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Abstract: In many applications, intelligent agents need to identify any structure or apparent
randomness in an environment and respond appropriately. We use the relative entropy to separate
and quantify the presence of both linear and nonlinear redundancy in a sequence and we introduce
the new quantities of total mutual information gain and incremental mutual information gain.
We illustrate how these new quantities can be used to analyze and characterize the structures and
apparent randomness for purely autoregressive sequences and for speech signals with long and short
term linear redundancies. The mutual information gain is shown to be an important new tool for
capturing and quantifying learning for sequence modeling and analysis.

Keywords: agent learning; linear redundancy; nonlinear redundancy; mutual information gain

1. Introduction

Many learning applications require agents to respond to their current environment for analysis
or control. For these applications, agents need to either synchronize with and track the environment
or at least have a good understanding of the current environment within which they are operating.
Thus, one aspect of agent learning is concerned with discovering any structures in the environment,
any changes in the structure of data sequences, and any randomness, however it may be defined,
that may be present.

Analyses of learning with respect to identifying structures or changes in data sequences have often
focussed on the classical Shannon entropy, its convergence to the entropy rate, and the relative entropy
between subsequences, resulting in the definition of new quantities related to Shannon information
theory that are defined to capture ideas relevant to these learning problems. Among these quantities
are the terms entropy gain, information gain, redundancy, predictability, and excess entropy [1,2].
These newly defined quantities, while not necessarily new to classical information theoretic analyses,
do yield insight into environmental behaviors and how a learning agent should operate within the
given environment.

Although these information theoretic studies in agent learning have produced important insights
into learning environments, there is still much more to be mined from Shannon information theory
that can allow an agent to understand, track, synchronize, and operate within a perhaps changing
environment. In this paper, we reexamine the fundamental quantity of relative entropy and consider
the concepts of linear redundancy and nonlinear redundancy from lossy source coding and study the
use of relative entropy for separating, discerning, and perhaps quantifying the presence of both linear
redundancy and nonlinear redundancy in sequences.

These analyses lead to the definition of the new term, total redundancy, from which we obtain
the new ideas of incremental mutual information gain and total mutual information gain. These new
quantities allow a finer categorization of structure and randomness in sequences, thus admitting
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and facilitating new research directions and analyses. Our primary interest is in exploring relative
entropy and the various related quantities for finite length sequences rather their asymptotic versions.
The techniques used are variations on classical information theoretic quantities, and the novelty of
the paper is in the introduction of new quantities, their applications, and new decompositions and
insights, not in novel analysis tools.

Section 2 provides the needed background in information theory, most of which should be familiar,
but with a few expressions that may not be commonly used. Section 3 covers entropy, entropy gain,
information gain, redundancy, predictability, and excess entropy as commonly used in the agent
learning literature. The concepts of linear and nonlinear redundancy from lossy source coding are
introduced and developed from the viewpoint of agent learning in Section 4. Mutual information gain
is defined and explored in Section 5, wherein the mutual information gain for Gaussian sequences is
presented and the distribution free nature of mutual information gain is explained. Section 6 uses the
prior quantities to address the modeling of autoregressive sequences and considers a specific purely
autoregressive example. Speech signals, which are well represented by autoregressive models in some
applications, but are more complex in that the order of the autoregressive model changes, there is
often a longer term redundancy present, and the driving term is a mixed random and pseudo-periodic
excitation, are analyzed in Section 7. Section 8 contains the conclusions.

2. Differential Entropy, Mutual Information, and Entropy Rate: Definitions and Notation

Given a continuous random variable X with probability density function p(x), the differential
entropy is defined as

h(X) = −
∫ ∞

−∞
p(x) log p(x)dx (1)

where we assume X has the variance var(X) = σ2. The differential entropy of a Gaussian sequence
with mean zero and variance σ2 is given by [3],

h(X) =
1
2

log 2πeσ2 (2)

An important quantity for investigating structure and randomness is the differential entropy
rate [3]

h(X ) = lim
N→∞

1
N

h(X1, . . . , XN) (3)

which is the long term average differential entropy in bits/symbol for the sequence being studied.
For this paper, we use the differential entropy rate as an indicator of randomness. This is a simple
indicator of randomness that has been used in similar agent learning papers [1,2].

For a stationary Gaussian process with (Toeplitz) correlation matrixRN , its differential entropy is

h(X1, X2, . . . , Xn) =
1
2

log (2πe)n|RN | (4)

with the corresponding differential entropy rate from Equation (3) given by

h(X ) =
1
2

log 2πe +
1

4π

∫ π

−π
log S(λ)dλ (5)

where S(λ) is the power spectral density of the process.
An alternative definition of differential entropy rate is [3]

h(X ) = lim
N→∞

h(XN |XN−1, . . . , X1) (6)

which for the Gaussian process yields
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h(X ) =
1
2

log 2πeσ2
∞ (7)

where σ2
∞ is the minimum mean squared error of the best estimate given the infinite past, expressible as

σ2
∞ =

1
(2πe)

e2h(X ) ≤ σ2 (8)

with σ2 and h(X ) the variance and differential entropy rate of the original sequence, respectively.
Shannon gave the quantity σ2

∞ the notation Q and defined it to be the entropy power or entropy
rate power, which is the power in a Gaussian process with the same differential entropy as the original
random variable X [4]. Note that the original random variable or process does not need to be Gaussian.
Whatever the form of h(X ) for the original process, the entropy power can be defined as in Equation (8).
In the following, we use h(X) for both differential entropy and differential entropy rate unless a clear
distinction is needed to reduce confusion.

