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Professor Luminita Vese, Co-chair

Mathematical models in imaging science attempt to understand and analyze the under-

lying quantitative structure of images. The most popular mathematical techniques tend to

center around a variational principle. In general, variational methods are formulated by

specifying an energy whose minimizers contain properties associated with an ideal image.

Thus far, variational models have been successful in addressing the classical problems in

imaging, namely the problems of denoising, deblurring, segmentation, and inpainting. Most

work has concentrated around reconstructing homogeneous intensity regions with jump dis-

continuities (i.e. edges) – one type of fine structure. More recent work has included models

which incorporate tools for texture recovery. In practice, the most challenging components

to recover from images are those which reside on fine-scales, namely the jumps and textures.

This thesis focuses on the recovery and understanding of fine-scale information.

In many image segmentation methods, the edge set is regularized by the Hausdorff mea-

sure (i.e. length). It is known that minimizers of models containing length regularizers have

segments whose endpoints either terminate perpendicularly to the boundary of the domain,

terminate at a triple junction where three segments connect, or terminate at a free endpoint

where the segment does not connect to any other edges or the boundary of the domain.

However, standard segmentation methods (those that are based on the level set method) are

only able to capture edge structures which contain the first two types of segments. Part I
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generalizes the level set based image segmentation methods to be able to detect free endpoint

structures. This results in the ability to capture a larger class of edge structures using the

length regularizer while recovering homogeneous regions.

Aside from edge recovery, cartoon-texture regularization applied to ill-posed imaging

problems allows for the reconstruction of many small-scale (patterned) details. The cartoon

component is typically modeled by functions of bounded variation and has been shown to

be a successful descriptor of the large geometric structures in images. However, current

texture models are not universal and may depend on the problem or the particular class of

images. In general, texture is defined by its highly oscillatory nature and its well patterned

structure. Exploiting each of these properties, two texture models are provided, one using

weak functional spaces to promote oscillations and the other using matrix theory to define

patterns.

The first texture regularization is measured by duality with a space of functions which

approximates W 1,∞, thereby encouraging oscillations. In order to provide a differentiable

approximation to the L∞ norm, a concentration of measures approach is taken. This model

works well for reconstructing texture in highly degraded blurry images.

The second texture model is defined by the nuclear norm applied to patches in the image,

interpreting the texture patches to be low-rank. This provides a mathematical description for

highly patterned texture as well as an easy to implement numerical method. This particular

texture model has the advantage of separating noise from texture and has been shown to

better reconstruct texture for other applications such as denoising, known deblurring, sparse

reconstruction, and pattern regularization.
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CHAPTER 1

Introduction

Modeling is fundamental to the science of imaging. Since images are essentially digital

representations of our visual perception, they can be as complex as the scenes they depict.

They are geometrically multi-structured, typically including a wide range of shapes, patterns,

scales, and even randomness. The role of the model is to provide a mathematical description

of the main features which constitute all images. By understanding these features, we can

better analyze images and videos as well as create more accurate and efficient methods for

various applications.

This thesis focuses on variational models, which are concerned with minimizing a func-

tional associated with a given problem. The functional incorporates the preferred quan-

titative behavior, where their minimizers represent the ideal image. The difficult task is

identifying the important features and relating those features to a mathematical quantity.

Classical methods center around constructing functionals whose minimizers contain the ap-

propriate boundaries between objects. Object boundaries are modeled by discontinuities

between homogeneous regions, thereby providing a mathematical representation of large

scale geometric features in images. The discontinuities in intensity values also create sharp

contrast, which is visually desired.

Modern methods are concerned with the mathematical formulation of texture, since this

is an important visual feature. Unlike edges, texture can be dense and highly oscillatory,

related to its fine scale and non-local nature. The texture component provides details, making

images appear less cartoon-like and more realistic.

This thesis builds on previous work related to edges and texture, to create general and
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effective representations, models, and methods for recovering and analyzing fine-scale details.

1.1 Classical Models for Fine Structures

There are three main variational models which are essential to understanding the mathe-

matics of fine details in modern imaging methods. Each of the models can be written in the

following form:

inf
u∈X

E(u) = µ||u||X + ||f − u||2L2 (1.1)

where u is an approximation to the true image with respect to a space X, f is the given

image, and µ > 0 is a tuning parameter. The choice of X defines the properties of the

minimizers, and thus the structure of the recovered image. In this form, the main task is to

construct a choice for X which best represents the important features in images.

The first is the Mumford and Shah (MS) model which attempts to find a piecewise

smooth approximation, u, of a given image f that can contain jumps along an edge set Γ by

minimizing the following [58]:

inf
u,Γ

EMS(u,Γ) = µ

∫
Ω\Γ
|∇u|2dx+ γ

∫
Ω

|u− f |2dx+ λH1(Γ) (1.2)

The first term requires u to be smooth outside of the jump set Γ, the second term ensures that

u remains close to f in the L2 sense, and the last term is the Hausdorff measure (“length”)

of the jump set which regularizes the edge set. The minimizing edge set is made up of C1,1

segments whose endpoints either terminate perpendicularly to the boundary of the domain,

terminate at a triple junction where three segments connect, or terminate at a free endpoint

where the segment does not connect to any other segments. In the MS model, the object

boundaries are explicitly given by Γ.

The second, is the Rudin, Osher, and Fatemi (ROF) model, which can be written as

2



follows [67]:

inf
u
EROF (u) = µ||u||TV +

1

2
||f − u||2L2 (1.3)

where || · ||TV is the total variation (TV) semi-norm for the space of functions of bounded

variation (BV ). In practice, minimizers of the ROF model are nearly piecewise constant and

thus recover both sharp edges and homogeneous regions in the image.

Both the MS and ROF models are related to the space BV . Let Ω be an open, bounded

and connected subset of Rn, with Lipschitz boundary, then the space BV is defined below.

Definition 1.1. A function u : Ω→ R is of bounded variation if and only if u ∈ L1(Ω) and

there exists a finite Rn valued Radon measure Du such that for all φ ∈ C1
c (Ω,R),

∫
Ω

∂φ

∂xj
u dx = −

∫
Ω

φ (Du)j, for j = 1, ..., n. (1.4)

and the TV semi-norm

||u||TV =

∫
Ω

|Du| := sup

{∫
Ω

u div (φ) dx
∣∣∣ φ ∈ C1

c (Ω,Rn), ||φ||L∞ ≤ 1

}
(1.5)

is bounded.

If u ∈ BV (Ω), then the following decomposition holds (see Lebesgue’s decomposition

theorem):

Du = ∇u · Ln +Dsu

= ∇u · Ln + (u+ − u−)ν · Hn−1
Su

+ Cu

where Ln is the Lebesgue measure, Hn−1
Su

is the Hausdorff measure of the jump set, and lastly

Cu is the Cantor measure. The norm on the Banach space BV (Ω) is:

||u||BV (Ω) := ||u||L1(Ω) + ||u||TV (Ω) (1.6)
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The space of special functions of bounded variation (SBV ) is a subspace of BV , corre-

sponding to the case when the Cantor component of the measure Du is identically zero (i.e.

Cu ≡ 0). The ROF and MS models are equivalent (in some sense) to equation (1.1) when

taking X = BV and X = SBV , respectively.

For both models, the minimizers are very smooth away from the jump sets. This gives

the appearance of a cartoon version of the input image f . In order to capture many of the

details, Meyer [55] proposed using the G-norm, a norm weaker than the L2 norm, to model

the highly oscillatory nature of texture. The space G of distributions v which can be written

as v = div(~g), where g = (g1, g2) ∈ L∞, and is equipt with the norm

||v||G := inf

{
||
√
g2

1 + g2
2||∞

∣∣∣ v = div(~g)

}
. (1.7)

This space G closely resembles the dual of BV (in fact, it is the predual) and minimizers of

the G norm are very oscillatory.

The TV −G model represents the recovered image as u+v, where u ∈ BV is the cartoon

component containing edges and geometric features and v ∈ G is the texture component

containing small scale details. Altogether the TV −G model is:

inf
u,v
ETV−G(u, v) = µ||u||TV + γ||v||G +

1

2
||f − u− v||2L2 (1.8)

In this way, the model decomposes the image into two main components and attempts to

model the preferred behavior of each feature separately.

These three models provide the building blocks for many modern imaging methods and

incorporate the basic features currently used in image recover and analysis.

4



1.2 Outline

The thesis is divided into two parts which both include mathematical formulations, numerical

methods, and examples. The first part focuses on the problem of representing general edge

structures that minimize length, both in theory and in practice. The second part contains

two different perspectives on texture modeling, one from the point of view of weak spaces

and the other from matrix representation.

5



Part I

Curve Evolution and Image

Segmentation
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CHAPTER 2

Introduction to Mathematical Segmentation

Image segmentation is one of the most important yet challenging problems in imaging sci-

ence. The goal of segmentation is to locate important edges and boundaries in an image.

The difficulty resides in the notion of the edge or boundary set, and thus the definition of

segmentation itself. One way to define segmentation is as the process of partitioning up an

image into different features or objects. In this way, the edge set must be made up of curves

with no endpoints (loops) or with endpoints that terminate at the boundaries of the image

domain. An alternative definition, one that is employed by many mathematical segmenta-

tion techniques, categorizes segmenting images as locating boundaries between important

features and objects. The latter is more general, since the boundary set may contain curves

with free endpoints which do not partition the domain in the classical sense. We propose an

extension to the classical level set based segmentation techniques which allow for the more

general class of boundaries, including curves with free endpoints. We will do so by extending

the active contours models [18, 74], using a different formulation of the edge set which can

capture a large class of edges.

Recall, that the Mumford and Shah (MS) problem is defined as follows: find a piecewise

smooth approximation, u, of a given image f , which may have jumps along a set Γ by

minimizing the following [58]:

inf
u,Γ

EMS(u,Γ) = µ

∫
Ω\Γ
|∇u|2dx+ γ

∫
Ω

|u− f |2dx+ λH1(Γ) (2.1)

The first term requires u to be smooth outside of the jump set Γ, the second term ensures that
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u remains close to f in the L2 sense, and the last term is the Hausdorff measure (“length”)

of the jump set which regularizes the edge set. Theoretical results on the existence and

regularity of minimizers can be found in the works of Morel and Solimini [57, 56], Dal Maso,

Morel, Solimini [22], and De Giorgi, Carriero and Leaci [36]. The edge set has a simple

structure, it is composed of C1,1 curves whose endpoints either terminate perpendicularly to

the boundary of the domain, terminate at a triple junction where three segments connect,

or terminate at a free endpoint where the segment does not connect to any other edges.

Based on Γ-convergence [1], Ambrosio and Tortorelli proposed an elliptic approximation

to the Mumford and Shah model. The set Γ is replaced by a function v ∈ [0, 1], which is

1 away from an edge and 0 on an edge, thus acting as a continuous approximation of an

indicator function. The approximated functional is:

inf
u,v
EAT (u, v) = µ

∫
Ω

(v2 + ηε)|∇u|2dx+ γ

∫
Ω

|u− f |2dx

+λ

∫
Ω

(
ε

2
|∇v|2dx+

1

2ε
|v − 1|2

)
dx (2.2)

where ε > 0 is a small parameter and ηε = o(ε). The last integral replaces the length term

and enforces that the function v is smooth and close to 1 except for a small region around an

edge. It can be shown that as ε→ 0 the functional above Γ-converges to the weak formulation

of the Mumford and Shah functional. One advantage of this formulation over the level set

based methods is that the edge set can contain all types of curves theoretically possible as

minimizers of the Mumford and Shah model. On the other hand, since the indicator function

v does not sharply define edges, the reconstructed image may not have sharp jumps. The

width of the edge is determined by the parameter ε, which may also cause thickening of the

edge set. This was extended in [70] to include a texture regularizer.

Our model is formulated using the level set method, proposed by Osher and Sethian [63].

The level set method provides an implicit representation for curves by defining them as the

zero level set of a Lipschitz continuous function φ : Ω → R. Using the level set framework

allows the curve to undergo changes in topology and allows for the formation of cusps and
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corners during the minimization process. The level set method does restrict the class of

possible edge sets to curves made up of segments without endpoints or that terminate at the

boundary of the domain.

In [18], the authors proposed a region based segmentation and restoration method for-

mulated within the level set framework. The reconstructed image u is defined as a piecewise

constant function, equal to c1 inside the region enclosed by the curve and c2 outside the

region enclosed by the curve. The energy minimization is as follows:

inf
c1,c2,Γ

ECV (c1, c2,Γ) = γ1

∫
inside(Γ)

|f − c1|2dx+ γ2

∫
outside(Γ)

|f − c2|2dx+ λLength(Γ) (2.3)

The first two terms enforce that the given image f must remain close to the constants c1 and

c2 in each of their respective regions. When minimized, the last term regularizes the edge

set by making it as small as possible while still separating the two regions. Equation (2.3)

is a special case of the Mumford and Shah functional [58], in which the reconstructed image

is restricted to the class of piecewise constant solutions.

In [74], the authors proposed an extension of the original active contours model without

edges, providing a practical implementation of the full Mumford and Shah model. Two level

set functions are used to define four regions and the reconstructed function u is defined

piecewise by four auxiliary functions uj, 1 ≤ j ≤ 4, which are smooth in each of their

respective regions. The model is as follows:

inf
uj ,Γ

EV C(uj,Γ) = µ

{∫
Ω1

|∇u1|2dx+

∫
Ω2

|∇u2|2dx+

∫
Ω3

|∇u3|2dx+

∫
Ω4

|∇u4|2dx
}

+ γ

{∫
Ω1

|u1 − f |2dx+

∫
Ω2

|u2 − f |2dx+

∫
Ω3

|u3 − f |2dx+

∫
Ω4

|u4 − f |2dx
}

+ λLength(Γ) (2.4)

and the regions Ω1, ...,Ω4 are represented using two open sets. The minimizing function

u is smooth outside of the set Γ, where it may have jumps. The minimizing edge set Γ
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is composed of curves that terminate perpendicularly to the boundary of the domain and

curves without endpoints, but cannot have curves with free endpoints. See also [73] for

related work, [14] for an alternative model based on geodesics, and [17] for an extension to

vector valued images.

An alternative level set formulation can be found in [19], where the authors proposed a

multilayer extension to the piecewise constant active contours model. Their model uses mul-

tiple level lines of φ in order to segment many embedded objects. The resulting reconstructed

image is piecewise constant and the resulting edge set is composed of curves that terminate

perpendicularly to the boundary of the domain and curves without endpoints which may be

enclosed in each other.

The level set based segmentation methods thus far are unable to locate edges with free

endpoints. We propose an extension to the level set techniques for segmentation by defining

a more general edge set. Using the method from the work of Smereka [71] to represent curves

with endpoints, we propose a level set based segmentation method which can capture free

curves, in addition to all previously possible curves.

The majority of previous work on free curves rely on fixed endpoints or explicit parti-

cles/markers. In the Snakes active contours model [40], the curve is represented by splines

which make it possible to have either free curves or curves without free endpoints. In [42],

curves with free endpoints are represented with a marker-points method, which must be

explicitly re-adjusted after each iteration. In [43], an explicit curve representation using

polylines are used. A particle based curve evolution approach for segmentation can be found

in [54]. For curve matching, a similar framework is proposed in [48]. For more on related

work on curves with free endpoints see also [20, 44].
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CHAPTER 3

Active Contours with Free Endpoints Model

3.1 Description of the Model

Before discussing the model, the level set method with the addition of free curves will be

reviewed. After that, the energy will be presented with the associated equations of motion.

Lastly, we will review the theory of Sobolev gradients and its application to our evolution

equations. Note that a version of this chapter appears in [69].

3.1.1 Representation of Curves with Free Endpoints and Domain Partitioning

Osher and Sethian proposed the level set method as an implicit representation of curves

[63]. In the classical level set formulation, a curve Γ is represented as the zero level set of a

Lipschitz continuous function, φ : Ω → R. The assumption is that Γ is the boundary of an

open set, and thus Γ is composed of curves without endpoints and curves which terminate at

the boundary of the domain. The interior region is defined as the set of points where φ > 0

and the exterior region is defined as the set of points where φ < 0. The standard example

of a level set function is the signed distance function to the curve.

Using the Heaviside function, defined as H(s) = 1, if s ≥ 0, and H(s) = 0, if s < 0,

in conjunction with the level set function, one can reformulate geometric quantities into

easier-to-handle equations. Instead of looking at quantities along the curve, φ allows the

calculations to be extended to the entire domain, making calculations more practical. For

example, the length of the curve and the area enclosed by the curve can be written as [27]:
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L(Γ) =

∫
|∇H(φ)|, A(Γ) =

∫
H(φ)dx

The derivative of the Heaviside function is taken in the sense of measures. The problem can

be regularized by taken a differentiable approximation, Hε, which limits to the Heaviside

function as ε→ 0. This provides an approximation to the Dirac delta function, δε = H ′ε, and

the quantities above can be approximated by:

Lε(Γ) =

∫
δε(φ)|∇φ|dx, Aε(Γ) =

∫
Hε(φ)dx

These equations can then be minimized by introducing an artificial time and descending

using (the negative) of the Euler-Lagrange equations respectively:

∂φ

∂t
= δε(φ)div

(
∇φ
|∇φ|

)
∂φ

∂t
= −δε(φ)

Since the delta function’s approximation is assumed to be strictly positive, the equations

can be rescaled to the following equations, which have the same steady state solutions as the

equations above:
∂φ

∂t
= |∇φ|div

(
∇φ
|∇φ|

)
,

∂φ

∂t
= −|∇φ|

The length minimizing equation is the mean curvature flow, while the area minimizing equa-

tion is a Hamilton-Jacobi equation. Each of the two equations above play an important role

in level set based segmentation models. For example, let us consider the model [18]:

ECV (c1, c2, φ) = λ

∫
δ(φ)|∇φ|dx+

∫ (
(c1 − f)2H(φ) + (c2 − f)2 (1−H(φ))

)
dx

In terms of φ, the length term acts as the regularizer while the area terms are connected to

the regional fidelity terms. Each region is clearly defined by the level set function, where the

sign determines the regions. Using the same formulation, the two phase piecewise smooth
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model is [74]:

EV C(u1, u2, φ) = λ

∫
δ(φ)|∇φ|dx+

∫ (
(u1 − f)2H(φ) + (u2 − f)2 (1−H(φ))

)
dx

+µ

∫ (
|∇u1|2H(φ) + |∇u2|2(1−H(φ))

)
dx.

