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Integrating dependent evidence: naïve reasoning in the face of complexity 
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Abstract 
When reasoning about evidence under conditions of 
uncertainty, one important consideration for accurate updating 
is the presence (and influence) of dependencies. For instance, 
if considering whether a patient has a disease, the value of 
two doctors’ diagnoses indicating the presence of the disease 
may carry more value if such diagnoses were conducted 
independently, rather than if, all else being equal, one doctor 
has seen the other’s diagnosis before making their own. In the 
present paper, we demonstrate that lay reasoners prefer to 
avoid dependencies when considering evidential support. 
However, we additionally illustrate two cases in which 
dependencies may carry evidential advantage: namely, when 
information is partial or contradictory. Lay reasoners 
erroneously remain averse to dependencies even in such 
cases, reflecting the difficulties inherent to considerations of 
dependence. 

Keywords: evidential reasoning; probabilistic reasoning; 
dependence; Bayesian Networks; belief updating 

Introduction 
The accurate integration of information is essential to 
everyday life, be it in order to reason effectively, to come to 
conclusions, or to make decisions. The accuracy of this 
integration has been of particular concern in the domains of 
intelligence analysis (Heuer, 1999), law (Fenton & Neil, 
2012, Fenton, Neil & Lagnado, 2013, Hahn & Oaksford, 
2007; Harris & Hahn, 2009; Lagnado, 2011; Pennington & 
Hastie, 1986; Schum, 1994), and medicine (Eddy, 1982), 
where efforts have been made not only to understand how 
people do integrate, but also how they should do so. 
Questions remain, from both empirical and normative 
standpoints, regarding the central issue of how to deal with 
dependencies between pieces of evidence. 

In modelling the integration of evidence, it is sometimes 
legitimate to assume conditional independence (see e.g., 
Bovens & Hartmann, 2003; Hahn, Harris & Corner, 2009; 
Fenton & Neil, 2012), such that knowledge of one piece of 
evidence does not affect the impact of another (Pearl, 1988). 
Such an assumption eases computation (Schum, 1994; 
Pearl, 1988), but if misapplied can lead to dangerous over-
weighting of evidential value (e.g., naïve Bayes in medicine; 
Koller & Friedman, 2009; Kononenko, 1993).  

To illustrate, Bayesian networks (BNs) provide a 
graphical, computational framework for reasoning under 
uncertainty, using Bayes theorem and conditional 
likelihoods to make optimal inferences (Pearl, 1988; 2009). 
For the purpose of this paper, we are interested in the simple 
case of a unidirectional, direct relation between two 
reporters. In other words, a dependency characterised by 

one reporter (SA) “receiving” information from another 
reporter (SB) before providing their own report about the 
same hypothesis (H; see Fig. 1). Such a structure is relevant 
to many areas of enquiry, including medicine (e.g., a doctor 
may make a diagnosis having already seen the diagnosis of 
a second doctor), and the legal / forensic domain (e.g., a lab 
technician runs a finger print analysis already knowing 
exonerating information about the suspect; see Dror, 
Charlton, & Peron, 2006).  

If the two sources corroborate one another, and are 
conditionally independent (no dashed line), then their 
reports carry more weight than if the two sources have 
colluded, shared information (dashed line), or possess some 
other form of dependence (all else being equal). This is 
because in the dependent case there are alternative 
explanatory paths for a source’s report – other than the true 
state of the world: for instance, a doctor (SA) diagnoses a 
disease (H) based primarily on the diagnosis of another 
doctor (SB), rather than their own independent assessment of 
the symptoms. Conversely, sources independently providing 
corroborative reports exert a direct, multiplicative impact on 
H (in accordance with standard Bayesian updating; Pearl, 
1988). Accordingly, to mistake dependent structures for 
independent (or vice versa) can lead to systematic over (or 
under) weighting of evidential value.  

 

 
Figure 1. Graphical representation of a hypothesis (H) 

with two sources of evidence (SA, SB) informing upon it.  

