, we have hd =
〈
n
d

〉
for 0 ⩽ d ⩽ n.

Proof. The bijection sends the permutation π ∈ Sn to the maximal chain

0̂⋖ ({π(1)})⋖ ({π(1), π(2)})⋖ · · ·⋖ ({π(1), . . . , π(n)})⋖ 1̂.

We can verify that the notions of descent in Definition 2.6 and Definition 3.8 agree.

3.3. Explicit formulas

We now turn to giving explicit formulas for the f -vector and h-vector of Rn,l.

Proposition 3.10. The flag f -vector of Rn,l is given by

αS =

(
l + r1 − 1

l

)(
n

l + rd

)(
2l + rd
rd − r1

)(
rd − r1

r2 − r1, . . . , rd − rd−1

)
for all S = {r1 < · · · < rd} ⊆ [n− l].

Proof. We enumerate the chains x1 < · · · < xd of Rn,l supported at ranks r1, . . . , rd as follows.
Write x1 = (A1, . . . , Al+1) and xd = (B1, . . . , Bl+1). Since |B1 ∪ · · · ∪ Bl+1| = l + rd, the
number of ways to choose B1 ∪ · · · ∪Bl+1 is(

n

l + rd

)
.
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After relabeling the set [n], we may assume that B1 ∪ · · · ∪Bl+1 = [l + rd].
Let si denote the size of Ai (for 1 ⩽ i ⩽ l + 1), so that si ⩾ 1 and s1 + · · ·+ sl+1 = l + r1.

The number of ways to choose s1, . . . , sl+1 is(
l + r1 − 1

l

)
.

For 1 ⩽ i ⩽ l + 1, write Ai = {ai,1 < · · · < ai,si}, and set bi := max(Bi). Then the ai,j’s
and bi’s are arbitrary elements of [l + rd] subject to

a1,1 < · · · < a1,s1 ⩽ b1 < a2,1 < · · · < a2,s2 ⩽ b2 < · · · ⩽ bl < al+1,1 < · · · < al+1,sl+1
.

The number of ways to choose the ai,j’s and bi’s is(
2l + rd
2l + r1

)
=

(
2l + rd
rd − r1

)
,

at which point x1 and xd are fixed.
Finally, the elements x2, . . . , xd−1 are determined by a set composition of (B1∪· · ·∪Bl+1)\

(A1∪· · ·∪Al+1) with blocks of respective sizes r2−r1, . . . , rd−rd−1. The number of choices is(
rd − r1

r2 − r1, . . . , rd − rd−1

)
.

We now use Proposition 3.10 to give a formula for the f -vector of Rn,l. The following
formula allows us to simplify the resulting sum, at the cost of introducing minus signs.

Lemma 3.11 ([Sta12, (1.94a)]). Let s ∈ N and d ∈ Z>0. Then

∑
i1,...,id⩾1,
i1+···+id=s

(
s

i1, . . . , id

)
=

d∑
i=0

(−1)i
(
d

i

)
(d− i)s.

Proof. This follows from [Sta12, (1.94a)], since both sides equal d!S(s, d), where S(s, d) is a
Stirling number of the second kind. Alternatively, we can prove this directly from the inclusion-
exclusion principle [Sta12, Theorem 2.1.1].

Corollary 3.12. Let 0 ⩽ l < n and 0 ⩽ d ⩽ n− l − 1. The number of chains of Rn,l of length
d which begin at rank r and end at rank r + s equals

d∑
i=0

(−1)i
(
d

i

)(
l + r − 1

l

)(
n

l + r + s

)(
2l + r + s

s

)
(d− i)s.

Then fd is given by summing the quantity above over all r ⩾ 1 and s ⩾ 0 (or alternatively s ⩾ d).

Proof. This follows from Proposition 3.10, using Lemma 3.11.
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Example 3.13. Taking d = 0 in Corollary 3.12, we obtain the number of elements of Rn,l:

f0 =
n−l∑
r=1

(
l + r − 1

l

)(
n

l + r

)
.

Finally, we use Corollary 3.12 to obtain the generating functions for the f - and h-vectors:

Theorem 3.14. The generating functions for the f - and h-vectors of Rn,l are given by

F (t) = 1 +
∑

j,r,s⩾0

(
l + r

l

)(
n

l + r + s+ 1

)(
2l + r + s+ 1

s

)
js
(

t

1 + t

)j+1

and

H(t) = (1− t)n−l

(
1 +

∑
j,r,s⩾0

(
l + r

l

)(
n

l + r + s+ 1

)(
2l + r + s+ 1

s

)
jstj+1

)
.