(a) Level Set Representation of the Curve Γ, the
dotted line above

(b) Color Coded Partition of Space

Figure 3.1: Level Set Representation of the curve Γ, with free endpoints

Again, the level set function partitions the domain into two regions. This partitioning allows

the function u, which is an approximation of f , to have clearly defined jumps. We wish to fur-

ther extend the level set based segmentation methods to allow for jumps on curves with free

endpoints. This is done by introducing a second level set function ψ, which acts as an indica-

tor function partitioning up the zero level set of φ into two segments (see Figure 3.1 a), based

on the work of Smereka [71]. The curve Γ is defined as
{
x ∈ Ω

∣∣ φ(x) = 0 and ψ(x) > 0
}

,

which now allows the curve to have loops, segments terminating at the boundary of the

domain, and segments with free endpoints. Revisiting the length functional from before, the
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new formulation is as follows:

L(Γ) =

∫
|∇H(φ)|H(ψ), Lε(Γ) =

∫
δε(φ)Hε(ψ)|∇φ|dx,

The main difference is the addition of the term H(ψ) to the integral. The length can be

minimized by descending using the first variation:

∂φ

∂t
= δ(φ)div

(
H(ψ)

∇φ
|∇φ|

)
∂ψ

∂t
= −δ(ψ)δ(φ)|∇φ|,

assuming the Heaviside and Dirac delta functions are replaced by their smooth counterparts.

The standard rescaled versions become:

∂φ

∂t
= |∇φ|div

(
H(ψ)

∇φ
|∇φ|

)
∂ψ

∂t
= −δ(φ)|∇φ||∇ψ|.

The equation for φ defines a mean curvature flow, while the equation for ψ defines an area

minimizing Hamilton-Jacobi equation.

Although similar in structure, there is a key difference between the classical and the

proposed formulations – in the proposed case, the domain does not have a natural partition,

since there is no clear concept of the interior and exterior of Γ. A proper partition for the

domain should enforce that the reconstructed function only has jumps along the curve, so

one choice (and the choice we use here) is to divide the domain in three regions: region 0:

φ < 0 and ψ < 0 (red in Figure 3.1 b), region 1: φ > 0 (blue in Figure 3.1 b), and region

2: φ < 0 and ψ > 0 (white in Figure 3.1 b). In this way, the important boundary is the

one separating the white and blue regions. As in the classical formulation, two auxiliary

functions u1 and u2 are chosen so that each function is smooth in their respective regions,

but unlike the other methods, they must be smooth over all zero level curves outside of φ = 0
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and ψ > 0. If we define the reconstructed image as a linear combination of the two auxiliary

functions, then choosing the partition in this manner ensures that the only discontinuities in

u lie on Γ. If we denote the regions using the following characteristic functions: χ1 = H(φ),

χ2 = H(ψ)(1−H(φ)), and χ0 = (1−H(ψ))(1−H(φ)), then u1 exists in region 0 and region

1 and u2 exists in region 0 and region 2. The reconstructed function becomes:

u = u1χ1 + u2χ2 +

(
u1 + u2

2

)
χ0 (3.1)

where the two auxiliary functions are averaged in region 0, although any non-trivial linear

combination is sufficient. Using the partition and function above, we can formulate the level

set based MS energy for a general curve.

3.1.2 The Energy

Recall that the MS energy in terms of the reconstructed image u and jump set Γ, with given

(possibly corrupted) image f is:

EMS(u,Γ) = µ

∫
Ω\Γ
|∇u|2dx+ λH1(Γ) +

∫
Ω

|u− f |2dx.

Using equation (3.1) and our definition of Γ the energy becomes:

E(u1, u2, φ, ψ) = µ

∫
Ω

(
|∇u1|2(χ1 +

χ0

4
) + |∇u2|2(χ2 +

χ0

4
) +

1

2
∇u1 · ∇u2χ0

)
dx

+

∫
Ω

(
|u1 − f |2χ1 + |u2 − f |2χ2 +

∣∣∣∣u1 + u2

2
− f

∣∣∣∣2 χ0

)
dx

+ λ

∫
Ω

χ3 |∇χ1| (3.2)

where χ3 = H(ψ) and all measure zero terms are ignored. The first three terms are the

regional regularities of the reconstructed function, the next three terms are the regional

fidelity terms, and the last term is the length regularity for the curve. The average of
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the auxiliary function is necessary to ensure that both functions are smooth over the non-

essential zero level sets. For the sake of argument, let us assume the reconstructed function

u is exactly uo (the original image), and, instead of an average, we took the sum of the

auxiliary: u = u1χ1 + u2χ2 + (u1 + u2)χ0. Then we have the following: in region 1 u1 = uo,

in region 2 u2 = uo, and in region 0 u1 +u2 = uo. For this to be possible, one of the functions

must take values that are at most half of uo, so that function’s values would sharply decrease

over the boundary between region 1 (or 2) and region 0. By taking the average, neither

function may have jumps over the non-essential zero level sets.

Next, assuming that the Heaviside functions are regularized, the Euler-Lagrange equa-

tions are as follows:

∂uj
∂t

= µ div
(
2χj∇uj + χ0

2
∇(u1 + u2)

)
− 2(uj − f)χj −

(
u1+u2

2
− f

)
χ0

∂φ
∂t

= δ(φ)
{
λdiv

(
χ3
∇φ
|∇φ|

)
− |u1 − f |2 + χ3|u2 − f |2 + (1− χ3)

∣∣u1+u2
2
− f

∣∣2
−µ|∇u1|2

(
3
4

+ χ3

4

)
+ µ|∇u2|2

(
1
4

+ 3χ3

4

)
+ 1

2
µ∇u1 · ∇u2(1− χ3)

}
dψ
dt

= −δ(ψ)
{
λ|∇χ1|+ (1− χ1)

(
|u2 − f |2 −

∣∣u1+u2
2
− f

∣∣2 − µ
4
|∇u1|2

+3µ
4
|∇u2|2 − µ

2
∇u1 · ∇u2

)}
with the following boundary conditions:


χj

∂uj
∂n

+ 1
4
χ0

∂
∂n

(u1 + u2) = 0

χ3

|∇φ|
∂φ
∂n

= 0

and the initial conditions: uj(0, x) = u0
j(x), φ(0, x) = φ0(x) , and ψ(0, x) = ψ0(x). For

simplicity, the boundary condition can be reduced to the standard Neumann boundary con-

dition, which we will show in Section 4. The system of PDEs includes diffusion equations

for u1 and u2, mean curvature flow for φ and the area minimizing ODE for ψ. As before,

the level set functions’ PDE can be rescaled by the magnitudes of their gradients.

Remark 3.1. Although not always necessary, in practice, extra regularization on the level
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set functions may ensure a smoother evolution. For example, the following regularized PDEs

give a smoother flow for the system above:

∂φ
∂t

= δ(φ)
{
λdiv

(
(χ3 + ε1) ∇φ|∇φ|

)
− |u1 − f |2 + χ3|u2 − f |2 + (1− χ3)

∣∣u1+u2
2
− f

∣∣2
−µ|∇u1|2

(
3
4

+ χ3

4

)
+ µ|∇u2|2

(
1
4

+ 3χ3

4

)
+ 1

2
µ∇u1 · ∇u2(1− χ3)

}
∂ψ
∂t

= δ(ψ)
{
ε2∆∞ψ − λ|∇χ1|+ (1− χ1)

(
|u2 − f |2 −

∣∣u1+u2
2
− f

∣∣2 − µ
4
|∇u1|2

+3µ
4
|∇u2|2 − µ

2
∇u1 · ∇u2

)}

where ε1 and ε2 are (small) parameters and ∆∞ψ =
〈
∇ψ
|∇ψ| , D

2ψ ∇ψ|∇ψ|

〉
is the renormalized

infinity Laplacian. In terms of energy minimization, this is equivalent to adding a length

regularizer on the zero level curve of φ and a (rescaled) infinity norm regularizer for |∇ψ|. For

more details to the theory of the infinity Laplacian, see [15, 21, 28, 50] and for discretizations

see [61].

3.1.3 Sobolev Gradient

In order to minimize the proposed energy, a gradient descent method is used. The first

variation (or Euler-Lagrange equation) is embedded in a dynamic scheme as follows: given

an energy E(φ) with Euler-Lagrange equations that are denoted as ∇L2E(φ), the gradient

descent is ∂φ
∂t

= −∇L2E(φ). For a general energy, this PDE may not be well-posed and

could lead to many issues. To better pose the equation, the Sobolev Gradient, denoted as

∇H1E(φ) can be used. Here we provide a short derivation, following[59] and [65]. Assume

that the energy can be written with a potential V as E(φ) =
∫

Ω
V (Dφ)dx and it is to be

minimized over H1(Ω), where D : H1(Ω)→ H1(Ω)× L2(Ω) is the operator Dφ = (φ,∇φ)T .

For all φ ∈ H1(Ω) and for any h ∈ H1
0 (Ω), the directional derivative is:

(E ′(φ), h) =

∫
Ω

V ′(Dφ)Dhdx = 〈∇V (Dφ), Dh〉L2 = 〈D∗∇V (Dφ), h〉L2
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where D∗ is the adjoint of D. Assuming that all the terms above are in L2(Ω), the L2 gradient

is defined as ∇L2E(φ) := D∗∇V (Dφ) (which is the standard Euler-Lagrange equation). On

the other hand, we can equate the L2 inner product with the H1 inner product in terms of

the Sobolev gradient:

(E ′(φ), h) = 〈∇L2E(φ), h〉L2 = 〈∇H1E(φ), h〉H1 .

Using the operator D, the inner product becomes:

〈∇H1E(φ), h〉H1 = 〈D(∇H1E(φ)), Dh〉L2 = 〈D∗D(∇H1E(φ)), h〉L2

This yields the following expression for the Sobolev gradient: ∇H1E(φ) = (D∗D)−1(∇L2E(φ)) =

(I − ∆)−1(∇L2E(φ)). This is interpreted as a gradient descent with respect to a more ap-

propriate inner product space. This can also be seen as a preconditioned descent, with the

smoothing operator (I −∆)−1.

This smoothing allows the Euler-Lagrange equations to reside in a large function class.

Recall that the dual of H1(Ω), denoted H−1(Ω) := (H1(Ω))∗ (assuming Neumann boundary

conditions), is larger than L2, since it contains weaker functions. The operator (I − ∆)−1

can be considered as a map from H−1(Ω)→ H1(Ω) such that for G ∈ H−1(Ω), there exists

(by Lax-Milgram) a unique v ∈ H1(Ω) which solves the weak problem:

v −∆v = G (3.3)

with Neumann boundary conditions. Thus for all ∇L2E(φ) ∈ H−1(Ω), we can find a

∇H1E(φ) ∈ H1(Ω). Now lets examine this in terms of the evolution equations, which

define an iterative process. In the semi-discrete case, we construct the sequence φn by

φn+1 = φn − ∆t∇L2E(φn), with φ0 ∈ H1(Ω) and ∆t > 0, such that E(φn+1) < E(φn). In

order to have φn+1 ∈ H1(Ω), we would require that ∇L2E(φn) ∈ H1(Ω) ⊂ L2(Ω). In other

words, the solution φ would be required to be more regular than necessary. This require-
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ment is one of the reasons for the small time-steps used in L2 gradient descent (in terms

of stability). In terms of the energy minimization, the following theorem provides further

benefits of the Sobolev gradient.

Theorem 3.2. For all t > 0, let φ and φs be the solution of the L2 gradient descent (∂φ
∂t

=

−∇L2E(φ)) and Sobolev gradient descent equation (∂φs
∂t

= −∇H1E(φs)), respectively; then:

dE(φ)

dt
= −||∇L2E(φ)||2L2

dE(φs)

dt
= −||∇H1E(φs)||2H1

Proof. Assume that E(φ) =
∫

Ω
V (Dφ) then we can formally take the time derivative as

follows:

dE(φ)

dt
=

∫
Ω

∇L2E(φ)
∂φ

∂t
dx

= −
∫

Ω

|∇L2E(φ)|2 dx

= −||∇L2E(φ)||2L2

The equations above hold if ∇L2E(φ) ∈ L2(Ω). Next, taking the Sobolev gradient descent:

dE(φs)

dt
=

∫
Ω

∇L2E(φs)
∂φs
∂t

dx

= −
∫

Ω

(
(I −∆)

∂φs
∂t

)
∂φs
∂t

dx

= −
∫

Ω

(∣∣∣∣∂φs∂t
∣∣∣∣2 +

∣∣∣∣∇∂φs∂t
∣∣∣∣2
)
dx

= −
∣∣∣∣∣∣∣∣∂φs∂t

∣∣∣∣∣∣∣∣2
H1

= −||∇H1E(φs)||2H1
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assuming that all terms satisfy Neumann boundary conditions. The equation above holds if

∇L2E(φs) ∈ H−1(Ω).

Applying the Sobolev gradient to the system of equations from our model yields:



∂uj
∂t

= (I −∆)−1
{
µ div

(
2χj∇uj + χ0

2
∇(u1 + u2)

)
− 2(uj − f)χj −

(
u1+u2

2
− f

)
χ0

}
∂φ
∂t

= (I −∆)−1
{
δ(φ)

(
λdiv

(
χ3
∇φ
|∇φ|

)
− |u1 − f |2 + χ3|u2 − f |2 + (1− χ3)

∣∣u1+u2
2
− f

∣∣2
−µ|∇u1|2

(
3
4

+ χ3

4

)
+ µ|∇u2|2

(
1
4

+ 3χ3

4

)
+ 1

2
µ∇u1 · ∇u2(1− χ3)

)}
∂ψ
∂t

= −(I −∆)−1
{
δ(ψ)

(
λ|∇χ1|+ (1− χ1)

(
|u2 − f |2 −

∣∣u1+u2
2
− f

∣∣2 − µ
4
|∇u1|2

+3µ
4
|∇u2|2 − µ

2
∇u1 · ∇u2

))}
The versions above are used in practice. In terms of the equations in uj, the Sobolev

gradient’s application is clear. For the other two equations, this may not be the case. In

the case of φ, since the Dirac delta function and the characteristic functions are smooth

and strictly positive and (for many applications) |∇φ| = 1 a.e., the equation resembles a

typical anisotropic diffusion equation, which exists in H−1. Another interpretation is that,

in terms of the level set functions, the delta function acts to concentrate the motion around

the zero level sets, whose width is dependent on the smoothness of the approximations.

The operator, (I − ∆)−1 in turn, continues to smooth the main area of influence of the

delta function. With respect to Equation (3.3), it is easy to show that the equation can be

re-written as an optimization problem:

inf
v
E(v) =

∫
|∇v|2dx+

∫
|v −G|2dx

For a simple example, take G to be a smooth and strictly positive version of the Dirac delta

function. Then it can be shown that v ≥ 0,
∫
vdx =

∫
Gdx, and ||v||∞ ≤ ||G||∞. In this

way, v is a smoother and more “spread out” version than the original G. Like rescaling by

the magnitude to the derivative, this operator can be viewed as a rescaling.
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Remark 3.3. Using the inner product 〈u, v〉H1,A = 〈Du,ADv〉L2 for positive definite ma-

trices A, a more general H1 gradient can be defined. For example, a simple rescaling

〈u, v〉H1,α,β = α 〈u, v〉L2 + β 〈∇u,∇v〉L2 yields the following gradient: ∇H1,α,βE = (αI −

β∆)−1(∇L2E), for α, β > 0. In our problem, it would be appropriate to choose α = 1 and

β = µ, since that inner product naturally appears in the energy, but for consistency between

results, we set both to 1.

For further applications of Sobolev gradients to imaging problems, see [7, 39, 72, 66].

3.2 Analytical Remarks

In this section, we will analyze our approximation by showing that our model is consistent

with the MS functional, via point-wise convergence, and discuss its relation to the other level

set based segmentation models by looking at degenerate cases.

3.2.1 Consistency with the Mumford-Shah Functional

To derive our proposed energy, recall that we defined the subregions Ωj 0 ≤ j ≤ 2, where

Ω \ Γ = ∪jΩj, by the following characteristic functions: χ1 = H(φ), χ2 = H(ψ)(1−H(φ)),

and χ0 = (1−H(ψ))(1−H(φ)). Using these regions, the reconstructed function is defined

by two auxiliary functions, u1 and u2, as follows: u = u1χ1 + u2χ2 +
(
u1+u2

2

)
χ0. Using these

definitions, the L2 norm in equation (2.1) becomes:

∫
Ω

|u− f |2dx =

∫
Ω1

|u− f |2dx+

∫
Ω2

|u− f |2dx
∫

Ω0

|u− f |2dx

=

∫
Ω1

|u1 − f |2dx+

∫
Ω2

|u2 − f |2dx+

∫
Ω0

∣∣∣∣u1 + u2

2
− f

∣∣∣∣2 dx
=

∫
Ω

(
|u1 − f |2χ1 + |u2 − f |2χ2 +

∣∣∣∣u1 + u2

2
− f

∣∣∣∣2 χ0

)
dx
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and the H1 semi-norm on Ω \ Γ in equation(2.1) becomes:

∫
Ω\Γ
|∇u|2dx =

∫
Ω1

|∇u|2dx+

∫
Ω2

|∇u|2dx+

∫
Ω0

|∇u|2dx

=

∫
Ω1

|∇u1|2dx+

∫
Ω2

|∇u2|2dx+

∫
Ω0

∣∣∣∣∇(u1 + u2

2

)∣∣∣∣2 dx
=

∫
Ω

|∇u1|2χ1dx+

∫
Ω

|∇u2|2χ2dx+

∫
Ω

∣∣∣∣∇(u1 + u2

2

)∣∣∣∣2 χ0dx

=

∫
Ω

(
|∇u1|2(χ1 +

χ0

4
) + |∇u2|2(χ2 +

χ0

4
) +

1

2
∇u1 · ∇u2χ0

)
dx

ignoring measure zero terms. Lastly, the length term in equation(2.1) becomes:

Length(Γ) =

∫
Γ

ds =

∫
φ=0

H(ψ)ds =

∫
Ω

|∇H(φ)|H(ψ) =

∫
Ω

χ3 |∇χ1|

where the equation above is in the sense of measures and H ′ = δ, the Dirac delta function.

All together, these three terms make up our proposed energy. In order to formally take the

Euler-Lagrange equations, each Heaviside function is replaced with a smooth approximation,

also yielding a continuous approximation to the delta function.

There is much freedom in the choice of approximations. In general, given any function

δ1 ∈ C0 such that
∫
R δ1(x)dx = 1, one can construct an approximation to the Dirac delta

function by setting δε(x) := 1
ε
δ1

(
x
ε

)
and an approximation to the Heaviside function by

setting Hε(x) :=
∫
δε(x)dx. This yields the following properties:

1. Hε(x)→ H(x) point-wise everywhere except at x = 0

2. δε = H ′ε

3. Hε ∈ C1

These conditions are easily satisfied by our particular choice of approximations: Hε(x) =

1
2

+ 1
π
arctan

(
x
ε

)
and δε(x) = 1

π
ε

ε2+x2
.
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As ε goes to zero, the approximations to the L2 error term and H1 regularity term

converge to their un-regularized forms (by Lebesgue Dominated Convergence). For the

length term, the following theorem is provided, see also [19].

Theorem 3.4. Let Lε(φ, ψ) =
∫

Ω
|∇Hε(φ)|Hε(ψ) with Hε satisfying the properties above and

let φ and ψ be Lipschitz continuous; then

lim
ε→0

Lε(φ, ψ) =

∫
{φ=0}

H(ψ)ds = Length(Γ)

where Γ := {x ∈ Ω
∣∣∣ φ(x) = 0, ψ(x) > 0}.

