
Smooth Interface Reconstruction from Volume Fraction Data Using Variational
Techniques and Level Set Methods

by

Michaeel Majeed Kazi

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James A. Sethian, Chair
Professor John Strain
Professor Ömer Savaş

Spring 2013

Smooth Interface Reconstruction from Volume Fraction Data Using Variational
Techniques and Level Set Methods

Copyright 2013
by

Michaeel Majeed Kazi

1

Abstract

Smooth Interface Reconstruction from Volume Fraction Data Using Variational Techniques
and Level Set Methods

by

Michaeel Majeed Kazi

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor James A. Sethian, Chair

The volume fraction data structure describes the location of a given material within
space. It partitions a domain into a set of discrete cells, and for each cell stores the ratio
of material contained within it to the total volume of the cell. The task of transforming a
grid of volume fractions into a surface representation of the boundary is called the Material
Interface Reconstruction Problem. We investigate a variational formulation to this problem,
implemented via a level set method, that produces a surface representation of the boundary.
We start with an initial guess and iteratively refine the surface by computing a surface-area
minimizing curvature flow, followed by an approximate L2 projection of that flow onto a
volume-preserving space. We find that the method yields satisfactory results for both two-
phase and multiphase data. In the cases where there are C0 but not C1 boundaries between
only two materials, the exact solution produces oscillations with period equal to the volume
fraction grid size, and amplitude exponentially decreasing away from the location of the loss
of smoothness. To reduce oscillations, an alternative method is proposed where in place of
the volume fraction constraint, we minimize a weighted sum of the total surface area, plus
the sum of squared error in reconstruction. We discuss the results and compare with the
projection algorithm.

i

To Valentina

ii

Contents

Contents ii

1 Introduction 1
1.1 Volume fractions . 1
1.2 Previous methods . 3

1.2.1 Simple Line Interface Calculation . 3
1.2.2 Piecewise Linear Interface Calculations 3
1.2.3 Active Interface Reconstruction . 5

1.3 Proposed algorithm . 6

2 Level Set Methods 7
2.1 Formulation . 7
2.2 Upwinding and stencils . 8

2.2.1 Narrow band . 9
2.3 Reinitialization and the Fast Marching Method 10

2.3.1 The Fast Marching Method . 10
2.3.2 Heaps . 11
2.3.3 Nearby distances for the Fast Marching Method 12

2.4 Extension velocities . 13

3 Height Function Interfaces 14
3.1 Height function formulation . 14
3.2 Steepest descent algorithm . 15

3.2.1 One-dimensional examples . 16
3.2.2 Two-dimensional height functions . 17

3.3 Reconstruction from data derived from nonsmooth interfaces 19
3.4 Other possible functionals to minimize . 20

4 Full Algorithm 23
4.1 Outline . 23
4.2 Formulation . 24

4.2.1 Discretization of φ . 26

iii

4.2.2 Discretization of the volume functionals 26
4.3 First approximation . 28
4.4 Projection algorithm . 31

4.4.1 Limit as s→∞ . 31
4.4.2 Projection on a nonuniform grid in one dimension 31
4.4.3 Calculation of ∇VIJ on the level set grid 32
4.4.4 Computing λ and updating the interface 34

4.5 Relaxing the constraints . 35
4.5.1 Formulation . 35
4.5.2 Relationship between ε and error . 35

4.6 Multiple phase reconstruction . 36
4.6.1 Definition . 37
4.6.2 Algorithm . 37
4.6.3 The Voronoi Interface . 37
4.6.4 Volume calculation . 38

5 Results 39
5.1 General convergence results . 40

5.1.1 Convergence of smooth shapes by number of iterations 40
5.1.2 Convergence of sphere by grid size and number of subdivisions 41
5.1.3 Convergence of straight lines . 42

5.2 Models, process, and measurements . 43
5.2.1 Test case generation . 43
5.2.2 Reconstruction process . 44
5.2.3 Tables . 45

5.3 Two-dimensional results . 45
5.3.1 Two phase . 45
5.3.2 Multiple phase . 49

5.4 Three-dimensional results . 54
5.4.1 Two phase . 54
5.4.2 Multiple phase . 60

5.5 Relaxed flow . 70

6 Conclusions 73
6.1 Future work . 73

6.1.1 Speed optimization . 73
6.1.2 Shape quality . 74

6.2 Summary . 74

Bibliography 76

iv

Acknowledgments

I want to thank James Sethian for his generous support, guidance, understanding, and
nurturing of a great environment (LBNL Mathematics Group) to not only work but to
spend enjoyable days. I also want to thank Alexandre Chorin, who first set up this group.

I couldn’t have done this without Robert Saye or Jeff Donatelli, who provided valuable
discussions of numerical methods, mathematical techniques, and being great friends. Thanks
also to the members of the LBNL Mathematics group, who I’ve had many fun and/or
enlightening conversations with over lunch or just around the office: Trevor Potter, Jue
Chen, Bradley Froehle, Danielle Maddix, Ben Preskill, August Johansson, Chris Rycroft,
and Matti Morzfeld.

I want to thank my professors: Jamie Sethian, again, for an excellent and entertaining
Numerical PDE’s class, and for not going easy on me; John Strain, whose numerical ODE’s
class taught me so much and reiterated to me how much I enjoyed applied math; Craig
Evans, who introduced me to some pretty cool mathematical tools; Ömer Savaş, a humble
and masterful fluid mechanician; Grigory Barenblatt, who entertained us day after day with
intellectual conversation and tea.

Special thanks to Ken Joy at UC Davis, who, through a conversation with Jamie, started
this project.

Thanks to Karen for her support and understanding, and getting me to stop browsing
the internet and get to work! She provides me with a reason to put all of my knowledge to
use.

And finally, thanks to my parents for always being there as sounding boards, and helping
come up with solutions to life’s other dilemmas.

1

Chapter 1

Introduction

The goal of this thesis is to propose a new algorithm for the Volume Fraction Reconstruction
problem. In this chapter, we first define the volume fraction data structure. Then, we
define the reconstruction problem, and briefly discuss several existing techniques. Finally,
we propose the new method and outline the structure of the remaining chapters.

1.1 Volume fractions

A volume fraction grid is a data structure that describes the location of some material
within a domain. The domain is partitioned into discrete cells, and each cell is given a value
v, 0 ≤ v ≤ 1, representing the proportion of the cell filled by material. For example, an
empty cell has value 0, a cell completely filled has value 1, and a cell partially filled has the
appropriate fractional value. Figure 1.1 shows an example of a circular material described
by a 5-by-5 volume fraction grid.

This structure was first introduced by Noh and Woodward [16] in an algorithm to simulate
advection of a body of fluid. Their technique had the advantages of conserving volume,
automatically handling interface topology changes, and avoiding problems associated with
moving meshes. Many variations and improvements to the core method have been developed,
such as methods by Chorin [9], Hirt and Nichols [12], and Puckett [22].

The name “Material Interface Reconstruction” refers to the problem of translating volume
fraction grid data into a representation of the material boundary (e.g. a mesh). It is
valuable in the visualization of simulation results, as well as for providing one possible way
of computing geometric properties of the interface itself, such as normal vectors and principal
curvatures.

The Material Interface Reconstruction problem is not well-posed: many possible regions
can have the same volumes. In Figure 1.2, we have shown three qualitatively different regions
that all yield the same 2× 2 volume fraction grid. The first solution is a smooth curve, the
second is piecewise linear, and the third is made up of horizontal or vertical lines only. Due to

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Example volume fractions corresponding to a circle.

Figure 1.2: Different reconstructions of the 2-by-2 grid filled with the value 1
4

the many possible interfaces satisfying the volume requirements, there are several numerical
methods available to perform the task, each defining the surface in a different way.

CHAPTER 1. INTRODUCTION 3

1.2 Previous methods

We now briefly examine three techniques: the Simple Line Interface Calculation (SLIC)
method, the Piecewise Linear Interface Calculation (PLIC) method, and the Active Interface
Reconstruction method. The first two methods are non-iterative. For each cell, they directly
compute the shape of the interface using data in a small number of neighboring cells. The
third method iteratively refines a mesh of the interface, one vertex at a time. The interface
within a single cell is thus affected by the structure of the entire interface, due to coupling.
In the rest of this chapter, we limit our discussions to two dimensions, but the ideas are
applicable to any number of dimensions.

1.2.1 Simple Line Interface Calculation

The original reconstruction algorithm, Simple Line Interface Calculation, or SLIC (Noh and
Woodward [16]), is a basic way to reconstruct an interface from volume fractions. Its original
goal was to calculate the advection of a fluid front as represented by the volume fraction
data.

SLIC reconstructs an interface based on one-dimensional sweeps. It examines a 3x1 or
1x3 window about each cell, and based on a lookup table of which values of these cells are
0, 1, or between 0 and 1, it determines whether to place a horizontal or vertical line (or
neither). The location of the line segment is then determined by the volume fraction. The
advection algorithm works by using the x-component of the fluid velocity and a 3x1 window
to compute the amount of fluid to move left or right, then repeating the calculation with the
y-component and a 1x3 window to determine the amount to move up or down.

SLIC is very fast, but the interface is always either horizontal or vertical, causing the
reconstruction to look blocky. Other methods are able to represent the interface in more
detail.

1.2.2 Piecewise Linear Interface Calculations

The Piecewise Linear Interface Calculation (PLIC) approach refers to a collection of methods
that construct the interface in each cell with a single straight line segment of arbitrary
orientation. The unknown in each cell is the normal n̂, or equivalently in 2D, the slope m.
Once the normal is determined, the location of the line segment is computed based on the
volume fraction. We discuss two different approaches to calculating n̂ for a given cell: (1) by
computing finite differences on the volume fraction grid, and (2) by solving a least squares
problem on a 3× 3 window about the cell in question.

Finite Difference approximations

The slope m may be obtained by finite differences on the volume fraction grid. Hirt and
Nichols [12] used the centered difference formula

CHAPTER 1. INTRODUCTION 4

m =
1

2
(vi+1,j+1 − vi−1,j+1 + vi+1,j − vi−1,j + vi+1,j−1 − vi−1,j−1),

while Parker and Young [18] calculate the normal as the gradient of the volume fraction grid,
(vx, vy), which they determine by the formulas

vx =
1

4 + 2α
(vi+1,j+1 + αvi+1,j + vi+1,j−1 − vi−1,j+1 − αvi−1,j − vi−1,j−1)

vy =
1

4 + 2α
(vi+1,j+1 + αvi,j+1 + vi−1,j+1 − vi+1,j−1 − αvi,j−1 − vi−1,j−1),

where α is a free parameter. The authors recommend α = 2.

Least Squares Reconstruction

The method “Least squares Volume-of-fluid Interface Reconstruction Algorithm” (LVIRA) is
due to Puckett [22], and determines the normal n̂ of cell ij as follows. The material interface
within the 3 × 3 window about ij (from i − 1 to i + 1, j − 1 to j + 1) is approximated
by a straight line. The material is located on one side of this line: define n̂ such that it
points away from the material region. Let ṽ represent the volumes occupied by the material
bounded by this line. By requiring ṽij = vij, there exists only one such line corresponding
to each n̂. Then the optimal value of n̂ is chosen to minimize

i+1∑
i′=i−1

j+1∑
j′=j−1

(vi′j′ − ṽi′j′)2

The advantage to this technique is that if the volume fraction data can be fit to a
straight line, then LVIRA will reproduce the line exactly. This is guaranteed by construction,
and is not true of the other PLIC methods discussed so far. Consequently, the algorithm
reconstructs with second order accuracy when applied to smooth shapes.

To be more precise, we define second order accuracy as follows. Consider any region Ω
such that ∂Ω is C1. Define Vh as the volume fraction grid corresponding to Ω where each
cell measures h on a side. A reconstruction algorithm applied to Vh produces Ω′. Finally,
define the region XOR(Ω,Ω′) as

XOR(Ω,Ω′) = {x : x ∈ Ω, x /∈ Ω′ or x /∈ Ω, x ∈ Ω′}

We will define a method to be second order if the volume of the region XOR(Ω,Ω′)
decreases as h2 as h→ 0.

A modification to this method exists, called ELVIRA (Efficient LVIRA), due to Pil-
liod [20], which chooses among only six possiblilities for m to minimize – specifically, ones
given by finite differences on the grid. This, too, is able to reconstruct straight lines (see
Pilliod and Puckett [21] for an in-depth comparison of PLIC methods).

CHAPTER 1. INTRODUCTION 5

Figure 1.3: An illustration of the force vectors involved in the Active Interface Reconstruction
algorithm from 1.4. On the left, the blue arrow is the smoothing vector, while the green is
the volume correction vector. On the right, the red is the resultant, and the new interface
is drawn in green.