Judgments of dependence, and the case for 
dependency advantages 
When multiple reports corroborate one another, then (all 
else being equal) independent reports will convey more 
support than those sharing dependencies. This notion fits 
with conceptualisations of dependence-as-redundancy in 
expert forecasting (Hogarth, 1989; Soll, 1999). However, 
there are instances in which independence is not preferable. 
In this paper, we introduce two such instances, and 
experimentally assess lay reasoners intuitions about the 
impact of dependence in such cases. 

To illustrate, consider the two columns of Fig. 2: the 
networks in the two cases are both of two sources (A and B) 
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reporting on a hypothesis of interest (H). The cases differ in 
the additional arrow indicating a dependency between the 
two sources (left-hand column). At t0, neither source has 
provided a report. Imagine now receiving only the report of 
Source A (row t1; indicated by the 100% in row “H” for the 
Source A cell, reflecting a report that H is true). In this state 
of ‘partial information’, the dependent case (left) can lend 
more support to the hypothesis (H) than the independent 
counterpart (right) – as seen by the higher resulting 
probability of H (84% vs 80%).1 Imagine now receiving the 
second report, which contradicts the first (Source B reports 
that H is false; t2 of Fig. 2). Here dependencies can also lead 
to greater support for H than the independent case (60% vs 
50%). Of course, if reports corroborate at t2 (not shown), 
independence always yields more support than dependence 
(94% vs 90% in this example). In this paper, we probe lay 
reasoners understanding of such situations. 

 

 
Figure 2. Common-cause structures, with independent and 

dependent cases, across no information (t0), partial (t1) and 
contradicting information (t2) states. 

 
Present research We ask how lay reasoners understand and 
use judgments of the evidential impact of dependencies. For 
instance, do people assume that dependencies imply lower 
informative value, all else being equal? Does such an 
assumption extend to cases in which dependence is in fact 
preferable? 
    The advantage a dependency provides relies not only on 
the pattern of evidence (e.g. contradictory vs. 

                                                           
1 This depends on the complex relationship between independent 

and dependent source error rates, as well as P(H). In the case 
shown in Fig. 2, P(H) = .5, and independent sources have error 
rates of .2 (i.e. false positives = false negatives). The issue of how 
to alter error rates for a dependent source remains an open question 
from a normative standpoint, but for the present example, error 
rates are assumed to halve if provided with an accurate secondary 
report, and double if provided with a misleading report. Thus, 
P(¬RepA|RepB,H) = .1, whilst P(¬RepA|¬RepB,H) = .4. 

corroborative), but also on the manner in which error rates 
of an independent source are modified, given access to a 
secondary source (i.e. the change in reliability of SA (Fig. 1) 
when the (dashed) line of dependence from SB is 
introduced). For instance, to what degree are error rates 
mitigated when a secondary source provides accurate 
information (or exacerbated by false information)? We elicit 
these modifications (conditional probabilities) from 
participants, which allow us to determine the coherence of 
reasoners in judging the impact of dependencies by their 
own lights. This approach also affords an opportunity to 
explore lay intuitions regarding the impact of secondary 
sources on the reliability of a recipient source. 

Method 
Participants 200 US participants were recruited and 
participated online through Amazon Mechanical Turk. 
Participants were native English speakers2, with a median 
age of 33 (SD = 11.06), and 107 participants identified as 
female. All participants gave informed consent, and were 
paid for their time. 
Procedure & Design Participants were presented with 
background information describing a plane crash that may 
have been caused by sabotage (P(H) = .5), for which there 
were two experts, Bailey (Source A in Fig. 2) and Campbell 
(Source B in Fig. 2), who independently assessed the crash 
site (so as to provide reports about the hypothesis of 
sabotage). Both experts were indicated to be reasonably 
reliable (with error rates – both false positive and false 
negative – of 20%3) when independent. 
Participants then provided conditional probabilities for 
Bailey’s adjusted reliability when given (in)correct 
information from Campbell (used in model comparison; see 
below), followed by three elicitation stages in which 
participants compared the support for the hypothesis 
provided in dependent versus independent scenarios as 
gradually more information was presented (see  questions 
and scenarios below). These stages follow those illustrated 
in Fig. 1: t0(Baseline) – no reports; t1(First report) – Bailey 
gives a positive (sabotage) report; t2(Second report) – 
Campbell gives either a corroborating (sabotage) or 
contradicting (no sabotage) report. Whether participants saw 
a corroborating or contradicting t2 report was manipulated 
between-subjects.  Conditional probability questions, 
scenarios, and elicitation stage questions are shown below.  
Conditional probability questions To inform model 
comparisons, participants were first asked to provide 
probability estimates (0-100%) for the following two 
conditions: 
1. “If Bailey, before making her report, has seen 

Campbell's completed report - when that report is in 
fact CORRECT - what do you estimate is the 
probability of Bailey making a mistake now?” 