The differential entropy is defined for continuous amplitude random variables and processes,
and it is the appropriate quantity to study signals such as speech, audio, and biological signals.
However, unlike discrete entropy, differential entropy can be negative or infinite, and is changed by
scaling and similar transformations. Note that this is why mutual information is often the better choice
for investigating learning applications.

To translate differential entropy into a useful indicator when considered alone, it is necessary to
use a result from Cover and Thomas [3] that, for a continuous random variable X, the discrete entropy
in terms of the differential entropy is

H(X) ≈ h(X) + n (9)

where n is the number of bits used in the quantization of the random variable X. Note that this is
the same expression obtained for the discrete entropy of the quantizer output for high rate scalar
quantization subject to a mean squared error distortion measure for an input with differential entropy
h(X) [5]. For a Gaussian random variable with zero mean and variance σ2, then Equation (9) becomes

H(X) ≈ n +
1
2

log 2πeσ2 (10)

We use this result in later examples.
A useful and commonly used measure of the distance between two probability distributions p(x)

and q(x), x ∈ X is the relative entropy or Kullback–Leibler divergence defined as [3]

D(p||q) =
∫

p(x) log
p(x)
q(x)

dx (11)

A special case of the relative entropy is the mutual information. For continuous random variables
X and Y with probability density functions p(x) and p(y), respectively, the mutual information
between X and Y

I(X; Y) = h(X)− h(X|Y) = h(Y)− h(Y|X) (12)

Given the continuous random variables X1, X2, . . . , Xn, and Y, the chain rule for mutual
information is

I(X1, X2, . . . , Xn; Y) =h(X1, X2, . . . , Xn)− h(X1, X2, . . . , Xn|Y)

=
n

∑
i=1

I(Xi; Y|X1, X2, . . . , Xi−1)
(13)

To separate structure and apparent randomness in sequences, consider n successive values of the
sequence X(n) = (x1, x2, . . . , xn), and examine the relative entropy of the joint probability density of
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this sequence P(n)
X (X) = P(n)

X (x1, x2, . . . , xn) with respect to a memoryless sequence X∗ that has the

same product of the first order marginal densities, P(n)
X∗ (X∗) = P(n)

X∗ (x1, x2, . . . , xn) = ∏n
k=1P(1)

X (xk) so

Dn(P(n)
X (X)||P(n)

X∗ (X∗)) =
1
n

∫
P(n)

X (x) log
P(n)

X (x)

P(n)
X∗ (x∗)

dxn (14)

This straightforward quantity is useful since what we need is an indicator of change between two
situations; that is, if we calculate the relative entropy in Equation (14) before we do some processing or
transformation and afterward, does the relative entropy capture a relative change?

Another type of randomness of interest is the relationship of the i.i.d. density of a sequence with
respect to an uniform distribution. This relationship can be captured by the relative entropy between
the product of first order marginal densities of a sequence and an uniform distribution as

Dn(∏n
k=1P(1)

X (xk)||U(n)) =
1
n

∫
P(n)

X∗ (x∗) log
P(n)

X∗ (x∗)
U(n)(x)

dxn (15)

The relative entropy of the joint distribution with respect to a uniform distribution is also of
interest in learning problems and this relative entropy can be expressed as the sum of the relative
entropies in Equations (14) and (15) as

Dn(P(n)
X (X)||U(n)) = Dn(P(n)

X (X)||∏n
k=1P(1)

X (xk)) + Dn(∏n
k=1P(1)

X (xk)||U(n)) (16)

by using a chain rule for relative entropy [3].
The relative entropy is prevalent in agent learning analyses as is shown in the following section.

The expressions for relative entropy in Equations (14)–(16), although straightforward, allow deeper
insights into existing structure and apparent randomness in sequences, and examples are provided in
later sections of what these expressions reveal.

3. Agent Learning and Redundancy

In reinforcement learning, the goal (broadly) is to observe the environment, understand the
behavior of the environment, and then take action to operate successfully within that environment.
Our focus in this paper is on the agent learning component wherein upon taking some observations of
the environment, we develop an understanding of the structure of the environment, formulate models
of this structure, and study any remaining apparent randomness or unpredictability.

Results from agent learning have made use of the information theoretic ideas in Section 2, and have
created variations on those information theoretic ideas to capture particular characteristics that are
distinct to agent learning problems. We summarize a few of these variations and newly defined
quantities here.

In the agent learning literature, it is desired to explore the broad ideas of unpredictability and
apparent randomness [1,2]. Toward this end, it is common to investigate the total Shannon entropy of
length-N sequences given by

h(X(N)) = −
∫

P(N)
X (X) log P(N)

X (X)dXN (17)

as a function of N to characterize learning. The name total Shannon entropy is appropriate since it is
not the usual per component entropy of interest in lossless source coding [3], for example.

In association with the idea of learning or discerning structure in an environment, the entropy
gain is defined as the difference between the entropies of length N and length N − 1 sequences as [2]

∆H(N) = h(XN)− h(XN−1) (18)
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Equation (18) was derived and studied much earlier by Shannon [4] not as an entropy gain but as
a conditional entropy.

