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Controlled heterometallic composition in linear trinuclear 

[LnCeLn] lanthanide molecular assemblies 

Verónica Velasco, Leoní A. Barrios, Mike Schütze, Olivier Roubeau, Fernando Luis, Simon J. 

Teat, David Aguilà and Guillem Aromí 

Abstract: The combination of two different β-diketone ligands facilitates the size-controlled assembly of pure heterometallic [LnLn’Ln] 

linear compounds thanks to two different coordination sites present in the molecular scaffold. [HoCeHo], [ErCeEr] and [YbCeYb] 

analogues are presented here and are characterized both in the solid state and solution, demonstrating the selectivity of this unique 

method to produce heterometallic 4f molecular entities. 

Molecular-based systems featuring lanthanide ions constitute a very active research area within materials science due to their 

exceptional physical properties.[1-4] The characteristics of these molecules allow their exploitation in numerous disciplines, 

such as in optical and magnetic resonance imaging, [5] magnetic refrigeration,[6-8] light-emitting diodes[9] or information 

storage[10-13] and processing.[14-17] In view of this potential, strong efforts focus on lying out strategies to develop molecules 

with more than one type of lanthanide ion in order to tune or enhance their properties and performance. Combinations of 

different lanthanides can, for example, improve up-conversion efficiency in luminescent systems,[18] modify the colour or 

brightness of their emission,[19] or produce contrast agents covering both visible and near-IR regions.[20] The controlled 

production of such materials is, however, highly challenging due to the similar chemical behaviour of the lanthanide ions. In 

order to prepare selectively heterometallic lanthanide complexes, chemists have developed synthetic methods based mainly 

in two strategies. On the one hand, by performing two chemical reactions sequentially, engaging a different Ln metal each 

time.[21-30] On the other, by using organic ligands with different encapsulating pockets, designed to bind two types of Ln ions, 

as discriminated by their different ionic radii.[31-33] This latter strategy often leads to metal distributions only partially removed 

from statistical mixtures. Overcoming this challenge, our group reported a very selective asymmetric ligand featuring β-

diketone (O,O) and dipicolinate-like (O,N,O) pockets able to promote pure heterometallic dinuclear [LnLn’] complexes  for a 

large number of combinations (H3L, Fig. 1).[34-36] The selective distribution of each lanthanide ion, based exclusively on their 

different ionic radii, was found to be extremely efficient, both in the solid state and solution. This synthetic resource was used 

to study specific [LnLn’] combinations as two quantum bit (qubit) molecular logical quantum gates (qugate), each lanthanide 

ion embodying a qubit.[37] Based on low-temperature magnetic and EPR measurements, the [CeEr] analogue was found to 

perform successfully as a CNOT (controlled-NOT) qugate.[34] In view of these exciting results, the possibility to increase the 

complexity and incorporate an additional Ln ion into the system was explored. The aim was to produce molecules with three 

qubits capable to realize more complex qugates, such as quantum error correction protocols.[38-39] We thus turned our attention 

to the ligand H2LA (Fig 1), which had been synthesized by us as the precursor of another multidentate ligand. [40] H2LA exhibits 

an additional β-diketone (O,O) unit as compared with H3L, thus having the ability to chelate a third Ln, while featuring still only 

two different environments and thus two-metal selectivity. 
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Figure 1. Representation of ligands H3L, H2LA and H3LB. 

By analogy with the dinuclear [LnLn’] complexes,[36, 41-42] the central position of H2LA is expected to host the largest lanthanide, 

while the smaller ions would be allocated at the external sites. We explored this eventuality through reactions in pyridine of 

H2LA with Ce(NO3)3/Ln(NO3) mixtures in the 1:2 molar ratio, Ln being HoIII, ErIII or YbIII, thus with a marked smaller ionic radius 

than CeIII. The choice of metals is justified by our future interest in studying these compounds as qugates to perform quantum 

error correction protocols[38] or other three qubit qugates. The Ce and Er metals are interesting for their low content of nuclear 

spin (I = 0 for Ce and only 23% of I = 7/2 for Er), reducing the sources of decoherence. Being Kramers ions, CeIII and ErIII are 

potential good realizations of qubits, as they likely present isolated Seff = ½ doublets in the ground state. [34] YbIII offers the 

possibility of studying a qubit with a lower magnetic moment at the ground state, thus leading to a weaker coupling with CeIII, 

of potential interest for some applications. Non-Kramers ion HoIII was investigated for completeness. Slow diffusion of hexane 

within the resulting orange solutions afforded orange oils, which after several weeks turned into orange crystals. Single-crystal 

