
UCSF
UC San Francisco Previously Published Works

Title
The future of intensive care: the study of the microcirculation will help to guide our 
therapies.

Permalink
https://escholarship.org/uc/item/2475n4x9

Journal
Critical care (London, England), 27(1)

ISSN
1364-8535

Authors
Duranteau, J
De Backer, D
Donadello, K
et al.

Publication Date
2023-05-01

DOI
10.1186/s13054-023-04474-x
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2475n4x9
https://escholarship.org/uc/item/2475n4x9#author
https://escholarship.org
http://www.cdlib.org/


Duranteau et al. Critical Care          (2023) 27:190  
https://doi.org/10.1186/s13054-023-04474-x

REVIEW Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Critical Care

The future of intensive care: the study 
of the microcirculation will help to guide our 
therapies
J. Duranteau1*, D. De Backer2, K. Donadello3, N. I. Shapiro4, S. D. Hutchings5,6, A. Rovas7, M. Legrand8, 
A. Harrois1 and C. Ince9 

Abstract 

The goal of hemodynamic resuscitation is to optimize the microcirculation of organs to meet their oxygen and 
metabolic needs. Clinicians are currently blind to what is happening in the microcirculation of organs, which pre-
vents them from achieving an additional degree of individualization of the hemodynamic resuscitation at tissue 
level. Indeed, clinicians never know whether optimization of the microcirculation and tissue oxygenation is actually 
achieved after macrovascular hemodynamic optimization. The challenge for the future is to have noninvasive, easy-
to-use equipment that allows reliable assessment and immediate quantitative analysis of the microcirculation at the 
bedside. There are different methods for assessing the microcirculation at the bedside; all have strengths and chal-
lenges. The use of automated analysis and the future possibility of introducing artificial intelligence into analysis soft-
ware could eliminate observer bias and provide guidance on microvascular-targeted treatment options. In addition, 
to gain caregiver confidence and support for the need to monitor the microcirculation, it is necessary to demonstrate 
that incorporating microcirculation analysis into the reasoning guiding hemodynamic resuscitation prevents organ 
dysfunction and improves the outcome of critically ill patients.
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Introduction
The core of hemodynamic resuscitation has traditionally 
focused on blood pressure and cardiac output; however, 
these measurements imperfectly reflect tissue perfusion. 
The recent emphasis on clinical signs of tissue perfusion 
such as capillary refill time and skin mottling is an impor-
tant step toward a perfusion driven resuscitation. How-
ever, these types of skin perfusion assessment techniques 
are severely limited as these indices assess a relatively 
large volume of tissue and alterations in other microcir-
culatory beds may remain hidden using these techniques.

In patients in shock of various origins, an important 
number of studies have consistently demonstrated that 
persistent microcirculatory alterations are associated 
with organ dysfunction and mortality. More than 600 
papers have highlighted the clinical relevance bedside 
monitoring of the microcirculation. This level of interest 
led to the publication in 2018 of guidelines for the assess-
ment of sublingual microcirculation by the European 
Society of Intensive Care Society Task Force [1].

The future challenge is to transform microcircula-
tion monitoring from an important research tool into an 
essential bedside monitoring technique used by clinicians 
to individualize hemodynamic resuscitation based on 
microvascular parameters. The purpose of this paper is 
to provide an update on the current state of microcircu-
latory monitoring in critically ill patients, and to present 
an approach for guiding therapy. We present a viewpoint 
on its potential role in the future of hemodynamic moni-
toring and on how it could influence the hemodynamic 
management of critically ill patients.

Why is the study of the microcirculation essential 
to help guiding therapeutic strategy in ICU?
The two main determinants of the primary function of 
the microcirculation for oxygen transport are convection 
(e.g., the flow of oxygen-carrying red blood cells) and dif-
fusion (e.g., the distance oxygen must travel from the red 
blood cell (RBC) to the cells). Parameters related to the 
convective (e.g., RBC flow rate) and diffusive (e.g., func-
tional capillary density) capacity of the microcirculation 
are used to quantify the functional state of the micro-
circulation. Most hemodynamic strategies used in ICU 
focus on promoting blood flow and arterial oxygen trans-
port (convection). However, achieving adequate diffusing 
capacity is also essential for optimal oxygen transport to 
the tissues, a variable that can only be measured by direct 
observation of the microcirculation. For example, the dif-
fusive capacity of the microcirculation may be compro-
mised during fluid therapy if increased RBC flow cannot 
compensate for dilution of RBC mass and if tissue edema 
induces increased diffusion distances between RBC and 
tissue cells, making it more difficult for oxygen to reach 

the latter. Understanding these two main components of 
oxygen transport to cells is essential to best guide hemo-
dynamic strategies.