In particular, Shannon [4] defined the conditional entropy of the next symbol when the N − 1
preceding symbols are known as

h(XN |XN−1) = h(XN , XN−1)− h(XN−1) = h(XN)− h(XN−1) (19)

which is exactly Equation (18); so the entropy gain from the agent learning literature is simply the
conditional entropy expression developed by Shannon in 1948.

Elias [6] considered the conditional entropy introduced by Shannon and called it the entropy
added by the Nth term, which again is consistent with the designation of entropy gain in the agent
learning literature as in Equation (18). Elias desired to find an upper bound on this added entropy.
Noting that the differential entropy of an Nth order Gaussian sequence is given by 1

2 log [2πe|RN |1/N ],
Elias shows that the entropy added by the Nth term is

∆H(N) =
1
2

log 2πe
|RN+1|
|RN |

(20)

Going beyond the concept of entropy gain, a definition of information gain, represented by ∆H(N)

and expressed as a relative entropy has been offered and studied by Crutchfield and Feldman [1,2] as

∆H(N) = D(P(N)
X (X)||P(N−1)

X (X)) (21)

In Equation (21), the support set of the two distributions is not the same, so the P(N−1)
X (X) is

extended by concatenating all values of the xN symbol with the prior symbols x0, x1, . . . , xN−1 with
equal probability [2].

It is also shown in [2] that (this result is in Shannon [4] and Elias [6] as well)

h = lim
N→∞

∆H(N) (22)

which is the definition of differential entropy rate stated in Equation (3), and where we let h = h(X )

for notational compactness and to be consistent with [2].
Further, in the learning literature, two definitions of a quantity called redundancy are offered.

One definition is as the difference between the maximum value of the entropy rate log |X |, where |X |
is the cardinality of a discrete alphabet or the volume of the support set for a continuous variable,
and the entropy rate h so that the redundancy is [2]

R = log |X | − h (23)

A second definition of redundancy DN(P(N)
X (X)||U(N)) is the relative entropy between the known

distribution P(N)
X and the uniform distribution, U(N), asymptotically in N,

R = lim
N→∞

DN(P(N)
X (X)||U(N)) (24)

Thus, for the definitions of redundancy in Equations (23) and (24), it can be stated that the
redundancy R is an indicator of the information gained when an agent learns that the actual distribution
is different from an uniform distribution as the sequence length becomes asymptotically large.
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To study how the redundancy evolves with finite length N observations of the environment,
a version of the redundancy, called N-redundancy, is defined if the actual distribution of the length N
sequence is known to be P(N)

X , so the entropy is h(X1, . . . , XN) and [2]

R(N) ≡ h(X1, . . . , XN)− Nh (25)

Equations (24) and (25) are special cases of the generalized definition of redundancy from
information theory which is the difference between the expected length of a lossless code and the
lower limit for the expected length of the code, expressed in terms of a relative entropy [3].

A characterization of the per symbol entropy when N observations of the environment are
available compared to the per symbol entropy with an infinite number of measurements is given by
the per symbol N-redundancy defined as

r(N) = ∆R(N) = ∆H(N)− h (26)

The quantity r(N) has also been called the local or N-dependent predictability [7].
To capture the total amount of redundancy per symbol as a measure of memory in an environment,

Crutchfield and Feldman [1] define the quantity Excess Entropy as

E = lim
N→∞

R(N) ≡ lim
N→∞

[h(X1, . . . , XN)− Nh] (27)

which is the limit of the redundancy in Equation (25). We contrast our results with the excess entropy
in later examples.

The entropy and the differential entropy rate are the primary workhorses in agent learning
analyses related to reinforcement learning and curiosity learning scenarios [1,2]. As a result,
the definitions of information gain and redundancy from the agent learning literature as presented
in this current section are perhaps too expansive and too imprecise in several ways and should be,
and can be, refined to allow the observation of additional phenomena.

In the following section we provide definitions of the new quantities, linear redundancy and
nonlinear redundancy and mutual information gain, that are more in line with Shannon theory and
also allow more detailed parsing of what is happening in the learning process.

4. Linear and Nonlinear Redundancy

Some definitions of redundancy and predictability from the information theoretic lossy source
coding literature allow the redundancy in a sequence to be broken down further than with the
definitions in Section 3. In lossy source coding, it is recognized that two types of redundancy can
be defined, namely, linear redundancy and nonlinear redundancy. The former is sometimes called
correlation redundancy, and is often used in linear prediction, and the latter is often called statistical
redundancy, which captures the statistical dependence between quantities when the linear redundancy
(linear predictability) is removed [8].

The relative entropy in Equation (14) can be associated with the linear redundancy, denoted as Rlin,

Rlin = Dn(P(n)
X (X)||∏n

k=1P(1)
X (xk)) (28)

which captures the memory with respect to an i.i.d. version of the sequence.
The relative entropy in Equation (15) can be associated with the nonlinear redundancy,

denoted as Rnon,
Rnon = Dn(∏n

k=1P(1)
X (xk)||U(n)) (29)

expresses the relative entropy of an i.i.d. sequence formed from the marginals of the sequence with
respect to a uniform distribution.
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Splitting the redundancy into linear and nonlinear components as in Equations (28) and (29) is
apparently new, particularly in the learning literature; further, splitting the redundancy into the linear
and nonlinear components allows the exploration of structure in the sequence in finer detail, which is
particularly useful when developing models for the sequence being explored.