We then obtain an explicit formula (albeit with negative signs) for hi by taking the coefficient
of ti in H(t).

Proof. By Corollary 3.12 (replacing r − 1 by r), and then writing d = i + j and applying the
negative binomial theorem, we obtain

F (t) = 1 +
∑
d⩾0

∑
i,r,s⩾0

(−1)i
(
d

i

)(
l + r

l

)(
n

l + r + s+ 1

)(
2l + r + s+ 1

s

)
(d− i)std+1

= 1 +
∑

i,j,r,s⩾0

(−1)i
(
i+ j

i

)(
l + r

l

)(
n

l + r + s+ 1

)(
2l + r + s+ 1

s

)
jsti+j+1

= 1 +
∑

j,r,s⩾0

(
l + r

l

)(
n

l + r + s+ 1

)(
2l + r + s+ 1

s

)
jstj+1(1 + t)−(j+1).

This proves the first equation. The second equation follows by applying (3.1).

Example 3.15. Let us set l = 0 in Theorem 3.14 to obtain the generating function for the h-
vector of Rn,0:

H(t) = (1− t)n

(
1 +

∑
j,r,s⩾0

(
n

r + s+ 1

)(
r + s+ 1

s

)
jstj+1

)

= (1− t)n

(
1 +

∑
j,r,s⩾0

(
n

s

)(
n− s

r + 1

)
jstj+1

)

= (1− t)n

(
1 +

∑
j,s⩾0

(
n

s

)
(2n−s − 1)jstj+1

)



14 Steven N. Karp, John Machacek

= (1− t)n

(
1 +

∑
j⩾0

(
(j + 2)n − (j + 1)n

)
tj+1

)
= (1− t)n+1

∑
j⩾0

(j + 1)ntj,

where we applied the binomial theorem twice. This yields a well-known generating function for
the Eulerian numbers [Pet15, (1.10)], in agreement with Proposition 3.9.

Example 3.16. Let us use Theorem 3.14 to find h1 forRn,l, by taking the coefficient of t inH(t):

h1 = l − n+
∑
r⩾0

(
l + r

l

)(
n

l + r + 1

)
.

We can compute the latter sum using the identity∑
r⩾0

(
l + r

l

)(
n

l + r + 1

)
ur =

1

l!

dl

dul

(
(1 + u)n − 1

u

)

= (−1)l+1u−(l+1) +
l∑

i=0

(−1)l−i

(
n

i

)
(1 + u)n−iu−(l−i+1);

the first equality above follows from the binomial theorem, and the second equality follows from
the product rule for the derivative. Setting u = 1 gives

h1 = l − n+ (−1)l+1 +
l∑

i=0

(−1)l−i

(
n

i

)
2n−i.

For example, when l = 0 we obtain
〈
n
1

〉
= h1 = 2n − n− 1.

4. Normalized flow

In this section we prove Theorem 1.3, which states that Rn,l is rank-log-concave and strongly
Sperner. We prove the former in Proposition 4.3, and the latter in Theorem 4.7 using Harper’s
notion of a normalized flow [Har74].

4.1. Background

We provide some background on unimodal and log-concave sequences, the strongly Sperner
property, and normalized flows, following [Sta12, Eng97, Har74].

Definition 4.1. Let s = (s1, . . . , sd) be a sequence of nonnegative real numbers. We say that s
is unimodal if for some 1 ⩽ j ⩽ d, we have

s1 ⩽ · · · ⩽ sj−1 ⩽ sj ⩾ sj+1 ⩾ · · · ⩾ sd.
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We say that s is log-concave if

si−1si+1 ⩽ s2i for 2 ⩽ i ⩽ d− 1.

One can verify that if s is a log-concave sequence of nonnegative real numbers and has no
internal zeros, then s is unimodal. We also observe that the entry-wise product of two log-
concave sequences is log-concave.