The advantages of SLIC and PLIC methods are speed and simplicity. They all look only
to information around a small neighborhood of each grid cell (3 × 3 or 3 × 1), and often
do not require many lines of code. The disadvantage of these methods is that they do not
attempt to match segments from neighboring cells. The normal vectors between cells are
not continuous.

1.2.3 Active Interface Reconstruction

We use the name “Active Interface Reconstruction” to refer to the method of J. C. Anderson
et al. [3] Their algorithm first chooses an interface topology and initial mesh based on a
sophisticated algorithm. It iteratively refines the mesh based on two forces: (1) smoothing,
and (2) volume correction. At each step, a mesh point is chosen at random, and the two
forces are applied as follows.

For a point p, let p̄ be the average of vertices sharing an edge with p. Then the smoothing
force is p̄ − p. In Figure 1.3, this is the blue vector, which links the mesh point p to the
midpoint of the line segment connecting p’s neighbors. The volume correction force vector,
f , is computed as the average of the normals of all faces containing p. In Figure 1.3, this
is the green arrow, which is the sum of the yellow normal vectors. The vector f is then
scaled by the current volume fraction error for the cell in which p resides. These two forces
are scaled by different parameters α and β, chosen by the user, and added together to yield
the final displacement for point p. After each iteration, the values of α and β are decreased
simultaneously until convergence in a manner similar to an annealing process [3].

CHAPTER 1. INTRODUCTION 6

1.3 Proposed algorithm

In this thesis, our approach is based on finding the minimum surface area interface that
encloses the prescribed volume fraction within each grid cell. There are three advantages to
this choice:

• The resulting interface is C1.

• This choice models the effects of surface tension at scales of one grid cell or smaller.
Therefore, we expect qualitative similarity between the reconstructed and exact inter-
faces if the volume fraction values come from fluid interface simulations.

• Surface area is reduced via curvature flow, which is conveniently represented in a level
set framework.

The rest of this thesis is organized to discuss this formulation and an algorithm for computing
it. In Chapter 2, we review Level Set methods, since they will be used by our algorithm. In
Chapter 3, we define our solution for surfaces in Rd (d = 2, 3) defined by (x, f(x)), where
x ∈ Rd−1, and f : Rd−1 → R is a height function, and derive a gradient descent algorithm
with an L2 projection to handle the constraints. In Chapter 4, we extend the ideas of Chapter
3 to surfaces defined implicitly by φ = 0, where φ : Rd → R is a level set function. We also
discuss our algorithm as applied to multiple-phase volume fraction surface reconstruction.
In Chapter 5, we show results of our algorithms in 2D and 3D. In Chapter 6, we conclude
and discuss further improvements.

7

Chapter 2

Level Set Methods

In this chapter, we introduce the Level Set method for tracking a moving interface in Rn.
The outline is as follows.

1. We formulate the Level Set Method[17] and derive the main equation.

2. We discuss the upwinding scheme used to advance the solution, and the Narrow Band
technique [6] which reduces the computational complexity of the method.

3. We discuss how to reinitialize the level set function to a signed distance function via
the Fast Marching Method [25].

4. Finally, we discuss how to maintain the signed distance function by using extension
velocities [2].

2.1 Formulation

The Level Set Method, first introduced by Osher and Sethian [17], works as follows. Let
φ(x, t) : Rn × R → R be a function where Γ(t), the interface, is defined implicitly by
Γ(t) = {x : φ(x, t) = 0, x ∈ Rn}. If we track some point y = y(t) ∈ Γ(t) on the interface,
then

0 =
d

dt
φ(y(t), t) = φt(y, t) +∇φ(y, t) · F

where F is the velocity of the interface point. The normal direction to the level sets of φ is
given by ∇φ

|∇φ| . If we assume, for speed F ∈ R, that F = F ∇φ
|∇φ| , then

φt + F |∇φ| = 0 (2.1)

which is the level set equation. One choice for F is Fn − εκ, where Fn ∈ R is a scalar
expansion or contraction component, and κ is the curvature of the interface. Expressed in
terms of φ, we have that κ = div n̂ = div ∇φ|∇φ| .

CHAPTER 2. LEVEL SET METHODS 8

Figure 2.1: Level set representation embeds a curve as slices of this height map. If the curve
evolves under F = 1, then the level sets correspond to the curve at different times t. Two
slices of differing topology and smoothness are indicated.

2.2 Upwinding and stencils

Numerically computing |∇φ| in equation 2.1 must be done carefully. Centered differences
introduce smearing, while one-sided differences need to account for the direction of travel
of the level set. Since the PDE involves transport along the direction of the level sets of φ,
the direction of information flow is crucial. Choosing the wrong points for the stencil will
violate the CFL condition and result in failure to solve the PDE.

Osher and Sethian produced an upwind one-sided stencil to approximate the PDE and
perform the correct behavior near shocks. Following [17] and writing the level set equation
in the form

φt + F |∇φ| − εκ|∇φ| = 0

we can approximate (F |∇φ|)ij by max(Fij, 0)∇+
ij + min(Fij, 0)∇−ij, where

CHAPTER 2. LEVEL SET METHODS 9

∇+
ij =

√
max(D−xφij, 0)2 + min(D+xφij, 0)2 + max(D−yφij, 0)2 + min(D+yφij, 0)2

∇−ij =
√

min(D−xφij, 0)2 + max(D+xφij, 0)2 + min(D−yφij, 0)2 + max(D+yφij, 0)2

(2.2)

Here, D−xφij =
φi,j−φi−1,j

h
is the first order, left hand side x-derivative finite difference

formula. The other first order, one-sided derivatives are denoted by D+x, D−y, and D+y.
Higher order accuracy can be achieved by more accurately approximating each one-

sided derivative using essentially non-oscillatory (ENO) interpolation. More precisely[17],
replacing D−x in equation 2.2:

D−x + h
2
m(D−x−x, D−x+x)

where m(a, b) = min(a, b) if ab ≥ 0, 0 otherwise

Curvature flow, on the other hand, acts to smooth the interface and propagates in all
directions, and is not upwinded. We approximate curvature flow via its expanded definition

κ =
(φxx + φyy)φ

2
z + (φxx + φzz)φ

2
y + (φyy + φzz)φ

2
x − 2φxφyφxy − 2φxφzφxz − 2φyφzφyz

(φ2
x + φ2

y + φ2
z)

3
2

and use centered differences to approximate all derivatives of φ.

2.2.1 Narrow band

The Level Set function is one dimension larger than the surface it represents. For a three-
dimensional problem on an equally spaced grid with N grid points per side, updating the
entire level set function takes O(N3). However, we can reduce the complexity to O(N2)
by making the crucial observation that computations involving the zero level set do not
depend on faraway points. Indeed, we need only to have enough grid points surrounding the
interface to smoothly represent the level set function’s derivatives at the interface. This is
accomplished by dividing the domain into two regions: a narrow band, and the outside. The
narrow band contains grid points up to a certain distance away from the interface, and the
outside contains everything else. The points on the outside are fixed, while the narrow band
points are updated according to the level set equation. Chopp [6] introduced this time-saving
technique on his work on computing minimal surfaces, while Adalsteinsson and Sethian [1]
analyzed the method in depth to determine its accuracy, and to suggest optimal sizes for the
narrow band. The authors suggest six grid points on each side of the zero level set.

As the interface moves, it may eventually become close to the edge of the narrow band.
When this happens, a new band will need to be constructed, and the function φ will need
to be reinitialized within the new domain. We reinitialize φ to be a signed distance function
using the Fast Marching Method, as discussed in the next section.

CHAPTER 2. LEVEL SET METHODS 10

2.3 Reinitialization and the Fast Marching Method

If the level sets of φ become too close together or too far apart, the accuracy of numerical
solutions to our PDE (2.1) diminishes. To fix this, we reinitialize, which means that we
build a new function φ that leaves the zero contour intact, but ensure that φ is a signed
distance function. A signed distance function is a function φ such that the value of |φ(x)|
is the distance to the set {φ(x) = 0}, and φ(x) is positive on one side of the zero level set,
and negative on the other. We adopt the convention that φ(x) < 0 on the interior of our
region. A signed distance function solves the PDE

|∇φ| = 1.

This, coupled with the boundary condition φ(x) = 0 for x ∈ Γ, where Γ is the previous
zero contour, becomes a boundary-value problem . This is solved numerically through the
approximation

Using the stencil (2.2), our approximation to the PDE |∇φ| = 1 is given by

1 = (∇+
ijφ)2 = max(D−xφij, 0)2+min(D+xφij, 0)2+max(D−yφij, 0)2+min(D+yφij, 0)2 (2.3)

To code the boundary conditions, since the surface will not align with the grid, we fix
the values of φij within one grid point of the interface. Their values are the distances to the
interface computed directly (see Section 2.4.3).

We must solve equation (2.3) for all grid points simultaneously. A computationally
optimal method is described in the next section.

2.3.1 The Fast Marching Method

The crucial observation with these equations is that information flows away from each
contour (in increasing absolute value of φ). This is evident both from (1) the PDE, that the
values of φ increase as the distance from the source interface φ = 0; and (2) the numerics,
where we can see that derivative information is used only if φij is larger than the other points
in the stencil.

We can use this fact to order our points, to build our solution outward from the interface.
Sethian introduced the Fast Marching Method [25] which works as follows:

1. Separate grid points into three groups: known, tentative, and unknown.

2. Place grid points within one unit of the boundary, with their correct distances, into
known.

3. Remove the smallest valued node ij from tentative and add it to known.

CHAPTER 2. LEVEL SET METHODS 11

4. For each point i′j′ adjacent to ij, if it is in either tentative or unknown, compute
φi′j′ using the fact that φi′j′ > φij, and the assumption that any φi′′j′′ > φi′j′ for i′′j′′

not in known.

5. Add i′j′ to the tentative group. If it is already there, update the value only if a
smaller value was computed.

6. Repeat from (3) until all nodes have been processed.

If the assumption in step 4 is not true (φi′′j′′ < φi′j′), then φi′′j′′ will eventually be
accepted first, and the tentative value of φi′j′ will be recomputed. Thus, the algorithm
correctly computes the stencil from equation 2.2.

Each grid point is accepted only once, and its values do not change afterwards. Each
point will be visited no more times than the number of neighbors it has. The efficiency of
this method rests on the ability to pick the smallest-valued node from tentative. This is
accomplished by means of a priority queue or heap data structure.

2.3.2 Heaps

A min-heap is a binary tree data structure satisfying two properties. (1) The value at each
node is smaller than either of its children, and (2) the tree is complete. This means, at each
depth of the tree, all nodes that can exist do exist, with the exception of the bottom layer,
which fills up left-to-right.

A more illuminating description comes from indexing the nodes from 1 to n, and defining
node i’s children to be nodes 2i and 2i + 1. Criteria (2) means that there are no holes in
this list, each index corresponds to an existing node.

Criteria (1) is the property we will exploit to make the priority queue, and criteria (2)
prevents degenerate, inefficient tree structures.

To use this heap as a priority queue we need to define only two operations: insert and
remove. In more detail:

Insert. To add a node to the heap of size n, we place it at position n + 1. We then
compare its value to its parent. If it is smaller, we swap values. If not, we are done. If a
swap occurs, this process repeats. This “bubbles” up the new node into its correct position
in the tree. For example, were we to insert the value 2 into Figure 2.2, it would start as the
right child of 7, then bubble up, moving the 7 into its former place and the 3 into the 7’s
former place, and finally staying to the left of the root node.

Remove. To remove a node, after we make a note of its contents, we insert the node at
position n into position 1 (and decrement n). Then, starting at the first node, we “bubble”
the node downwards. Specifically, if any of the child nodes are smaller, we take the smallest
of those children and swap it with the node in question, and repeat. For example, when we
remove the root node from Figure 2.2, the 10 is placed at the top, and then it bubbles down.
The 3 is moved to the root, then the 4 into the 3’s former spot, and then the 5 where the 4
used to be, and then the 10 finally resting where the 5 used to be.

CHAPTER 2. LEVEL SET METHODS 12

Figure 2.2: Example of a min-heap.

Each operation completes in log(n) time. Thus, using a heap for the Fast Marching
method yields a computational complexity of O(N log(N)), where N is the total number
of nodes to reinitialize. In practice, the complexity is lowered to O(N log(N ′)), where N ′

represents the number of nodes necessary to represent a single level set.