A useful variation on Equation (28) is to limit the memory of the sequence that is observable.
In particular, consider the relative entropy involving only the current and immediate past M samples
of the sequence, denoted as the M-redundancy, given by

RlinM = D(p(XN , . . . , XN−M)||p(XN) · · · p(XN−M)) (30)

which is the linear redundancy with respect to a finite past history. Notationally, letting XN−M =

XN−M, . . . , XN−1, the M-redundancy in Equation (30) can be expanded as

RlinM =D(p(XN , XN−M)||p(XN) · · · p(XN−M))

=I(XN ; XN−M) + h(XN−M) + D(p(XN−1, . . . , XN−M)||p(XN−1) · · · p(XN−M))
(31)

The last term in Equation (31) is

D(p(XN−1, . . . , XN−M)||p(XN−1) · · · p(XN−M)) = −h(XN−M) +
N−1

∑
i=N−M

h(Xi) (32)

so the M-redundancy in Equation (31) takes the simple form

RlinM = I(XN ; XN−M) +
N−1

∑
i=N−M

h(Xi) = I(XN ; XN−M) + Mh(X) (33)

where the first equality follows from independence and the last follows if there is stationarity.
Thus, the M-redundancy equals the mutual information between the current sample of the sequence
and the immediate past M samples plus the sum of the differential entropies of the past M values of
the random sequence.

The nonlinear redundancy can also be simplified. To do this, the uniform distribution is assumed
to have wide but finite support and the number of quantization levels L = 2n are assumed sufficient
that the probability density over the support is U(n) = 2−nM for the M samples. Therefore,

D(p(XN−1, XN−2, . . . , XN−M)||2−nM) = −
N−1

∑
i=N−M

h(Xi) + nM (34)

Using Equations (33) and (34) in Equation (16) yields

RT = D(p(XN , XN−M)||2−nM) = I(XN ; XN−M) + nM (35)

for the total redundancy. However, it is the decomposition of the redundancy into linear and nonlinear
redundancy that opens the door to some new insights and useful new analyses.

There might be two time scales for the linear redundancy so a further decomposition of the linear
redundancy into long term and short term redundancies may be useful in many applications and such
an analysis is provided in a later section, Section 7, on speech processing.

As we have seen in prior sections and as will be developed subsequently, the separation of these
two redundancies/predictabilities can provide (and have provided) different insights into learning
and modeling for signal processing.
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5. Mutual Information Gain

Even though Equation (21) has been called information gain in the agent learning literature,
it is clear from Equations (18) and (19) that it is a conditional entropy. As such, the nomenclature,
information gain, is misleading. In terms of information gain, as can be seen from Equation (35),
the quantity of interest is the mutual information between the overall sequence and the growing
history of the past given by

I(XN ; XN−1) = h(XN)− h(XN |XN−1)

= h(XN)− [h(XN)− h(XN−1)]

= h(XN)− ∆H(N)

(36)

where ∆H(N) is defined in Equation (18). The mutual information in Equation (36) is much more
intuitive as a measure of information gained as a a function of N and includes the entropy gain from
agent learning as a natural component.

We can obtain more insight by expanding Equation (36) using the chain rule for mutual
information in Equation (13) [3] as

I(XN ; XN−1) = h(XN)− h(XN |XN−1) = ∑N−1
k=1 I(XN ; Xk|Xk−1, . . . , X0)

= I(XN ; XN−1|XN−2, . . . , X1, X0) + . . . + I(XN ; X2|X1, X0) + I(XN ; X1|X0)
(37)

Since I(XN ; Xk−1|Xk−2, . . . , X0) ≥ 0, we see that I(XN ; XN−1) is nondecreasing in N; however,
what do these individual terms in Equation (37) mean? The sequence XN should be considered
the input sequence to be analyzed with the block length N large but finite. The first term in the
sum, I(XN ; X1|X0) indicates the mutual information between the predicted value of X1, given X0,
and the input sequence XN . The next term I(XN ; X2|X1, X0) is the mutual information between the
input sequence XN and the predicted value of X2, given the prior values X1, X0. Therefore, we can
characterize the change in mutual information with increasing knowledge of the past history of the
sequence as a sum of conditional mutual informations I(XN ; Xk−1|Xk−2, . . . , X0).

We denote I(XN ; XN−1) as the total mutual information gain and I(XN ; Xk−1|Xk−2, . . . , X0) as
the incremental mutual information gain. Clearly, there are substantive differences between the
information gain as defined in Equation (21), which is really only an entropy gain expressed as a
relative entropy, and the new concepts of total mutual information gain and incremental mutual
information gain in terms of mutual informations.

We can also consider the mutual information between the input sequence XN and the immediate
past values XN−M, M < N, which is

I(XN ; XN−M) = h(XN)− h(XN |XN−M) = ∑M
k=1 I(XN ; XN−k|XN−k−1, . . . , XN−M)

=I(XN ; XN−1|XN−2, . . . , XN−M) + . . . + I(XN ; XN−M−1|XN−M) + I(XN ; XN−M)
(38)

This expression allows the input block length N to be finite if we need it to be so and it also allows
the past history M to be finite, which may occur due to having a finite memory for the analyses.