Proof. Using the co-area formula (see [27]) and the fact that Hε is smooth, the regularized

length becomes:

Lε(φ, ψ) =

∫
R

(∫
φ=ρ

δε(φ)Hε(ψ)ds

)
dρ

=

∫
R
δε(ρ)

(∫
φ=ρ

Hε(ψ)ds

)
dρ.

Define Sε(ρ) :=
∫
φ=ρ

Hε(ψ)ds. By the scalability property of the delta function,

Lε(φ, ψ) =

∫
R
δε(ρ)Sε(ρ)dρ

=

∫
R

1

ε
δ1

(ρ
ε

)
Sε(ρ)dρ

By the change of variable p = ρ
ε
, we obtain

lim
ε→0

Lε(φ, ψ) = lim
ε→0

∫
R
δ1(p)Sε(εp)dp

= S0(0)

∫
R
δ1(p)dp = S0(0)

=

∫
φ=0

H(ψ)ds = Length(Γ),
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It is clear that S0(0) =
∫
φ=0

H(ψ)ds, since

Sε(εp)− S0(0) =

∫
φ=εp

Hε(ψ)ds−
∫
φ=0

H(ψ)ds

=

(∫
φ=εp

Hε(ψ)ds−
∫
φ=εp

H(ψ)ds

)
−
(∫

φ=εp

H(ψ)ds−
∫
φ=0

H(ψ)ds

)
=

(∫
φ=εp

(Hε(ψ)−H(ψ)) ds

)
−
(∫

φ=εp

H(ψ)ds−
∫
φ=0

H(ψ)ds

)

Since Hε(x)→ H(x) in R \ {0} and since the length of the level sets are finite, the first term

goes to zero, while the second term goes to zero by continuity of the integral.

3.2.2 Relation to Other Models

In practice, the curve Γ can change its topology freely. Even if it is initialized with free

endpoints, it may become an endpoint free curve, or vice versa. The standard splitting

and merging behavior now includes breaking (or cracking) where, during its evolution, the

curve can crack itself to develop endpoints. With this addition, our model can be viewed

as a natural extension to other level set based methods for segmentation. Here we briefly

examine the degeneration of the energy (and thus the curve evolution) into the classical

models.

Firstly, the model can completely degenerate to the endpoint free structure when the

indicator level set function has fixed sign, i.e. ψ > 0. The characteristic functions become:

χ1 = H(φ)

χ2 = H(ψ)(1−H(φ)) = 1−H(φ)

χ3 = H(ψ) = 1

χ0 = (1−H(ψ))(1−H(φ)) = 0
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and the reconstructed function takes the form:

u = u1χ1 + u2χ2 +

(
u1 + u2

2

)
χ0

= u1H(φ) + u2(1−H(φ))

Thus the function is smooth in each of the two regions defined by the sign of φ. The energy

becomes:

E(u1, u2, φ,−) = µ

∫
Ω

(
|∇u1|2H(φ) + |∇u2|2(1−H(φ))

)
dx+ λ

∫
Ω

|∇H(φ)|

+

∫
Ω

(
|u1 − f |2H(φ) + |u2 − f |2(1−H(φ))

)
dx

which is the two-phase piecewise smooth model [74]. Furthermore, if the regularization

parameter is set to a large value, µ >> 1, or if u is restricted to the set of piecewise constant

solutions, and where u1 = c1 and u2 = c2, and c1, c2 ∈ R, then the reconstructed function

becomes u = c1H(φ) + c2(1−H(φ)) and the energy becomes:

E(c1, c2, φ,−) = λ

∫
Ω

|∇H(φ)|+
∫

Ω

(
|c1 − f |2H(φ) + |c2 − f |2(1−H(φ))

)
dx

which recovers the two-phase piecewise constant model [18].

3.3 Numerical Results for Image Segmentation

Since the model is non-convex and highly non-linear, an alternating minimization is used,

where the energy is minimized with respect to each variable separately. During each min-

imization, three steps are done: calculate the Euler-Lagrange equation, find the Sobolev
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gradient, and step forward in time.

To calculate the Euler-Lagrange equations, the PDEs are discretized using forward differ-

ences for the gradient and backwards differences for the divergence, in order to retain their

adjoint relationship. The magnitudes of the gradient are replaced with a regularized ver-

sion to avoid dividing by zero. With respect to the time discretization, the Euler-Lagrange

equation is completely explicit and the inversion of the preconditioning operator (Sobolev

gradient) is done using a semi-implicit method. Specifically, let G = −∇L2E be the Euler-

Lagrange equation and v equals the Sobolev gradient. Then we have the relationship from

before: v−∆v = G, which we solve using a Gauss-Seidel sweep of the following discretization:

vn+1
i,j −

(
vni+1,j − 2vn+1

i,j + vni−1,j

)
−
(
vni,j+1 − 2vn+1

i,j + vni,j−1

)
= Gi,j

In practice, a few iterations are sufficient. Alternatively, v can be found using the Fourier

transform: v = F−1
(
F(G)
1+|ξ|2

)
. Once v is found, a forward Euler step is used to update the

variable (recall that the time derivative of the variable is equal to the Sobolev gradient of

the energy).

Next, with respect to the boundary conditions for the reconstructed image, if the auxiliary

functions u1 and u2 are initialized to have Neumann boundary conditions at t = 0, then in

semi-discrete terms the future boundary conditions are:

χ1
∂

∂N
un+1

1 +
χ0

4

∂

∂N
(un+1

1 + un2 ) = 0

χ2
∂

∂N
∇un+1

2 +
χ0

4

∂

∂N
(un+1

1 + un+1
2 ) = 0

Since the characteristic functions are assumed to be nonzero everywhere (based on our choice
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of approximations):

∂

∂N
un+1

1 = − χ0

4χ1 + χ0

∂

∂N
un2

∂

∂N
un+1

2 = − χ2

4χ2 + χ0

∂

∂N
un+1

1

Since ∂
∂N
u0

1 = ∂
∂N
u0

2 = 0, they stay that way for all n > 0.

This process is iterated until convergence with respect to one variable is achieved, and

then each of these alternating steps are repeated until total convergence. In terms of the

level set functions, φ and ψ, only partial convergence is needed.

Lastly, once the updates for u1 and u2 are found in order to calculate the various differ-

ences across the curve Γ for the level set equations, each function needs to be extended. In

general, any C1 extension is appropriate; in particular, we solve ∆u1 = 0 in region 2 and

∆u2 = 0 in region 1 with prescribed boundary conditions (Dirchelet), and the extensions are

labelled Eu1 and Eu2.

Algorithm: Free Curve Segmentation

Initialize u0
1, u

0
2, φ

0, ψ0

while Not Converged do

Substep 1: Compute Gu1(u
n
1 , u

n
2 , φ

n, ψn), Solve for vnu1 , Iterate Forward to un+1
1

Substep 2: Compute Gu2(u
n+1
1 , un2 , φ

n, ψn), Solve for vnu2 ,

Iterate Forward to un+1
2

Substep 3: Extend un+1
1 and un+1

2 to Eun+1
1 and Eun+1

2

Substep 4: Compute Gφ(Eun+1
1 , Eun+1

2 , φn, ψn), Solve for vnφ ,

Iterate Forward to φn+1

Substep 5: Compute Gψ(Eun+1
1 , Eun+1

2 , φn+1, ψn), Solve for vnψ,

Iterate Forward to ψn+1

end while
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The convergence is typically measured by the difference in energy between the two it-

erations. Compared to the general level set based segmentation methods, this algorithm is

more sensitive to initialization. In the standard methods, if the curve were to be initialized

as a large circle that encloses all the objects, then it would shrink inward until it captured

all the edges. In our case, if the curve was initialized as a large arc, it may shrink along

the curve more quickly than inward (shrinking along the tangents rather than the normal

vectors). In general, this can be controlled by the number of iterations in Substeps 4 and

5 or by initializing the curve to intersect the desired edges. This can be done in practice

by over-segmenting the image using classical edge-detectors (for example, the Canny edge-

detector) and then using the result to provide regions of interest for initializations. From this

perspective, this segmentation algorithm can also be initialized using a result from another

level set based method, for example, the methods from [18, 74, 14]. This may be useful to

produce a better initial region of interest than using a classical edge-detector.

3.4 Further Remarks

In terms of the forward Euler step in our method, starting from the same data, the Sobolev

gradient decreases the energy more than the L2 descent.

Theorem 3.5. Let ∆ES and ∆EL2 be the discrete changes in energy using Sobolev and L2

gradient descent, respectively. Starting at the same value, if ∆tS and ∆tL2 are the time steps

for the discretization of the Sobolev and L2 gradient descent algorithm, respectively, then

∆ES = ∆EL2
∆tS
∆tL2

.

Proof. Let v = ∇H1E(φ) and G := ∇L2E(φ) then we have (I − ∆)v = G in a weak sense

with Neumann conditions. This equation is equivalent to the following weak formulation:

for all h ∈ H1(Ω) ∫
Ω

[vh+∇v · ∇h] dx =

∫
Ω

Gh dx
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which is equivalent to:

〈v, h〉H1(Ω) = G(h) (3.4)

where G(h) is the linear form from the right hand side of the weak equation. Assuming that

G ∈ H−1(Ω), by the Riesz Representation theorem, there exists a unique g ∈ H1(Ω) such

that G(h) = 〈g, h〉H1(Ω) for all h ∈ H1(Ω) (or equivalently by the Lax-Milgram theorem)

and ||G||H−1 = ||g||H1 . Combining this with the equation above yields 〈v −G, h〉H1 = 0.

Therefore we can see that v = g a.e. and ||G||H−1 = ||v||H1

If we look at the ratio of changes in energy at a given iteration with Euler time steps

then we have:
∆ES
∆EL2

=
∆tS||v||2H1

∆tL2 ||G||2L2

=
∆tS
∆tL2

Note that since we assumed G ∈ L2, we have that the H−1 norm is just the L2 norm of

G.

In general, the preconditioned PDEs are more stable, which lets ∆tS ≥ ∆tL2 , so that we

will almost always get ∆ES ≥ ∆EL2 . We see that not only is the Sobolev descent method

better posed theoretically, it is also preferred numerically.

3.5 Experimental Results

We use time steps ∆t ∈ [0.01, 0.1], space steps ∆x = 1, and ε = ∆x. Without the Sobolev

gradient, ∆t must be very small to guarantee stability, which in many cases incurs other

numerical issues. The number of iterations in each minimization step for u1 and u2 is set

to a maximum of about 150 (although they converge before reaching the maximal amount

of iterations), while the level set minimization steps are set to a maximum of about 2-5

iterations. The algorithm converges between several seconds and a few minutes depending

on the size of the image. In these examples, no re-initialization to the signed distance function

is used for the level set function.
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Figure 3.2: Plot of Energy versus Iteration using Sobolev Gradient descent

In Figure 3.2, we visualize the energy versus iterations corresponding to the experiment

from Figure 3.2 and we can see that it is strictly decreasing. In Figure 3.3(a), we show

the energy versus the CPU time corresponding to the experiment from Figure 8, as well as

the energy versus CPU time for the equivalent L2 gradient descent method. Both descent

methods have the exact same initialization and are stopped when they have decreased the

energy to below 2× 106. The time steps are chosen so that the energy is strictly decreasing

for all time, thus providing a measure of stability. The standard L2 gradient descent needed

1084 iterations with a total time of 32.85 seconds to decrease the energy below the threshold,

while the Sobolev descent needed 17 iterations at 1.75 seconds total. In general, the Sobolev

descent trades longer time during each iterations for fewer iterations overall.

In Figure 3.4, the method is applied to a noisy synthetic image with an edge set composed

of two free curves. The initial curve is made up of one segment, which first locates the edges

and then separates into two segments (taking only a few iterations to change topology). In

Figure 3.5, the method is applied to a very noisy synthetic image with an edge that has one

endpoint which terminates at the boundary of the image and one endpoint that is free. The

curve is initialized near the edge and the algorithm converges in seconds. In Figure 3.6, the

method is applied to a noisy synthetic image composed of one segment with endpoints and
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one without endpoints. The curve is initialized as two circles, but one changes its topology

in order to capture the free endpoint structure. From these examples, the results depict the

robustness of the algorithm to the various edge structures.

The method was applied to a photographic image (Figure 3.7), with close ups of two re-

(a) Standard Gradient Descent, dt = 0.025 (b) Sobolev Gradient Descent, dt = 0.001

Figure 3.3: Plot of Energy versus CPU time using Sobolev gradient descent and the standard
gradient descent

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Segmentation and Restoration of a Synthetic Image with Two Free Edge Sets:
the curve evolution (a-d) and the restoration (e-h) with µ = 4 and λ = 0.02× 2552.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Segmentation and Restoration of a Synthetic Image with a Half Edge: µ = 17
and λ = 0.01× 2552.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Segmentation and Restoration of a Synthetic Image with Different Topologies:
µ = 5 and λ = 0.05× 2552.
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Figure 3.7: Original Cameraman image

gions. In Figure 3.8, the curve is initialized as many small circles throughout the image. This

particular initialization circumvents the need for manual location or an initial segmentation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Segmentation of Cameraman, close up of the top region, µ = 0.5 and
λ = 0.01× 2552
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Segmentation of Cameraman, close up of the middle region, µ = 0.5 and
λ = 0.01× 2552

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10: Segmentation and Restoration of a Comet with Noise: µ = 0.5 and
λ = 0.01× 2552
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(a) Our Method (b) Chan-Vese (c) Canny Edge Detector
Edge Image

(d) Ambrosio-Tortorelli (e) Ambrosio-Tortorelli Edge
Image after thresholding

Figure 3.11: Comparison of Segmentation Results: Comet Image

result in order to locate a region of interest. The final curve locates both free edges and

contours without endpoints. The resulting reconstruction resembles a smooth cartoon form

of the original with enhanced edges. The total computation time was about 9.77 seconds.

In Figure 3.9, the curve is initialized as an endpoint free structure in the center of the image

and quickly breaks topology to locate the hand. The resulting reconstruction sharpens edges

and denoises. The total computation time was about 2.29 seconds.

The method is also applied to two astronomical images: one of a comet and the other

of a plasma. In Figure 3.10, the curve locates the front of the comet, and the restored

image sharpens the contrast between the comet and the background and removes noise

from the comet, while preserving large stars (point structures) in the background. The

total computation time was about 62.24 seconds. The final segmentation is compared to

other techniques in Figure 3.11. The method from [18] locates the correct front, but over
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12: Segmentation and Restoration of a Plasma at UCLA [60]: µ = 25 and
λ = 0.8× 2552

segments the comet, since it must be a loop. The Canny edge detector over-segments the

white interior region of the comet, missing the faint boundary which defines the comet

front. Similarly, the Ambrosio-Tortorelli method mainly locates the white region, where the

gradient is sharpest. Based on these results, one possible application of this method could

be to enhance and extract geometric information for astronomical classifications. Large scale

geometric objects, such as galaxies or comets (depending on perspective) can be sharpened

while removing noise and other forms of degradation.

Lastly, we test our algorithm on a real plasma image. In Figure 3.12, the curve locates

the plasma front and the restored image sharpens the contrast between the plasma front

and the background, while removing the small amount of noise present in the image. The

total computation time was about 47.01 seconds. This particular segmentation is made

difficult by the light region in the top left quadrant near the plasma front. Region based

methods would try to group the lighter intensities together, avoiding the actual edge. The

final segmentation is compared to other techniques in Figure 3.13. The method from [18]
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(a) Our Method (b) Chan-Vese (c) Canny Edge Detector
Edge Image

(d) Ambrosio-Tortorelli Edge
Image

(e) Ambrosio-Tortorelli Edge
Image after thresholding

Figure 3.13: Comparison of Segmentation Results: Plasma Image

does not properly locate the edge, since the edge set does not enclose a region. The Canny

edge detector does not locate the correct edge – locating places of high gradient inside of the

plasma. Similarly, the Ambrosio-Tortorelli method does locate the front correctly but also

includes excess edges, which cannot be removed by thresholding.
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Part II

Texture Models and Analysis
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CHAPTER 4

Introduction to Texture Modeling

One of the most important problems in image processing is the recovery of a corrupted image,

f , which may be degraded by noise, blur, missing data, etc. The goal is to reconstruct

important structural features of the original image, such as large scale objects (smooth

regions), edges (discontinuities), textures (patterned small scale details), and noise (random

and of mean zero). This problem is typically written as an inverse problem: given f , find a u

which is a smooth approximation of f in some sense [2]. Specifically, given an f , decompose

f = u + v, where u is the recovered image and v is the residual assumed to be noise. For

such two component decompositions, the general formulation is:

inf
(u,v)∈X1×X2

E(u, v) = {µ||u||X1 + ||v||X2}

s.t. f = u+ v

where µ > 0 is a tuning parameter. The recovered image is assumed to reside in the space

X1, which contains functions of positive differentiability (i.e. the “derivative” is well-behaved

in some sense), and the noise is taken to be in X2 = L2. In this class of image recovery

methods, notable models include Rudin, Osher, and Fatemi (ROF) [67] and Chambolle and

Lions [16]. In particular, recall the ROF model below:
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inf
(u,v)∈BV×L2

EROF (u, v) =

{
µ||u||TV +

1

2
||v||2L2

}
(4.1)

s.t. f = u+ v

which is known to reconstruct piecewise constant solutions very well, thereby recovering both

large scaled features and edges. With the introduction of the Bregman technique [62] and

the split Bregman method [37], total variation regularized problems can be solved quickly

and efficiently while also remedying defects such as loss of contrast.

On the other hand, the texture is considered to be highly oscillatory, which is not well

captured by the X1 norms. Thus in many of these reconstruction models, v also contains

some textures and edges. In order to further decompose the texture and noise, texture

regularized models have appeared in the literature, beginning with the work of Meyer [55],

who first proposed recovering texture using spaces that are weaker than L2. These weak

spaces encourage oscillatory behavior, since their norms decrease as the amount of oscillations

increase. In this framework, the image is decomposed into the cartoon component and

the texture component, while also removing any noise or residual. This becomes a three

component decomposition: given f , decompose f = u+ v + ρ by solving:

inf
(u,v)∈BV×T

EC−T (u, v) = µ||u||TV + γ||v||T +
1

2
||u+ v − f ||2L2 (4.2)

The cartoon component u is appropriately modeled by the space BV , using the TV

semi-norm in the energy. The recovered image is now u + v, the sum of the cartoon and

texture components. The residual, ρ, is assumed to reside in L2, although other Lp norms

can be used. Meyer proposed several texture norms in his work; most notably, the G-norm

(the predual of BV, i.e. G∗ = BV ) has seen much success in applications, including: color

image restoration [6], road detection [35], denoising [34], inpainting [9], image classification
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[5], and anomaly removal and pattern regularization [33]. The space is defined below.

Definition 4.1. The space G consists of all distributions v which can be written as v =

div(~g), where ~g = (g1, g2) and g1, g2 ∈ L∞. The norm on this space is defined as:

||v||G := inf

{
||
√
g2

1 + g2
2||∞

∣∣∣ v = div(~g)

}
(4.3)

This texture space is particularly elegant because of its symmetry (specifically duality)

with the cartoon space BV . However, this space is difficult to handle numerically. In [75],

Vese and Osher proposed a method to approximate the G-norm by using the Sobolev spaces of

negative differentiability, defined as W−1,p :=
{
v = div~g

∣∣ g1, g2 ∈ Lp
}

, and sending p→∞.