Definition 4.2. Let P be a finite graded poset of rank d − 1, with ranks labeled from 1 to d.
For 1 ⩽ r ⩽ d, the rth Whitney number of the second kind Wr is defined to be the number
of elements of P of rank r. In terms of the flag f -vector, we have Wr = α{r}. We say that
P is rank-unimodal (respectively, rank-log-concave) if the sequence (W1, . . . ,Wr) is unimodal
(respectively, log-concave). We observe that if P is rank-log-concave, then it is rank-unimodal.

For example, from Figure 1.1 we see that for R3,1, we have (W1,W2) = (3, 2). For gen-
eral Rn,l, we can read off Wr from Proposition 3.10:

Proposition 4.3. The Whitney numbers of the second kind of Rn,l (with ranks labeled from 1
to n− l) are

Wr =

(
l + r − 1

l

)(
n

l + r

)
for 1 ⩽ r ⩽ n− l.

In particular, Rn,l is rank-log-concave.

Proof. The formula for Wr follows by taking S = {r} in Proposition 3.10. The sequence
(W1, . . . ,Wn−l) is log-concave because it is the entry-wise product of the log-concave sequences((

l + r − 1

l

))n−l

r=1

and
((

n

l + r

))n−l

r=1

.

We now introduce the (strongly) Sperner property and normalized flows. Recall that an
antichain in a poset is a subset of pairwise incomparable elements.

Definition 4.4. Let P be a finite graded poset of rank d − 1, with ranks labeled from 1 to d.
Given j ⩾ 1, we say that P is j-Sperner if the maximum size of a union of j antichains is
realized by taking the j largest ranks, i.e.,

|A1 ∪ · · · ∪ Aj| ⩽ max
1⩽r1<···<rj⩽d

Wr1 + · · ·+Wrj for all antichains A1, . . . , Aj ⊆ P.

We say that P is Sperner6 if P is 1-Sperner, and we say that P is strongly Sperner if P is j-
Sperner for all j ⩾ 1.

Definition 4.5 ([Har74]; [Eng97, p. 150]). Let P be a finite graded poset of rank d − 1, with
ranks labeled from 1 to d. A normalized flow is an edge labeling f (of the edges of the Hasse
diagram of P ) taking values in R⩾0, such that the following conditions hold for 1 ⩽ r ⩽ d− 1:7

6The term is so named because Sperner showed that the Boolean algebra Bn has the Sperner property [Spe28].
In fact, Bn is strongly Sperner (cf. [Eng97, Example 4.6.2]).

7The original definition also requires that the sum of f(x ⋖ y) over all cover relations x ⋖ y between ranks r
and r + 1 equals 1. Given an f satisfying (NF1) and (NF2), we can achieve this additional constraint by rescaling
all such f(x⋖ y) by the same appropriate positive constant (depending on r).
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(NF1)
∑
y, x⋖y

f(x⋖ y) is the same positive number for all x ∈ P of rank r; and

(NF2)
∑
x, x⋖y

f(x⋖ y) is the same positive number for all y ∈ P of rank r + 1.

Harper [Har74, Theorem p. 55] showed that if P admits a normalized flow, then P is strongly
Sperner. In fact, it follows from work of Kleitman [Kle74] (see [Eng97, Theorem 4.5.1]) that
such a P satisfies the stronger LYM inequality:∑

x∈A

1

Wrank(x)
⩽ 1 for all antichains A.

4.2. Construction of the normalized flow

We define a normalized flow on Rn,l. Our definition will manifestly satisfy (NF1), and we will
then check carefully that (NF2) holds.

Definition 4.6. Let 0 ⩽ l < n. We define an edge labeling f on Rn,l, with label set R⩾0, as
follows. Let x = (A1, . . . , Al+1) ∈ Rn,l, and let a ∈ [n] \ (A1 ∪ · · · ∪ Al+1). Consider all
elements y ⋗ x obtained from x by adding a to some block; there are exactly 1 or 2 such y.
There is a unique such y if and only if a < max(A1) or a > min(Al+1), in which case, we set

f(x⋖ y) := 1.

Otherwise, we have max(Ai) < a < min(Ai+1) for some 1 ⩽ i ⩽ l. We can add a either to the
ith block or to the (i+ 1)th block, forming, say, y1 and y2, respectively. We then set

f(x⋖ y1) :=
|A1 ∪ · · · ∪ Ai|
|A1 ∪ · · · ∪ Al+1|

and f(x⋖ y2) :=
|Ai+1 ∪ · · · ∪ Al+1|
|A1 ∪ · · · ∪ Al+1|

.