Thus, the definitions of entropy gain in Equations (18) and (21) are now distinct from the mutual
information gain in Equations (37) and (38), as is desirable.
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5.1. Stationary and Gaussian

We can say more if the sequence Xk is stationary and Gaussian with EXk = 0, EXkXk+n = ρn,
and EX2

k = σ2. Then, we know that

h(XN |XM−1) =
1
2

log 2πeMMSPE(M) (39)

with MMSPE(M) = |RM+1|
|RM |

, where the matrices are populated with the ρn terms. With stationary and

independent Xk, then h(XN) = h(X) = 1
2 log 2πeσ2, so using Equations (20) and (38), we find that

I(XN ; XN−M) = h(XN)− h(XN |XN−M) =
1
2

log
σ2

MMSPE(M)
(40)

This is an important expression for the mutual information gain since knowing the sequence
variance and the minimum mean squared prediction error for an Mth order predictor, we can evaluate
total mutual information gain without having to approximate the probability distributions and
the entropies.

The utility of the mutual information gain expressions in Equations (37) and (38) becomes even
more evident under the Gaussian assumption since the conditional mutual information terms become

I(XN ; Xk|Xk−1, . . . , XN−M) =h(XN |Xk−1, . . . , XN−M)− h(XN |Xk, Xk−1, . . . , XN−M)

=
1
2

log
σ2

e(k−1)

σ2
ek

(41)

Then we have for Equation (38)

I(XN ; XN−M) = h(XN)− h(XN |XN−M)

=
1
2
[log

σ2

σ2
e1

+ log
σ2

e1
σ2

e2
· · ·+ log

σ2
e(N−M−1)

σ2
e(N−M)

]
(42)

We know that the minimum mean squared prediction error is nonincreasing σ2
e(n−1) ≥ σ2

e(n),
so each term in the sum in Equation (42) is greater than or equal to zero, as must be true since it is a
mutual information.

We see from Equations (38), (40), and (42) that the mutual information gain gives us a quantitative
indicator in bits/symbol of the linear redundancy being captured or modeled. This is a new and useful
indicator of structure or memory being separated from randomness.

5.2. A Distribution Free Information Measure

If we compare the mutual information in Equation (40) with the entropy gain expression in
Equation (20), the scaling factor for the Gaussian density has been divided out and is not present in
Equation (40). This lack of scaling is important when interpreting the mutual information gain since it
is no longer dependent on the underlying distribution that would create a bias term.

Note that the prior definition of information gain in agent learning in Equation (21) is actually
an entropy gain so the scaling factor is present. The new quantity, total mutual information gain,
therefore, has a distribution free property not satisfied by entropy gain. In fact, for continuous random
variables, the differential entropy can be changed by a linear transformation but the mutual information
cannot [3].

6. Autoregressive Modeling

An autoregessive (AR) process is given by



Entropy 2020, 22, 608 10 of 16

x(k) =
M

∑
i=1

aix(k− i) + w(k) (43)

where the ai, i = 1, 2, ...M are called autoregressive parameters and w(k) is the excitation sequence.
Let us assume that the sequence being analyzed is a stationary, purely autoregressive sequence of
order M and the excitation term w(k) has the possibly nonuniform probability density function pW(w)

with variance σ2.
We can then use Equation (35) to expand the redundancy for this sequence. This makes explicit

the fact that the distance from randomness consists of two components, the linear redundancy due to
the predictive component and the nonlinear redundancy due to the distribution of the excitation.

If we know the true autoregressive parameters and the correct AR model order for a sequence,
then the linear redundancy can be removed by operating on the given sequence so that the remaining
distance from randomness is the nonlinear redundancy only. However, in most learning and modeling
problems, even if we are willing to assume that the sequence being observed is autoregressive, the true
AR model order is not known. The following example explores these ideas.

Example: Learning and Modeling an AR Sequence

A zero mean unit variance purely AR(10) Gaussian sequence is given by Equation (43) with
coefficients a1 = 2.0965, a2 = −2.6235, a3 = 1.4123, a4 = −0.8282, a5 = 0.5066, a6 = −0.1511,
a7 = −0.7505, a8 = 1.1628, a9 = −0.7748, a10 = 0.1906, where the sequence w(k) is Gaussian with zero
mean and variance σ2

W . (Note that these autoregressive parameters, ai, i = 1, 2, ...M, were obtained by
processing a frame of speech sampled at 8000 samples/sec to calculate the autocorrelation terms and
then using the techniques in Appendix A.) Table 1 shows the incremental mutual information gain
and the total mutual information gain as the predictor order M is increased.

Table 1. Incremental and total mutual information gain as the predictor order is increased: zero mean,
unit variance Gaussian AR(10) sequence.