Rather than working with the texture v directly, this method works with the vector-field ~g:

inf
(u,g)∈BV×(Lp)2

EOV (u, g) = µ||u||TV + ||~g||Lp +
λ

2
||u+ div~g − f ||2L2 (4.4)

This formulation yields appropriate Euler-Lagrange Equations for all p ≥ 1, which is easy to

compute numerically. The results give satisfactory decompositions, particularly in the case

of p = 1. Osher, Sole, and Vese [64] proposed an alternative norm for the case of p = 2,

which coincides with the space H−1 (the dual of the Hilbert space H1). This dual space

has an explicit norm defined as: ||v||H−1 = ||∇∆−1v||L2 , and the resulting Euler-Lagrange

equation of the model reduces to a forth order non-linear partial differential equation. This

texture norm was also used in cartoon-texture-edge set separation in [70]. Later, Aujol,

Aubert, Blanc-Feraud, and Chambolle [4] used projections to solve the original BV − G

decomposition model and applied it to denoising of cartoon images (where the G norm

captures the noise) and to cartoon-texture separation. These weak spaces inspired many

other texture norms, mainly in the form of dual spaces. In Lieu and Vese [49], the negative

Hilbert spaces H−s, for s > 0, which are dual to the Hilbert-Sobolev spaces (Hs)∗, were

used for texture extraction and noise removal. Later, in Kim and Vese [41], the negative
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exponential Sobolev spaces Wα,p, for −2 ≤ α < 0, which are dual to the Sobolev spaces with

pseudo-derivatives, were used for texture reconstruction in the presence of blur. We provide

a table of spaces below to summarize some of these models.

Model Texture Description

[55] G G∗ = BV , divL∞, W−1,∞

[31] F div BMO

[55] E divB−1,∞
∞

[76] Gp divLp

[64] H−1 H−1 = (H1)
∗

[49] H−s, s > 0 H−s = (Hs)∗

[41], [31] ∆Wα+2,p, −2 ≤ α < 0, Wα,p

Note: p ∈ (1,∞)
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CHAPTER 5

A texture model based on a concentration of measure

As in [23, 41], a general degradation model using both the cartoon and texture component

takes the form of:

f = K(u0 + v0) + η

and the corresponding optimization becomes:

inf
(u,v)∈X1×X2

E(u, v) =
{
µ||u||X1 + γ||v||X2 + ||f −K(u+ v)||2L2

}
.

As mentioned before, the cartoon space X1 is typically assumed to be a subset of BV with

the TV semi-norm, but there is no standard choice for the texture space X2. Most of the

choices for X2 in the literature are Banach space duals of spaces defined by some positive

degree of differentiability, and as the degree of differentiability is increased, the dual norms

of highly oscillatory functionals are decreased, which makes || · ||X2 favor high oscillations

more.

Based on the literature and numerical experiments, the weaker the texture space, the

finer the scale of details recovered. In this section, we use a texture norm that is related to

the dual of the space of Lipschitz functions. There is evidence in the literature that supports

this choice. In particular, the space G1 from [76] is contained in our texture space. However,

our norm is more isotropic and thus yields different minimizers numerically. We also make

use of a substitution for the space of Lipschitz functions and use its dual to define the texture

space. Numerically, this substitute norm is identical to the Lipschitz norm and in practice

results in equations that are easier to handle than the standard substitute of taking W 1,p
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for p large (curvature or diffusion equations rather than the highly non-linear p-Laplacians).

The texture regularization is used to deblur images with unknown blur kernels by means of

a semi-known variational approach. The original blurring kernel may be noisy, and thus one

can only approximate the original kernel.

Since this texture norm is very weak (in the sense that the underlying function space

is very large), the reconstructed images contain more fine-scale details. This is typically

difficult to recover from blurred images. The addition of the texture regularization to the

semi-known variational deblurring model helps support the approximation of the kernel.

For semi-known deblurring, the method settles to the correct kernel quickly, even when the

kernel contains noise. But before describing the deblurring model, we will first recall several

definitions and preliminary details.

5.1 Terminology

Let Ω be an open, bounded and connected subset of Rn, with Lipschitz boundary. For our

cartoon space, we will use the space of bounded variation.

Definition 5.1. A function u : Ω→ R is of bounded variation if and only if u ∈ L1(Ω) and

there exists a finite Rn valued Radon measure Du such that for all φ ∈ C1
c (Ω,R),

∫
Ω

∂φ

∂xj
u dx = −

∫
Ω

φ (Du)j, for j = 1, ..., n. (5.1)

and the TV semi-norm

||u||TV =

∫
Ω

|Du| := sup

{∫
Ω

u div (φ) dx
∣∣∣ φ ∈ C1

c (Ω,Rn), ||φ||L∞ ≤ 1

}
(5.2)

is bounded.
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The norm on the Banach space BV (Ω) is:

||u||BV (Ω) := ||u||L1(Ω) + ||u||TV (Ω) (5.3)

The Sobolev space W 1,1(Ω) is contained in BV (Ω), with the standard distributional deriva-

tive, i.e. Du = ∇u dx.

For our texture space, we would like to capture the highly oscillatory nature of texture,

while leaving the cartoon component without any fine-scale detail. This is accomplished

by choosing a strong auxiliary space and then constructing a very weak dual space. The

resulting dual space will capture the behavior of texture, since it is well known that these

types of dual norms decrease when the frequencies increase. One particular choice (supported

by [41, 76]) would be the dual of W 1,∞(Ω) (with semi-norm ||∇u||L∞) for texture.

Definition 5.2. A function v : Ω→ R belongs to the dual of W 1,∞(Ω) if v is of zero mean

and the following quantity is finite:

||v||(W 1,∞)∗ := sup
{
〈v, w〉

∣∣ ‖∇w‖L∞ ≤ 1
}
. (5.4)

where 〈v, w〉 =
∫
vw dx.

Formally, given a function v, one way to calculate ||v||(W 1,∞)∗ is to find w which achieves

the maximum (assuming this is possible) of equation (5.4). Unfortunately, the resulting

equations may not be well-posed, due to the appearance of the infinity Laplacian (for more

on the infinity Laplacian see [50, 21, 28]). Alternatively, one can approximate the infinity

norm as the following limit:

||∇w||L∞ = lim
p→∞
||∇w||Lp .

In terms of the dual norms, this process results in approximating the space (W 1,∞(Ω))∗ by

the spaces W−1,q(Ω). The resulting maximizing equation in terms of the auxiliary variable

w is the q-Laplacian, which is both non-linear and numerically stiff.
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Instead we propose approximating the L∞(Ω) norm using the L1(Ω) norm with respect

to a measure which concentrates near the maximum:

||∇w||L∞ = max
x
|∇w(x)| =

∫
|∇w(x)|dδx̃,

where x̃ = argmax |∇w(x)| (assuming this is attained). There are many choices for approx-

imations that converge to the Dirac delta function; however, we propose the following:

Definition 5.3. For k > 0 we define the measure dσk := σkdx where

σk :=
ek|∇w|∫
ek|∇w|dx

.

In [28], a similar formulation is given when the L1 norms above are replaced by the L2

norms with the corresponding measure ek|∇w|2∫
ek|∇w|2dx

. In practice, the L2 norm does not provide

satisfactory results, because (for finite k) it yields overly smooth textures. With the measure

in Definition 2.3, we define our approximate norms as follows.

Definition 5.4. A function v : Ω → R belongs to Tk if and only if v is of zero mean and

the following quantity is finite

||v||Tk := sup
w∈W 1,∞

{
〈v, w〉

∣∣ ∫
Ω

|∇w|dσk(w) ≤ 1

}
. (5.5)

where k is fixed. For notational purposes, T := T∞ = (W 1,∞)∗ and the “k-norms” are defined

as ||∇w||k =
∫

Ω
|∇w|dσk(w).

5.2 The Model

We propose a semi-known deblurring model which is regularized using the BV space for

the cartoon and the Tk space (for all k) for the texture. Similar work using cartoon-texture

regularized deblurring has appeared in the literature, but only for the case when the kernel

is fixed (see [23, 41]). For an example of a semi-blind deblurring model related to our model
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(a) Original (b) Cartoon (c) Texture

(d) Original (e) Cartoon (f) Texture

(g) Original (h) Cartoon (i) Texture

Figure 5.1: Cartoon-Texture Separation of Grass, Brodatz, and Tank Images. In each case,
the Cartoon component (b), (e), and (h) has sharp contrast with homogenous regions.
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below, see [8].

The general model is as follows:

inf
u,v,K

{
Egeneral(u, v,K) = µ||u||TV + γ||v||T +

1

2
||K ∗ (u+ v)− f ||22 + β||∇K||pp

}
, (5.6)

where K is a blur kernel. We assume that the kernel belongs to a parametrized family, say

K(α), thus the problem becomes:

inf
u,v,α

{
E(u, v, α) = µ||u||TV + γ||v||T +

1

2
||K(α) ∗ (u+ v)− f ||22 + V (α)

}
, (5.7)

where V (α) := β||∇K(α)||pp is a regularizer only dependent on the parameter α. Replacing

the texture norm by a ratio results in the following saddle point problem:

inf
u,v,α

sup
w

{
µ||u||TV + γ

|〈v, w〉|∫
Ω
|∇w|dσ

+
1

2
||K(α) ∗ (u+ v)− f ||22 + V (α)

}
.

In this form, we regularize the gradient |∇w| :=
√
w2
x + w2

y + 1, so that we may take deriva-

tives. Also, this breaks the 1-homogeneity in k of the ratio between the L2 inner product

and the functional measure on ∇w.

5.3 Theoretical and Analytical Remarks

The texture space T = (W 1,∞)∗ is larger than many of the spaces appearing in the literature.

In practice, this means the texture component is able to capture a wider range of fine

scale details and oscillatory patterns. The following lemma provides some insight to the

relationship between T and other spaces.

Lemma 5.5. The following inclusions hold: ∆W 1,1 ( G1 ⊂ (W 1,∞)∗.
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Proof. First let v = div g where g ∈ L1 × L1, then

||v||(W 1,∞)∗ = sup
||∇w||L∞≤1

∣∣∣∣∫
Ω

vw dx

∣∣∣∣
= sup

||∇w||L∞≤1

∣∣∣∣∫
Ω

divgw dx

∣∣∣∣
= sup

||∇w||L∞≤1

∣∣∣∣∫
Ω

g · ∇w dx

∣∣∣∣
≤ sup

||∇w||L∞≤1

||g||L1||∇w||L∞

≤ ||g||L1

which is bounded by assumption. So G1 ⊂ (W 1,∞)∗.

Next, to see that ∆W 1,1 ⊂ G1, take v ∈ ∆W 1,1. Then there exists an h ∈ W 1,1 such that

v = ∆h. Therefore, v = div ∇h with ∇h ∈ L1×L1 so v ∈ G1. However, the converse is not

true. To show this, let v ∈ G1. There exists a g ∈ L1 × L1 such that v = divg, but it is not

true that g must be a gradient of a function in L1, thereby establishing ∆W 1,1 ( G1.

Of course, the space T itself is quite large; however, it will be clear in the following sections

that the minimizers are well-behaved and our approximation Tk for sufficiently large k, yields

appropriate results.

5.3.1 Behavior with respect to k

In this section, some results provide information on the model’s dependence on the parameter

k. Both the k-norms and the Tk norms have a proper ordering.

Proposition 1. The functionals ||−||k are increasing functions of k, strictly increasing over

the class of non-constant functions.

49



Proof. For any function f , the derivative of ||f ||k with respect to k is the following:

d

dk
||f ||k =

d

dk

(∫
|f |ek|f |dx∫
ek|f |dx

)
=

(∫
|f |2ek|f |dx

) (∫
ek|f |dx

)
−
(∫
|f |ek|f |dx

)2(∫
ek|f |dx

)2

≥ 0

by the Cauchy-Schwarz inequality. Equality holds if and only if |f | is constant. Note that

the arguments above hold for the regularized absolute value as well.

The following corollaries are a result of the increasing behavior of the k norms.

Corollary 5.6. The norms || − ||Tk are strictly decreasing with respect to k.

Corollary 5.7. The functionals || − ||k converge from below to the L∞ norm as k →∞.

The proof is a direct consequence of Corollary 5.6 and the fact that the L∞ norm is a

sharp upper bound. These corollaries allow one to examine the convergence of the minimal

energy values as functions of k.

Theorem 5.8. Let Pk = infu,v
{
µ||u||TV + γ||v||Tk + 1

2
||u+ v − f ||22

}
for fixed µ, γ > 0.

Then the following holds.

1. Pk+1 < Pk for k > 0.

2. Pk+1 → P∞ as k →∞, where P∞ = infu,v
{
µ||u||TV + γ||v||T + 1

2
||u+ v − f ||22

}
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Proof. For the inequality, assume (uk, vk) are minimizers of the functional for a given k, then

Pk = inf
u,v

{
µ||u||TV + γ||v||Tk +

1

2
||u+ v − f ||22

}
= µ||uk||TV + γ||vk||Tk +

1

2
||uk + vk − f ||22

> µ||uk||TV + γ||vk||Tk+1
+

1

2
||uk + vk − f ||22

≥ µ||uk+1||TV + γ||vk+1||Tk+1
+

1

2
||uk+1 + vk+1 − f ||22

= Pk+1

by Corollary 5.6.

For the second consequence, note that the sequence is strictly decreasing with the sharp

lower bound

Pk ≥ inf
u,v

{
µ||u||TV + γ||v||T +

1

2
||u+ v − f ||22

}
.

5.3.2 Existence, Uniqueness, and Characterization of Minimizers

For regularized models of the form presented in this work, the minimizers always enjoy the

property that v ∈ L2(Ω). This provides sufficient regularity to the texture component to

avoid unwanted elements from either the T or Tk space. Although both methods share this

regularity, the minimizers of their respective energies will not be the same in general. In this

section, we focus on

inf
u,v,u+v=f

{E1(u, v) = µ||u||TV + γ||v||Tk} , (5.8)

and

inf
u,v

{
E2(u, v) = µ||u||TV + γ||v||Tk +

λ

2
||u+ v − f ||22

}
. (5.9)
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Both functionals above are cases of our general model. In the constrained cartoon-texture

decomposition, the theorem below guarantees existence and uniqueness.

Theorem 5.9. For f ∈ L2(Ω), equation (5.8) with constraint f = u + v and
∫

Ω
f dx =∫

Ω
u dx has a solution (u, v) ∈ BV × Tk ∩ L2.

Proof. Let {(un, vn)} be a minimizing sequence, then there exists a constant C such that:

|u|BV ≤ C

||v||Tk ≤ C

f = un + vn∫
Ω

f dx =

∫
Ω

un dx

Then by the estimate above and by the Poincare-Wirtinger inequality (for some constant

c > 0),

||un||L2 ≤
∥∥∥∥un − ∫

Ω

un dx

∥∥∥∥
L2

+

∣∣∣∣∫
Ω

un dx

∣∣∣∣
≤ c|un|BV +

∣∣∣∣∫
Ω

f dx

∣∣∣∣
≤ C

with redefinition of C. This provides a uniform bounded for un with respect to the L2 norm.

Therefore, ||un||BV ≤ C uniformly, thus there exists u ∈ BV and a subsequence un (with

possible reindexing) which converges to u in the BV -weak ∗ topology and strongly in the L1

topology.

For vn, since un and f are uniformly bounded in the L2 norm, then ||vn||L2 ≤ C. Also if

||w||k ≤ C then ||w||L2 ≤ C, then

∫
Ω

wvn dx→
∫

Ω

wv dx
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so vn converges weakly in L2 and in the weak ∗ Tk topology. In terms of the texture norm,

the following holds:

||v||Tk = sup
w∈W 1,∞

{
|〈v, w〉|

∣∣ ∫
Ω

|∇w|dσk(w) ≤ 1

}
≤ lim

n→∞
sup

w∈W 1,∞

{
|〈vn, w〉|

∣∣ ∫
Ω

|∇w|dσk(w) ≤ 1

}
= lim

n→∞
||vn||Tk .

Similarly, by lower semi-continuity |u|BV ≤ lim infn→∞ |un|BV . Lastly, note that the con-

straints are also held in the limit and f = u+ v a.e.. Thus E1(u, v) ≤ lim infn→∞E1(un, vn)

and (u, v) are minimizers.

Theorem 5.10. For f ∈ L2(Ω), equation (5.9) with the constraint
∫

Ω
f dx =

∫
Ω
u dx has a

solution (u, v) ∈ BV × Tk ∩ L2, with uniqueness for
∫

Ω
f dx 6= 0.

Proof. Once again, let {(un, vn)} be a minimizing sequence, then there exists a constant C

such that the following hold:

|u|BV ≤ C

||v||Tk ≤ C

||un + vn − f ||L2 ≤ C∫
Ω

un dx =

∫
Ω

f dx

Using the estimate above and the Poincare-Wirtinger inequality, as before ||un||L2 ≤ C.

Therefore, ||un||BV ≤ C uniformly and so there exists u ∈ BV and a subsequence un (with

possible reindexing) which converges to u in the BV -weak ∗ topology and strongly in the L1

topology.

Since un is uniformly bounded with respect to the L2 norm, so is vn, i.e. ||vn||L2 ≤ C.

Next, we wish to show that vn limits to v ∈ (Tk)
∗∩L2. For any w with ||w||k ≤ C, ||w||L2 ≤ C
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holds, so ∫
Ω

wvn dx→
∫

Ω

wv dx

therefore vn converges weakly in L2 and in the weak ∗ Tk topology. By the lower semiconti-

nuity of the respective norms, we have

|u|BV ≤ lim inf
n→∞

|un|BV

||v||Tk ≤ lim
n→∞

||vn||Tk

||u+ v − f ||L2 ≤ lim
n→∞

||un + vn − f ||L2

Thus E2(u, v) ≤ lim infn→∞E2(un, vn) and (u, v) are minimizers. For uniqueness, see [47].

Theorem 5.11. If f ∈ L2(Ω),
∫

Ω
f dx 6= 0, and (uλ, vλ) is the the solution of equation

(5.9), then as λ → ∞, uλ + vλ → f strongly in L2 and the pair (uλ, vλ) converges to the

(u, v) pair which is the minimizer of (5.8).

Next, the minimizers can be characterized by the dual norm of the entire regularization.

Let ||(u, v)||∗ = inf {µ||u||TV + γ||v||Tk} be the norm induced on the pair (u, v) over the

Banach space BV × Tk ∩ L2, then the dual norm is given by ||h||′ = sup
{

1
µ
||h||G, 1

γ
||h||T ∗k

}
for h ∈ L2(Ω). Using this full dual norm, the following theorem provides conditions for

non-trivial solutions.