X-ray diffraction (SCXRD) enabled the analysis of the structure for the resulting compounds (Fig 2 and S1-S4). The three 

systems were found to be isostructural, crystallizing in the P-1 triclinic space group (Table S1). As expected, three Ln ions are 

chelated at the predicted positions of two LA2– donors (following the double deprotonation of H2LA). Interestingly, the 

coordination is also brought about by two deprotonated fragments of the original ligand (H2LB, Fig 1 and Figure S4), following 

a process of hydrolysation in situ. As a result, one β-diketone group of H2LA converts to a carboxylic acid, yielding H2LB. The 

latter hydrolysis has been documented as a metal catalyzed retro-Claysen process, occurring through the nucleophilic attack 

of one of the β-diketone carbonyl groups by a molecule of water.[43-44] Since the nature of each Ln ion was clearly identified 

during the refinement of the crystal structures (see Experimental Section, SI), the following formulae could be anticipated: 

[CeLn2(LA)2(LB)2(py)(H2O)2](NO3)·n(py) (hereafter [LnCeLn], where Ln = Ho (1), Er (2) or Yb (3), py = pyridine and n = 11 for 

Ho and Er, and 10 for Yb). Most lattice pyridine molecules are exchanged by varying amounts of water molecules upon 

exposure to the atmosphere (see microanalysis at the SI). The analysis evidenced thus a central CeIII ion encapsulated by 

two dipicolinate-like units (O,N,O) from LA2- ligands, and two (O,O) β-diketonate groups from LB2-. Its coordination is completed 

with a pyridine molecule, producing a distorted undecacoordinated capped pentagonal antiprism as calculated by continuous-

shape measures (CShMs, Table S2, Fig. S5).[45] In turn, the peripheral ions are HoIII, ErIII or YbIII for 1, 2 and 3 respectively. 

Their eight-vertices coordination polyhedron is produced with two (O,O) β-diketonate groups from LA2- ligands, only one 

(O,N,O) dipicolinate-like unit from LB2- and one molecule of H2O. Such environment was found to be best described as a 

distorted bi-augmented trigonal prism by CShMs (Table S2, Fig. S5). 

Figure 2. Representation of the cation [CeLn2(LA)2(LB)2(py)(H2O)2]+ 
present in 1-3. Color code: O, red; N, purple; C of py, grey; C of LA2–, yellow; C of LB2–, blue. H atoms not shown. 



 
Table 1. Average bond distances to the metal ions in 1-3, and differences 

betwee these averages, in Å (Ln1 and Ln2 refer to two crystallographically 

independent ions of the same metal in each molecule). 

 [HoCeHo] (1) [ErCeEr] (2) [YbCeYb] (3) 

av. d(Ce–O) 2.622(11) 2.622(11) 2.614(15) 

av. d(Ce–N) 2.790(7) 2.785(7) 2.786(14) 

av. d(Ln1–O) 2.344(11) 2.323(11) 2.301(15) 

d(Ln1–N) 2.417(5) 2.409(5) 2.387(7) 

av. d(Ln2–O) 2.335(11) 2.325(11) 2.303(14) 

d(Ln2–N) 2.411(5) 2.400(4) 2.381(7) 

ΔOCe–Ln1 0.29 0.30 0.31 

ΔOCe–Ln2 0.29 0.30 0.31 

ΔNCe–Ln1 0.37 0.38 0.40 

ΔNCe–Ln2 0.38 0.38 0.41 

 

The selective allocation of the metals occurs on grounds of relative ionic radii. The analysis of bond distances helps to 

corroborate this distribution (Tables 1 and S3). For consistency, only the M–O distances involving LA2- and LB2- are compared 

here. Thus, the central CeIII ion exhibits systematically larger Ce–O values compared with the Ln–O distances (Ln=Ho, Er, 

Yb). This is consistent with the central cavity of the molecule favouring the metal with larger ionic radius (1.220 Å for CeIII when 

surrounded by a nine-coordinate) in comparison with the external locations, which stabilize the smaller ions (1.055, 1.040 and 

1.010 Å for HoIII, ErIII and YbIII, respectively, if all nine-coordinate).[46] This feature is in perfect analogy to that discovered for 

the [LnLn’] family, where a majority of (O,N,O) pockets with respect to (O,O) sites favour larger metal ions. The selectivity  can 

be quantified by the metric parameters ΔO (or ΔN), here the difference between the average of Ce-O (or Ce-N) and Ln-O (or 