2.3.3 Nearby distances for the Fast Marching Method

To obtain nearby values of distances to the zero level set, we use Chopp’s method [7]. This
gives φ the interpretation of a piecewise tricubic polynomial, and we compute distances to
its zero level set exactly. For each 1× 1× 1 grid cell containing the interface, we obtain the
coefficients aijk for the interpolant

φ ≈ f(x, y, z) =
3∑
i=0

3∑
j=0

3∑
k=0

aijkx
iyjzk

by solving a linear system, where values of φ, φx, φy, φz, φxy, φxz, φyz, φxyz on the 8 points
of the cube are prescribed. We use centered difference approximations of the derivatives,
making the total stencil 43 points.

For each of the 8 vertices on the 1 × 1 × 1 cell, the closest point where f(x, y, z) = 0 is
solved via a modified Newton iteration. Since each vertex v is also a member of 8 other cells,
each cell may provide its own closest point to v for its local tricubic interpolant. We choose
the point closest overall to v.

CHAPTER 2. LEVEL SET METHODS 13

2.4 Extension velocities

In a Lagrangian formulation, the speed law F need only be defined at the interface. However,
in the level set equation (2.1), F needs to be defined everywhere in the Eulerian narrow band.
In some approaches where the level set represents a moving fluid interface, the fluid velocity
can be used directly (as done by Rhee, Talbot, and Sethian [23]). In places where the problem
does not naturally yield an extension velocity, Malladi, Sethian, and Vemuri proposed using
the velocity at the closest point to the interface [14]. For other approaches, see Sethian and
Strain [27], or Chen, Merriman, and Osher [5].

Adalsteinsson and Sethian [2] derived a way to compute extension velocities that preserves
φ as a signed distance function. This is the algorithm we use in this work. In this approach,
Fext is defined to be constant along the characteristics of the equation |∇φ| = 1. Constancy
of Fext along characteristics of |∇φ| = 1 means that Fext must solve the PDE{

0 = ∇Fext · ∇φ
Fext|φ=0 = F

(2.4)

To solve this equation, one may modify the Fast Marching Method (FMM) to also prop-
agate velocity information. The FMM follows the characteristics of the signed distance PDE
out from the zero level set. In computing distance, the value along the characteristic changes
with the length traveled along the characteristic. Equation 2.4 requires that the value of the
velocity is constant.

The ordering involved in constructing the solution to ∇F · ∇φ = 0 is inherited from the
Fast Marching Method. As an example, suppose the max and min switches in stencil 2.2
chose grid points φij, φi′j, and φij′ . Then the constraint 0 = ∇Fext · ∇φ becomes

0 =

(
(φij − φi′j)(i− i′)

h
,
(φij − φij′)(j − j′)

h

)
·
(

(v − F ext
i′j)(i− i′)
h

,
(v − F ext

ij′)(j − j′)
h

)
Solving for v gives us F ext

ij .
Extension velocities are used throughout our algorithm, since (1) they cut down the

demand for reinitialization, which can alter the curvature of the interface, and (2) our primary
speed law will only be defined at the interface, making it necessary to extend it throughout
the narrow band.

14

Chapter 3

Variational Formulation and Height
Function Interfaces

In this chapter, we discuss a simpler version of our problem. We seek the minimum length
interface, but instead of arbitrary curves, we examine graphs of functions, and instead of vol-
ume fraction cells, we constrain the area under the curve within intervals. In this framework
we discuss

• properties of the solution,

• a gradient descent algorithm for computing the solution,

• examples of the algorithm’s output, and

• alternatives to length minimization.

3.1 Height function formulation

Given a partition 0 = x0 < x1 < . . . < xN = b of the interval [0, b], and given c1 . . . cN , our
goal is to find a function u ∈ L2 that minimizes the length functional L : L2[0, b]→ R

L(u) =

∫ L

0

√
1 + u2x dx

subject to constraints that

gi(u) :=

∫ xi+1

xi

u(x) dx = ci

for i = 1 . . . N .
We use Lagrange multipliers to examine the exact solution of this constraint minimization

problem. On the Hilbert space L2, for the function L : L2 → R and constraint functions

CHAPTER 3. HEIGHT FUNCTION INTERFACES 15

gi : L2 → R, the Lagrange multiplier result takes the following form [30]: For any test
function v ∈ L2,

0 = d
dτ

(
L(u+ τv)−

N∑
i=1

λigi(u+ τv)

)∣∣∣∣∣
τ=0

= d
dτ

(
L(u+ τv)−

N∑
i=1

λi

∫ xi+1

xi

(u+ τv) dx

)∣∣∣∣∣
τ=0

=

∫ L

0

2(ux + τvx)vx

2
√

1 + (ux + τvx)2

∣∣∣∣∣
τ=0

dx−
N∑
i=1

λi

∫ xi+1

xi

v dx

= −
∫ L

0

(
ux√

1 + u2x

)
x

v dx−
N∑
i=1

λi

∫ xi+1

xi

v dx

=

∫ L

0

−κvdx−
N∑
i=1

λi

∫ xi+1

xi

v dx

=
N∑
i=1

∫ xi+1

xi

(−κ− λi)v dx

(3.1)

Since the above relation must hold for any v ∈ L2, we infer that the integrands must be
zero, and u will have to satisfy

−κ− λi ≡ 0

in each of the cells i. In other words, the surface will have piecewise constant curvature.

3.2 Steepest descent algorithm

We now discuss a steepest descent algorithm to find u, the minimizer of L. At a high level,
our approach takes the gradient of L(u), projects it to a curve such that the constraint
functions are unchanged, and then updates u by a small timestep times the result.

Define A : L2 → RN such that (Au)i =
∫ xi+1

xi
u(x) dx for i = 1 . . . N . Note that A is a

linear operator. Let v ∈ L2 be the direction of change to our function u. Fixing v, the rate
of change of L(u+ τv) gives us the variational derivative [10]:

d

dτ
L(u+ τv)

∣∣∣∣
τ=0

=

∫ b

0

−κv dx

where we omit the details, since the calculation is essentially the same as in 3.1.
We choose an update direction v (where ‖v‖ = 1) such that (a) v induces the steepest

change in L while (b) maintaining the correct values of the gi. This becomes the requirement

that (a) the value of the functional
∫ b
0
−κv dx is negative and largest in magnitude and (b)

that Av = 0.

CHAPTER 3. HEIGHT FUNCTION INTERFACES 16

Therefore we choose v to be the L2 projection of κ to the space Av = 0, in other words,
the minimum of ‖v−κ‖2 where Av = 0. Supposing without loss of generality that v = κ−w,
we find the minimum of ‖w‖2 such that Aw = Aκ.

Fixing our domain in a discrete setting, where u ∈ Rn, A becomes an N × n matrix.
Finding w becomes an underdetermined least squares problem, solved by w = A†Aκ, and so
we obtain v = κ− w = (I − A†A)κ, where A† is the pseudoinverse.

We now examine the pseudoinverse more closely. We can use Lagrange multipliers to
minimize 1

2
‖w‖2 subject to Aw = Aκ:

w −
N∑
i=1

λi∇gi(w) = w − ATλ = 0

We deduce that w is a linear combination of the area gradients ∇gi. With a discrete area
matrix A, ∇gi corresponds to the ith row of A. In the case of the trapezoidal rule on an
equally spaced grid, w is a linear combination of the vectors (1

2
, 1, . . . , 1, 1

2
) on each interval.

To solve for λ we need to find the linear combination of the area gradients that gives the
correct area. In other words, AATλ = Aκ. G = AAT is a sparse matrix (tridiagonal in 1D)
that determines the areas under the regions of interest that each gradient vector affects; and
the solution is thus given by λ = G−1Aκ. This will be used again in further sections.

3.2.1 One-dimensional examples

The previous analysis did not depend on any specific choices of the matrix A and the dis-
cretization of u. To study an example, however, we make those values concrete. We discretize
each interval into s equally spaced points (let h = 1/s), with the endpoints of each interval
shared with its neighbors. Let n = Ns, the total number of grid points. Define A as the
matrix of the trapezoidal rule applied to each interval [xi, xi+1]. For example, if s = 3,

A =
1

3

 1
2

1 1 1
2

0 0 0 0 . . .
0 0 0 1

2
1 1 1

2
0 . . .

. . .

We compute A†A by using LAPACK’s SVD functionality. A = UΣV T , so A†A = V Σ†ΣV T .
Since it is clear that A has rank N (it computes area for each of the N intervals, which can
take on any values), we can take the first N columns of V and call it Ṽ , so the projection
becomes Ṽ Ṽ T . For each iteration, we compute κ based on the three point centered difference
stencil as in [26], then perform the projection to obtain v, and finally perform a simple update

un+1 = un + vdt

and iterate until convergence.
Consider the function f(x) = 1 − |x| on the periodic interval [0, 2). We partition the

interval into N equally spaced intervals, and set ci =
∫ xi+1

xi
f(x) dx. We also initialize our

CHAPTER 3. HEIGHT FUNCTION INTERFACES 17

Figure 3.1: Result of computation, N = 16, s = 10. The curvature plot is shown at the right,
matching with our theoretical expectations of a piecewise-constant-curvature solution.

solution vector to be exactly u0(x) = f(x) = 1−|x|, evaulated at the n discrete node points.
We apply our gradient descent algorithm.

Our results from Figure 3.1 are consistent with a solution having piecewise constant
curvature. Additionally, we note that under further refinement of the number of regions, N ,
the sides do converge to straight lines, as can be seen in Figure 3.2.

3.2.2 Two-dimensional height functions

The same algorithm can easily be applied for a function u = u(x, y). Let n be the number
of grid points in each direction, and N be the number of volume regions in each direction.
We lay down a grid over the entire domain, and create the N2 × n2 matrix which computes
the volume underneath each region (for example, by the tensor product of the trapezoidal
rule in each dimension). For each iteration,

• Compute the vector κ = div (∇u,−1)
|(∇u,−1)|

• Compute v = (I − A†A)κ

With the projection step in this form, A†A is a dense matrix, which is quite costly to
compute and evaluate. Instead, we will replace A†A by a sparse version utilizing a local

CHAPTER 3. HEIGHT FUNCTION INTERFACES 18

Figure 3.2: With N = 48, s = 10 volume cells, the curvature drops to near zero except for
the first few cells near the bend.

inversion formula. Recall from earlier that our projected vector was a linear combination of
the area gradient vectors. In 1D, we imagine a given volume fraction cell is the middle cell
of a cluster of 3. Then our matrix G = AAT is only 3 × 3 and is readily invertible. Using
the trapezoid rule, and writing the middle cell as the second component of a size 3 vector,
our inversion formulas takes the form

λ2 =
1

3h− 4
(h, h− 4, h) · ((Aκ)1, (Aκ)2, (Aκ)3)

where we multiply each element of the vector with the area of κ in the middle cell.
For the entire grid, we then use the approximation for each cell individually:

λi ≈
1

3h− 4
(h, h− 4, h) · (Aκ)i−1:i+1

For a 5 cell window, the approximation is

λi ≈
1

5h2 − 20h+ 16
(h2, h2 − 4h, h2 − 12h+ 16, h2 − 4h, h2) · (Aκ)i−2:i+2

Computing the solution this way saves the cost of computing a dense N × N matrix
inverse. In multiple dimensions it suffices to take the tensor product of these formulas with
themselves.

CHAPTER 3. HEIGHT FUNCTION INTERFACES 19

We justify this approximation based on the structure of the matrix G = AAT . We want
to show that G−1 is concentrated on the diagonal, with elements falling off as hr, where
r := min(|j− i|, |N − j− i|) is the distance to the diagonal. We can write G = I− h

4
L, where

L is the negative of the discrete laplacian (tridiagonal of (−1, 2,−1)). Then

G−1 =

(
I − h

4
L

)−1
=
∞∑
n=0

(
h

4
L

)n
.

Now, as a tridiagonal matrix, we see that (Ln)ij = 0 for r > n. Further, ‖L‖1 = 4, so we
can bound the size of each nonzero entry of Ln by 4n. Putting this together,∣∣∣∣∣∣

[
∞∑
n=0

(
h

4
L

)n]
i,i+r

∣∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

(
h

4
L

)n
i,i+r

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=r

(
h

4
L

)n
i,i+r

∣∣∣∣∣
≤

∞∑
n=r

hr
∥∥∥∥L4
∥∥∥∥r
1

≤ hr
(

1
1−h

)
.

Off-diagonal term fall off as hr, so the faraway contributions are small, which justifies using
our local inversion formulas.

Over many time steps, these small errors in approximating the projection will accumulate,
but this is solved by either (1) applying the approximate projection more than once, or
(2) letting the projection also correct for the error in the current solution u, i.e. λ =
(AAT)−1(Aκ+ e), e = c− Au.