                                                           
2 202 participants were originally recruited, but 2 were removed 

for not being based in the US nor being a native English speaker. 
3 I.e. P(RepB|¬H) = P(¬RepB|H) = P(RepC|¬H) = P(¬RepC|H)= .2 
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2. “If Bailey, before making her report, has seen 
Campbell's completed report - when that report is in 
fact INCORRECT - what do you estimate is the 
probability of Bailey making a mistake now?” 

    The two questions thus elicit from participants an 
estimate of the change in error rates for a recipient source 
(Bailey) given exposure to a secondary “sending” source 
(Campbell) when the latter is in fact 1) correct 
(P(¬RepB|RepC,H)), or 2) incorrect (P(¬RepB|¬RepC,H)). 
Scenarios For the three elicitation stages, participants were 
given two scenarios to consider (with the background re-
presented): 
    “Scenario 1: You learn that Bailey, prior to completing 
her report, was accidentally given access to Campbell's 
completed report. As such, Bailey's report may be 
influenced by what Campbell has reported.”  
    “Scenario 2: You learn that Bailey completed her 
report without ever seeing Campbell's completed report. As 
such, Bailey's report is not influenced by what Campbell has 
reported.” 
    Scenario 1 is thus a “dependent” scenario, and Scenario 2 
an “independent” scenario.  
Elicitation Stage questions The three questions pertaining 
to the scenarios across the three elicitation stages were: 
    Qualitative Judgment (forced choice): “Based on what 
you know at this point, which scenario (if either) provides 
more support for the plane having been sabotaged?” 
[“They are the same.” / “Scenario 1” / “Scenario 2”. 
Randomized presentation order.] 
    Confidence in Judgment: “How confident are you 
that your response is correct?” [Slider, 0 – 100%.] 
    Probability Estimates: “What is your current probability 
estimate of sabotage in each scenario, given what you know 
so far?” [Sliders from 0-100%.] 
Open text reasoning was also elicited after each stage, but 
for the sake of brevity is not reported here. 

Results 
Bayesian statistics were employed throughout4 using the 
JASP statistical software (JASP Team, 2017). For the sake 
of brevity, analyses are not reported exhaustively here. 
Elicited conditional probabilities As illustrated in Fig. 3, 
participants appear to generally reduce a source’s error rates 
when that source has been provided with correct 
information from a secondary source (median (green dashed 
line in Fig. 3) = 15%), and increased error rates when that 
secondary source is incorrect (median (red dashed line in 
Fig. 3) = 36%).  

                                                           
4 According to Jeffreys (1961), Bayes Factors (BF10: likelihood 

ratio of data given hypothesis, over data given null), may be 
interpreted as: 1 – 3 = anecdotal support; 3-10 = substantial; 10-30 
= strong; 30-100 = very strong; >100 = decisive. Conversely, 
Bayes Factors < .33 can be considered strong support for the null 
(Dienes, 2014). For all analyses, an objective (uninformed) prior 
was used, unless otherwise specified. Wherever possible, sample 
sizes for a given analysis (N), and Bayesian Credibility Intervals 
(95% CI) are indicated. 

A Bayesian T-Test was conducted on each conditional 
probability to assess deviation from the starting value of 
20%. Estimates of the impact of an “incorrect” secondary 
source showed decisive evidence for a difference (N = 200; 
M = 38.05, 95% CI: [35.19, 40.9]), BF10 = 3.707 * 1023. 
However, the impact of a “correct” secondary source on 
error rates showed strong evidence for a null difference (N = 
200; M = 20.73, 95% CI: [18.13, 23.34]), BF10 = 0.092. 

 

 
Figure 3. Elicited conditional probabilities of the expected 

error rate for a dependent source with a standard 
(independent) error rate of 20%, when provided with correct 

(green) or incorrect (red) second-hand information. 
 