Theorem 5.12. Let (u, v) ∈ BV ×Tk∩L2 be the solution of equation (5.9), then the following

hold:

1. ||f ||′ ≤ λ ⇔ (u, v) = (0, 0)

2. If ||f ||′ > λ, then the optimal pair (u, v) must satisfy

||u+ v − f ||′ =
1

λ

〈f − u− v, u+ v〉 =
1

λ
{µ||u||TV + γ||v||Tk}

54



The proof can be generalized from [55, 47]. Lastly, when the auxiliary variable w is

considered, Uzawa’s method provides conditions for convergence of the saddle point problem,

as previously done in [46].

5.4 Numerical Results for Weak Textures

Since the model is a saddle point problem, the numerical method is essentially an Uzawa-

type method (see [25]). The algorithm first finds a w which maximizes the texture norm

for the current approximation of the texture component. Then the calculated w is used to

minimize the energy with respect to the other values. This is alternatively iterated until

convergence. The algorithm is summarized below.

Algorithm
Initialize u0, v0, α0, w0

while Not Converged do

wn+1 = argmax
w

{
|〈vn, w〉|∫

Ω
|∇w|dσ(w)

}
(
un+1, vn+1, αn+1

)
= argmin

u,v,α

{
µ||u||TV + γ

|〈v, wn+1〉|∫
Ω
|∇wn+1|dσ(wn+1)

+

1

2
||K(α) ∗ (u+ v)− f ||22 + V (α)

}

end while

In terms of each substep, the calculations are done using a semi-implicit finite difference

gradient descent scheme.

5.4.1 Maximization of auxiliary variable

Given the approximated texture component vn in order to compute w, we must maximize

the following equation,
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Figure 5.2: Energy versus number of iterations for Figure 5.10.

Figure 5.3: Inverse Value of the Maximization Step verse number of iteration for Figure 5.10.

max
w

{
|〈vn, w〉|∫

Ω
|∇w|dσ(w)

}
.

To find the corresponding Euler-Lagrange equations, the dependence on the variable w

in the measure σ is partially lagged. Assuming w ∈ W 1,∞, the first variation (embedded in

a gradient descent scheme) can be taken formally as:

∂w

∂t
=

(
|〈vn, w〉|∫
Ω
|∇w|dσ

)
div

(
σ
∇w
|∇w|

)
+ sign (〈vn, w〉) vn

after some re-arrangement of terms and with a regularized absolute value function to avoid

division by zero. Note that the expression in front of the curvature term is the energy that
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is being maximized. For now we will drop the superscript on vn, so as not to confuse it with

the maximization iterations.

Next, fix ∆x = ∆y = 1 and let ∆t be the time step. Let the n-th energy be discretely

defined as: En =

(
|〈v,wn〉|∫ √

(wn
i+1,j−wn

i,j)
2
+(wn

i,j−wn
i,j+1)

2
+1dσ

)
. We define the following quantities

related to the gradient of wn:

cn1,i,j =
1√(

wni+1,j − wni,j
)2

+ .25
(
wni,j+1 − wni,j−1

)2
+ 1

cn2,i,j =
1√(

wni,j − wni−1,j

)2
+ .25

(
wni−1,j+1 − wni−1,j−1

)2
+ 1

cn3,i,j =
1√

.25
(
wni+1,j − wni−1,j

)2
+
(
wni,j+1 − wni,j

)2
+ 1

cn4,i,j =
1√

.25
(
wni+1,j−1 − wni−1,j−1

)2
+
(
wni,j − wni,j−1

)2
+ 1

Cn
i,j =

1

1 + En
i,j∆tσi,j

(
cn1,i,j + cn2,i,j + cn3,i,j + cn4,i,j

)
Next define the discrete inner product of the gradients of σ and w as:

dni,j =

(
wni+1,j − wni,j

)
(σi,j − σi−1,j) +

(
wni,j+1 − wni,j

)
(σi,j − σi,j−1)√(

wni+1,j − wni,j
)2

+
(
wni,j − wni,j+1

)2
+ 1

.

The forward gradient of w and backward gradient of σ is chosen for consistency with the

energy. Altogether, the iteration step is defined below.

wn+1
i,j = Cn

i,j

{
wni,j + ∆tsign (〈v, wn〉) v + En

i,j∆t
(
dni,j + cn1,i,jw

n
i+1,j +

cn2,i,jw
n
i−1,j + cn3,i,jw

n
i,j+1 + cn4,i,jw

n
i,j−1

)}
.

The semi-implicit discretization provides some stablity. This algorithm can be further

stablized with the use of Sobolev gradient preconditioners, see [65, 72, 66].
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5.4.2 Minimization of variables

Figure 5.4: Kernel Parameter versus iteration for Figure 5.10.

For the minimization step in the algorithm, we assume that w is given. To compute

the Euler-Lagrange equations in u and v, we assume that (u, v) ∈ W 1,1(Ω) × L2(Ω), with

|u|TV =
∫

Ω
|∇u|dx theW 1,1(Ω) semi-norm. This is not a restriction, since functions in BV (Ω)

can be sequentially approximated by functions in W 1,1(Ω) with respect to the strong topology

L1(Ω) (also u and v can only be calculated numerically in these stronger spaces). Now, taking

the Euler-Lagrange equations for (u, v) and embedding them in a time-dependent scheme

yields the following system.

∂u

∂t
= µdiv

(
∇u
|∇u|

)
+K∗α (f −Kα(u+ v)) (5.10)

dv

dt
= −w sign (〈v, w〉)∫

Ω
|∇w|dσ

+K∗α (f −Kα ∗ (u+ v)) . (5.11)

In terms of the blur kernel parameters, if α ∈ K (where K is a compact subset of Rd,

bounded away from zero) is a minimizer of the energy in equation (5.6), then α must satisfy

the equation below:
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0 =

∫ {
(f −Kα ∗ (u+ v))

∂Kα

∂α
∗ (u+ v) + pβ

∂ |∇Kα|p

∂α

}
dx. (5.12)

Define F (α) as the right hand side of equation (5.12). Then the problem reduces to finding

the zeros of F (α). The roots of equation (5.12) are found by the bisection method.

To solve the system for (u, v), equation (6.10) is solved semi-implicitly, while equation

(6.11) is explicit. Similar to the previous section, define the following quantities:

kn1,i,j =
1√(

uni+1,j − uni,j
)2

+ .25
(
uni,j+1 − uni,j−1

)2
+ ε

kn2,i,j =
1√(

uni,j − uni−1,j

)2
+ .25

(
uni−1,j+1 − uni−1,j−1

)2
+ ε

kn3,i,j =
1√

.25
(
uni+1,j − uni−1,j

)2
+
(
uni,j+1 − uni,j

)2
+ ε

kn4,i,j =
1√

.25
(
uni+1,j−1 − uni−1,j−1

)2
+
(
uni,j − uni,j−1

)2
+ ε

Ani,j =
1

1 + µ∆t
(
kn1,i,j + kn2,i,j + kn3,i,j + kn4,i,j

) .
Then the semi-implicit iteration step for calculating the cartoon component is:

un+1
i,j = Ani,j

{
uni,j + µ∆t

(
kn1,i,ju

n
i+1,j + kn2,i,ju

n
i−1,j + kn3,i,ju

n
i,j+1 + kn4,i,ju

n
i,j−1

)
+∆tK∗α (f −Kα(un + v))

}
.

For the texture component, equation (6.11) is discretized using Euler’s method, resulting in

the following explicit iteration step,

vn+1 = vn −∆t

(
w sign (〈vn, w〉)∫

Ω
|∇w|dσ

−K∗α (f −Kα ∗ (u+ vn))

)
.
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The time step ∆t must be sufficiently small as to satisfy a CFL type condition on the system

of equations. In practice an alternating minimization is used to solve the second substep in

the overall scheme. The cartoon and texture are calculated first, then the parameters for

the blur kernel. In all of the experiments in the next section, ∆t is taken around 0.0025 to

0.025. Although the spaces Tk for various k’s yield different texture components, for all the

experiments here we fixed k = 1 for consistency.

5.5 Experimental Results

In Figure 5.1, some examples of cartoon-texture decompositions are provided. The Grass

and Tank images display very oscillatory behaviors, while the Brodatz image contains more

patterned textures, all of which are captured well by the proposed texture norm.

To verify the stability of our numerical scheme, Figure 5.2 shows that the total energy

decreases over each iteration. Figure 5.3 shows that the inverse of the energy associated with

the maximization substep is decreasing (which is expected since minimizers of the inverse

energy are maximizers of the original energy). The extra regularity, in the form of the

texture norm seems to also provide fast convergence of the parameters in the blur kernel. In

Figure 5.4, notice that only 4 alternating minimization iterations are needed before the blur

kernel converges (in fact, it converged to the exact parameter within algorithmic tolerance).

In the first set of examples, the blur kernel is known. In Figure 5.5, the Brodatz image

is blurred with a Gaussian kernel with standard deviation equal to 0.75. The reconstructed

image, the cartoon component, and the texture component are shown. Our reconstruction

more than doubles the SNR, going from 12.33 to 35.15. Similarly, in Figure 5.6 the fingerprint

image is blurred with a Gaussian kernel of standard deviation 0.74. The reconstructed image

contains much of the lost texture, effectively sharpening the small scale detail.

Unlike the previous examples, the semi-known case is more difficult, since small errors in

the blur kernel propagate throughout the image. To make the problem more challenging, we

have perturbed the blur kernel with random noise. Therefore, at best we will approximate
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(a) Origina imagel (b) Blurry image f , SNR=12.33 (c) Reconstructed image u + v,
SNR=35.15

(d) Cartoon component u (e) Texture component v

Figure 5.5: Deblurring results with known Gaussian Kernel with a standard deviation of
0.75 .

the blurring operation, since the model fits the true blur kernel to a class of parameterized

kernels. This is preferred over fully unknown deblurring, since in practice, the class of kernels

can be assumed from the type of degradation or from the acquisition process.

In Figure 5.7, the fingerprint image is blurred with a Gaussian kernel of standard devia-

tion 0.9 and is perturbed by 5% relative noise. The reconstructed image recovers much of the

texture and in terms of SNR, improves the quality of the image. In Figure 5.8, the Barbara

image is blurred with an Out-of-Focus kernel of radius 2.5 and is perturbed by 15.2% relative

noise. The blurred image loses many of the fine scale details of the scarf and the chair. Both

of these patterns are recovered in the reconstructed image even with the highly noise kernel.
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(a) Original image (b) Blurry image f , SNR=13.32 (c) Reconstructed image u + v ,
SNR=32.77

(d) Cartoon component u (e) Texture component v

Figure 5.6: Deblurring with Known Gaussian Kernel with a standard deviation of 0.74 .

In Figure 5.9, the Brodatz image is blurred using the Out-of-Focus kernel with a radius of

1.5 and is perturbed by 5.0% relative noise. The finer textures (for example, in the bottom

left quadrant of the image or along the lighter region in the top left quadrant) are removed.

The reconstructed image has improved the SNR and restored the lost texture. Lastly, in

Figure 5.10, the Chemical Plant image is blurred using the Out-of-Focus kernel with a radius

of 4.0 and is perturbed by 8.0% relative noise. Similar to the previous examples, we see a

gain in both edges and textures, with numerical support from the SNR.

Figure 5.11 provides comparisons with a standard deblurring regularizer. All images and

SNRs for Figure 5.11 are found using the known blur. Even with the known kernels, the SNRs

for images recovered by the ROF model are lower then those of our model with unknown
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(a) Original image (b) Blurry image f , SNR=12.02 (c) Reconstructed image u + v,
SNR=17.67

(d) Cartoon component u (e) Texture component v

Figure 5.7: Semi-Known Deblurring with Gaussian Kernel with a standard deviation of 0.9
and relative noise of 5%.
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(a) Original image (b) Blurry image f , SNR=15.77 (c) Reconstructed image u + v,
SNR=19.59

(d) Cartoon component u (e) Texture component v

Figure 5.8: Semi-Known Deblurring with Out-of-Focus Kernel with radius 2.5 and relative
noise of 15.2%.

kernel parameters. This supports the use of a weak texture norm to further regularize image

deblurring models, especially for unknown blur.
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(a) Original image (b) Blurry image f , SNR=16.11 (c) Reconstructed image u + v,
SNR=21.70

(d) Cartoon component u (e) Texture component v

Figure 5.9: Semi-Known Deblurring with Out-of-Focus Kernel with radius 1.5 and relative
noise of 5%.
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(a) Original image (b) Blurry image f , SNR=16.19 (c) Reconstructed image u + v,
SNR=21.63

(d) Cartoon component u (e) Texture component v

Figure 5.10: Semi-Known Deblurring of the Chemical Plant image with Out-of-Focus Kernel
with radius 4 and relative noise of 8%.
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(a) Fingerprint, SNR=16.14 (b) Barbara, SNR=18.91

(c) Brodatz, SNR=15.32 (d) Chemical Plant, SNR=20.16

Figure 5.11: Comparisons with TV -L2 (the ROF model). In this case, the kernel is known.
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CHAPTER 6

Low Patch-Rank Texture

6.1 Introduction to Patterned Texture

As seen in Chapter 5, the weak texture norms provide extra regularization on the recovered

image, better recovering many of the features from the original image. However, they are

unable to separate texture from noise. The reason for this is in the nature of the model:

the underlying assumption is that texture is highly oscillatory. This property does not

distinguish between texture and noise.

In this chapter, texture is modeled using the assumption that it is well patterned and

appears throughout the image. The model presented here is related to the works of non-local

imaging models and principal component analysis.

The non-local methods were first proposed by Buades, Coll, and Morel [10, 11] as a non-

local filter and were later formulated in a variational framework by Gilboa and Osher [32, 33].

The general framework involves replacing local derivatives by their non-local counterpart:

(∇wu) (x, y) := (u(y)− u(x))
√
w(x, y)

for all x, y ∈ Ω where w(x, y) = e−d(u(x),u(y)), d(u(x), u(y)) =
∫

Ω
G(t)|u(x+ t)− u(y + t)|2dt,

and G(t) is a Gaussian with appropriate parameters. In the discrete version, each pixel

is associated with a patch, and local differences are replaced by differences between pixels

that have similar patches. Using these patch-based differences in the energy encourages

repetitive behavior in the reconstructed image, thereby recovering the cartoon and texture

while removing random noise. In particular, the non-local extension of the classical ROF

68



model:

inf
u
E(u) = ||∇wu||L1 + λ||u− f ||2L2 (6.1)

has been shown to recover the texture well. Although these models are useful, due to the

global nature of images, they tend to be very slow in practice because of the frequent re-

computation of the weight function w(x, y), especially for tasks such as deblurring and sparse

reconstruction.

Robust Principal Component Analysis (PCA) was proposed by Candes, Li, Ma, and

Wright [13] in order to recover the sparse and low rank parts of a given matrix f . This is

also formulated as a decomposition problem: decompose f = u+ v, where u is sparse and v

is low-rank, by minimizing:

inf
u,v
EPCA(u, v) = ||u||L1 + λ||v||∗

s.t. f = u+ v

where || · ||∗ is the nuclear (or trace) norm, which is the sum of the singular values. Because

this method almost exactly recovers the original sparse and low rank components, it is be-

coming increasingly popular in practice. In the past few years, Robust PCA has been applied

to video surveillance [13], face recognition [13], and video denoising [38]. This variational

model was later extended by Gao, Cai, Shen, and Zhao, who replaced the L1 norm with a

tight frame regularization [29] and a total variation regularization [30]. The PCA models

also benefit from the split Bregman method, making their implementation both efficient and

fast.

Both non-local methods and robust PCA exploit the patterned nature of data. For

completeness, we mention that sparse decomposition methods exist in the class of dictionary

learning techniques. The main idea of this technique is to find a sparse representation for

an image with respect to a (learned) redundant dictionary. Elad and Aharon [26] and Zhou,
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Chen, Paisley, Ren, Sapiro, and Carin [78] both applied (different) Bayesian approaches in

order to construct dictionaries comprised of subparts of the given image. In [53], Mairal,

Elad, and Sapiro extended the idea of sparse representation over a dictionary to color image

restoration- in particular, denoising, inpainting and demosaicing. The idea of sparse coding

was later combined with the nonlocal methods in the work of Mairal, Bach, Ponce, Sapiro,

and Zisserman [51]. Similarly, in [24], the idea of structural clustering and dictionary learning

was proposed and used for highly textured image restoration. Works such as [52] have also

provided more efficient and less costly ways to implement these dictionary learning methods.

Both PCA methods and cartoon-texture models decompose a given f into two main

components, where one is “sparse” in some sense and the other is “patterned”. By combining

the patch-based methodology of non-local methods with the pattern nature of PCA methods,

the low patch-rank model shows a new way of interpreting texture.

Note that a version of this chapter appears in [68].

6.2 Description of the Model

The proposed model will be of a similar form to the classical cartoon-texture decomposition

models. Given an f , we decompose f = A(u+ v) + ρ by minimizing the following energy:

inf
u,v
E(u, v) = µ||u||TV + γ||v||Texture +

λ

2
||A(u+ v)− f ||22

where A is some degradation operator, for example a reduction operator for missing data.

In practice, we solve this minimization using a double Bregman splitting, which can enforce

f = A(u + v) exactly or can be relaxed in the presence of noise. The cartoon norm we use

is the (discrete) total variation defined as:
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||u||TV := ||Du||1 =
∑
i,j

|Dui,j|

where D = [Dx, Dy] is a differencing operator and |Dui,j| =
√

(Dxui,j)2 + (Dyui,j)2. For the

rest of this work, we take D to be the forward differences. Before going into more detail, we

first define our texture norm.

6.2.1 The Texture Norm

From an intuitive perspective, the texture component is a global and well-patterned structure

within a given image. The distinct patterns that make up the entire texture are called base

textures. We expect the number of base textures to be low, since an image may exhibit only

a few individual patterns. In particular, each patch (i.e. sub-block) should be comprised

of a combination of these base textures. Therefore, the overall collection of patches can

be spanned by a small set of base patches. If the patches are written as vectors, then the

collection of patch-vectors are (highly) linearly dependent, and thus have low rank. This

is the key to our definition of texture and its norm. Using this idea we have the following

definition for the collection of patches and the texture norm:

Definition 6.1. The patch map, P : Mn,m → Mr2,nm
r2 is defined by the following: For

v ∈ Mn,m, partition up v into r-by-r (non-overlapping) submatrices, labeled {Bi}
nm
r2

i=1. Next,

transform each of the Bi’s into a column vector of length r2, called wi. Then augment the

vectors together to form the new matrix:

Pv :=
[
w1....wnm

r2

]

The specific ordering which maps the patch to a patch-vector is not important, as long

as it is consistent (see lemma 6.12). For the results here, a raster scan (row by row) was

used to arrange the patches and a second raster scan was used to re-write each patch as a
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Figure 6.1: Patch Map

vector.

Note that the patch map does not increase the number of terms since the patches are

non-overlapping. Also, the collection of texture patches is found by applying the patch map

to the texture. Figure 6.1 depicts the patch map applied to a matrix. Using definition 6.1

and the behavior we expect on the texture, the natural norm on Pv would be:

||v||T :
?
= rank (Pv)

However, this energy is non-convex and difficult to use in practice. Furthermore, rank is not

a norm in the mathematical sense. Using the ideas from Robust PCA [13], we can replace

the rank by the nuclear/trace norm, which is the convex envelope to the rank and in fact a

norm. Thus, the suggested texture norm can be relaxed to:
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Definition 6.2. A function v ∈ T if it is mean zero and if the following quantity is finite:

||v||T := ||Pv||∗

where || · ||∗ is the nuclear/trace norm, i.e. the sum of the singular values.