Note that in either case, given x and a, the sum of f(x⋖y) over all y obtained from x by adding a
to some block equals 1. For example, see Figure 4.1 and Figure 4.2.

Theorem 4.7. The edge labeling of Rn,l in Definition 4.6 is a normalized flow. In particular,
Rn,l is strongly Sperner.

Proof. Fix 1 ⩽ r ⩽ n − l − 1. Let x ∈ Rn,l have rank r, so that x = (A1, . . . , Al+1) with
|A1|+ · · ·+ |Al+1| = l + r. Then by construction, we have∑

y, x⋖y

f(x⋖ y) = n− l − r,

which is positive and depends only on r. Therefore (NF1) holds.
Now we prove (NF2). Let y ∈ Rn,l have rank r + 1, and write y = (B1, . . . , Bl+1). Let

si := |Bi| for 1 ⩽ i ⩽ l + 1, so that s1 + · · · + sl+1 = l + r + 1. Note that the elements x⋖ y
are precisely those obtained from y by selecting some block i (1 ⩽ i ⩽ l + 1) with si ⩾ 2, and
removing some element b of Bi. The value f(x ⋖ y) is determined according to the following
three cases:
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({1}, {2}) ({1}, {3}) ({2}, {3})

({1}, {2, 3}) ({1, 2}, {3})

1 1
2

1
2 1

Figure 4.1: The normalized flow on R3,1 defined in Definition 4.6.

(24, 6, 8)

(124, 6, 8) (234, 6, 8) (24, 56, 8) (24, 6, 78) (24, 6, 89) (24, 67, 8) (245, 6, 8)

1 1 1
2

1
4 1 3

4
1
2

Figure 4.2: The element ({2, 4}, {6}, {8}) ∈ R9,2, the elements covering it, and the values of
the normalized flow defined in Definition 4.6.

(i) if b = min(Bi), then f(x⋖ y) = si+···+sl+1−1

l+r
;

(ii) if min(Bi) < b < max(Bi), then f(x⋖ y) = 1; and

(iii) if b = max(Bi), then f(x⋖ y) = s1+···+si−1
l+r

.

The sum of the values f(x⋖ y), over all b in all three cases above (with y and i fixed), equals

si + · · ·+ sl+1 − 1

l + r
+ (si − 2) +

s1 + · · ·+ si − 1

l + r
=

l + r + 1

l + r
(si − 1).

Note that this formula also gives the desired sum (i.e. 0) when si = 1. Therefore we obtain

∑
x, x⋖y

f(x⋖ y) =
l+1∑
i=1

l + r + 1

l + r
(si − 1) =

r(l + r + 1)

l + r
,

which is positive and depends only on r. This completes the proof.

5. The poset Pn,l

In this section we consider the poset Pn,l. Recall that Pn,l is the poset of projective sign vectors
of length n with at most l sign changes, under the relation (1.1) (see Figure 5.1).

It is natural to ask which properties of Rn,l carry over to Pn,l. First we consider shellability.
Since Pn,0 = Rn,0, by e.g. Theorem 1.1, we have that P̂n,0 is EL-shellable. We can also verify
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(+, 0, 0) (0,+, 0) (0, 0,+)

(+,−, 0) (+, 0,−) (+,+, 0) (+, 0,+) (0,+,−) (0,+,+)

(+,−,−) (+,+,−) (+,+,+)

Figure 5.1: The Hasse diagram of the poset P3,1.

directly that P̂2,1 is EL-shellable. We claim that in the remaining cases, P̂n,l is not shellable.
Indeed, if it were shellable, then the order complex ofPn,l would be homeomorphic to a sphere or
a closed ball of dimension n−1 [Bjö84, Proposition 4.3]. On the other hand, Machacek [Mac19]
showed that the order complex of Pn,l is homotopy equivalent to RPl, which is homeomorphic to
the sphereS1 when l = 1, and is not homotopy equivalent to a sphere or a closed ball when l ⩾ 2.

We now show that Pn,l, like Rn,l, is rank-log-concave. We will use the following lemma,
which appeared in talk slides of Mani [Man09]. We give a proof following an argument of
Semple and Welsh [SW08, Example 2.2], who showed that a similar sequence is log-concave.