The analysis of the microcirculation allows clinicians 
to appreciate the behavior of the different constituents 
of the blood and their interactions with the endothe-
lium and the glycocalyx. For example, its observation 
by hand-held vital microscopes (HVM) not only allows 
detailed quantification of the behavior of red blood cells 
directly responsible for oxygen transport to tissues, but 
also allows observation and quantification of the behav-
ior of leukocytes [2]. Visualization of the microcircula-
tion also allows for an indirect assessment of the integrity 
of the glycocalyx. Indeed, glycocalyx impairment allows a 
greater number of RBC to deviate, approach the endothe-
lium and penetrate the permeable part of the glycoca-
lyx layer. It is proposed to calculate this dynamic lateral 
movement of the RBC as an indirect inverse measure of 
the glycocalyx integrity (PBR, perfused boundary region) 
[3, 4].

The goal of hemodynamic resuscitation is to meet 
the oxygen and metabolic needs of the various organs, 
which can only occur through optimization of the 
microcirculation (Fig. 1). We hope to achieve this goal 
through the optimization of macro-hemodynamic vari-
ables such as blood pressure and stroke volume (SV). 
But we never know if an optimization of microcircula-
tion and tissue oxygenation is really achieved after mac-
rovascular optimization. Decreases in microvascular 
flow and density are usually corrected by optimizing the 
macrocirculation, as there is hemodynamic coherence 
(i.e., harmony) between the macrocirculation and the 
microcirculation. On the other hand, optimization of 
macrocirculation may fail to improve tissue perfusion 
in the presence of alterations within the microcircula-
tion. Since an impaired microcirculation occurs due to 
multiple factors which includes alterations in blood vis-
cosity, endothelial dysfunction, glycocalyx degradation 
and/or microthrombi/microaggregates, many of these 
problems are not corrected by classic hemodynamic 
interventions (Fig. 1). Another risk is to over-optimize 
the macrocirculation in relation to the needs of the 
microcirculation and to end up with fluid overload or 
overuse of vasopressors that is often harmful in terms 
of tissue oxygenation. Clinicians are currently blind to 
what is happening in the microcirculation of organs, 
which prevents them from individualizing resuscitation 
by targeting the microcirculation. For example, Har-
rois et al. [5] found significant differences in renal cor-
tical microcirculation recovery in patients with septic 
shock after macrovascular hemodynamic optimization. 
Indeed, in some patients, renal cortical microcircula-
tion was satisfactory or even high, whereas in others, 
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an alteration of this microcirculation persisted and was 
associated with the development of acute kidney injury 
(AKI). This result was confirmed by Watchorn et al. [6] 
who showed that the severity of AKI was related to the 
degree of renal cortical hypoperfusion independently of 
macrovascular optimization in patients in septic shock.

This is essential because clinical studies in differ-
ent states of shock both in adult and pediatric patients 
have consistently shown that the persistence of micro-
circulatory alterations with lost of coherence between 
macrocirculation and microcirculation is predictive of 
organ failure and unfavorable outcomes in a more sen-
sitive and specific manner than systemic hemodynamic 
and biological parameters [7–16]. Previous studies have 
demonstrated marked heterogeneity of microcirculatory 
flow in septic patients, with the presence of occluded 
capillaries next to perfused capillaries inducing micro-
circulatory shunting responsible for the decreased oxy-
gen extraction capacity in sepsis [17]. In contrast to the 
reduction in oxygen extraction in sepsis, a recent study 
of the microcirculation response to COVID-19 identified 
an adaptive response of the microcirculation to increase 
its oxygen extraction capacity in response to COVID-
19-induced hypoxemia [17]. This COVID-19-induced 
increase in microcirculatory oxygen extraction capacity 
was attributed to an increase in functional capillary den-
sity and capillary hematocrit. But the adaptive response 
may be impaired during hyperinflammation because of 
the inflammatory-induced alterations of the endothelium 

and glycocalyx and of a concomitant procoagulant state 
[18].

An other illustrative example of the potential inter-
est in microcirculation assessment is the evaluation of 
the response to fluids. While a lot of emphasis has his-
torically focused on the SV response to fluid infusion, 
the microcirculation represents a perhaps more element 
of the response in terms of tissue perfusion [19–22]. A 
study by Ospina et  al. found that fluid administration 
can improve the microcirculation at early but not at later 
stages of sepsis [19]. Furthermore, Pottecher et  al. [20] 
showed that a first bolus, but not a second bolus, of fluid 
improved the sublingual microcirculation independently 
of the SV increase in patients with septic shock [20]. In 
both trials, the microcirculatory effects were dissociated 
from the systemic effects. Pranskunas et al. [22] reported 
that patients who had impaired microcirculatory perfu-
sion that improved with fluid therapy had an associated 
improvement in organ function, whereas patients who 
had normal microcirculatory perfusion initially or who 
failed to improve their microcirculation in response to 
fluids did not have an associated improvement in organ 
function. Such a distinction which could not be made by 
measurement of SV in this study [22]. Indeed, these find-
ings highlight the importance of the microcirculation in 
the response to fluids and support the need to assess the 
microcirculation to guide fluid titration.

It is therefore necessary to integrate the analysis of the 
microcirculation in the reasoning guiding hemodynamic 

Fig. 1  Different parameters of macrocirculation and microcirculation optimization
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resuscitation to prevent organ dysfunction and improve 
the outcome of critically ill patients. Hemodynamic indi-
vidualization based solely on macrocirculatory parame-
ters is an incomplete view of hemodynamic optimization 
and the microcirculation must also be taken into account.