This asymmetry (i.e. greater revision upwards than 
downwards) is expected given the “generally reliable” 
starting (independent) error rates (because, given the 
bounded scale, an initial error rate of 20% can be increased 
more than it can be decreased). It is additionally worth 
noting that the large variance exhibited in elicited 
conditional probabilities may be reflective of participant 
interpretations of the impact of background information 
(Schum 1994) - inherent to considerations of dependence. 
Behaviorally Informed Bayes Net (BIBN) models Using 
the gRain package in R (Højsgaard, 2012), the elicited 
conditional probabilities from each participant were used to 
outfit the error rates for Bailey (as a recipient / dependent 
source) in a dependent-scenario BN, creating individually 
fitted BNs for each participant. Both the priors and 
independent source / scenario probabilities were as specified 
in the background information presented to participants. The 
posterior probabilities and qualitative judgments for each 
scenario (at each elicitation stage) generated from each 
BIBN model (representing each participant) were used in 
subsequent comparison analyses. 

Qualitative judgments 
To analyze qualitative judgments, a series of Bayesian 
contingency tables (to assess factors) and binomial tests (for 
chance level comparisons) were used. These first assessed 
participant judgments across scenario types (dependent vs 
independent; left vs right columns of Fig. 2), elicitation 
stages (Baseline, First Report, Second Report; t0, t1, and t2 in 
Fig. 2), and conditions (contradicting vs corroborating 
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second reports), before comparing them with participant 
BIBN model predictions. 
Participant data (dark grey bars, Fig. 4). A judgment (3) 
x elicitation stage (3) contingency table (N = 600), found 
strong evidence for an effect of elicitation stage on 
participant judgments, BF10 = 5.724, indicating sensitivity to 
elicitation stage. An additional judgment (3) x condition (2) 
contingency table on the second report judgments only 
(where the condition – corroborating or contradicting – 
occurred) found very strong evidence for the effect of 
condition (N = 200), BF10 = 31.97, reflecting sensitivity to 
whether the second report contradicted or corroborated the 
first. 
BIBN model (light grey bars, Fig. 4) comparison. To 
compare participant judgments to BIBN model predictions, 
a series of Bayesian contingency tables using a “data type” 
(Participant vs. BIBN prediction) factor were employed 
across the three elicitation stages (separating contradicting 
and corroborating conditions in the second report stage).  

Decisive evidence was found for the deviation of 
participant judgments from those predicted by BIBN models 
across baseline (N = 400), BF10 = 3.588 * 1025, first report 
(N = 400), BF10 = 9.001 * 106, second report-corroborating 
(N = 200), BF10 = 81188.756, and second report-
contradicting (N = 200), BF10 = 1.265 * 106, stages. 

 

 
Figure 4. Qualitative comparison judgments, split by 

elicitation stage and condition. Dashed line represents 
chance level (33%). 

 
To determine the degree of internal coherence (individual 
level BIBN model prediction vs actual judgment), a variable 
was created for each participant judgment. If a judgment 
corresponded to that predicted by the BIBN model for that 
participant, then the judgment was considered correct (1), or 
else incorrect (0). This “coherence” variable was then used 
to determine if participants made correct judgments more 
often than expected by chance (0.33) across elicitation 
stages and conditions, using binomial tests.  
   Correct responding occurred above chance level at 
baseline (0.59, 95% CI: [0.521, 0.656]; N = 200), BF10 = 
1.678 * 1011, but strong evidence for the null (no difference 