As an example, we applied the local inversion technique in reconstructing a 1252 height
map of the San Francisco Bay bathymetry data set from USGS, with s = 5. The data is a
two-dimensional grid with size 882×789. We extracted the subset of cells [100−600, 0−500]
and broke them into 4 × 4 clusters by averaging. We formed an initial approximation by
projecting the constant zero function to a solution with the correct volumes. The final result
completed in 18 seconds on an Intel Core2 Duo 3.0 GHz computer. See Figures 3.6 and 3.7.

3.3 Reconstruction from data derived from

nonsmooth interfaces

We now examine what happens when the “true” solution to the minimization problem is not
smooth. The function

f(x, y) = 2− |1− x| − |1− y|,
represents a pyramid that has a corner (a location where both principal curvatures are
singular), and four edges (locations where exactly one principal curvature is singular). The

CHAPTER 3. HEIGHT FUNCTION INTERFACES 20

corner is located at (x, y) = (1, 1), while the edges are located along the lines x = 1 and
y = 1. We run the algorithm for the initial condition1

u0 = f(x′, y′),

[
x′

y′

]
=

[
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

] [
x
y

]
(3.2)

The result of the algorithm, with s = 5, is shown in Figure 3.4. Oscillations appear
throughout the edges. We see that they propagate differently in different coordinate direc-
tions. Indeed, having piecewise constant mean curvature still allows the principal curvatures
to vary independently of each other. One approach to combat this will be discussed below.

3.4 Other possible functionals to minimize

It is clear from our formulation that length is only one of many possible “energy” functionals.
The algorithms thus described in this chapter will work with any convex function L (to ensure
the existence of some minimizer). To summarize, the algorithm

1. Finds the direction v such that d
dτ
L(u+ τv)|τ=0 is negative and largest in magnitude,

and

2. Computes λ = (AAT)−1Av

3. Advances un+1 = un + dt (v + ATλ)

As an alternative, we can choose our energy function L to simulate a surface under elastic
equilibrium, L(u) = 1

2

∫
D

(∆u)2 dx. The variational derivative of L is

d

dτ

∫
D

[
1

2
∆(u+ τv)

]2
dx

∣∣∣∣∣
τ=0

=

∫
D

[∆(u+ τv)] ∆v dx

∣∣∣∣
τ=0

= −
∫
D

∇(∆u) · ∇v dx

=

∫
D

v∆∆u ds

Therefore we choose v = −∆∆u for step 1. In Figure 3.5, we run the input function 3.2 with
the above descent direction. The oscillations are still present, due to the resulting equations,
∆∆u = λi for x ∈ Ci, having a piecewise constant right hand side. However, the oscillations
are no longer as large or as pervasive.

1In this example, we have chosen to rotate the coordinate system to make sure that edges do not align
with the coordinate system. When they align, the algorithm performs artificially well.

CHAPTER 3. HEIGHT FUNCTION INTERFACES 21

Figure 3.3: Initial shape f(x) = 2− |1− x| − |1− y| input into 2D height function example.

Figure 3.4: Result of surface area minimization. Notice the oscillations along the edges of
the pyramid.

Figure 3.5: Result of elastic equilibrium. Notice it is smoother than surface area minimiza-
tion.

CHAPTER 3. HEIGHT FUNCTION INTERFACES 22

Figure 3.6: Result of elastic equilibrium on bathymetry data of the San Francisco Bay depth
map. It took 18 seconds on a Core2 Duo 3.0 GHz, with grid size 1252, and s = 5. See also
Figure 3.7 for a close-up. The surface is colored by height, with dark blue being the lowest
regions, and dark red the highest.

Figure 3.7: Zoom in of the same data as Figure 3.6.

23

Chapter 4

Full Algorithm

4.1 Outline

In this chapter we develop an algorithm for computing the solution to the surface area
minimization problem, subject to volume fraction constraints, on an arbitrary rectangular
volume fraction grid.

1. In Section 4.2, we discuss the level set representation of the interface, and discuss how
it is discretized. Let Ω be the rectangular domain of the volume fraction grid. We
embed the material region as {x : φ(x) ≤ 0} where φ : Rd → R. The surface area and
volume functionals are defined in terms of the level set function φ. In Section 4.2.1, we
then discretize the level set function on a s×s or s×s×s subgrid of the volume fraction
grid. Our algorithm requires the evaluation of curvature, which is discretized based on
a 32 or 33 stencil. In Section 4.2.2, we discretize the volume fraction functionals using
the Marching Tetrahedrons algorithm.

2. The proposed algorithm works in two stages, (1) an approximate iteration based on a
speed function defined by error and curvature terms, and (2) iterations by the projected
steepest descent algorithm. In Section 4.3, we discuss the first stage of the algorithm.
We provide an initial approximation to the interface by computing an isosurface of the
volume fraction grid. The approximation is refined by advancing the level set equation
by the speed law F (x) = E(x) − εκ(x), where E(x) is the reconstruction error of the
cell containing x, κ is the curvature, and ε ∈ R+.

3. In section 4.4, we discuss iterations of the algorithm’s second stage, the projected gra-
dient descent algorithm, analogous to that described in Chapter 3. These iterations
are performed after Step 2 completes. One step of curvature flow is performed, and
then we find the smallest additional perturbation to restore the volume fractions of the
computed interface to the given values. To do this, we compute the linear combination
of the gradients of each volume functional that cancels out the volume changes induced

CHAPTER 4. FULL ALGORITHM 24

by curvature flow. In Section 4.4.1, we discuss the overall shape of the volume gradi-
ents as s → ∞, and why we cannot rely on that approximation. In Section 4.4.2, we
discuss how to perform a projection on a nonuniform grid in one dimension. In Section
4.4.3, we discuss how to compute the gradients of the volume functionals, adapting the
formulas from 4.4.2. In Section 4.4.4, we discuss how to compute the combination of
volume gradients, and how to complete one iteration of the projection method.

In summary, the proposed algorithm represents the interface with a level set func-
tion φ, which is discretized onto a fine grid with subgrid parameter s. φ is initialized
by interpolating the volume fraction grid onto the fine grid, and then subtracting a
scalar so that the initial condition corresponds to an isosurface of the volume fraction
data. The algorithm then performs several iterations of a first approximation based
on the speed function F (x) = E(x) − εκ, where E(x) is the error within the grid
cell containing x. Once these approximations no longer improve the accuracy of the
interface1, the algorithm switches to the steepest descent with L2 projection iteration,
analogous to that described in Chapter 3. This iteration proceeds until some fixed
time T ∗, discussed in Section 5.2.2. This process is summarized by Figure 4.1.

4. In 4.5, we discuss an alternative, constraintless formulation based on optimizing a single
objective function that adds epsilon times surface area, plus the sum of square errors
in reconstruction. In Section 4.5.1, we formulate the objective function and compute
its gradient. In Section 4.5.2, we discuss the relationship between its parameter, ε, and
the L1 reconstruction error.

5. Finally, in Section 4.6, we extend our algorithm to multiple phase reconstruction.
In Section 4.6.1, we derive our method using multiple level set functions, running the
projection algorithm for each material separately, and combining the level set functions
via the Voronoi Interface (Saye and Sethian [24]). In 4.6.2, we define the Voronoi
interface and how it is computed. In 4.6.3, we discuss how we compute the volume
functionals exactly based on the resulting mesh.

4.2 Formulation

We embed our surface as the zero level-set of a higher dimensional function φ(x) with x ∈
Ω ⊂ Rd, Ω our rectangular domain.

The surface area functional, L, is

L(φ) =

∫
D

δ(φ(x))|∇φ(x)|dx

1Currently, the number of iterations is set in advance by empirical observation of the stopping criteria.
It is observed to depend on the parameter s. See Section 5.2.2.

CHAPTER 4. FULL ALGORITHM 25

Figure 4.1: Flowchart of the algorithm as applied to single phase reconstruction.

CHAPTER 4. FULL ALGORITHM 26

whose steepest descent is calculated to be

d

dτ
L(φ+ τv)|τ=0 =

∫
{φ(x)=0}

(
∇ · ∇φ
|∇φ|

)
v

|∇φ|
dS

which is curvature flow on the surface. See Jung et al for a discussion of a similar variational
level set problem (except with only one volume constraint) [13].

The volume functionals, Vi(φ), are given by

(V φ)i :=

∫
Ci

H(−φ)dx

for each cell Ci ∈ Ω, where H is the Heaviside function.

4.2.1 Discretization of φ

For an arbitrary M×N×P grid of volume fractions Vr(I, J,K), I ∈ 1 . . .M, J ∈ 1 . . . N,K ∈
1 . . . P , we define a level set function on a subgrid (refer to Figure 4.2) of size m × n × p,
where m = Ms, n = Ns, p = Ps, and s our subdivision parameter (usually chosen to be
s = 3 in 3D; see Chapter 5). Grid points (Is..Is + s, Js..Js + s,Ks..Ks + s) will represent
volume fraction block (I, J,K).

Both stages of our algorithm (which we will discuss in Sections 4.3 and 4.4) advance the
level set function numerically via Euler’s Method:

φn+1 = φn + ∆t(εκn − F n)∇φn,
κ is discretized according to the 32 or 33 stencil discussed in Chapter 2. Time step restrictions
for advancing φ are ∆t ≤ h2

2dε
for curvature flow (d is the dimension), and ∆t ≤ h/max(|Fijk|)

for the expansion/contraction term F .

4.2.2 Discretization of the volume functionals

To compute the volume functionals on the fine grid, we use piecewise linear interpolatation
of our level set function φ with the “Marching Tetrahedrons” splitting of the domain [4, 19,
11], which has two important advantages:

• Each tetrahedron, made up of four points, determines a linear function exactly;

• Neighboring tetrahedra match up faces with each other, so that continuity is guaran-
teed.

It works as follows:
The domain is broken up into 1 × 1 × 1 grid cubes on the fine mesh. Each cube is

subdivided into six tetrahedra. Those tetrahedra, shown in Figure 4.3, are (offset from the
point (i, j, k))

CHAPTER 4. FULL ALGORITHM 27

Figure 4.2: A 3× 3 subgrid, in yellow, of the example volume fraction grid from Figure 1.1.

1. (0,0,0), (0,1,0), (1,1,0), (0,0,1)

2. (0,1,1), (0,1,0), (1,1,0), (0,0,1)

3. (1,1,1), (0,1,1), (0,0,1), (1,1,0)

4. (1,1,1), (1,0,1), (0,0,1), (1,1,0)

5. (1,0,0), (1,0,1), (0,0,1), (1,1,0)

6. (0,0,0), (1,0,0), (1,1,0), (0,0,1)

The tetrahedra are all isometric to each other and have volume 1
6
. For each tetrahedron,

we compute the volume of the region where φ(x) < 0:

1. If the number of negative endpoints is 0 or 4, then the volume is 0 or 1
6
, respectively.

2. Otherwise, fit a linear interpolant f(x, y, z) = c0 + c1x+ c2y + c3z and find the points
along the edges of the tetrahedron where f = 0.

3. Split the tetrahedron into two regions f > 0 and f ≤ 0.

4. If the number of negative endpoints is 1 or 3, then one region is a smaller tetrahedron,
and its volume is computed via 1

3
BH; if its complement is the region with φ < 0 then

simply subtract from 1
6
.

CHAPTER 4. FULL ALGORITHM 28

Figure 4.3: The Marching Tetrahedra splitting of the unit cube.

5. If the number of negative endpoints is 2, then the tetrahedron is split into two frustum-
like regions. Either region can itself be split into one pyramid and one tetrahedron,
and those volumes in turn may be computed. See Figure 4.4.

In 2D, this calculation is simpler, as we need only partition each square (i, j) to (i+1, j+1)
into two triangles, (i, j), (i+ 1, j), (i, j + 1) and (i+ 1, j + 1, (i, j + 1), (i+ 1, j). We omit the
details for brevity.

This calculation is not linear, unlike the formulas presented in Chapter 3, due to the
use of conditionals involved in computing volume. However, in Section 4.3, we linearly
approximate the volume operator by locally treating the curve as a height function.

4.3 First approximation

To initialize the level set function φ, we compute an isosurface of the volume fraction grid.
More specifically, we set

φ = I(Vr − c)

where c ∈ R, 0 < c < 1, and I is an interpolation operator, which we now define.

CHAPTER 4. FULL ALGORITHM 29

Figure 4.4: Illustration of splitting of the tetrahedron, in the case of two positive and two
negative vertices.