Ln-N) bond distances (Table 1). These values (in the range of 0.29-0.31 Å for ΔO, and 0.37-0.41 for ΔN) suggest a strong site 

selectivity, found to be even larger than observed for the [LnLn’] system. [34-36] The crystal lattice is completed with pyridine 

molecules, together with one nitrate anion per cluster, which ensures the electroneutrality of the system. Within the lattice, the 

cationic complexes are interacting through a network of H-bonding and π-π stacking interactions, imposing short distances 

between Ln ions of neighbouring molecules (6.07, 6.07 and 6.05 Å for 1, 2 and 3, respectively, Fig S6). In view of the molecular 

structures of these clusters, their synthesis was attempted in a rational manner, through the reaction in pyridine of Ce(NO3)3 

and Ln(NO3)3 (1:2 molar ratio) with two equivalents of H2LA and H2LB, respectively. The latter was synthesized with a 

procedure analogous to that for H3L.[41] In addition, we noticed that the addition of CuCl2 helped significantly the crystallization. 

During this process, crystals of [Cu(py)4(NO3)2] develop first, before large single crystals of compounds 1-3, easy to separate, 

originate from the original oil (Experimental Section, SI). Small deviations from ideal microanalysis results are attributed to 

unperfect burning due to a large amount of aromatic rings, rather than to impurities, especially in view of the homogeneity of 

the samples and the good behavior of bulk magnetic data (see below). 

The bulk magnetic properties of complexes 1-3 were determined by magnetometry. In Fig 3 are represented χMT vs T 

plots of polycrystalline samples (χM being the molar magnetic susceptibility per [LnCeLn] unit). The χMT product for 1 at room 

temperature (26.4 cm3 K mol-1) is only slightly lower than expected for a CeIII (2F5/2, gJ = 6/7) and two HoIII (5I8, gJ = 5/4) non-

coupled ions (28.1 cm3 K mol-1). For compounds 2 and 3, the values observed (24.7 and 5.56 cm3 K mol-1, respectively) are 

very close to the expected values for the uncoupled systems (23.8 and 5.84 cm3 K mol-1, respectively) as derived by adding 

the contribution from the CeIII ion to that of the Er III (4I15/2, gJ = 6/5) or YbIII (2F7/2, gJ = 8/7) ions. This is consistent with the 

predicted composition of 1-3 and shows that, as expected, all the Stark sublevels of the ground state for each Ln III ion are 

almost equally populated at room temperature. In the three cases, χMT decreases upon cooling, first smoothly and then 

increasingly faster as temperatures get lower. As for other lanthanide compounds, this is most likely due to the depopulation  

of the sublevels, with the additional contribution of weak magnetic interactions. From inspection of the lattice (see above), the 

latter may derive both, from intra- or intermolecular interactions. 



 

Figure 3. Plots of χMT vs T for 1-3 (χM is the molar paramagnetic susceptibility per [LnCeLn] unit). 

The selectivity in the formation of 1-3 was corroborated by by mass spectrometry (MS). Crystalline samples dissolved in a 

mixture of DMSO and MeOH were analysed by the electrospray ionization (ESI) MS technique. The ionization caused the 

removal of the pyridine and water ligands from the complexes, producing moieties exclusively for the [LnCeLn] metal 

composition for the three compounds. Of upmost relevance is the fact that for each of the complexes, no signals for other 

metal distributions was detected (Figs 4, S7 to S14). 

 

Figure 4. Selected region of the ESI-MS spectrum of 1 ([HoCeHo], gray line), the calculated signals for [Ce3] (red line), [CeHo2] (green line), [Ce2Ho] 
(blue line) and [Ho3] (orange line) fragments superimposed. 

This constitutes very strong evidence of the selective distribution of lanthanide ions in the molecular scaffolds of 1-3 and 

establishes the robustness of their molecular architecture in solution. The absence of metal ion scrambling further confirms 

the enhanced stability of the [LnCeLn] assemblies compared to the related [LnLn’] systems[36] and shows the powerful ability 

of this reaction to produce, for the first time, purely heterometallic trinuclear lanthanide molecules through simple one-pot 

reactions. 

In conclusion, we have demonstrated that a combination of two new chelating ligands gives access to a potentially large 

collection of pure heterometallic [LnLn’Ln] trinuclear complexes with a precise distribution of both types of meta ls present. The 

selectivity is solely based on the ionic radii disparity of these two different Ln ions. This unique new family of complexes will 

constitute a valuable platform to investigate the benefits of combining selectively different lanthanides within molecules. In the 

context of quantum computing, some combinations of metals, such as in the case of [ErCeEr] provide the ideal molecular 

hardware to implement quantum error correction protocols, using the ions as qubit realizations. Pulsed EPR and very low 

temperature magnetic measurements together with the state evolution predictions to implement this quantum gate will be 

published in due time. 
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