from chance) was found for responses at first report (0.34, 
95% CI: [0.278, 0.408]; N = 200), BF10 = 0.088.  
   Breaking down the second report by condition, substantial 
evidence was found for correct responding above chance 
level in the corroborating condition (0.455, 95% CI: [0.36, 
0.553]; N = 100), BF10 = 3.388, whilst strong evidence for 
the null was found in the contradicting condition (0.356, 
95% CI: [0.27, 0.454]; N = 100), BF10 = 0.139. 
    Taking these results together, participant judgments were 
generally inconsistent with BIBN predictions. Correct 
response rates were greater than chance in baseline and 
corroborating cases, but no better than chance in cases of 
partial (first report) and contradicting (second report) 
information – situations in which (by participants own 
lights) dependencies may be advantageous (see light-grey 
bars in center and top-right panels of Fig. 4). 
Confidence in qualitative judgments. Confidence was 
generally high across all judgments (M = 67.49, SD = 
23.84). Although it was not affected by judgment category 
or elicitation stage5, confidence was decisively higher when 
second reports (N = 200) corroborated (M = 74.4, SD = 
23.61) rather than contradicted (M = 60.88, SD = 25.26), 
BF10 = 163.385. This finding fits with the higher erroneous 
responding found in qualitative judgments when evidence is 
contradictory. 

Probability estimates 
We next turn to participant probability estimates. The 
purpose of this analysis was to determine a) the manner in 
which participants are updating quantitatively in light of 
new information (and whether this differed across 
independent and dependent scenarios) and b) how this 
updating compares to BIBN model performance – for 
instance, highlighting insufficient support attributed to 
dependent scenarios. 
 

 
Figure 5. Probability estimates across elicitation stages, 
split by condition. Error bars reflect standard error. 

 
                                                           
5 A Bayesian ANOVA assessing the impact of judgment and 

elicitation stage (N = 600) on confidence found no evidence for the 
effect of judgment, BFInclusion = .489, and strong evidence for the 
null for the effect of elicitation stage, BFInclusion = .014. The 
interaction term also showed strong evidence for the null, BFInclusion 
= .001. 
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Participant data (solid lines, Fig. 5). To determine the 
manner of participant responding, a series of Bayesian 
repeated-measures ANOVA were used. Although not 
reported exhaustively here for space reasons, accompanying 
footnotes provide necessary supplementary statistics. 

Overall, independent scenarios (black solid lines, Fig. 5) 
were considered to provide more support than dependent 
equivalents (grey solid lines, Fig. 5), BFInclusion = 7.2696, 
substantiating qualitative judgment findings. Notably, in the 
(second report) corroborative case, participants assigned 
greater support to the independent scenario (relative to 
dependent), BF10 = 223.233, whilst in the contradicting case 
there was a null difference, BF10 = 0.1627. This again fits 
the qualitative judgment data, wherein the corroborative 
case (which is typified by independent scenario advantage) 
is easier for participants to determine (confidence was also 
higher). 

Finally, there was a main effect of elicitation stage 
(linearly increasing estimates across stages), BFInclusion > 
150, indicating participants were generally sensitive to 
incoming information, including the impact of contradictory 
vs corroborating information, BFInclusion > 1508. To address 
the question of how sufficient this updating is, participant 
data was compared to BIBN model predictions.  
BIBN model (dashed lines, Fig. 5) comparison Although 
Fig. 5 shows the aggregates for BIBN model predictions, to 
appropriately explore model fit on the individual level, a 
Bayesian repeated measures ANOVA was conducted on 
probability estimates with the additional inclusion of data 
type (Participant vs. BIBN prediction) as a within-subject 
factor (N = 2400). 

Decisive evidence was found for the main effect of data 
type, BFInclusion > 150, indicating probability estimates were 
significantly higher in BIBN model predictions. Decisive 
evidence was also found for the interaction of data type with 
elicitation stage (increasing deviation over stages), BFInclusion 
> 150, condition (greater deviation in corroborating), 
BFInclusion > 150, and their 3-way interaction (the greater 
deviation in corroborating occurs in second report state), 
BFInclusion > 1509. Taken together, this demonstrates that 

                                                           
6 A Bayesian, repeated-measures ANOVA including all relevant 

factors (within: scenario type, elicitation stage; between: condition) 
was run in a hierarchical model (N = 1200). The model that 
included main effects for elicitation stage, scenario type, and 
condition, as well as the interactions of elicitation stage x condition 
and scenario type x condition, enjoyed the strongest support, BFM 
= 56.245, with decisive evidence overall, BF10 = 2.619 * 1044. This 
model is hereafter referred to as ModelP. 

7 Motivated by the significant scenario type x condition 
interaction in ModelP (BFInclusion = 8.078), two separate Bayesian 
ANOVAs were conducted on estimates in the second report 
elicitation state, split by condition, testing the effect of scenario 
type in each case (N = 200 in each case). 