The operator I : RM×N×P → Rm×n×p has the form I : G 7→ g, where G(I, J,K), I ∈
1 . . .M, J ∈ 1 . . . N,K ∈ 1 . . . P is defined on the coarse grid, and g(i, j, k), i ∈ 0 . . .m, j ∈
0 . . . n, k ∈ 0 . . . p is defined on the fine grid. We assume the midpoints of each cell, (sI +
s
2
, sJ + s

2
, sK+ s

2
), have the values g(sI+ s

2
, sJ + s

2
, sK+ s

2
) = G(I, J,K), and the remaining

points are interpolated trilinearly from the nearest eight of these values. (If s is odd, the
process is the same. The value of g in the middle is simply a convenience for defining
interpolation, since no grid point exists there.)

The choice of c determines which isosurface of the interpolated volume fraction grid will
be the initial guess. We choose c small, e.g. 0.01, so that the algorithm will “shrink” and
smooth the surface towards the solution, instead of expanding and sharpening.

Alternatively, the level set function can be initialized to have spheres of the correct volume
occupying each cell (and overlapping when such sphere does not fit within). This has the
advantage of adapting to a wider range of topologies, but the disadvantage of starting the
interface with oscillations at every grid cell, and hence curvature flow takes longer to damp
them out.

The level set function is advanced via a speed law F containing (a) motion in the normal
direction, and (b) curvature:

CHAPTER 4. FULL ALGORITHM 30

Figure 4.5: Our interpolation computes the value of the speed function at a point (blue
square) by interpolating between data given at the cell centers (green dots). However, ideally
the speed law should depend only on arc length position on the interface (e.g, interpolation
based on the points in red.) The projection step will have this property.

F = I[Vr − Va]− εκ

with Va(I, J,K), the actual volume made up by our shape within a cell (I, J,K), computed
via the Marching Tetrahedra algorithm discussed previously, and I is the interpolation op-
erator defined previously. The goal is to advance the front under smoothing (κ), and correct
any existing volume errors in the flow (Vr − Va).

We interpolate the error term Vr − Va, since by leaving the term piecewise constant,
the speed function at boundaries is not well defined. It may not be possible to achieve
matched volumes in all cells if, by correcting one cell, the value of its neighbors is altered
unpredictably. We use trilinear interpolation using values of the error function at cell centers
because it is simple and fast to evaluate on an Eulerian grid.

Interpolation of the error term is not equivalent to the projection step. It makes the
speed function depend on the Eulerian position, but it should only depend on the position
relative to the interface. See Figure 4.5 for further illustration of this point.

CHAPTER 4. FULL ALGORITHM 31

4.4 Projection algorithm

The main algorithm requires the flow

φt + P(κ)|∇φ| = 0

where P is an approximate projection operator, which requires choosing the closest vector
v to κ such that v does not change the volume fractions. We write P(κ) = κ + w to break
the algorithm into two steps.

• φn+1/2 = φn + dt κ. Compute Va(φ
n+1/2).

• Compute w which is the smallest change restoring Va(φ
n+1/2) to Vr (or to Va(φ

n)).

In Chapter 3, we saw that this was equal to subtracting the smallest such perturbation
(in the L2 sense) that cancels out the volume changes.

4.4.1 Limit as s→∞
In the limit as the number of subdivisions s→∞, in the height function case, we obtain the
projection to be a piecewise constant flow. Since the goal is to minimize 1

2

∫
w2dx subject

to
∫ xi+1

xi
wdx = ci, the variational form of Lagrange multipliers gives

0 = d
dτ

(
1
2

∫ b

0

(w + τv)2 −
N∑
i=1

λi

∫ xi+1

xi

(w + τv)dx

)∣∣∣∣∣
τ=0

=

∫ b

0

wvdx−
N∑
i=1

∫ xi+1

xi

λivdx

=
N∑
i=1

∫ xi+1

xi

v(w − λi) dx

for any v ∈ L2, which indicates that w is piecewise constant. Unfortunately, as discussed
earlier, piecewise constant flows have convergence problems. Our parameter s is quite small,
invalidating the applicability of the limit process.

The projection step must be done according to the gradients of the volume functionals,
as discussed in Chapter 3.

4.4.2 Projection on a nonuniform grid in one dimension

Recall we sought the minimum of ‖w‖2 with Av = Aκ and found that

w −
N∑
i=1

λiAi,: = w − ATλ = 0

CHAPTER 4. FULL ALGORITHM 32

We deduced that w was a linear combination of the area gradients. In the case of the
trapezoidal rule, w was a linear combination of the vectors (1

2
, 1, . . . , 1, 1

2
) on each interval,

which is crucially different from the constant flow, (1, . . . , 1), near the edges of volume
fraction cells.

A difference between the height function case and the general case, as we will see in the
next section, is that the surface mesh will in general not be equally spaced nor aligned to
boundaries. More precisely, the discrete points on the level set grid which we can modify to
change the interface will not all change the interface by the same amount1. By examining
how to perform the projection on a nonuniform grid in one dimension, we can determine the
necessary steps in the general case.

To minimize
∫
w(x)2dx on a nonuniform grid (grid points 0 . . . n), the trapezoid rule gives

us an expression of the form
n∑
i=0

ρiw
2
i

where ρi = 1
2
(ρi,l + ρi,r), where ρi,l is the distance to the left neighboring point, and ρi,r is

the distance to the right.
The volume constraints are(

1

2
, 1, . . . ,

1

2

)
· (ρIs,rwIs, ρIs+1wIs+1, . . . , ρIs+s,lwIs+s) = cI

for I = 1 . . . N yield the minimizer

ρiwi =
∑N

I=1 λI(0, . . . , ρIs,r, ρIs+1, . . . , ρIs+s,l, 0, . . .)

wi =
∑N

I=1 λI(0, . . . ,
ρIs,r
ρIs

, 1, . . . , 1,
ρIs+s,l

ρIs+s
, 0, . . .)

(4.1)

The coefficients of the interior nodes are still 1, while the edge node coefficients are equal
to their contribution to the cell in question, divided by their contribution to all cells.

4.4.3 Calculation of ∇VIJ on the level set grid

In the case of an interface not represented as a graph of a function, we rely on the following
formulation. Let u = u(s) represent the normal perturbation of the interface, in other words,
u is the height function in a coordinate system with axes the tangent and normal directions
at each point on the interface. In Figure 4.6, we show an example where the interface is a
circle, and the displacement is a sine wave. To first order in ‖u(s)‖∞, the change in volume
is ∆V =

∫
u(s) ds.

In an implicitly-defined interface, we interpret our volume gradients as being normal
displacement functions. We can create these functions via adding values to individual grid

1A grid point may correspond to a point exactly on the boundary, a point 1/s distance away, or anywhere
in-between. The unevenness is determined by the change in curvature along the interface.

CHAPTER 4. FULL ALGORITHM 33

(a) Normal displacement function
u(s) = sin(3s).

(b) Interpretation of u(s) as a modification
(green) to the original circular interface (blue)

Figure 4.6

Figure 4.7: Illustration of the the computation of gradient functionals. On top, in the 1D
function graph case; on bottom, the extension to the level set case.

points. These changes will correspond to moving the interface at the closest point to the
grid point by some perturbation.

For a point ij close to the interface, we compute its corresponding volume gradient normal
displacement as follows (see also Figure 4.7):

1. Extend the interface outward a length τ via altering φij.

2. Compute the change in volume in each applicable volume fraction cell caused by this
extension. For a given cell IJ , call this vIJ(τ).

CHAPTER 4. FULL ALGORITHM 34

3. Take the quantity vIJ (τ)
τ

∑
I′J′

vI′J′ (τ)
, for I ′J ′ neighboring cell IJ , as τ → 0. In practice this

means choosing a sufficiently small τ .

The result is the coefficient of the IJth volume gradient for the component corresponding
to the point on the interface nearest ij.

4.4.4 Computing λ and updating the interface

Let S be the space of surfaces in Rd, and U ∈ S. Let V : S → Rc be the operator that
inputs a surface and returns the volume fractions corresponding to it, where c is the total
number of volume fraction cells, c = MN (or MNP in 3D).

1. We linearize V in terms of the normal displacement functions defined on U0.

V (U) ≈ V (U0) + [∇Vi(U0) · (U − U0)]i=1...c

The ∇Vi are the volume gradients whose components are described above. We denote
dV := (∇Vi)i=1...c. Both the ∇Vi and (U −U0) are represented as normal displacement
functions.

2. We define the c× c matrix G such that

Gk,l = Vl(∇Vk),

which represents the volume changes the gradients sweep out within the volume fraction
grid. (Recall from Chapter 3 the matrix G = AAT .) We calculate this as follows. For
a volume gradient corresponding to cell IJ , we obtain coefficients for each point close
to the interface. Using this as the flow velocity, we move the interface for a smell time
step τ and finally, compute volume changes in cell IJ and its neighbors.

3. We compute dV κ by flowing Uκ = U0 + ∆tκ, then computing V (Uκ)− V (U0).

4. We invert to find λ = G−1(dV κ)

5. We flow U ← U0 + ∆tκ+ dV Tλ (we abuse notation to write dV Tλ :=
c∑
i=1

λi∇Vi).

The inversion can be done exactly via LAPACK dgesv, or via a few iterations of Gauss-
Seidel, which emulate the local inversion formulae in Chapter 3.

Finally, it is often not feasible to start with (nor to maintain) a perfectly zero error
interface, and as such, the volume changes of curvature is not the only term being projected.
In practice we use

λ = G−1(dV κ+ α(Vr − Va))

CHAPTER 4. FULL ALGORITHM 35

and use α = 1 for smooth shapes, but α < 1 is recommended for shapes with high curvature
or loss of smoothness.

We note that there are alternative ways to perform such a projection step. For example,
Fatemi and Sussman [28], in an algorithm to reinitialize φ(x) to a signed distance function,
introduced a constraint to conserve volume within each fine grid cell. They accomplished
this by a projection defined using the gradient of a numerical Heaviside function.

4.5 Relaxing the constraints

4.5.1 Formulation

Since reconstructing volume fractions corresponding to regions with corners or edges leads
to interfaces with oscillations, we also include a formulation that allows some reconstruction
error in exchange for a smoother shape. We recast our problem as the minimum solution of

F (φ) = ε

∫
φ=0

1 ds+
1

2
‖Vr − Va(φ)‖2, (4.2)

where Vr is the vector containing the required volume fractions in each grid cell, and Va the
corresponding vector for volumes occupied by the shape φ ≤ 0. Gradient descent yields, for
surface area minimization,

∇F = εκ+ dV T (Vr − Va)

where we denote the volume gradients just discussed by dV T .

4.5.2 Relationship between ε and error

As ε moves increases from 0, the error, at first, increases linearly. First, we examine a basic
example: a circle, with a single volume fraction. Surface area minimization acts to shrink the
circle, while the volume error term acts to stretch it to its original radius. Writing equation
4.2 for this problem in terms of ρ = r − 1, we have

Fε(ρ) = 2πε(ρ+ 1) + 1
2
[π(1− (ρ+ 1)2)]2

0 = d
dρ
Fε(ρ) = ε+ π(ρ3 + 3ρ2 + 2ρ)

Taking the derivative with respect to ε we get

ρε =
−1

2π + 6πρ+ 3πρ2

and since limε→0 ρ = 0, ρε|ε=0 = −1
2π

. Since ρε 6= 0, the difference in radius is locally linear in
ε. The L1 error is also locally linear in the radial difference.

CHAPTER 4. FULL ALGORITHM 36

For a one-dimensional height function, we demonstrate the linearity of the error versus ε as
follows. Let the interval [0, L] be partitioned into intervals xI , with constraints

∫
xI
u(x)dx =

cI , cI as input. The objective function is

Fε(u) = ε

∫ L

0

√
1 + u2x dx+

1

2

∑
I

(∫
xI

udx− cI
)2

.

For a given search direction v ∈ L2, we locally approximate Fε(u + τv), τ ∈ R as a
quadratic about τ = 0. We have

d

dτ
Fε(u+ τv)|τ=0 = ε

∫
vx

ux√
1 + u2x

dx+
∑
I

∫
xI

vdx

(∫
xI

udx− cI
)

and
d2

dτ 2
Fε(u+ τv)|τ=0 = ε

∫
v2x

(1 + u2x)
3/2
dx+

∑
I

(∫
xI

vdx

)2

Solving for the minimum τ ∗ of Fε(u) + τF ′ε(u) + 1
2
τ 2F ′′ε (u), fixing notations for the quantities

Au :=
(∫

xI
udx

)
I=1...N

, r := Au− c, we get:

τ ∗ =
ε
∫
v2dx+ r · Av

|Av|2 + ε
∫ v2x

(1+u2x)
3/2dx

.