For a discrete function v, the norm ||v||T is always finite, but we use this definition for a

more general v which will be addressed in future work.

Unlike the non-local methods, this norm does not explicitly calculate the weights between

patches, but rather compares the patches implicitly. In this way, our non-local measure is

computationally more efficient, while still being easy to compute and simple to minimize.

To better understand definition 6.2, here is an example of a texture and its norm.

Example 6.3. Let the texture be the zero mean vertical stripe pattern defined as:

vi,j =

 1 : j is even

−1 : otherwise

of size N by N . Then after applying the patch map with 2 by 2 patches:

P2×2v =


−1 −1

1 1

−1 −1 ....

1 1


Similarly, after applying the patch map with 3 by 3 patches:
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P3×3v =



−1 1

1 −1

−1 1

−1 1

1 −1

−1 1

−1 1 ....

1 −1

−1 1


In both cases the resulting matrices are of rank 1. It is easy to show that there is only one

non-zero singular value equal to rN . Consequently, ||Pr×rv||∗ = rN . Of course, v has the

same value in all Lp norms: ||v||Lp = N2 and its total variation is ||v||TV = 2N2. Since N is

much larger than r, the norms are well ordered: ||Pr×rv||∗ � ||v||TV and ||Pr×rv||∗ � ||v||Lp.

This type of behavior is desired in cartoon-texture models.

6.2.2 Proposed Model

With definition 6.2, the model is as follows: Given an f , we decompose f = A(u+ v) + ρ by

minimizing:

E(u, v) = µ||Du||1 + γ||Pv||∗ +
λ

2
||A(u+ v)− f ||22 (6.2)

for all (u, v) ∈ A, where the admissible set is A :=
{

(u, v)
∣∣∑u =

∑
f,
∑
v = 0

}
. In

practice, the minimizers remain in this admissible set without any formal constraints. The

operator A is assumed to be linear. For denoising, A is the identity; for deblurring it is a
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convolution with a blur kernel; and for inpainting or sparse reconstruction, it is a reduction

operator.

Recall that minimizing this energy ensures that the cartoon will be in discrete BV ,

thereby being piecewise smooth with sharp edges. The texture norm ensures a low patch-

rank collection of textures and thus a small amount of repetitive textures. Lastly, the residual

(or noise) term ρ := A(u + v) − f remains in L2 since it is assumed to have no particular

structure. In our examples, the noise is Gaussian; however, the residual term λ
2
||ρ||22 can be

replaced with other norms depending on the type of corruption. For example, impulse noise

and blind inpainting (of small regions) is better captured by using the L1 norm, i.e. λ||ρ||1.

In Figure 6.2, we provide a simple decomposition example. The cartoon consists of

concentric annuli, the texture is a repetitive stripe pattern, and the noise is random. In

this example, the rank of the texture is 1, while the cartoon and noise components have

full rank. It is worth noting that this decomposition is not equivalent to thresholding the

input images’ singular values. Figure 6.3 plots the singular values in descending order of

each of the images from Figure 6.2 (after applying the patch map). The texture has only

one singular value since it is comprised of only one pattern. The cartoon has many patch

patterns based on the various alignments of edges between the homogeneous regions, all with

varying degrees of importance, with the most important being the constant patch. The noise

has almost no coherent structures, which can be seen in its singular values. From Figure 6.3,

it is clear that the texture is the only component to have many zero singular values. Even if

the “smaller” singular values were thresholded, the texture component would still have the

smallest singular value support.

Remark 6.4. Like the cartoon-texture symmetry from the BV −G model, our cartoon and

texture norms are related in a curious way. For the cartoon u, the operator D is applied

and the result is measured in L1. For the texture v, the patch-texture is decomposed by the

singular value decomposition; consequently, there exists two unitary matrices U and V such

that: Pv = UΣV ∗, where Σ is a diagonal matrix that contains the singular values of Pv.

This is equivalent to the L1 norm on Σ, i.e. ||U∗PvV ||1. While the operator D looks at local
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(a) Original Image (b) Noisy

(c) Recovered (d) Cartoon

(e) Texture (rescaled) (f) Noise (residual)

Figure 6.2: Decomposition of a Synthetic Example Image

comparisons in pixel values, the operation v 7−→ U∗PvV compares patches non-locally. The

L1 norm is used to measure sparsity in jumps for the case of the cartoon and sparsity in

pattern in the case of the texture.

Remark 6.5. There are many ways to view our texture norm.

1. From the perspective of non-local methods, our norm measures the similarity between

patches based on linear dependence rather than element-wise differences. In these meth-

ods, the typical measure of similarity is the exponential of the L2 distance between
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(f) Noise

Figure 6.3: Singular Values in descending order

patches. This can cause problems when two patches agree exactly in texture but have

different means. Specifically, if the difference in means is large then the patches are

considered to be dissimilar, which can lead to improper comparisons between patches.

In practice, this leads to problems in contrast (see Figure 6.19).

2. From a dictionary approach, our texture norm creates a basis Bi for i = 1, ..., rank (Pv)

comprised of the singular vectors of Pv. All patches are thus comprised of linear

combinations from this basis, creating a implicit dictionary based on the image itself.
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3. From a cartoon-texture point of view, our texture norm induces a space (T, ||P · ||∗)

which is used in the energy. As with the functional spaces, this texture norm decreases

as the pattern becomes more repetitive.

(a) Original Grass Image (b) Cartoon (c) Texture

(d) Original Tank Image (e) Cartoon (f) Texture

Figure 6.4: Examples of Image Decomposition. The patch-rank of the texture components
for the Tank and Grass images are 51.0% and 19.1% respectively. Even seemingly random
textures have a small patch-rank. Notice that spiking (or point structures) in the original
images (a) and (d) are found in the cartoon components (b) and (e) and not the texture
components (c) and (f).

6.3 Theoretical and Analytical Remarks

In this section we will examine the behavior of this cartoon-texture separation model, with

the constraint that the input data f is of mean zero. This is not a restriction in practice

since it is simply a rescaling of the data.
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6.3.1 Characterization of Minimizers by Duality

In the continuous framework, the pre-dual of BV is G, the space of generalized functions. As

in definition 4.1, the space G is equivalent to the space of functions which are the divergence

of L∞ vector fields. The space and norm first appeared in the characterization of minimizers

for the ROF model and then in cartoon-texture models [55]. For our discrete model, we

would like an analogous space which has a similar duality to our discrete BV space. In [3],

a discrete G is given as follows:

Definition 6.6. The dual of (discrete) BV is the (discrete) space G which has the following

norm:

||v||G := inf
v=div~g

||
√

(g1
i,j)

2 + (g2
i,j)

2||L∞

where ~gi,j = (g1
i,j, g

2
i,j).

We will consider the discrete divergence operator to be div =
(
D−x , D

−
y

)
· where D−i

are the backward differences. It can be shown that this definition of divergence yields

div = −D∗, where D∗ is the adjoint of the operator from the definition of discrete TV .

This is necessary to insure a discrete duality principle, or in other words, for any u and v

| 〈u, v〉 | ≤ ||Du||1||v||G. A similar duality is needed with respect to the texture norm, which

follows from the following properties of the patch map:

Lemma 6.7. If P is a patch map then

1. It is a bijective linear operator.

2. P is an isometry with respect to all element-wise norms.

3. ||Pv||∗ ≤
√
n||v||2, where n2 is the size of the matrix v.

4. The dual norm of ||P · ||∗ is ||P · ||s, where || · ||s is the spectral norm.
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There are sharper bounds for condition 3 above; however, they depend on the patch

size and the texture component. The proofs for each of the above are easy to show. From

these properties, the texture duality can be shown to be: | 〈u, v〉 | ≤ ||Pu||s||Pv||∗. Based on

these dualities, there are four characterization theorems listed below. The characterization

is centered around the pure decomposition version of the model (when A = I):

E(u, v) = µ||Du||1 + γ||Pv||∗ +
λ

2
||u+ v − f ||22 (6.3)

The theorems give a relationship between the parameters (µ, γ, λ) and the quantities ||f ||G

and ||Pf ||s = σmax (Pf) (which is the maximum singular value of the patch-form of the

image). The first two theorems address the two trivial decompositions where no cartoon

appears and the optimal solutions vary between the texture and residual terms. The proofs

of these theorems can be found in Section 7.2.

Theorem 6.8. If 0 < γ < 2µ
n

, then the minimizer (u, v, ρ) must have u = 0. If in addition

||Pf ||s ≤ γ
λ

, then the minimizer (u, v, ρ) yields u = ρ = 0 and v = f .

Theorem 6.9. If ||f ||G ≤ µ
λ

and ||Pf ||s ≤ γ
λ

then the minimizer (u, v, ρ) must yield u =

v = 0 and ρ = f .

The last two theorems are the more interesting cases. By choosing the parameters ac-

cordingly, the resulting optimal solutions will provide non-trivial decompositions.

Theorem 6.10. If ||f ||G > µ
λ

and ||Pf ||s > γ
λ

, then the minimizer yields ||ρ||G = µ
λ

,

||Pρ||s = γ
λ

, 〈ρ, u〉 = µ
λ
||Du||1, and 〈ρ, v〉 = γ

λ
||Pv||∗.

Theorem 6.11. If ||f ||G ≤ µ
λ

and ||Pf ||s > γ
λ

, then three optimal cases hold:

(1) u = 0, ||ρ||G < µ
λ

, ||Pρ||s ≤ γ
λ

, and 〈ρ, v〉 = γ
λ
||Pv||∗

(2) v = 0, ||ρ||G = µ
λ

, ||Pρ||s < γ
λ

, and 〈ρ, u〉 = µ
λ
||Du||1

(3) ||ρ||G = µ
λ

, ||Pρ||s = γ
λ

, 〈ρ, v〉 = γ
λ
||Pv||∗, and 〈ρ, u〉 = µ

λ
||Du||1

These theorems provide some insight into choosing coefficients to obtain particular be-

haviors in the minimizers.

80



6.3.2 Characterization of Texture based on P

We can further characterize solutions based on our patch map. The operator P is implicitly

dependent on both the way in which the elements are re-assigned and the patch size. First,

to address the “reshaping” we have the following theorem:

Lemma 6.12. Let P1 and P2 be two patch maps which are identical except for the order

in which they map the sub-blocks of v into the columns of Piv and the elements within the

sub-block of v into the rows of Piv. Then we have that for all v : ||P1v||∗ = ||P2v||∗.

By this lemma we see that our method is independent of the ordering used to reshape the

texture matrix into the patch-form.

Next, let us address the dependence of the texture component on the patch size r (for now

assume the patches are square). Like the tuning parameters in the energy, this parameter

also determines certain characteristics of the minimizers. For example, the patch size has a

subtle relationship with the various “texture frequencies.” Consider the following example:

Example 6.13. Let f(x, y) be a mean zero function that has an oscillation of period T only

in the x-direction (and constant along the y-direction). Let r be the length of the square

patches.

1. If T < r, then the patch-rank must be larger or equal to 1. If there are small scale

symmetries during one-period, then the patch-rank can be equal to 1. For example,

take r = T
2

. If f(x, y) = −f(x + T
2
, y), then the patch on [1, T

2
] × [1, T

2
] is equal to

the negative of the patch on [T
2

+ 1, T ] × [T
2

+ 1, T ]. It follows that there is only one

underlying base patch, so the rank is 1.

2. If T > r, then the patch-rank must be larger or equal to 1. This can be shown by using

the previous argument with r = 3T
2

.

3. If T = r, then the patch-rank will be 1.
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From this example, it is clear that to minimize the amount of patches needed to describe

a given texture, the parameter r should be as close to the the pattern period as possible.

Lastly, the following lemma address the partitioning of the texture component.

Lemma 6.14. Let P be a patch map and let S be a index shifting operator (with periodic

boundary conditions), then for any matrix v, ||PSv||∗ = ||Pv||∗ holds.

The lemma shows that the patch map is invariant under uniform translations of the indices,

therefore our proposed method is invariant of the partitioning grid. This is easy to show, since

shifting the grid is equivalent to reordering the indices but does not change the relationship

between indices, as in Lemma 6.12.

6.4 Numerical Method

The cartoon and texture are both defined with respect to fine (lower-dimensional) struc-

tures: co-dimensional 1 edges in the cartoon and co-dimensional 1 and 2 patterns in the

texture. They are also both measured by L1 type norms, which are efficiently solved by

splitting methods — in our case the split Bregman Method [37]. The added advantage in

these splitting methods is that lower-dimensional structures get enhanced. This is normally

referred to as contrast enhancement, i.e. the sharpening of edges. An analogous effect seems

to sharpen the “texture contrast,” specifically linear features and isolated point structures.

It is interesting to note that in practice, the Bregman iteration removes any block effects

from the texture component, which occurs from the non-overlapping patch structure.

Below is an outline of the split Bregman technique applied to our model. We use a double

Bregman, since both terms u and v are split. First introduce the auxiliary variables d1 = Du

and d2 = Pv:

min
d1=Du,d2=Pv

µ||d1||1 + γ||d2||∗ +
λ

2
||A(u+ v)− f ||22

Next add back the constraints d1 = Du and d2 = Pv, enforcing them with the Bregman

82



variables b1, b2:

min
d1,d2,u,v

µ||d1||1 + γ||d2||∗ +
λ

2
||A(u+ v)− f ||22 +

λ1

2
||d1 −Du+ b1||22 +

λ2

2
||d2 − Pv + b2||22

This splitting decouples the original equation into the following system:

(un+1, vn+1) = argmin
un,vn

λ

2
||A(un + vn)− f + fn||22 +

λ1

2
||dn1 −Dun − bn1 ||22 (6.4)

+
λ2

2
||dn2 − Pvn − bn2 ||22

dn+1
1 = argmin

dn1

µ||dn1 ||1 +
λ1

2
||dn1 −Dun+1 − bn1 ||22 (6.5)

dn+1
2 = argmin

dn2

γ||dn2 ||∗ +
λ2

2
||dn2 − Pvn+1 − bn2 ||22 (6.6)

bn+1
1 = bn1 +Dun+1 − dn+1

1 (6.7)

bn+1
2 = bn2 + Pvn+1 − dn+1

2 (6.8)

In equation (6.4), we have also included the Bregman variable fn, which is used when one

wants to enforce the constraint A(u+ v) = f . Each of the subproblems above can be easily

solved, as follows. For the first subproblem, from Lemma 6.12 and the tensor discussion in

the appendix section 7.1, we can re-write equation (6.4) as:

(un+1, vn+1) = argmin
un,vn

λ

2
||A(un + vn)− f + fn||22 +

λ1

2
||dn1 −Dun − bn1 ||22

+
λ2

2
||P−1dn2 − vn − P−1bn2 ||22

Since this problem is differentiable, taking the first variation yields the following linear

system: 
(λA∗A− λ1∆)un+1 + λA∗Avn+1 = F1

λA∗Aun+1 + (λA∗A+ λ2) vn+1 = F2

(6.9)
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where F1 = λA∗ (f − fn) − λ1D
∗ (dn1 − bn1 ) and F2 = λA∗ (f − fn) + λ2P−1 (dn2 − bn2 ). This

equation can be solved completely (in the Fourier domain) or approximated with a few

iterations of a Gauss-Seidel sweep. Next, equation (6.5) can be written out explicitly as a

simple shrink:

dn+1
1 = shrink

(
Dun+1 + bn1 ,

µ

λ1

)
where the shrink function above is defined pointwise for 2-d vectors x as shrink(x, τ) :=

max (|x|2 − τ, 0) x
|x|2 , and where | · |2 is the vector 2-norm and τ ∈ R. Lastly, equation (6.6)

can be written explicitly as:

dn+1
2 = SV T

(
Pvn+1 + bn2 ,

γ

λ2

)
where SV T is singular value thresholding, which is defined as follows: for a matrix M whose

singular value decomposition (SVD) is given by M = UΣV ∗, the singular value thresholding

function is defined as SV T (M, τ) := U max(Σ− τI, 0) V ∗, where the max is taken element-

wise. There are methods to compute the SV T without using the SVD (see [12]), which

can speed up the computations for large matrices. Using these formulas, the algorithm is

presented in the next section.

6.4.1 The Algorithm

The splitting from the previous section reduces the problem from a difficult non-linear one

to a sequence of simple linear (or explicit) subproblems. The algorithm involves two main

loops: the inner loop, which solves each minimization, and the outer loop, which adds back

the error and re-solves the minimization. The outer loop’s termination is dependent on the

problem we are solving, specifically on the amount of noise. Given a tolerance tol, for pure

decomposition with no noise or for inpainting with no noise, the outer loop is iterated until

||f − A(un+1 + vn+1)||2 ≤ tol. In the presence of noise with standard deviation σnoise, the

stopping criteria becomes ||f − A(un+1 − vn+1)||2 ≈ σnoise. The number of outer loops also

determine the amount of texture-noise separation that occurs.
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Algorithm

Initialize u0 = f ,v0 = 0 d0
1,x = d0

1,y = b0
1,x = b0

1,y = 0n,n, and d0
2 = b2 = 0

r2,n
2

r2

while Outer Iteration do
while Inner Iteration do

(un+1, vn+1) = GSn

dn+1
1 = shrink

(
Dun+1 + bn1 ,

µ

λ1

)
dn+1

2 = SV T

(
Pvn+1 + bn2 ,

γ

λ2

)
bn+1

1 = bn1 +Dun+1 − dn+1
1

bn+1
2 = bn2 + Pvn+1 − dn+1

2

end while
fn+1 = fn + f − (un+1 + vn+1)

end while

where GSn is the application of Gauss-Seidel sweeping to equation (6.9). Typically, only a

few sweeps are necessary, since only partial convergence is needed.

6.5 Results

In the previous section, methods for choosing appropriate parameters were given in the

examples and theorems. Before discussing the numerical results, a summary with one more

parameter bound will be provided. Informally, an upper bound on the number of expected

textures can be predicted, thereby providing a bound on rank(Pv). As previously mentioned,

the texture is comprised of highly oscillatory functions. If we model them as sums of sines and

cosines, then the Fourier transform yields sums of Dirac delta functions at those frequencies.

In practice, the textures appear as pairs of spikes (of various amplitudes) in the Fourier

domain (see Figure 6.5). By counting the number of spikes in the Fourier domain, one

can estimate an upper bound for the patch-rank (it is only an upper bound since jump

discontinuities can contribute to the spikes).

Let r × r be the patch size of Pv, then we have the following:
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Figure 6.5: Fourier Transform of Brodatz

1. From the argument above, take r2 to be close to half the number of “large” spikes in

|F (v) |.

2. From Example 3.8, if the largest texture period is T , then take r to be as close to T

as possible.

3. Choose (µ, γ, λ) based on the theorems 6.8, 6.9, 6.10, and 6.11. Also, the ratio µ
λ1

determines the amount of cartoon, while the ratio γ
λ2

determines the amount of texture.