Lemma 5.1. Let l ∈ N. Then the sequence (s1, s2, . . . ) is log-concave, where

sr :=
l∑

i=0

(
r − 1

i

)
for r ⩾ 1.

Proof. We must show sr+1sr+3 ⩽ s2r+2 for r ⩾ 0. Using Pascal’s identity
(
n
i

)
=
(
n−1
i

)
+
(
n−1
i−1

)
,

we get

sr+2 = 2sr+1 −
(
r

l

)
and sr+3 = 4sr+1 − 3

(
r

l

)
−
(

r

l − 1

)
.

Therefore we can rewrite the inequality sr+1sr+3 ⩽ s2r+2 as(
r

l

)(
sr+1 −

(
r

l

))
⩽

(
r

l − 1

)
sr+1.

This follows by summing the inequalities(
r

l

)(
r

i− 1

)
⩽

(
r

l − 1

)(
r

i

)
for 0 ⩽ i ⩽ l.

Theorem 5.2. Let 0 ⩽ l < n. The Whitney numbers of the second kind of Pn,l (with ranks
labeled from 1 to n) are

Wr =

(
n

r

) l∑
i=0

(
r − 1

i

)
for 1 ⩽ r ⩽ n.
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The sequence (W1, . . . ,Wn) is log-concave, i.e., Pn,l is rank-log-concave.

Proof. The set of elements of Pn,l is the disjoint union of Rn,i for 0 ⩽ i ⩽ l, where rank s of Rn,i

appears in Pn,l in rank s+ i. Therefore by Proposition 4.3, we have

Wr(Pn,l) =

min(l,r−1)∑
i=0

Wr−i(Rn,i) =

(
n

r

) l∑
i=0

(
r − 1

i

)
for 1 ⩽ r ⩽ n.

This proves the formula forWr. Now note that (W1, . . . ,Wn) is the product of the two sequences((
n

r

))n

r=1

and
( l∑

i=0

(
r − 1

i

))n

r=1

.

We can verify that the first sequence is log-concave, and the second sequence is log-concave by
Lemma 5.1. Therefore (W1, . . . ,Wn) is log-concave.

We conjecture that Pn,l, like Rn,l, is Sperner:

Conjecture 5.3. For 0 ⩽ l < n, the poset Pn,l is Sperner.

We have verified that Conjecture 5.3 holds for all 0 ⩽ l < n ⩽ 8. We also show that it holds
when l equals 0, 1, or n− 1:

Proposition 5.4. The posets Pn,0, Pn,1, and Pn,n−1 admit a normalized flow, and hence are
strongly Sperner.

Proof. For Pn,0 = Rn,0, this follows from Theorem 4.7. For Pn,n−1, the constant function 1 is
a normalized flow. This is because Pn,n−1 is biregular, i.e., any two elements of Pn,n−1 of the
same rank have the same up-degree and the same down-degree in the Hasse diagram.

Finally, we construct a normalized flow f on Pn,1, similar to the one defined on Rn,1 in
Definition 4.6. Let x ∈ Pn,1, and let a ∈ [n] such that xa = 0. Consider the elements covering x
obtained by changing entry a to either + or −; there are exactly one or two of them. If there is
one such element, say y, we set f(x⋖ y) := 1. If there are two such elements, say y1 and y2, we
set f(x⋖yi) :=

1
2

for i = 1, 2. Then if x has rank r (with 1 ⩽ r ⩽ n−1), there are exactly n−r
possible values of a, so ∑

y, x⋖y

f(x⋖ y) = n− r.

This is positive and depends only on r, which proves (NF1).
Now we verify that (NF2) holds. Let 1 ⩽ r ⩽ n − 1, and let y ∈ Pn,l have rank r + 1.

Given a ∈ [n] such that ya ̸= 0, let x ⋖ y be obtained from y by changing entry a to 0, and
let z be the sign vector obtained from y by flipping entry a (from + to − or vice versa). If z
has at most one sign change, then f(x ⋖ y) = 1

2
, while if z has at least two sign changes, then

f(x ⋖ y) = 1. We observe that the first case occurs for exactly 2 values of a, while the second
case occurs for the remaining r − 1 values of a. Therefore∑

x, x⋖y

f(x⋖ y) = 2(1
2
) + (r − 1) = r,

which is positive and depends only on r. This proves (NF2).
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[Bjö84] A. Björner. Posets, regular CW complexes and Bruhat order. European J. Combin.,

5(1):7–16, 1984. doi:10.1016/S0195-6698(84)80012-8.
[Don08] Xun Dong. The bounded complex of a uniform affine oriented matroid is a ball. J.