Using u = u0, the solution to ε = 0, and v = κ0,

τ ∗ =
ε
∫
κ20dx

|Aκ0|2 + ε
∫ κ20,x

(1+u2x)
3/2dx

.

This approximation is valid for small τ , and we see that τ ∗ = O(ε), so we can use this
approximation for small ε. Finally, our new minimum is

uε ≈ u0 + τ ∗κ0,

and we infer the L1 difference u and u0 will be on the order of |τ ∗| ‖κ0‖.

4.6 Multiple phase reconstruction

In this section, we apply the first approximation and projection stages of our algorithm
towards reconstructing multi-phase volume fraction data. In 4.6.1, we define what multi-
phase volume fraction data means. In Section 4.6.2, we describe a straightforward extension
of our algorithm to reconstructions from this data. In Section 4.6.3, we define the Voronoi
Interface, which is used to partition, without gaps or overlap, the domain into the regions
associated with each phase. Finally, in 4.6.4, we discuss how to compute volumes on the
arbitrary polyhedra that emerge with the Voronoi Interface.

CHAPTER 4. FULL ALGORITHM 37

4.6.1 Definition

Multiple phase volume fraction data is defined thus: Given m materials, and N cells, for
each cell I we have m volume fractions vIj ≥ 0 such that

m∑
j=1

vIj = 1

Each vIj represents the fraction of cell I occupied by material j.
A grid with a single volume fraction per cell is equivalent to two-phase data, where the

second phase is defined simply as v2 = 1− v1 for each cell in the grid.

4.6.2 Algorithm

The algorithm can be extended toward multiple phase reconstruction as follows. Let φi :
Rd → R, i ∈ 1 . . .m, be level set functions such that φi < 0 corresponds to the region inside
phase i, and outside otherwise.

1. Perform one iteration for each material i with level set function φi independently,
reducing to an iteration of the single phase reconstruction algorithm.

2. Partition the domain into regions R1 . . . Rm corresponding to each material using the
Voronoi Interface (defined by Saye and Sethian [24]). Compute the volume of each
region.

3. Repeat from step 2.

4.6.3 The Voronoi Interface

The solution requires that a partition of the grid such that each region is occupied by
exactly one phase. If we use the zero level set of each φi separately, then points x such
that φi(x) < 0 and φj(x) > 0 ∀j 6= i are unambiguously located within Ri; however, where
level set functions overlap (φi(x) < 0 and φj(x) < 0), or no level set function is inside
(φj(x) > 0 ∀j) are ambiguous. To resolve this, we use the Voronoi Interface: we say a point
x is within Ri iff

φi(x) < φj(x) ∀j 6= i

For each tetrahedron in the Marching Tetrahedrons partitioning of the fine grid, we
compute boundaries of the above regions:

1. For any two level set functions occupying the cell, i, and j, if φi and φj are sufficiently
close to 0, compute the polygon φi(x) − φj(x) = 0, using the linear representation of
each function. Call this polygon B.

CHAPTER 4. FULL ALGORITHM 38

2. For any third level set function φk sufficiently close to 0, within the polygon B, compute
the line where φk(x) = φi(x).

3. Replace B with the polygon B with φk(x) < φi(x) cut off.

4. Repeat (2) for third, fourth, etc level set functions, if applicable.

4.6.4 Volume calculation

We compute the exact volumes swept out by the piecewise linear Voronoi interfaces as follows:

1. We begin with the unit tetrahedra from the Marching Tetrahedra splitting. To find
the volume occupied by Material A, we repeatedly chop the polyhedron by the plane
(φA = φB) for all materials B.

2. Compute the volume of the resulting polyhedron by

V =
∫
P

1 dx dy dx =
∫
P

1
3
div(x, y, z) dx dy dz = 1

3

∫
∂P

(x, y, z) · n̂ dS
= 1

3

∑
F Area(F)x̄(F) · n̂(F)

(4.3)

where F are the faces of the polyhedron P .

39

Chapter 5

Results

In this section we document the results of the algorithms described in Chapter 4 applied to
several test cases.

1. In Section 1, we focus on these basic tests.

• We reconstruct lines in 2D of various angles.

• We reconstruct the sphere, torus, and ellipsoid (in 3D) and discuss convergence
as a function of the number of iterations.

• We reconstruct a sphere in 3D, measuring the XOR-volume between the recon-
struction and model, as well as error in computed normal vectors. We discuss
convergence as a function of subgrid size (s), and volume fraction grid size (N).

2. In Section 2, we discuss how to generate the remaining test cases, and what quantities
we measure about each.

3. In Section 3, we give tables and figures for several examples of two-dimensional recon-
structions, both single and multi-phase.

4. In Section 4, we repeat the procedure for three-dimensional data.

5. In Section 5, we examine some test cases from Section 4 under the relaxed optimiza-
tion reconstruction algorithm. Specifically, we examine those single material model
interfaces that have sharp corners or edges.

6. Finally, in Section 6, we show side-by-side comparisons of figures from the Active
Interface Reconstruction paper [3] with our own results.

CHAPTER 5. RESULTS 40

Figure 5.1: The algorithm acts to reduce surface area. Grid size is 403.

5.1 General convergence results

5.1.1 Convergence of smooth shapes by number of iterations

We first fix our domain as the cube [−3, 3]3 and examine three inputs: volume fractions
corresponding to

• the sphere of radius 2,

• a torus with radii 1.5, 0.9, and

• an ellipsoid with semiaxes 2.4, 1.6, 2.0.

The ellipse and torus are rotated by π/5 about the x-axis, and π/5 about the y-axis, so
that there is no bias towards grid alignment. For this first test, we use a volume fraction
grid size of 403 and s = 2 subdivisions.

We compare the difference between shapes as the volume of the region

XOR(A,B) = {x : x ∈ A, x /∈ B or x /∈ A, x ∈ B}

computed by method similar to that used to find the Voronoi interface. Since both the
sphere and the torus are surfaces of constant mean curvature, the reconstructed solutions
should be exactly the same sphere and torus. In practice, they are close, but not exact – this
is due to two factors: (1) the reconstruction triangulation can only approximate a curved
surface to first order, and (2) the projection is approximate to first order.

CHAPTER 5. RESULTS 41

Figure 5.2: Convergence to model shape for three input shapes. Grid size 403.

Quantifying these difference, the XOR errors for the sphere and torus are both approx-
imately 10−3 on a 403 grid. By dividing by the number of volume fraction cells neither
completely filled nor empty, this amounts to an average XOR error per cell of less than
10−6. The ellipsoid, however, is not a surface with constant mean curvature. Consequently,
the minimum surface area reconstruction will have lower area than the ellipsoid itself (we
computed 0.0016 less surface area, from an original area of 49.991), and we will expect that
the XOR volume should not be zero, even in theory. Nevertheless, the average XOR error
per cell compared to the ellipse is still small (approximately 10−6).

5.1.2 Convergence of sphere by grid size and number of
subdivisions

We then measured convergence based on increasing the grid size (N3) for a sphere. In
Table 5.1, we see that the XOR-difference between meshing the exact sphere level set to
the reconstruction result is second order in N , while the difference in normal vectors is first
order. For higher order accuracy, we would need curved elements (or a higher order meshless
volume calculation). The normal difference between n̂ and n is calculated by arccos(n̂ · n),
where n̂ is the vector from a point to the origin (normalized), and n is a vertex normal –
the average of normals of all faces sharing the vertex. Other normals yielded the same order
of accuracy, but higher absolute error.

Finally, we fix a grid size of 323 and vary our subdivision parameter, s. See Table 5.2. The
order of convergence for the XOR volumes and the normal errors are the same as increasing

CHAPTER 5. RESULTS 42

Grid size, N XOR-Diff Normal error
15 0.171 0.033
20 0.090 0.023
25 0.0578 0.0169
30 0.0413 0.0147
40 0.0229 0.0120
50 0.0144 0.0092

Table 5.1: Convergence for a sphere, s = 2 subdivisions. XOR is second order, while normals
are first order.

Subdivisions, s XOR-Diff Normal error Time (s)
2 0.0353 0.0142 7.8
3 0.0148 0.00964 37
4 0.0077 0.00675 122
5 0.0044 0.0545 350
6 0.0026 0.0446 734

Table 5.2: Convergence for a sphere, N = 32. Again, XOR is second order, while normals
are first order. However, time is approximately 5th order.

grid size. However, we note that the run-time is approximately quintic in s. Firstly, the
number of grid points is cubic in s, and secondly, the time step restriction is quadratic in
s = 1/h, therefore, to flow curvature up to a fixed time T , we require quadratically more
time steps. The accuracy is sufficient for our purposes with 2-3 subdivisions as well, and so
we therefore restrict our algorithm to 2-3 subdivisions in 3D unless otherwise noted.

Grid convergence, however, need not be quintic in time. We assume that the width of a
coarse cell is constant (or 1) to preserve feature size at one volume fraction cell. Consequently,
the time step restriction does not increase. Furthermore, the region in which the interface
lies is of co-dimension one (the remaining cells are either empty or filled completely), and so
total compute time should be nearly quadratic. See Tables 5.3, 5.4, 5.5, and 5.6.

5.1.3 Convergence of straight lines

Taking a step back, we verify that the proposed algorithm works for straight lines. In 2D, we
ran a sequence of random lines through the origin on a 72 grid. On average over 10 slopes,
the error was 2.73 × 10−5 (measured as the sum of errors in volume in all cells, divided by
the number of cells neither empty nor completely occupied). On further inspection we noted
that the center cell’s error was always much better than the average error, and the fact that
the error was not equal to machine-precision was due to boundary effects. Indeed, as no
information can flow inside from outside the boundary, the fast marching method for a line

CHAPTER 5. RESULTS 43

Figure 5.3: Reconstruction of a flat plane in 3D. Boundary effects lead to error on some cells
on the order of 10−4, but otherwise the plane is faithfully reproduced.

will not reinitialize φ to be a linear function, which, under many iterations of curvature flow,
causes a slight bend at the boundary. Nevertheless, the algorithm was able to reproduce
straight lines consistently to a reconstruction error of approximately 10−5 to 10−6, which
empirically is the most accurate the algorithm has been able to deliver in any cases.

The situation is analogous in 3D. For the plane on a 153 grid, s = 3, not aligned to any
axis, our result had an error of 8.2× 10−6; see Figure 5.3.

5.2 Models, process, and measurements

5.2.1 Test case generation

For each test case, a model surface (or collection of surfaces) is chosen. For a single material,
the model surface is defined implicitly, φ(x) = 0, and the surface is triangulated using
linear interpolation in a fine grid. We compute the volume fractions partitioned by this
triangulation within our coarse grid, and these serve as input to the reconstruction algorithm.

For m multiple materials, the model surfaces are defined as the the Voronoi interface for
level set functions φ1, . . . , φm. The volumes of the Voronoi regions are computed using the

CHAPTER 5. RESULTS 44

volume formula given in Section 4.6.2.

5.2.2 Reconstruction process

In the following examples, the reconstruction algorithm was run with several iterations of
“stage one”, followed by several more iterations of “stage two.” “Stage one” refers to the
approximate algorithm described in 4.3 (speed law F = −εκ + I(Vr − Va), a.k.a. “Loose
Reconstruction” as referred to in some of the figures to follow), and “stage two” refers the
main algorithm as described in Section 4.4 (curvature flow followed by an approximate L2

projection to preserve volume).
The parameters of our algorithm were determined empirically. In more detail:

• Number of subdivisions. We found in Section 5.1 that compute time is quintic in
s, and therefore s should be as small as possible. s = 2 worked well on very smooth
interfaces, but it was not sufficient for more complicated shapes. s = 3, however, was
able to perform well on all of our test cases in 3D.

• Number of iterations per stage. We determined the number of iterations by
measuring convergence of a simple model shape. In 2D, it was the circle, in 3D, the
sphere. For stage one, we chose when the reconstruction error stopped improving
significantly; for stage two, we chose when the XOR-error between the model and
result stopped improving.

• Epsilon. In the projection algorithm, ε only affects how much the interface can move
in one iteration. We chose ε small enough that the projection step is still able to
counteract the volume changes due to εκ.

• Time step. Finally, ∆t was generally chosen to be as large as possible without
violating the stability requirement.

The values of the parameters, once chosen, were fixed and run on an entire class of
problems. The specific values chosen are as follows:

• In 2D, unless otherwise noted, there were 30 iterations of stage one, and 15 iterations
of stage two, with ε = 0.02, s = 4, and time step ∆t = h2

6ε
.