4. Normalizing f such that
∑
|fi,j| = 1 (or max |fi,j| = 1) and

∑
fi,j = 0 helps when

choosing (µ, γ, λ).

5. Setting λ = λ1 = λ2 gives appropriate results and removes two parameters from the

model.

6. In regards to the algorithm, the number of outer loops determines the “amount of edges

and texture” that is added back. If the original image is noisy, this parameter must

be tuned in order to avoid adding back the noise. As mentioned in [37], the number of

GS sweeps can be fixed to a value between 2 to 5 (only partially converging) and the

method will give satisfactory results.

For the results that follow we take 5 by 5 patches (unless otherwise stated), λ = 1,
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µ ∈ [.75, 2], and γ ≈ σmax (Pv).

6.5.1 Decomposition

Figure 6.6: Barbara

For the pure cartoon-texture decomposition problem, we would like to remove the texture

component without removing other key features, such as edges, shading, etc. Take, for

example, the Barbara image (Figure 6.6). We estimated approximately 25 spikes in the

Fourier domain, so a patch size of 5× 5 is more than sufficient. In Figure 6.7, our method is

compared to the standard TV −G model [4] and the TV −L2 model (i.e. ROF model). For

TV − L2, we use the Split Bregman approach from [37]. For all models, the parameters are

chosen in order to have the same L2 norm on the texture component. As seen in Figure 6.7,

our method provides similar results to the classical TV −G separation while removing fewer

edges, for example, Barbara’s hair and the background. Unlike our method, the TV − L2

model does not remove the texture evenly.

In Figure 6.8, the texture component’s dependence on the patch size is examined. The

similarity between the textures suggest some flexibility in determining the patch size, al-

though the smaller patch size yields less texture while the large patch size removes non-

texture features. In Figure 6.9, the texture component’s dependence on γ (the texture

norm’s coefficient in the energy) is investigated by fixing µ and λ. Increasing γ gives smaller

patch-ranks and removes less non-texture features, while decreasing γ removes more details

from the cartoon (see theorem 6.8).
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(a) Our Cartoon (b) Our Texture (patch-rank 6)

(c) TV −G Cartoon (d) TV −G Texture

(e) TV − L2 Cartoon (f) TV − L2 Texture

Figure 6.7: Cartoon-texture decomposition of Barbara

Fixing the texture from Figure 6.8d and decomposing the patch-form by the singular

value decomposition yields: Pv = UΣV ∗, i.e. v = P−1 (UΣV ∗), where the diagonal matrix
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(a) Cartoon p=4 (b) Texture p=4

(c) Cartoon p=5 (d) Texture p=5

(e) Cartoon p=7 (f) Texture p=7

Figure 6.8: Cartoon-texture decomposition of Barbara

Σ = diag(σ1, ..., σr, 0...0) contains the r singular values in descending order. In Figure 6.9,

this texture is then reconstructed using only some singular vectors (thresholding Σ). Notice
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(a) Cartoon (Patch-Rank 4) (b) Texture (Patch-Rank 4)

(c) Cartoon (Patch-Rank 6) (d) Texture (Patch-Rank 6)

(e) Cartoon (Patch-Rank 7) (f) Texture (Patch-Rank 7)

Figure 6.9: Decompositions with different Patch-Ranks ( fixed µ and λ, γ variable)

that the singular values capture the relative significances of the base textures.

Lastly, Figure 6.4 shows the wide range of textures that can be capture by our model. The
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Tank and Grass images have visually random patterns yet have small patch-ranks (51.0%

and 19.1% respectively).

(a) Using First Singular Vector (b) Using First 2 Singular Vectors

(c) Using First 4 Singular Vectors (d) Full Texture

Figure 6.10: Various Singular Vectors for a Fixed Texture

6.5.2 Pattern Regularization

Since our texture norm penalizes non-uniform behavior between patches, our decomposition

can be applied to image regularization. By regularizing the patterns, irregularities in the

image are removed. In Figures 6.11 and 6.12, we regularize the highly textured Brodatz

image using equation (6.3). The image f is decomposed into f = u + v + ρ, where u + v is

the regularized image and ρ contains the irregularities. In Figure 6.12, it can be seen that, in

our method, the essential vertical pattern is preserved, while the unwanted point structures
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are removed. Furthermore, our method also retains more texture than the standard median

filter.

(a) Original Image (b) Median Filter (c) Our Method

Figure 6.11: Image Regularization

(a) Original-Zoomed In (b) Median Filter- Zoomed In (c) Our Method- Zoomed In

(d) Median Filter-Residual (e) Our Method-Residual

Figure 6.12: Image Regularization
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6.5.3 Denoising

(a) Cartoon (b) Texture

(c) Noise (residual)

Figure 6.13: Decomposition of a Synthetic Example Image using TV −G

In Figure 6.2, we saw the nearly-perfect recovery of a noisy synthetic image. Texture-

noise separation is difficult for most cartoon-texture decomposition methods, see Figure 6.13.

In Figures 6.14 and 6.15, the Brodatz image is degraded by Gaussian noise of zero mean

and recovered by TV − L2, NLTV − L2, and our method. For NLTV − L2, to make the

comparison as similar as possible, we use a semi-local version with the same patch size as in

our method [32, 33]. In both the TV −L2 and the NLTV −L2 models, the noise is removed

from the top left quadrant. However, in more textured quadrants, more texture loss is seen

(see Figure 6.15). For TV − L2 (PSNR=30.2), although some texture is recovered, only

the cartoon-like regions are recovered well. The NLTV − L2 (PSNR=31.8) recovers both
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the cartoon and texture well, but loses some texture in order to obtain a particular level of

smoothness. Our method recovers both parts well, with the highest PSNR of 32.8, while

being faster than the semi-local method (restricting the window size to 11 by 11). The slight

oscillatory pattern that appears in the top left quadrant is an artifact of the non-locality of

SVD.

(a) Original Image (b) Noisy Image

Figure 6.14: Decomposition of a Synthetic Example Image

6.5.3.1 Denoising: Quantitative Comparisons

Method Recovered SNR Cartoon SNR Texture SNR Noise Entropy Error Entropy
Ours 19.3 19.0 17.3 4.43 3.34

TV-L2 8.6 N/A N/A 3.48 4.29
NLTV-L2 19.1 N/A N/A 4.42 3.50
TV-G-L2 11.2 13.4 5.9 4.36 4.31

TV-H−1-L2 10.8 11.6 6.6 4.35 4.37

Table 6.1: Denoising of the Synthetic image. Each method has the same noise variance (L2

norm). The entropy of the true noise is 4.53.

In general, there are no exact metrics in which to compare textures; however, there are

some features which one prefers. In particular, a “good texture” component is noise-free and

contains many sharp small-scale details. Since noise is dense and has many false spikes, we

can measure the noise level in the texture component by computing the sparsity of the texture

component (as a percent of total pixels) and the percent of pixels which are considered edges

(after applying a gradient based edge detector). The smaller the value of both the edge and
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Method SNR Edges Sparsity Patch-Rank Noise Entropy Error Entropy
Ours 15.14 10.9% 61.8% 15.1% 3.81 3.72

TV-L2 14.37 N/A N/A N/A 3.75 3.78
NLTV-L2 15.14 N/A N/A N/A 3.80 3.79
TV-G-L2 11.13 16.4% 63.3% 83.9% 4.00 4.15

TV-H−1-L2 11.50 11.6% 64.4% 82.6% 4.05 4.14

Table 6.2: Denoising of a noisy Brodatz-Wood image. Each method has the same noise
variance (L2 norm) and same L2 norm on the texture component. The entropy of the true
noise is 3.81. The patch-ranks for TV-G-L2 and TV-H−1-L2 are computed after thresholding
the smaller singular values.

Method SNR Edges Sparsity Patch-Rank Noise Entropy Error Entropy
Ours 7.83 8.8% 66.5% 15.6% 3.79 3.28

TV-G-L2 4.26 10.6% 66.6% 98.1% 3.78 3.94
TV-H−1-L2 5.84 13.0% 67.3% 100% 3.78 3.78

Table 6.3: Denoising of the noisy Grass image. Each method has the same noise variance
(L2 norm) and same L2 norm on the texture component. The entropy of the true noise is
3.80. The patch-ranks for TV-G-L2 and TV-H−1-L2 are computed after thresholding the
smaller singular values.

Method SNR Edges Sparsity Patch-Rank Noise Entropy Error Entropy
Ours 11.86 7.2% 65.6% 40% 3.29 3.26

TV-G-L2 9.53 30.2% 67.6% 100% 3.35 3.49
TV-H−1-L2 9.57 0.3% ∗ 67.8% 100% 3.34 3.49

Table 6.4: Denoising of the noisy Tank image. Each method has the same noise variance
(L2 norm) and the exact same cartoon component. The entropy of the true noise is 3.28.
The patch-ranks for TV-G-L2 and TV-H−1-L2 are computed after thresholding the smaller
singular values. ∗Note: The TV-H−1-L2 decomposition has a texture component that is
mostly low amplitude noise, so the gradient detector outputs almost no edges.
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(a) TV, PSNR=30.2 (b) TV: Zoomed In (c) TV: Residual

(d) NLTV: PSNR=31.8 (e) NLTV: Zoomed In (f) NLTV: Residual

(g) Our Method: PSNR=32.8 (h) Our Method: Zoomed In (i) Our Method: Residual

Figure 6.15: Denoising of Brodatz Image

intensity sparsity, the better the texture. To measure the amount of noise that is removed

by a method, we compute the entropy of the noise component and compare it to the known

entropy of the added noise. The entropy is also applied to the error term to measure the

amount of structure and texture that is lost to the noise component. A small error entropy

means that the recovered image is closer to the original in terms of small-scale features (since
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oscillations may appear as larger entropy). Lastly, for reference, the patch-rank is computed

for each method. We compare our proposed texture method to standard ones using various

texture and noise metrics.

In Table 6.1, the Synthetic image from Figure 6.2 is denoised by various methods. Each

method has the same variance on their corresponding noise component. Since the true

cartoon and true texture is known, we only compare the SNR of each component. Notice that

both of the entropy metrics order the methods in a similar (but not exactly equivalent) way as

the SNR. In Table 6.2, a noisy version of the Brodatz-Wood image is denoised. Our method

does as well as the non-local methods in terms of SNR, but better in terms of removing

the appropriate noise distribution (measured by entropy). Compared to the other standard

cartoon-texture methods, our proposed model outputs a less noisy texture component. In

the next two tables, we only compare our method with other cartoon-texture decomposition

methods. In both cases, it is clear that our method better handles texture-noise separation.

Using these results, we can partial conclude that this pattern-based interpretation is a more

appropriate definition for texture than those that are based on oscillations.

6.5.4 Deblurring

Blurry images tend to have severe texture loss and require methods which reconstruct the

texture well. In Figure 6.16, the Barbara image is blurred by a Gaussian kernel with a

standard deviation of 1.1. We compare our recovered image with the TV-L2 and NLTV-L2

[77] deblurring methods. In terms of PSNR, our method better reconstructs the image with

the Non-local total variational method getting very close results. Visually, the textures on

the left and right ends of the scarf are sharper in our recovered image than in the others. Since

the production of sharp edges are the key to deblurring methods, we can also quantitatively

compare the results by measuring the percent of edge pixels in the image (using a gradient

based edge detector). The blurred image has 15.4% edge pixels, the TV method has 16.3%

edge pixels, the NLTV method has 18.6% edge pixels, while ours has the most at 19.2%

edge pixels. Using this metric, we can conclude that our method better produces features
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(a) Barbara with blur (b) TV-L2, PSNR= 21.2

(c) NLTV-L2, PSNR= 22.6 (d) Our Model, PSNR=22.7

Figure 6.16: Deblurring Comparison

of sharp contrast. On a side note, in practice the texture regularized images do not seem

to have the typical ringing effect associated with deconvolution problems. This leads us to

believe that texture regularized models are more stable for deblurring.

6.5.5 Inpainting: Sparse Reconstruction

In this and the next section, we discuss texture-regularized inpainting. There are two main

types of inpainting: missing regions and sparse reconstruction. For inpainting missing re-

gions, the image is first separated into its components, with the cartoon part recovered using

a “structure” based inpainting, while the texture part is inpainted by texture-based tech-

niques (for more on this methodology see [9]). The numerical results presented here focus
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(a) Corrupted Image (b) Recovered

Figure 6.17: Inpainting Example

on sparse reconstruction. As an example, our method recovers an image almost perfectly

(RMSE is less than 0.08) with more than 50% of the pixels randomly removed. In Figure

6.18 and 6.19, we compare our method to TV −L2 and NLTV −L2 inpainting on an image

with more than 65% of the pixels randomly removed. Our method is comparable in speed

to the TV − L2 and faster than the NLTV − L2. Our method recovers the image better

(PSNR=44.0) than the TV − L2 (PSNR=39.6), while being comparable to NLTV − L2

(PSNR=43.4).

6.5.5.1 Sparse Reconstruction and Denoising: Quantitative Comparisons

Statistic Recovered RMSE Original RMSE RMSE Decrease Patch Rank
Minimum 0.035 0.091 -33.4% 5.5
Maximum 0.159 0.333 -83.0% 50.5

Mean 0.088 0.228 -61.0% 29.4
Median 0.085 0.231 -59.3% 30.9

Table 6.5: Statistics on our algorithm applied to 100 images from the database in [45].

Lastly, we investigate the type of textures which can be well-represented within this

framework. To do so, we generate a set of corrupt highly textured images by adding a fixed

amount of noise to 100 images from [45] and then sparse sampling these images (removing

half of the number of pixels). Our algorithm was applied to all of the corrupt images with

parameters set at around µ = 1, λ = λ1 = λ2 = 1, 3 GS sweeps, 5 inner iterations, and
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(a) Original Image (b) Corrupted Image, less than
35% retained

(c) TV − L2, PSNR=39.6

(d) NLTV − L2, PSNR=43.4 (e) Our Method, PSNR=44.0

Figure 6.18: Inpainting Comparison

15 outer iterations. The patch size varied from 10 by 10 to 20 by 20 to match the texture

scale of each individual image. The parameters were choosen to yield patch-ranks under 50.

Table 6.5 displays statistics on the RMSE between the recovered image and the original,

the RMSE between the original and the corrupt image, the precentage decrease in RMSE

after the recovery, and the patch-rank (which is normalized out of 100). By considering the

RMSE, the amount the RMSE changed, the patch rank, and visual metrics, we can evaluate

which textures are well-represented by our method.

Although the patches are formed on a grid, the resulting textures do not have to be grid

like in structure nor in pattern. Based on this experiment, our method is not sensitive to

the angle or directionality of the texture pattern, the texture plane (i.e. frontal verse non-

frontal textures), the geometry of the pattern, nor the geometry of the texture plane. For

example, in Figure 6.20, the texture resides on a warped or non-uniform geometry, which
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(a) TV − L2 (b) NLTV − L2 (c) Our Method

Figure 6.19: Inpainting Comparison: Zoomed in

does not align with the patch grid. However, our method preforms well on this textured

image and others like this. Our method has difficulty in capturing texture which does not

have a regular pattern or has highly deviating structures. An example of this can be found

in Figure 6.21, where the patterns have many irregular shapes over many scales. In this

example, the texture component does not have a geometrically uniform pattern and we can

see loss of texture in the recovered image.

(a) Original (b) Corrupt (c) Our Method

(d) Our Cartoon (e) Our Texture

Figure 6.20: Joint Sparse Reconstruction and Denoising: Warped/Non-Uniform Geometry
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(a) Original (b) Corrupt (c) Our Method

(d) Our Cartoon (e) Our Texture

Figure 6.21: Joint Sparse Reconstruction and Denoising: Multiscale with Irregularities
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CHAPTER 7

Some Theoretical Remarks on Low Patch-Rank

Textures

7.1 A Tensor Interpretation

As a small remark, since the patch map is a linear map between matrices it can be associated

with a tensor. The map P is a rank 4 tensor (not to be confused with matrix rank) which

maps Rn,n into Rr2,n
2

r2 . Associating the map P with the tensor P =
[
P k,l
i,j

]
, the operation

P : v 7→ w is defined by the following (using Einstein notation, where repeated indices are

summed):

wi,j = P k,l
i,j vk,l (7.1)

where the elements of the tensor are defined as:

P k,l
i,j =

 1 : if (i, j) =
(

(m(k)− 1)r +m(l), 1 + n(k−m(k))
r2

+ l−m(l)
r

)
0 : otherwise

and m(·) := mod(· − 1, r) + 1.

The tensor is bijective since it is a unique invertible mapping. Furthermore, the tensor

is a unitary transformation with respect to the element-wise inner product, since for all v1
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and v2, 〈Pv1,Pv2〉 = 〈v1, v2〉 holds.

7.2 Proofs of Theorems

The proofs below are a generalization of the theory from Gilles and Meyer’s work [35]. The

main difference is that extra care must be given since there is no duality between our cartoon

and texture norms.

Lemma 7.1. Take any Banach space with norm || · || and dual norm || · ||′. Given an f that

is decomposed into f = u+ v by minimizing the following:

||u||+ λ

2
||v||22

then the following hold.

1. If ||f ||′ ≤ 1
λ

, then u = 0 and v = f .

2. If ||f ||′ > 1
λ

, then ||v||′ = 1
λ

and 〈u, v〉 = 1
λ
||u||.

Lemma 7.1 will be used in many of the arguments in the various proofs. Similarly to the

work [35], the cartoon, texture, and error norms have a proper ordering.

Lemma 7.2. For all n by n matrices g (with mean zero), we have the following:

||Pg||∗ ≤
√
n||g||2 ≤

n

2
||Dg||1

The lemma above provides a comparison between the terms in the energy and allows for the

generalization of duality. More precisely, Lemma 7.3 describes the dual pairing relationships.

Lemma 7.3. For all n by n matrices u and v, we have the following:

| 〈u, v〉 | ≤ ||Du||1||v||G

| 〈u, v〉 | ≤ ||Pu||s||Pv||∗
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Proof. For the first inequality, take any (u, v) and let there exist a g such that v = divg, so

| 〈u, v〉 | = | 〈u, divg〉 |

= | 〈Du, g〉 |

≤ ||Du||1||g||∞

Then taking the infimum with respect to all possible g yields the inequality. For the second

inequality, we use the properties of P .

| 〈u, v〉 | = | 〈Pu,Pv〉 |

≤ ||Pu||s||Pv||∗

Note that the spectral and trace norms are dual.

In order to apply Lemma 7.1 to our model, we look at the pair (u, v) simultaneously. To

do so, define w = u + v to be the reconstructed image comprised of both components with

the following induced norm: ||w|| = inf {µ||Du||1 + γ||Pv||∗}. The dual norm is defined as

||g||′ = sup
{

1
µ
||g||G, 1

γ
||Pg||s

}
. Writing the energy in terms of w yields:

E(w) = ||w||+ λ

2
||f − w||22

we will consider this in many of the proofs that follow.

Throughout this appendix, the energy E will be a functional with arguments u, v, and ρ

depending on the particular proof; however, all are equivalent by the relationship u+v+ρ = f

with f given.
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Theorem 7.4. If 0 < γ < 2µ
n

then the optimal decomposition yields u=0.