M σ2
e(M)

I(XN ; Xk|Xk−1, . . . , XN−M) I(XN ; XN−M)

0 1.0 0 bits/symbol 0 bits/symbol
1 0.3111 0.842 0.842

2 0.0667 1.11 1.952
3 0.0587 0.092 2.044
4 0.0385 0.304 2.348

5 0.0375 0.019 2.367
6 0.0342 0.065 2.432
7 0.0308 0.069 2.501

8 0.0308 0.0 2.501
9 0.0261 0.12 2.621

10 0.0251 0.026 2.647
0–10 0.0251 2.647 2.647

We observe that the MMSPE (σ2
e(M)) is decreasing monotonically but not so for the incremental

mutual information gain, which increases in going from a 1st order predictor to a 2nd order predictor
and also in going from a 3rd order predictor to an M = 4th order predictor and further when the
predictor order goes from M = 8 to M = 9. Perhaps this hints at why mean squared error is thought
not to be a reliable indicator of performance in learning applications.

However, there is an even tighter connection between these increases in mutual information gain
and the physical process inherent in the autoregressive model with the given coefficients. The frequency
response corresponding to the AR model in Equation (43) and the given coefficients is plotted in
Figure 1. There are three major peaks evident in the spectrum, but certainly the relative magnitudes
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of the peaks are quite different. As noted from Table 1, there are jumps in the incremental mutual
information gain was the predictor order changes from 0 to 1, from 1 to 2, from 3 to 4, and from 8 to 9.
There is a general rule that to represent a peak in a spectral envelope requires two model coefficients,
which when translated to the frequency domain provide the location of the spectral peak and the
bandwidth of that peak.

Figure 1. Autoregressive (AR) model frequency response.

The increase in predictor order from 0 to 2 corresponds to representing the first spectral peak in
Figure 1, the increase from 3 to 4 would allow us to capture the information due to the second spectral
peak, and the increase from 8 to 9 indicates the third spectral peak. If we were to plot the spectra as the
predictor order is increased from 0 to 10, this evolution would be clearer with the substantial jump in
incremental mutual information gain in going from 0 to 1 showing a magnitude at low frequencies
and rough location of the peak but not the bandwidth (not an isolated peak itself). Further discussion
of these ideas are more properly in the context of time series analysis or linear prediction of speech [9]
than in the present development of this example; however, it is evident that the incremental mutual
information gain indicates significant physical changes in the underlying sequence that, while present
in the changes in mean squared prediction error, they are not highlighted as with the incremental
mutual information gain.

The total mutual information gain 0f 2.647 bits/symbol is the gain that comes from the linear
redundancy in the AR(10) sequence, and the remaining redundancy is the nonlinear redundancy.
If this sequence is modeled with a M = 2nd order predictor, that is, if the AR(10) sequence is modeled
as an AR(2) sequence, we would conclude that the mutual information gain or linear redundancy of
such a sequence was only 1.952 bits/symbol with σ2

W = σ2
e(2) = 0.0667.

The redundancy not captured by the prediction, as represented by the σ2
e(2) value would be

associated with nonlinear redundancy. The driving term w(k) would then be considered a spectrally
white process and the entropy rate associated with the nonlinear redundancy would be given by
Equation (5) with S(λ) = σ2

e(2) for −π ≤ λ ≤ π, so from Equation (10), the entropy rate would

erroneously be thought to be h(X ) = 1
2 log 2πeσ2

e(2).
From Equation (10), the entropy (discrete) in the nonlinear redundancy for the predictor order

M = 10 is
H(E) ≈ n +

1
2

log 2πeσ2
∞ = n− 0.611bits/symbol (44)

where we have used the notation E for the prediction error random variable.
Note that we can verify the result that the total mutual information gain given in Table 1 for

M = 10 is reasonable by noting that the discrete entropy associated with the original AR(10) sequence
before the removal of the linear redundancy is H(X) ≈ n + 1

2 log 2πe(1) since σ2 = 1. Thus, H(X) ≈
n + 2.047 bits/ symbol. The total change in differential entropy is therefore H(X)− H(E) ≈ 2.658
bits/symbol, which closely agrees with the total mutual information gain of 2.647 bits/symbol.
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The important step of using mutual information gain rather than the differential entropy removes
the need to consider the projection of the differential entropy back into a discrete entropy, and yields a
quantity that stands alone both incrementally and as a total. Furthermore, the mutual information
gain is more sensitive to what is actually happening in the learning process. More explicitly, for M = 2
in the example, σ2

e(2) = 0.0667 whereas for M = 10, the mean squared prediction error is σ2
e(10) = σ2

∞ =

0.0261, which does not appear to be much different from M = 2. However, the difference in mutual
information gain is 2.647− 1.952 = 0.695 bits/symbol. So mutual information gain is a more sensitive
indicator of performance in learning applications.

As illustrated in the example, if we utilize the incorrect AR model order L < M and assume
it is correct, we associate the excess unmodeled linear redundancy with the nonlinear redundancy,
thus getting a misleading interpretation of the amount of randomness in the sequence we are observing.
Other modeling errors, such as incorrect AR model coefficients or a sequence that is only partially
autoregressive, will invite similar incorrect conclusions about the character of the sequence being
analyzed or modeled.

Crutchfield and Feldman [1] study the same phenomenon of unmodeled structure in sequences
using the quantity, Excess Entropy, as defined in Equation (27). The separation of redundancy into
linear and nonlinear redundancy as discussed in Section 4 and shown in Equations (30) and (34) allows
greater insight into the sources of unmodeled randomness than the quantity of excess entropy alone,
which does not separate out the linear and nonlinear redundancies.