Combin. Theory Ser. A, 115(4):651–661, 2008. doi:10.1016/j.jcta.2007.07.
009.

[Eng97] Konrad Engel. Sperner theory, volume 65 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge, 1997. doi:10.1017/

CBO9780511574719.
[EZLT21] Chaim Even-Zohar, Tsviqa Lakrec, and Ran J. Tessler. The amplituhedron BCFW

triangulation. 2021. arXiv:2112.02703.
[GKL22a] Pavel Galashin, Steven N. Karp, and Thomas Lam. Regularity theorem for totally

nonnegative flag varieties. J. Amer. Math. Soc., 35(2):513–579, 2022. doi:10.

1090/jams/983.
[GKL22b] Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grass-

mannian is a ball. Adv. Math., 397:Paper No. 108123, 23, 2022. doi:10.1016/j.
aim.2021.108123.

[Har74] L. H. Harper. The morphology of partially ordered sets. J. Combin. Theory Ser. A,
17:44–58, 1974. doi:10.1016/0097-3165(74)90027-2.

[Kle74] D. J. Kleitman. On an extremal property of antichains in partial orders. The LYM
property and some of its implications and applications. In Combinatorics (Proc.
NATO Advanced Study Inst., Breukelen, 1974), Part 2: Graph theory; foundations,

https://doi.org/10.1007/JHEP10(2014)030
https://doi.org/10.37236/9801
http://arxiv.org/abs/1909.06015
http://arxiv.org/abs/1909.06015
https://doi.org/10.1016/j.indag.2021.04.006
https://doi.org/10.1016/j.indag.2021.04.006
https://doi.org/10.2307/1999881
https://doi.org/10.1016/S0195-6698(84)80012-8
https://doi.org/10.1016/j.jcta.2007.07.009
https://doi.org/10.1016/j.jcta.2007.07.009
https://doi.org/10.1017/CBO9780511574719
https://doi.org/10.1017/CBO9780511574719
http://arxiv.org/abs/2112.02703
https://doi.org/10.1090/jams/983
https://doi.org/10.1090/jams/983
https://doi.org/10.1016/j.aim.2021.108123
https://doi.org/10.1016/j.aim.2021.108123
https://doi.org/10.1016/0097-3165(74)90027-2


combinatorial theory 3 (1) (2023), #6 21

partitions and combinatorial geometry, pages 77–90. Math. Centre Tracts, No. 56,
1974. doi:10.1007/978-94-010-1826-5_14.

[KLS13] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: jug-
gling and geometry. Compos. Math., 149(10):1710–1752, 2013. doi:10.1112/

S0010437X13007240.
[KN12] Steven Klee and Isabella Novik. Centrally symmetric manifolds with few vertices.

Adv. Math., 229(1):487–500, 2012. doi:10.1016/j.aim.2011.07.024.
[KW19] Steven N. Karp and Lauren K. Williams. The m = 1 amplituhedron and cyclic

hyperplane arrangements. Int. Math. Res. Not. IMRN, (5):1401–1462, 2019. doi:

10.1093/imrn/rnx140.
[KWZ20] Steven N. Karp, Lauren K. Williams, and Yan X. Zhang. Decompositions of am-

plituhedra. Ann. Inst. Henri Poincaré D, 7(3):303–363, 2020. With an appendix by
Karp, Williams, Zhang and Hugh Thomas. doi:10.4171/AIHPD/87.

[Li21] Tiansi Li. EL-shelling on comodernistic lattices. J. Combin. Theory Ser. A,
177:105334, 8, 2021. doi:10.1016/j.jcta.2020.105334.

[ŁPW20] Tomasz Łukowski, Matteo Parisi, and Lauren K. Williams. The positive tropical
Grassmannian, the hypersimplex, and the m = 2 amplituhedron. 2020. arXiv:

2002.06164.
[Łuk19] Tomasz Łukowski. On the boundaries of the m = 2 amplituhedron. Ann. Inst. Henri
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