8 Decisive evidence was found for the elicitation stage x 
condition interaction in ModelP (along with a decisive main effect 
of condition, BFInclusion > 150). 

9 Data type did not interact with scenario type (both in isolation, 
BFInclusion = 0.041, or in conjunction with other factors). 

participant updating is insufficient relative to their BIBN 
model predictions (i.e. evidence is generally undervalued). 
Further, the interaction with condition (as with participant 
data alone) motivates the restricted analysis of second report 
estimates only, split by condition (now also including data 
type).  

In the corroborating condition, decisive evidence was 
found for the main effect of scenario type, BFInclusion = 
898.016, and data type, BFInclusion > 150, but not their 
interaction, BFInclusion = 0.89910. This indicates that although 
participants generally undervalue the impact of a second, 
corroborative report, their assessment of the greater support 
provided in independent (relative to dependent) scenarios is 
broadly in line with model predictions. 

Conversely, in the contradicting condition, there was no 
evidence for the main effect of data type, BFInclusion = 1.183, 
and strong evidence for the null for both the main effect of 
scenario type, BFInclusion = 0.08, and their interaction, 
BFInclusion = 0.03911. Although this appears to indicate a 
reasonable fit between participant data and model 
predictions for contradicting evidence cases, such a null 
difference may in fact be attributable to under-valuing 
evidence twice, rather than accurate updating.12  

Conclusions 
The issue of dependence in evidential reasoning, both from 
empirical and normative standpoints, is critical across many 
domains, including medical, legal, and intelligence analysis. 
Failures to consider dependencies can be dangerous, as they 
can lead to the systematic over-valuing of evidence (Dror et 
al., 2006; Koller & Friedman, 2009). Our results indicate 
that lay reasoners are indeed aware of the lower evidential 
value that dependencies can incur. For example, lay 
reasoners preference for independence is applied 
appropriately in cases of corroborative reports.  
    In cases of partial or contradicting information, however, 
where the implications of dependence are more complex, 
lay reasoners begin to struggle. More precisely, when by the 
lights of their own elicited conditional probabilities, 
dependencies should in fact carry an informational 
advantage (all else being equal) participants still prefer to 
avoid them. This aversion to dependencies in the qualitative 
data is corroborated by participant probability estimates. 

                                                                                                  
Accordingly, the model combining ModelP with data type and the 
significant interactions above yielded the comparatively strongest 
fit, BFM = 914.889, with decisive evidence overall, BF10 = 1.485 * 
10356. 

10 Thus, the model consisting of the two main effects only 
provided the comparatively strongest fit, BFM = 17.705, with 
decisive evidence overall, BF10 = 3.539 * 1041. 

11 Thus, although the model consisting solely of data type was 
the comparatively strongest fit, BFM = 5.259, there was no 
evidence for this model overall, BF10 = 1.751. 

12 A Bayesian repeated measures ANOVA of first to second 
report estimates in the contradicting condition reveals an 
interaction of data type with elicitation stage from first report to 
second report, BFInclusion = 1.952 * 1015, highlighting the 
differential in updating between data and model prediction. 
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Along with the chronic under-valuing of introduced 
evidence (in line with other evidential reasoning findings, 
see e.g., Faigman & Baglioni, 1988; Nance & Morris, 
2005), participants consistently under-valued the support 
provided by dependent cases, irrespective of predicted 
dependent advantage (e.g., partial and contradicting 
instances). 
Further research We have shown that people under-value 
the import of dependent reports, even when by their own 
lights these dependencies yield an informational advantage. 
However, the question remains open as to whether such a 
bias can be overruled. Such a question is also worth 
extending to other forms of structural dependencies, such as 
“shared backgrounds” (Bovens & Hartmann, 2003; Hahn et 
al., 2016).   

One important caveat to the present work is whether 
people’s down-weighting of dependent evidence is a 
consequence of poor combination of uncertain evidence (in 
other words, a computational failure), or due to them having 
an alternative structural representation of the dependency. 

Given that the issue of dependent evidence is so 
fundamental to many professions and everyday life, it is 
important to explore these matters further. 
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