In the following section, we address the analysis of speech signals using the ideas of linear and
nonlinear redundancy and mutual information gain. Speech is well-suited to such a study since it is
known to be well-modeled by the AR model in many instances, but not always, and further, even when
the AR model is useful, as in speech coding, the model order is not known precisely and there are
different types of sounds, such as nasal sounds, that are not accurately produced by the AR model.

7. Speech Processing

Speech is an interesting and important signal for which AR modeling, called the linear
prediction model, has had extraordinary success for speech coding and other speech processing
applications [9–11], however, speech is not a purely AR sequence, and further the model order and
the coefficients are not known exactly. As a consequence, there are several unmodeled components
that may appear as nonlinear redundancy and thus can cause the distance from randomness to appear
larger than it is. Therefore, the application of our results to speech analysis is especially interesting,
given the importance of speech applications and the challenging analysis.

We begin with fitting a 10th order AR model to a speech segment. The chosen model order of
M = 10 agrees with what is often assumed in speech coding applications, but need not be the true or
best model order for any particular speech segment. We do not know the AR model coefficients so we
have to calculate them.

7.1. AR Speech Model

For these analyses to explore the ideas of linear and nonlinear redundancy and mutual information
gain, we utilize a block approach to calculating the AR model parameters. However, in agent learning
applications as we envision here, it may be more natural to employ a sequential or recursive algorithm
that processes the speech sequence in a sample-by-sample manner. The recursive algorithms are less
common in speech analyses and appear more complicated than the block approach, so we use the
block approach to illustrate the application and insights provided by the new terms linear redundancy,
nonlinear redundancy, and mutual information gain. However, the recursive algorithms can also be
used for AR model analyses and prediction.

As a specific example, we analyze the 160 time domain samples (bandlimited to 3400 Hz and
sampled 8000 samples/sec) plotted at the bottom of Figure 2, which has the normalized autocorrelation
terms R(0) = 1.0, R(1) = 0.7728, R(2) = 0.4242, R(3) = 0.2425, R(4) = 0.1002, R(5) = −0.0461,
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R(6) = −0.1608, R(7) = −0.2799, R(8) = −0.4802, R(9) = −0.6799, and R(10) = −0.6344.
The spectral envelope of this frame is shown in the top portion of the figure. The AR coefficients are
calculated as indicated in Appendix A.

Figure 2. Frame 3237 time domain waveform (bottom) and spectral envelope, SPER = 9.15 dB.

The MMSPE(M) values as the AR model order M is increased from 1 on up to 10 are shown on
the left side of Table 2. The middle column, labeled I(XN ; XM|XM−1, . . .), contains the incremental
mutual information gain as the predictor order is increased. The rightmost column is the total mutual
information gain for that model order, which is given by

I(XN ; XN−M) = h(XN)− h(XN |XN−M)

=
1
2

[
log

σ2

σ2
e1

+
M−1

∑
i=1

(
log

σ2
ei

σ2
e(i+1)

)]
(45)

for M ≥ 2, and which simplifies to just the first term for M = 1.

Table 2. Incremental and total mutual information gain as the predictor order is increased: Frame 3237,
SPER = 9.15dB

M σ2
e(M)

I(XN ; Xk|Xk−1, . . . , XN−M) I(XN ; XN−M)

0 1.0 0 bits/symbol 0 bits/symbol
1 0.402 0.656 0.656

2 0.328 0.147 0.803
3 0.294 0.0795 0.883
4 0.2465 0.125 1.01

5 0.239 0.0234 1.031
6 0.2117 0.0869 1.118
7 0.212 0.0 1.118

8 0.125 0.381 1.499
9 0.1216 0.0206 1.52

10 0.1216 0.0 1.52
0–10 0.1216 1.52 1.52
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From Table 2, we see that the MMSPE(M), denoted as σ2
e(M), is nonincreasing in M and for this

speech frame, appears to flatten out as M approaches the selected order M = 10. The incremental
mutual information gains listed in the middle column show that while this term is always greater than
or equal to zero, the incremental mutual information gain is not monotonic and can have a relatively
large value for higher orders. For example, for M = 8 the incremental mutual information gain is
0.381 bits/symbol, which is the largest such gain since M = 1. The total mutual information gain
in the rightmost column is monotonically increasing and effectively flattens out at M = 8 where
I(XN ; XN−M) is 1.499 bits/symbol.

We see from Figure 2 that there are four peaks in the spectral envelope and by inspection of the
table, significant changes in the incremental mutual information gain occur as the predictor order
is changed from 0 to 1, 1 to 2, 3 to 4, (more subtly from) 5 to 6, and from 7 to 8. Therefore, as the
increasing predictor order allows the locations and bandwidths of the spectral peaks to be captured,
there are corresponding jumps in the incremental mutual information gain.

There can be considerable variation in the total mutual information gain across different frames in
the same sentence spoken by the same speaker. This is evident from Table 3, wherein it is shown that
three other frames in the same utterance studied in Table 2 have mutual information gains that vary
over the range of 0.83 bits/symbol to 1.968 bits/symbol. This is not unusual for speech sequences;
while the predictor order is related to the length of the speaker vocal tract [9,12], the best AR model
order can vary based on what is being said, in general, and with the coupling of the nasal cavity,
which causes an increase in the short term linear redundancy. There can also be interaction with the
longer term memory due to speaker pitch, resulting in the AR model order varying considerably for
the same speaker.