Proof. Examining the energy with respect to the cartoon component u and the residual ρ,

the energy can be bounded below by using Lemma 8.2 and positivity of the norms.

E(u, ρ) = µ||Du||1 + γ||P(f − u− ρ)||∗ +
λ

2
||ρ||22

≥ 2µ

n
||Pu||∗ + γ||P(f − u− ρ)||∗ +

λ

2
||ρ||22

≥ γ {||Pu||∗ + ||P(f − u− ρ)||∗}+
λ

2
||ρ||22

≥ γ||P(f − ρ)||∗ +
λ

2
||ρ||22

= E(0, ρ)

For all u 6= 0 we have ||Pu||∗ > 0, therefore u = 0 is the minimizer.

Next, using theorem 7.4 with an additional constraint on f yields another trivial mini-

mizer.

Theorem 7.5. If 0 < γ < 2µ
n

and ||Pf ||s ≤ γ
λ

then the optimal decomposition yields u =

ρ = 0 and v = f .

Proof. From theorem 7.4, since 0 < γ < 2µ
n

, the energy is equivalent to the following:

E(0, ρ) = γ||P(f − ρ)||∗ +
λ

2
||ρ||22

By Lemma 7.1, since ||Pf ||s ≤ γ
λ
, then ρ is identically 0.

The theorems above provide the conditions in which the texture and/or residual compo-

nent contain all of the information. The theorem below provides the final trivial case.
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Theorem 7.6. If ||f ||G ≤ µ
λ

and ||Pf ||s ≤ γ
λ

then the optimal decomposition yields u = v = 0

and ρ = f .

Proof. Consider the simultaneous energy (with respect to w).

E(w) = ||w||+ λ

2
||f − w||22

The value of f in the dual norm can be calculated by using the assumptions:

||f ||′ = sup

{
1

µ
||f ||G,

1

γ
||Pf ||s

}
≤ sup

{
1

λ
,

1

λ

}
=

1

λ
.

Applying Lemma 7.1 yields w = 0, which implies both u = 0 and v = 0.

For the first non-trivial decomposition, theorem 7.7 characterizes minimizers when f is

large with respect to particular norms.

Theorem 7.7. If ||f ||G > µ
λ

and ||Pf ||s > γ
λ

, then the following holds for all minimizers:

||ρ||G = µ
λ

, ||Pρ||s = γ
λ

, 〈ρ, u〉 = µ
λ
||Du||1, and 〈ρ, v〉 = γ

λ
||Pv||∗.

Proof. Calculating the simultaneous dual norm yields the lower bound ||f ||′ ≥ 1
λ

and there-

fore by Lemma 7.1 ||ρ||′ = 1
λ

and 〈w, ρ〉 = 1
λ
||w||. Since the simultaenous dual norm is

defined as ||ρ||′ = sup
{

1
µ
||ρ||G, 1

γ
||Pρ||s

}
, we have the following bounds on the residual ρ:

||ρ||G ≤ µ

λ

||Pρ||s ≤
γ

λ
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By the duality principles from lemma 7.3, the following also holds:

〈ρ, u〉 ≤ ||Du||1||ρ||G =
µ

λ
||Du||1

〈ρ, v〉 ≤ ||Pv||∗||Pρ||∗ =
γ

λ
||Pv||∗

Together, these inequalities give:

〈u+ v, ρ〉 ≤ 1

λ
{µ||Du||1 + γ||Pv||∗}

The inequality above is equivalent to 〈w, ρ〉 ≤ 1
λ
||w||, for w = u + v. However, by Lemma

7.1 〈w, ρ〉 = 1
λ
||w||, thus equality holds for all related inequalities: ||ρ||G = µ

λ
, ||Pρ||s = γ

λ
,

〈ρ, u〉 = µ
λ
||Du||1, and 〈ρ, v〉 = γ

λ
||Pv||∗.

Lastly, when f is small in one dual norm and large in the other many cases occur. The

following theorem provides the various optimal solutions and their characterizations.

Theorem 7.8. If ||f ||G ≤ µ
λ

and ||Pf ||s > γ
λ

then three case hold:

(1) u = 0, ||ρ||G < µ
λ

, ||Pρ||s = γ
λ

, and 〈ρ, v〉 = γ
λ
||Pv||∗

(2) v = 0, ||ρ||G = µ
λ

, ||Pρ||s < γ
λ

, and 〈ρ, u〉 = µ
λ
||Du||1

(3) ||ρ||G = µ
λ

, ||Pρ||s = γ
λ

, 〈ρ, v〉 = γ
λ
||Pv||∗, and 〈ρ, u〉 = µ

λ
||Du||1

Each of the case above are also the optimal decompositions for the energy.

Proof. Consider the simultaneous energy in terms of w:

E(w) = ||w||+ λ

2
||f − w||22
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Under the assumptions of this theorem, the simultaneous dual norm of f is bounded below:

||f ||′ > 1
λ
, and by Lemma 7.1, ||ρ||′ = 1

λ
and 〈ρ, w〉 = 1

λ
||w||. This can occur in three ways.

The proof is divided into several subproofs for each of the cases.

1. First assume ||ρ||G < µ
λ

, ||Pρ||s = γ
λ

.

Since w = u+ v, the result of lemma 7.1 is equivalent to:

〈ρ, u+ v〉 =
1

λ
{µ||Du||1 + γ||Pv||∗}

However, by the duality principles and the assumptions of this case the following

inequalities hold:

〈ρ, u〉 ≤ ||Du||1||ρ||G <
µ

λ
||Du||1

〈ρ, v〉 ≤ ||Pv||∗||Pρ||∗ =
γ

λ
||Pv||∗

Combining these statements produces the contradictory strict inequality:

〈ρ, u+ v〉 <
1

λ
{µ||Du||1 + γ||Pv||∗}

Thus u = 0 and 〈ρ, v〉 = γ
λ
||Pv||∗ to avoid the contradiction.

2. Next, assume ||ρ||G = µ
λ

, ||Pρ||s < γ
λ
.

By repeating the argument above, v = 0 〈ρ, u〉 = µ
λ
||Du||1 must hold.
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3. Assume that ||ρ||G = µ
λ

, ||Pρ||s = γ
λ

then 〈ρ, v〉 = γ
λ
||Pv||∗, and 〈ρ, u〉 = µ

λ
||Du||1 for

the optimal solution.

Similarly to the other two cases: By Lemma 7.1, we have

〈ρ, u+ v〉 =
1

λ
{µ||Du||1 + γ||Pv||∗}

The duality principles (Lemma 7.3) and the assumptions of this case yield the following

inequalities:

〈ρ, u〉 ≤ ||ρ||G||Du||1 =
µ

λ
||Du||1

〈ρ, v〉 ≤ ||Pρ||s||Pv||∗ =
γ

λ
||Pv||∗

Thus the following equalities 〈ρ, u〉 = µ
λ
||Du||1 and 〈ρ, v〉 = γ

λ
||Pv||∗ must hold.

4. For the next three cases, we show that the solutions are optimal. Assume ||ρ||G = µ
λ

,

||Pρ||s ≤ γ
λ

, and 〈ρ, u〉 = µ
λ
||Du||1, and f = u+ ρ then for all U and v we have

µ||D(u+ U)||1 + γ||Pv||∗ +
λ

2
||ρ− U − v||22 ≥ µ||Du||1 +

λ

2
||ρ||22 (7.2)
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To show this, first rescale the equation (17) by dividing by λ = µ||ρ||−1
G to get

||D(u+ U)||1||ρ||G +
γ

µ
||Pv||∗||ρ||G +

1

2
||ρ− U − v||22

≥ 〈u+ U, ρ〉+
γ

µ
||Pv||∗||ρ||G +

1

2
||ρ||22 +

1

2
||U + v||22 − 〈ρ, U〉 − 〈v, ρ〉

≥ 〈u, ρ〉+
γ

µ
||Pv||∗||ρ||G +

1

2
||ρ||22 +

1

2
||U + v||22 − 〈v, ρ〉

=
µ

λ
||Du||1 +

γ

µ
||Pv||∗||ρ||G +

1

2
||ρ||22 +

1

2
||U + v||22 − 〈v, ρ〉

≥ µ

λ
||Du||1 +

1

2
||ρ||22

(7.3)

By the texture duality principle, i.e. 〈v, ρ〉 ≤ ||Pρ||s||Pv||∗, and the assumptions of

this case, we have 〈v, ρ〉 ≤ γ
µ
||ρ||G||Pv||∗ which is used in the inequalities above.

If equality holds, then U = −v and 〈v, ρ〉 = γ
µ
||ρ||G||Pv||∗. Also ||Pρ||s = γ

λ
and

〈v, ρ〉 = ||Pρ||s||Pv||∗ would hold. Returning to equation (17):

µ||D(u− v)||1 + γ||Pv||∗ +
λ

2
||ρ||22 ≥ µ||Du||1 +

λ

2
||ρ||22

by canceling terms, we get:

µ||D(u− v)||1 + γ||Pv||∗ ≥ µ||Du||1

Using the equalities we found and the fact that γ = λ||Pρ||s, the following inequalities
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are equivalent:

µ||D(u− v)||1 + λ||Pρ||s||Pv||∗ ≥ µ||Du||1
µ

λ
||D(u− v)||1 + 〈v, ρ〉 ≥ µ

λ
||Du||1

||ρ||G||D(u− v)||1 + 〈v, ρ〉 ≥ µ

λ
||Du||1

However, by the Lemma 7.3:

||ρ||G||D(u− v)||1 ≥ 〈u− v, ρ〉 = 〈u, ρ〉 − 〈v, ρ〉

which implies 〈u, ρ〉 = µ
λ
||Du||1, so if we have equality then ||ρ||G||D(u − v)||1 =

〈u− v, ρ〉.

5. Assume f = v+ρ, ||ρ||G < µ
λ

, ||Pρ||s = γ
λ

, and 〈ρ, v〉 = γ
λ
||Pv||∗, then the decomposition

f = v + ρ is optimal.

As before, perturb v by V , with the corresponding energy:

E(u, v + V ) = µ||Du||1 + γ||P(v + V )||∗ +
λ

2
||ρ− u− V ||22 (7.4)

By Lemma 7.3 and the assumptions of this case, we have the following inequality:

||P(v + V )||∗||Pρ||s ≥ 〈v + V, ρ〉

≥ 〈v, ρ〉+ 〈V, ρ〉

=
γ

λ
||Pv||∗ + 〈V, ρ〉
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Since we assume ||Pρ||s = γ
λ
, the previous inequality is equivalent to:

||P(v + V )||∗ ≥ ||Pv||∗ +
λ

γ
〈V, ρ〉

Note that the decompositions of f , namely f = u+ v + V + ρ and f = ρ+ v, yields:

||u+ V ||22 = ||f − ρ− v||22 = 0

Using this fact and expanding the L2 norm in equation (7.4) gives:

||ρ− u− V ||22 = ||ρ||22 − 2 〈u, ρ〉 − 2 〈V, ρ〉 (7.5)

The second term on the right hand side of equation (7.5) can be bounded by using

lemma 7.3 and the assumption ||ρ||G < µ
λ
:

λ |〈u, ρ〉| ≤ λ||Du||1||ρ||G ≤ µ||Du||1

Returning to the equation (7.4), we have the following lower bound:

E(u, v + V ) ≥ λ |〈u, ρ〉|+ γ||Pv||∗ + λ 〈V, ρ〉+
λ

2
||ρ||22 − λ 〈u, ρ〉 − λ 〈V, ρ〉

≥ γ||Pv||∗ +
λ

2
||ρ||22

= E(0, v)
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Thus the decomposition f = v + ρ is optimal.

6. Lastly, assume ||ρ||G = µ
λ

, ||Pρ||s = γ
λ

, 〈ρ, v〉 = γ
λ
||Pv||∗, and 〈ρ, u〉 = µ

λ
||Du||1 hold,

then the decomposition is optimal.

Perturb the functions u by U and ρ by P with the perturbed energy:

E(u+ U, ρ+ P ) = µ||Du||1 + γ||P(v − U − P )||∗ +
λ

2
||ρ+ P ||22 (7.6)

Next, by combining the various assumptions in this case, we get ||Pρ||s = γ
λ
> ||Pf ||s

and ||ρ||G = µ
λ
≥ ||f ||G.

For the texture norm, Lemma 7.3 yields:

||Pρ||s||P(v − U − P )||∗ ≥ 〈ρ, v − U − P 〉

By using this inequality and the assumption that ||Pρ||s = γ
λ
, the following holds:

γ||P(v − U − P )||∗ ≥ λ 〈ρ, v〉 − λ 〈ρ, U〉 − λ 〈ρ, P 〉 (7.7)

With respect to the cartoon norm, Lemma 7.3 yields:

||D(u+ U)||1||ρ||G ≥ 〈u+ U, ρ〉 (7.8)

By the assumption ||ρ||G = µ
λ
, equation (7.8) is equivalent to:

µ||D(u+ U)||1 ≥ λ 〈u, ρ〉+ λ 〈U, ρ〉 (7.9)

Combining equation (7.8) and (7.9) with equation (7.6) and canceling terms gives the

114



following lower bound for the energy:

E(u+ U, ρ+ P ) = µ||Du||1 + γ||P(v − U − P )||∗ +
λ

2
||ρ+ P ||22

≥ λ

(
〈u, ρ〉+ 〈U, ρ〉+ 〈ρ, v〉 − 〈ρ, U〉 − 〈ρ, P 〉+

1

2
||ρ||22 +

1

2
||P ||22 + 〈P, ρ〉

)
≥ λ

(
〈u+ v, ρ〉+

1

2
||ρ||22 +

1

2
||P ||22

)
= µ||Du||1 + γ||Pv||∗ + λ

(
1

2
||ρ||22 +

1

2
||P ||22

)
≥ E(u, ρ)

Implying U = 0 and P = 0 , therefore (u, ρ) is the minimizer.
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CHAPTER 8

Conclusion

In Part I, an extension to the level set based image segmentation method that detects free

endpoint structures was described. By generalizing the curve representation used in [18, 74]

to also include free endpoint structures, we are able to segment a larger class of images with a

variety of edge structures. This method is able to change its topology by splitting, merging,

and now breaking curves without endpoints into free curves and vice versa. The results were

tested on both synthetic and real images and, in the examples presented here, were more

successful in locating the correct edge set as compared to standard methods. These results

show that we can now extract and enhance a wider range of edge types, which could provide

a better understanding of jump discontinuities present in any image.

In Part II, a detailed look at two different texture models was presented. The first

texture model is described as a weak texture norm, based on duality with the space of

Lipschitz functions. To measure the W 1,∞ semi-norm, a concentration of measure form of

the L∞ norm was presented. The texture norm was used, in combination with the TV

semi-norm, to regularize the deblurring problem. The method was applied to the known

and semi-known deblurring problems, both showing improved results (in terms of SNR) and

advantages over TV regularization alone.

Lastly, this thesis presented a completely different way to model image texture. Many

types of texture can be measured by the number of repetitive patterns present in the image.

From the matrix perspective, the nuclear norm on the patch collection is shown to be an

appropriated norm. This texture norm was used as a regularizer in models for decomposition,

pattern regularization, denoising, deblurring, and sparse reconstruction. For both of the
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texture spaces, the various results support the additional use of a texture regularizer rather

than only reconstructing the smooth component.
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[64] S. Osher, A. Solé, and L. Vese. Image decomposition and restoration using total varia-
tion minimization and the H1. Multiscale Modeling & Simulation, 1:349, 2003.

[65] R J. Renka. A simple explanation of the sobolev gradient method, 2006.

[66] W. B. Richardson. Sobolev gradient preconditioning for image-processing PDEs.
Communications in Numerical Methods in Engineering, 24(6):493–504, December 2006.

[67] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, November 1992.

[68] H. Schaeffer and S. Osher. A low patch-rank interpretation of texture. SIAM Journal
on Imaging Sciences, 6(1):226–262, 2013.

[69] H. Schaeffer and L. Vese. Active contours with free endpoints. Journal of Mathematical
Imaging and Vision, pages 1–17, 2013.

122



[70] J. Shen. Piecewise H−1 − H0 − H1 images and the Mumford-Shah-Sobolev model for
segmented image decomposition. APPL. MATH. RES. EXP, 4:2005, 2005.

[71] P. Smereka. Spiral crystal growth. Physica D: Nonlinear Phenomena, 138(3–4):282–301,
April 2000.

[72] G. Sundaramoorthi, A. Yezzi, and A. C. Mennucci. Sobolev active contours.
International Journal of Computer Vision, 73(3):345–366, January 2007.

[73] A. Tsai, Jr. Yezzi, A., and A.S. Willsky. Curve evolution implementation of the
Mumford-Shah functional for image segmentation, denoising, interpolation, and magni-
fication. Image Processing, IEEE Transactions on, 10(8):1169 –1186, August 2001.

[74] L. A. Vese and T. F. Chan. A multiphase level set framework for image segmenta-
tion using the mumford and shah model. International Journal of Computer Vision,
50(3):271–293, 2002.

[75] L. A. Vese and S. J. Osher. Modeling textures with total variation minimization and
oscillating patterns in image processing. Journal of Scientific Computing, 19:553—572,
2002.

[76] L. A. Vese and S. J. Osher. Image denoising and decomposition with total variation
minimization and oscillatory functions. Journal of Mathematical Imaging and Vision,
20:7–18, January 2004.

[77] X. Zhang, M. Burger, X. Bresson, and S. Osher. Bregmanized nonlocal regularization for
deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 3(3):253–
276, 2010.

[78] M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and L. Carin. Non-Parametric bayesian
dictionary learning for sparse image representations 1. NIPS, 2009.

123


	Introduction
	Classical Models for Fine Structures
	Outline

	I Curve Evolution and Image Segmentation
	Introduction to Mathematical Segmentation
	Active Contours with Free Endpoints Model
	Description of the Model
	Representation of Curves with Free Endpoints and Domain Partitioning
	The Energy
	Sobolev Gradient

	Analytical Remarks
	Consistency with the Mumford-Shah Functional
	Relation to Other Models

	Numerical Results for Image Segmentation
	Further Remarks
	Experimental Results


	II Texture Models and Analysis
	Introduction to Texture Modeling
	A texture model based on a concentration of measure
	Terminology
	The Model
	Theoretical and Analytical Remarks
	Behavior with respect to k
	Existence, Uniqueness, and Characterization of Minimizers

	Numerical Results for Weak Textures
	Maximization of auxiliary variable
	Minimization of variables

	Experimental Results

	 Low Patch-Rank Texture
	Introduction to Patterned Texture
	Description of the Model
	The Texture Norm
	Proposed Model

	Theoretical and Analytical Remarks
	Characterization of Minimizers by Duality
	Characterization of Texture based on P

	Numerical Method
	The Algorithm

	Results
	Decomposition
	Pattern Regularization
	Denoising
	Deblurring
	Inpainting: Sparse Reconstruction


	Some Theoretical Remarks on Low Patch-Rank Textures
	A Tensor Interpretation
	Proofs of Theorems

	Conclusion
	References