• In 3D, ε = 0.04 and s = 3. For a single material, the default was 20 iterations of stage
one, and 8 iterations of stage two, with time step ∆t = h2

8ε
. For multiple materials, we

used 10 iterations of both stage one and stage two, with time step ∆t = h2

6ε
.

CHAPTER 5. RESULTS 45

5.2.3 Tables

The tables that follow contain measurements of reconstruction result data. Grid means
coarse grid size, Mixed denotes the proportion of coarse grid cells that are occupied by at
least two phases, Time is the run time in minutes:seconds, and Average error is, as defined

in [3], E =
∑

c maxi |Error(c,i)|
#Mixed

(c is some cell, i represents a phase) – the average worst error
per cell. In practice, our algorithm always commits some reconstruction error. Small ones
are due to our approximate methods, with larger ones a matter of truncating high curvature
regions.

“Time” is the run time when run on an Intel Core2Duo 3.0 GHz machine, running Visual
Studio 2010 Express with full optimization and SSE2 enabled.

5.3 Two-dimensional results

5.3.1 Two phase

Name Grid Mixed Time Average error
Batman 502 7.7% 2.87s 6.6× 10−5

Circle 502 5.3% 2.38s 3.9× 10−6

Circle 1002 2.7% 9.19s 5.4× 10−5

Cassini Oval 202 9.0% 0.64s 1.6× 10−5

Rounded Deltoid 252 9.9% 1.67s 2.6× 10−5

Letter ‘A’ 202 18% 0.76s 2.9× 10−3

Letter ‘A’ (allowing pinch off) 202 18% 0.76s 4.0× 10−4

Mandelbrot 2002 6.8% 58.7s 1.1× 10−3

Table 5.3: Data from the algorithm applied to various single-phase two-dimensional test
cases.

CHAPTER 5. RESULTS 46

Figure 5.4: Cassini Oval. The model shape is given by 0 = (x2+y2)2−3(x2+y2)− 3
4
. Both

the reconstruction (red) and exact solutions (green) are shown, with the volume fraction grid
overlayed.

(a) Level set function (b) Reconstruction (red) and exact (blue)

Figure 5.5: Rounded Deltoid. The model equation is 0 = (x2 + y2)2 + 9
2
(x2 + y2)− 4(x3−

3xy2) − 43
16

. On the left, the reconstructed level set function is shown, with zero contour in
black; on the right, the reconstruction (red) and the exact (blue) are both drawn, with the
volume fraction grid overlayed.

CHAPTER 5. RESULTS 47

Figure 5.6: Batman. The model shape is made of circular arcs joined together, and is not
C2. The model is shown in red, and the reconstruction in green. The overlap is orange.

CHAPTER 5. RESULTS 48

Figure 5.7: Mandelbrot. Reconstruction of the Mandelbrot set truncated at 20 iterations,
i.e. the set of points z0 ∈ C such that |f ◦ f ◦ · · · f(z0)| < 2, the number of compositions
being twenty, and f(z) = z2 + z0. The reconstruction was allowed to form islands due to
pinch-off.

CHAPTER 5. RESULTS 49

Figure 5.8: Triple point. First defined on the interval [−1, 1], with rays at angles
π/2, 7π/6, 11π/6, then rotated 1 radian, then translated 0.5 units left.

5.3.2 Multiple phase

Name Grid Num phases Mixed Time Average error
Triple Point 202 3 8.0% 0.8 s 4.1× 10−5

Quadruple Point 202 4 13.0% 1.1 s 0.00019
Quadruple Point 1002 4 2.8% 18.7 s 3.51× 10−5

Voronoi 202 10 27.0% 3.0 s 0.00017
Large Voronoi 2002 40 6.8% 428.8 s 0.00017
Voronoi swirl 202 10 30.0% 3.2 s 0.0012
Voronoi swirl 1002 10 7.2% 49.1 s 0.00033

Circle/Square (fine) 202 3 8.0% 3.3 s 0.00071
Circle/Square, rotated 202 3 7.3% 1.2 s 0.00075

Table 5.4: Data from the algorithm applied to various multi-phase two-dimensional test
cases.

CHAPTER 5. RESULTS 50

Figure 5.9: Quadruple point. First defined on the interval [−1, 1], as rays at angles
0, π/2, π, 3π/2 from the origin. The swirl is done by the tranform (r, θ) 7→ (r, θ − r π

6
).

Figure 5.10: Quadruple point. Close up of quadruple point. The reconstructed topology
is that of two nearby triple points.

CHAPTER 5. RESULTS 51

Figure 5.11: Voronoi. Reconstruction of a random Voronoi diagram with 10 components.

Figure 5.12: Large voronoi. Reconstruction of a random Voronoi diagram with 40 compo-
nents.

CHAPTER 5. RESULTS 52

Figure 5.13: Voronoi swirl. Starting with the same voronoi diagram as before, on the
interval [−1, 1], and applying the transform (r, θ) 7→ (r, θ + πr).

Figure 5.14: Circle/Square. On the unit interval, a circle of radius 0.2 centered at (0.6,
0.6), and a square from (0.2, 0.2) to (0.6, 0.6). Where they overlap, the circle takes priority.
This shape aligns on the grid. The fine to coarse ratio used was s = 8 to be able to resolve
the corners.

CHAPTER 5. RESULTS 53

Figure 5.15: Circle/Square rotated. Based off of the model in Figure 5.14, except rotated
one radian counterclockwise, so that the volume fraction cells do not align with the square.
The fine to coarse ratio used is s = 4. The answer differs from the model, as the model itself
does not minimize surface area.

CHAPTER 5. RESULTS 54

(a) Reconstructed, 243 (b) Reconstruction error highlighted

Figure 5.16: Sphere. Reconstruction of a sphere of radius 2 on the interval [−3, 3]. Recon-
struction is indistinguishable from original by naked eye.

5.4 Three-dimensional results

5.4.1 Two phase

Name Grid Mixed Time Average error
Sphere 243 8.4% 0:18 2.84× 10−5

Sphere 483 4.4% 1:20 1.46× 10−5

Torus 243 9.3% 0:14 4.11× 10−5

Torus 483 4.6% 1:14 1.43× 10−5

Ellipsoid 203 8.7% 0:19 3.78× 10−5

Deltoid-like 483 1.4% 0:34 0.0019
Bell pepper 243 10.7% 0:15 0.0047
Bell pepper 483 5.5% 1:27 0.0028

Cube 483 4.9% 2:36 0.0076
Sphere minus cylinder 483 5.5% 1:44 0.0028

Double cone 483 3.3% 1:14 0.011

Table 5.5: Data from the algorithm applied to various single-phase three-dimensional test
cases.

CHAPTER 5. RESULTS 55

(a) Reconstructed, 243 (b) Reconstruction error highlighted

Figure 5.17: Torus. Reconstruction of a torus, defined as T = {x : d(x,A) ≤ 0.9}, where
A = {x′ : d(x′, 0) = 1.5}. As with the sphere and other shapes with low curvature, recon-
struction error and model error is quite small. The entire region then rotated by (π/5, π/5, 0)
along the coordinate axes – that is, first rotated π/5 around the x-axis, then π/5 around the
y-axis, and no rotation along the z-axis.

Figure 5.18: Ellipsoid with semiaxes 2.4, 1.6, 2.0, and rotated by the same angles as the
torus.

CHAPTER 5. RESULTS 56

(a) Reconstructed with error colored, 483 (b) Model

Figure 5.19: Deltoid-like. Reconstruction of a deltoid-like object, defined as 0 = r4 +
18a2r2 − 27a4 − 8a(x3 + y3 − 3xz2) − 1, a = 1

2
. Reconstruction is very accurate away from

the tips. The tips, though smooth, have curvature quite high and end up truncated.

CHAPTER 5. RESULTS 57

(a) Reconstructed, 483

(b) Loose reconstruction, 483

(c) Model

Figure 5.20: Sphere minus cylinder. A sphere, radius 2.0 (within the space [−3, 3]3),
with the cylinder x2 + y2 ≤ 0.75 cut out. The entire region then rotated by (π/5, π/5, 0)
along the coordinate axes. Length minimization leads to oscillations along the sharp edges.
Our first stage reconstruction yields a shape without these effects, but with more error (the
trade off not well-defined; see section 5.5 instead.)

CHAPTER 5. RESULTS 58

(a) Reconstructed, 483 (b) Exact

Figure 5.21: Bell pepper. Reconstruction is effective except at the cusps, which get trun-
cated. The model solution comes from: 0 = ρ + 1

4
(sin(4θ) + sin(4φ)) − 2.0, in spherical

coordinates.

(a) Reconstructed, 483 (b) Exact

Figure 5.22: Cube. A cube, with side length 3, on the interval [−3, 3]. The cube is rotated
about the origin by the angles (π/5, π/5, 0), as done previously. The edges have the same
aliasing effect as seen in Chapter 3.

CHAPTER 5. RESULTS 59

(a) Reconstructed, 483

(b) Loose reconstruction, 483

(c) Model

Figure 5.23: Double cone. A double cone, defined by 1.96(x2 + y2)− z2 = 0, z > −2.1, z <
2.1. The entire region then rotated by (π/5, π/5, 0) along the coordinate axes.

CHAPTER 5. RESULTS 60

5.4.2 Multiple phase

Name Grid Num phases Mixed Time Average error
Triple Line 243 3 11% 1:19 0.00021
Triple Line 403 3 6.7% 4:27 0.00013

Quadruple Point 243 4 12.9% 1:35 0.00045
Quadruple Point 403 4 7.9% 6:22 0.00030

Concentric Spheres 133 6 58.2% 1:30 0.00040
Voronoi 243 8 21.2% 2:48 0.0012
Voronoi 403 8 13.0% 9:48 0.00078

Voronoi swirl 403 8 12.9% 9:49 0.00083
Hemispheres 243 3 10.6% 1:18 0.0012
Hemispheres 403 3 6.5% 4:32 0.00062

Flat Triple Line 243 3 10.4% 1:19 0.00052
Intersecting Spheres 243 4 15.1% 1:52 0.00068

Table 5.6: Data from the algorithm applied to various multi-phase three-dimensional test
cases.

CHAPTER 5. RESULTS 61

(a) Reconstructed, with error colored in, 243 (b) Exact

Figure 5.24: Triple Line. Reconstruction of a 120-degree three material junction. The
model, specifically: on the region [−1, 1]3, first, voronoi regions created with the points
(0, 0.5, z), (±

√
3/4,−0.25, z), translated (0.11, 0, 0), then deformed under (r, θ, z) 7→ (r, θ +

z/4, z)

(a) Model (b) Reconstructed, 243

Figure 5.25: Sphere/Box. See [3]. Within [0, 1]3, the sphere is centered at (0.6, 0.6, 0.6,
with radius 0.2; the cube is from (0.2, 0.2, 0.2) to (0.6, 0.6, 0.6), and is only defined where
the sphere is not. The third material is empty space. The average error reported is over
1%, however, as we can see, most of the error is in the reconstruction of the cube itself.
The sphere is reconstructed as a sphere, and the junction between the cube and sphere is a
smooth curve.

CHAPTER 5. RESULTS 62

(a) Model (b) Reconstruction

(c) Error

Figure 5.26: Quadruple Point. Four point junction, defined as the Voronoi region between
the points (0,0,0), (1,1,0), (0,1,1), (1,0,1), on the interval [0, 1]3. It is then deformed by
(r, θ, z) 7→ (r, θ+ (z−0.5)/4 +0.5r, z) where the origin in cylindrical coordinates is the point
(0.5, 0.5, 0).

CHAPTER 5. RESULTS 63

(a) Colors showing four regions. (b) Close up of junction.

CHAPTER 5. RESULTS 64

(a) View of interior (b) View of exterior (largest sphere)

(c) Error plot

Figure 5.27: Concentric Spheres. Five concentric spheres are reconstructed. Within
the domain [−1/2, 1/2]3, the sphere radii are 1/13, 2.25/13, 3.5/13, 4.75/13, 6/13. This is
a test case from [3]. The error is primarily in the smallest sphere. This is not surprising;
the algorithm is known to be effective at reconstructing spheres individually. The smallest
sphere, however, is underresolved by the volume fraction grid. In order to aid convergence,
the time step was artificially adjusted after several steps.

CHAPTER 5. RESULTS 65

(a) Reconstruction (b) Model

(c) Error plot

Figure 5.28: Voronoi. A random Voronoi diagram with 8 components in 3D.