Table 3. Total mutual information gain for 10th order predictors and corresponding signal to prediction
error ratios (SPERs) for several speech frames [13].

Speech Frame No. SPER in dB I(XN ; XN−M)

23 11.85 1.968 bits/symbol
3314 7.74 1.29 bits/symbol

87 5 0.83 bits/symbol

7.2. Long Term Redundancy

Of course, while an AR model is useful to capture the short term memory in a speech waveform,
it is well known that there is a long term memory related to speaker pitch as well. In Figure 2,
by inspection we can see that there is a longer term redundancy with a memory of roughly 50 samples.
In terms of relative entropy, the longer term memory due to speaker pitch can be explicitly exhibited
by breaking the term due to linear redundancy in Equation (28) into two terms, one involving short
term linear redundancy (AR sequence model) and the other involving the long term redundancy due
to speaker pitch as

R =DN(P(N)
X (X)||U(N)) = DM(P(M)

X (X)||∏M
k=1P(1)

X (xk))

+DL(P(L)
X (X)||∏L

k=1P(1)
X (xk)) + DN(∏N

k=1P(1)
X (xk)||U(N))

(46)

where we now have the total sequence length being analyzed as N, the short term AR memory as
M as before, and the longer term memory as L, with N > L > M. The notation does not illustrate
the notion that while L > N, the short term AR order parameters are separate from the long term
linear redundancy. The terms in Equation (46) measure the short term linear redundancy, DM, the long
term linear redundancy DL, and the distance of the i.i.d. probabilty of the sequence from the uniform
distribution, DN , after the linear redundancies have been removed.

The speech coding literature lists a wide range of SPER gains for long term prediction; for our
experiments, we observe SPER values of 1 to 3 dB. In terms of mutual information gain, this range is
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0.363 to 0.996 bits/symbol. Therefore, for Frame 3237 in Table 2 the long term prediction can increase
the mutual information gain by these amounts to reduce the corresponding nonlinear redundancies to
the range of 1.157 to 0.524 bits/symbol.

8. Discussion and Conclusions

The relative entropy of a sequence is decomposed into a relative entropy describing the linear
redundancy and a relative entropy representing the nonlinear redundancy, which when combined
capture the total redundancy in the sequence. One component of the total redundancy, called the
mutual information gain, is then expanded using the chain rule for mutual information into the sum
of incremental mutual information gains. These quantities are used to analyze a purely autoregressive
sequence and to express the redundancies in representations of speech signals with short term and
long term linear redundancies. It is shown how inaccurate autoregressive model orders or unmodeled
linear redundancies become nonlinear redundancies, thus implying a misleadingly large amount
of nonlinear redundancy or apparent randomness. While the minimum mean squared prediction
error for autoregressive sequences is monotonically decreasing in predictor order, the incremental
mutual information gain is not since it is measured with respect to a preceding lower predictor order,
so incremental mutual information gain more accurately characterizes the improvement in an AR
model as the predictor order is increased.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AR Autoregressive
AR(M) Autoregressive of order M
MMSPE Minimum mean squared prediction error
Q Entropy (rate) power
SPER Signal to prediction error ratio

Appendix A. Calculating the AR Model Coefficients

For a given windowed frame of L input speech samples, where the windowing sets all
samples outside the window to zero (equivalent to an assumption of stationarity), it is necessary
to calculate the linear prediction coefficients. This is done by choosing the coefficients to minimize
the sum of the squared prediction errors over the frame; that is, choose the coefficients to minimize
σ2

e(M)(k) = ∑[x(k)−∑M
i=1 aix(k− i)]2 [9]. Taking the partial derivatives with respect to each of the

coefficients, aj, j = 1, 2, ..., M, and equating to zero, yields the set of linear simultaneous equations

M

∑
i=1

aiR(|i− j|) = R(j) (A1)

for j = 1, 2, ..., M, where

R(j) =
1
L

L−j−1

∑
k=0

x(k)x(k + j) (A2)

with R(j) = R(−j). In matrix notation this becomes RA = C where R is an M by M Toeplitz matrix
of the autocorrelation terms in Equation (A2), A = [a1, a2, . . . , aM]T , and C is a column vector of the
autocorrelation terms R(j), j = 1, 2, . . . , M.
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Correlation Matching

It is common in signal processing applications, and specifically in speech processing and coding
applications, to use what is often called the Correlation Matching method wherein we calculate
the autocorrelation terms according to Equation (A2) and then specify an AR(M) model based on
these autocorrelations. Thus, the model parameters, coefficients and autocorrelations, agree with
the parameters for the sequence x(i), i = 1, 2, . . . , L up to order M, but may not agree for other
autocorrelation lags [14].

Working with the AR(M) model in Equation (43), it is straightforward to develop the recursion
for the autocorrelation values as

R(k) =
M

∑
i=1

aiR(|k− i|) = a1R(k− 1) + a2R(k− 2) + . . . + aMR(k−M) (A3)

for all k > 0. This allows us to extend the autocorrelation function to all possible lags using the M + 1
estimated autocorrelations. The extended autocorrelation values will equal the true values only if the
sequence is actually AR(M). Of course, most sequences, even though partially well represented in
some sense using AR models, are not purely AR, and so the higher order autocorrelations will not
satisfy Equation (A3).
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