CHAPTER 5. RESULTS 66

(a) Reconstruction (b) Model

(c) Error plot

Figure 5.29: Voronoi. The same Voronoi diagram as previous, except rotated by the angles
(α, 0, γ) about the axes, with α(r) = πr exp(−r), γ(r) = πr exp(−1.2r).

CHAPTER 5. RESULTS 67

(a) Reconstruction (b) Model

Figure 5.30: Hemispheres. There are three materials: the northern hemisphere, southern,
and outer space. The structure rotated along the coordinate axes by (π/5, π/5, 0).

Figure 5.31: Interior view, to see the boundary between hemispheres.

CHAPTER 5. RESULTS 68

(a) Reconstruction. (b) Model.

Figure 5.32: Intersecting Spheres. Define d(x,y) to be the distance between points x and

y. Using functions φ0(x) = d(x, (0, 1
2
, 0)), and φ1,2(x) = d(x, (±

√
3
4
, 1
4
, 0)), and the function

f(x) = 3
4
− |x|, the Model is the boundary between regions where one of the functions is

minimal.

CHAPTER 5. RESULTS 69

(a) Reconstruction. (b) Model.

(c) Error plot.

Figure 5.33: Flat Triple Line. The goal is to create a triple line as a T junction. Using
functions φ0(x) = y, φ1(x) = −y, φ2(x) = 100z, we create a T junction where the top of the
T is curved very slightly. We then rotated by the angles (π/5, π/5, 0) about the coordinate
axes. The algorithm causes some aliasing to occur at the junction.

CHAPTER 5. RESULTS 70

Figure 5.34: All examples run on a 323 grid with 3 subdivisions.

5.5 Relaxed flow

We ran the relaxed constraint reconstruction algorithm on the majority of 3D single phase
examples. Reconstruction error, empirically, decreases linearly with ε, as we can see in
Figure 5.34. This agrees with the discussion in Chapter 4.

We also found that, for some sharp cornered shapes, that this optimization algorithm is
easier to run to obtain low error solutions than the projection method. For example, the
cube with this alternate method yielded an error of 0.0017 compared to 0.0076, with a run
time of 2:08 instead of 2:36.

The reconstructions that follow, of a cube (Figure 5.36), pyramid (Figure 5.37), cut sphere
(Figure 5.38), and double cone (Figure 5.39), are drawn from the same data as Figure 5.34.

CHAPTER 5. RESULTS 71

Figure 5.35: Both shapes from the same 323 runs. Original areas, in grid units, 1174.3 and
1524.

(a) ε = 0.00125 (b) ε = 0.005 (c) ε = 0.02

Figure 5.36: A range of cube reconstructions.

CHAPTER 5. RESULTS 72

(a) ε = 0.0008 (b) ε = 0.004 (c) ε = 0.01

Figure 5.37: A range of pyramid reconstructions.

(a) ε = 0.00125 (b) ε = 0.005 (c) ε = 0.01

Figure 5.38: A range of cut sphere reconstructions.

(a) ε = 0.00125 (b) ε = 0.005 (c) ε = 0.02

Figure 5.39: A range of double cone reconstructions. The error with ε = 0.00125 is lower
than the example run of the projection method in 5.4.1.

73

Chapter 6

Conclusions

6.1 Future work

The volume fraction reconstruction algorithm proposed in this thesis can be improved in
several ways. In Section 6.1.1, we discuss ways in which to speed up the computation time
in running this algorithm, and in Section 6.1.2, we discuss ways in which to improve the
quality of reconstructed objects. Finally, in Section 6.2, we summarize the results of this
thesis and conclude.

6.1.1 Speed optimization

The following ideas can be studied to reduce the computation time.

Initial approximation

A fast PLIC-based method should be use to generate a close initial shape. For example,
LVIRA could be used because it has second order convergence properties.

Step size control

Often taking the largest stable time step for curvature flow leads to too much smoothing of
the interface, beyond where the linearized projection can recover in a step. This happens
when the curvature within a cell is large.

This problem is minimized by intelligent step size control. For the constraint-free formu-
lation of the problem, we may use a line search method to find a time step satisfying the
Wolfe Conditions [15]. This requires evaluating the gradient and the inner product (a surface
integral) of the gradient with a search direction.

CHAPTER 6. CONCLUSIONS 74

Fast heaps

Profiling the code shows that computing extension velocities is the bottleneck, which in turn
points to heap operations within the Fast Marching Method. Heaps with more than two
children have been studied previously to speed up delete operations. [29].

6.1.2 Shape quality

Other energy functionals

We discussed the possibility of minimizing
∫
|∆u|2dx in our two-dimensional height function

example. Within the framework of a general interface, the analogous flow is the intrinsic
laplacian of curvature, ∆{φ(x)=0}κ. Study is required, however, for two main reasons:

• Due to the sensitivity of fourth derivatives, the correct numerical method to advance
the flow needs to be carefully chosen. Sethian and Chopp [8] try several different
methods before they find one that effectively advances the solution.

• A static fluid is subject to surface tension, and so at subgrid resolutions, the boundary
would tend to shrink. This motivated us to use a minimum surface area / curvature
flow formulation. The laplacian of curvature does not describe surface tension, but may
more accurately describe a solid under the influence of Hooke’s laws at subgrid resolu-
tion. Thus, reconstructed interfaces using such a formulation may be more appropriate
for describing deformable solids.

Corner and edge detection

One may assume that if the interface curves significantly (say, 30◦ in two dimensions) within
a single cell, either resolution is insufficient, or there is a loss of smoothness within. It
would be then possible to handle corners or edges separately from the main algorithm using
heuristic methods.

6.2 Summary

We formulated a solution to the volume fraction reconstruction problem based on minimizing
total surface area of the interface while maintaining the prescribed volume fractions.

• We explored an analogous 1D height function formulation where the volume fractions
became constraints on the area under the curve. We used this to derive an algorithm
based on gradient descent, which projected the gradient of the length functional onto
an area-preserving direction.

CHAPTER 6. CONCLUSIONS 75

• We then set up a framework to solve the general case using an interface defined by a
level set function. We extended the steepest descent projection algorithm. We then
recast our problem as an optimization without a constraint. In this formulation, we seek
the minimum of an objective function defined as a weighted sum between surface area
and curvature. This allowed us to examine smoother possible solutions to our problem,
and in some sharp cornered test cases, to obtain lower error. We finally extended our
algorithm toward multiple phase reconstruction via the Voronoi Interface.

• We presented results of the algorithm in two and three dimensions. We found that the
algorithm was able to reproduce straight lines, and achieved second order reconstruc-
tion accuracy, and first order normal vector approximation. The algorithm was able
to reproduce smooth shapes faithfully, as well as the smooth regions within shapes
containing edges and corners. We presented results for multiple material reconstruc-
tion, and we found our algorithm was able to handle a variety of different cases and
topologies robustly.

In conclusion, the minimal surface reconstruction algorithm described in this thesis pro-
vides its user with a robust method for recovering arbitrary surfaces from both single and
multi-phase volume fraction data. It performs best when the curvature of the expected
interface is bounded. When it is not, however, a soft-constraint formulation is available,
using the same ideas developed within the text, that provides a free parameter to control
the smoothness of the interface.

76

Bibliography

[1] D. Adalsteinsson and J. A. Sethian. “A Fast Level Set Method for Propagating Inter-
faces”. In: Journal of Computational Physics 118.2 (1995), pp. 269–277.

[2] D. Adalsteinsson and J. A. Sethian. “The Fast Construction of Extension Velocities in
Level Set Methods”. In: Journal of Computational Physics 148 (1999), pp. 2–22.

[3] J. C. Anderson et al. “Smooth, Volume-Accurate Material Interface Reconstruction”.
In: IEEE Transactions on visualization and computer graphics 16.5 (2010), pp. 802–
814.

[4] S. L. Chan and E. O. Purishima. “A new tetrahedral tesselation scheme for isosurface
generation”. In: Computers and graphics 22 (1998), pp. 83–90.

[5] S. Chen et al. “A Simple Level Set Method for Solving Stefan Problems”. In: Journal
of Computational Physics 138 (1997), pp. 8–29.

[6] D. L. Chopp. “Computing Minimal Surfaces via Level Set Curvature Flow”. In: Journal
of Computational Physics 106 (1993), pp. 77–91.

[7] D. L. Chopp. “Some Improvements of the Fast Marching Method”. In: SIAM Journal
of Scientific Computing 23.1 (2001), pp. 230–244.

[8] D. L. Chopp and J. A. Sethian. “Motion by Intrinsic Laplacian of Curvature”. In:
Interfaces and Free Boundaries 1 (1999), pp. 1–18.

[9] A. J. Chorin. “Flame Advection and Propagation Algorithms”. In: Journal of Compu-
tational Physics 35 (1980), pp. 1–11.

[10] L. C. Evans. Partial Differential Equations. Providence, RI: American Mathematical
Society, 2010.

[11] A. Gueziec and R. Hummel. “Exploiting Triangulated Surface Extraction using Tetra-
hedral Decomposition”. In: IEEE Transactions on Visualisation and Computer Graph-
ics 1.4 (1995), pp. 328–342.

[12] C. W. Hirt and B. D. Nichols. “Volume of Fluid (VOF) method for the dynamics of
free boundaries”. In: Journal of Computational Physics 39 (1981), pp. 201–225.

[13] Y. Jung, K. T. Chu, and S. Torquato. “A variational level set approach for surface
area minimization of triply-periodic surfaces”. In: Journal of Computational Physics
223 (2007), pp. 711–730.

BIBLIOGRAPHY 77

[14] R. Malladi, J. A. Sethian, and B. C. Vemuri. “Shape Modeling with Front Propa-
gation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 17.2
(1995), pp. 158–175.

[15] J. Nocedal and S. J. Wright. Numerical Optimization. New York: Springer Verlag,
2006.

[16] W. Noh and P. Woodward. “A Simple Line Interface Calculation”. In: Proceedings,
Fifth International Conference on Fluid Dynamics. Ed. by A. I. van de Vooran and
P. J. Zandberger. Springer-Verlag, 1976.

[17] S. Osher and J. A. Sethian. “Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations”. In: Journal of Computational
Physics 79 (1988), pp. 12–49.

[18] B. J. Parker and D. L. Youngs. Two and three dimensional Eulerian simulation of fluid
flow with material interfaces. Tech. rep. 0192. Aldermaston, Berkshire: UK Atomic
Weapons Establishment, 1992.

[19] B. A. Payne and A. W. Toga. “Surface Mapping Brain Functions on 3D Models”. In:
IEEE Computer Graphics and Applications 10.2 (1990), pp. 41–53.

[20] J. E. Pilliod Jr. “An Analysis of Piecewise Linear Interface Reconstruction Algorithms
for Volume-of-Fluid Methods”. MA thesis. University of California, Davis, 1992.

[21] J. E. Pilliod Jr. and E. G. Puckett. “Second-order accurate volume-of-fluid algorithms
for tracking material interfaces”. In: Journal of Computational Physics 199 (2004),
pp. 465–502.

[22] E. G. Puckett. “A volume-of-fluid interface tracking algorithm with applications to
computing shock wave refraction”. In: Proceedings of the Fourth International Sympo-
sium on Computational Fluid Dynamics. Ed. by H. Dwyer. Davis, CA, 1991, pp. 933–
938.

[23] C. Rhee, L. Talbot, and J. A. Sethian. “Dynamical Study of a Premixed V Flame”.
In: Journal of Fluid Mechanics 300 (1995), pp. 87–115.

[24] R. I. Saye and J. A. Sethian. “Analysis and Applications of the Voronoi Implicit In-
terface Method”. In: Journal of Computational Physics 231.18 (2012).

[25] J. A. Sethian. “A Fast Marching Level Set Method for Monotonically Advancing
Fronts”. In: Proceedings of the National Academy of Sciences 93.4 (1996), pp. 1591–
1595.

[26] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in com-
putational geometry, fluid mechanics, computer vision, and materials science. Cam-
bridge University Press, 1999.

[27] J. A. Sethian and J. D. Strain. “Crystal Growth and Dendritic Solidification”. In:
Journal of Computational Physics 98 (1992), pp. 231–253.

BIBLIOGRAPHY 78

[28] M. Sussman and E. Fatemi. “An Efficient, Interface-Preserving Level Set Redistancing
Algorithm and its Application to Interfacial Incompressible Fluid Flow”. In: SIAM
Journal of Scientific Computing 20.4 (1999), pp. 1165–1191.

[29] M. A. Weiss. Data Structures and Algorithm Analysis (2nd ed.) Addison-Wesley, 2007,
p. 216.

[30] E. Zeidler. Applied functional analysis: main principles and their applications. New
York, NY: Springer-Verlag, 1995.