How will we assess and analyze 
the microcirculation in ICU in the future?
There are a number of different methods to assess 
the microcirculation at the patient’s bedside; all have 
strengths and future challenges (Table 1). It is important 
to consider that many advanced tools will not be acces-
sible to low- and medium-outcome health care systems, 
and that the accessibility of microcirculation tools is 
important to consider for broad application of strategies.

The recent introduction and validation of automated 
microcirculatory analysis software allowing point-of-
care application of sublingual microcirculation-guided 
therapy is a significant step toward the introduction of 
routine use of HVM technology at the bedside [23, 24]. It 
provides quantitative microcirculatory functional param-
eters calculated from images including functional capil-
lary density and RBC velocity allowing for the distinction 
between diffusive and convective alterations of the 
microcirculation (Fig. 2). The addition of new functional 
parameters such as capillary hematocrit, tissue RBC 
perfusion and the quantification of activated leucocytes 
provides even more information regarding the nature of 
microcirculatory alterations [24]. These variables were 
beneficial to the characterization of microcirculatory 
alterations in COVID-19 patients [17]. The microcircu-
lation’s ability to increase its capillary-hematocrit-to-
systemic-hematocrit ratio and FCD was only present in 
COVID-19 patients whose SOFA scores was less than 
10. Conversely, no microvascular adaptive response was 
observed in COVID-19 patients with a SOFA score ≥ 10 
[17]. The missing pieces in the actual evaluation of the 
microcirculation is the evaluation of microvascular O2 
delivery and local metabolism. Different adaptations 
of optics can allow measurements of hemoglobin lev-
els and O2 saturation in microvascular vessels. In addi-
tion, it is also feasible to assess local redox state of the 
mitochondria through the analysis of ultraviolet absorb-
ance [25]. In future HVM may integrate these various 
optics, this would offer a unique opportunity to evalu-
ate oxygen delivery and metabolism at the microvascular 
level, together with its consequences on mitochondrial 
function.

A further expansion of microcirculatory monitoring 
will occur when microcirculatory information is obtained 
from the microcirculation of organs themselves, as 

opposed to using the sublingual area as a proxy. Indeed, 
prior studies have assessed skin, conjunctiva, nail fold, 
rectal, stoma and vaginal microcirculations in various 
clinical conditions, although sublingual microcirculation 
is by far the most studied and clinically relevant micro-
circulatory bed to date. Even though several experimen-
tal studies have shown a coherence between sublingual 
and other organ surfaces, such as the intestines and kid-
ney microcirculation [26, 27], it is conceivable that there 
are differences in behavior between the microcirculatory 
beds of different organ surfaces depending on the clini-
cal circumstances [28, 29]. The inclusion of information 
regarding inflammatory activation of the microcircula-
tion by observation of altered leucocyte kinetics [2], the 
presence of pathogens and/or the presence of micro-
thrombi [17] is an interesting potential direction. Besides 
observing the different microcirculatory beds of the 
different organ surfaces, observation of the tissue cells 
and even subcellular structure may also provide more 
detailed information regarding the nature of tissue injury 
and organ function. This would require higher magnifica-
tion HVM. The presence of a bubble under the HVM cap 
can cause additional magnification revealing individual 
parenchymal cells with membrane-to-membrane junc-
tions and even making nuclei clearly visible [30].

An interesting technique for monitoring organ micro-
circulation at the patient’s bed is contrast-enhanced 
ultrasound (CEUS) which uses gas microbubbles sur-
rounded by a stabilizing envelope (phospholipid or pro-
tein envelope) (Table  1). Different currently available 
software can perform this quantitative analysis. Renal 
CEUS has been proposed to quantify the renal micro-
circulation in patients under various conditions, such 
as renal transplantation [31, 32], or cardiac surgery with 
vasodilatory shock [5, 6, 33]. CEUS also holds potential 
to test the renal microvascular effects of fluid resuscita-
tion and vasopressor therapy in ICU patients [5, 34]. The 
use of this technique with microcirculatory flow imaging 
is currently under study and remains reserved for clinical 
research at this time. Indeed, its use requires standardi-
zation to control the heterogeneity of the results, espe-
cially when using microbubble boluses.

Several techniques for the evaluation of peripheral 
perfusion are proposed (Table  1). Alterations in skin 
perfusion may occur before alterations in macrovas-
cular hemodynamic variables, and prior data have 
demonstrated that the persistence of these altera-
tions despite macrovascular optimization is associated 
with higher mortality [35]. Data support that accurate 
assessment of capillary refill time (CRT) is at least as 
useful as blood lactate level as a resuscitation target 
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Table 1  Strengths and challenges of microcirculation analysis methods in ICU

Capillary refill time (CRT)
Technique Pressure application to the fingertip for at least 10 s until the skin showed whitening. The time until return of 

baseline coloration after release of the pressure is measured with a chronometer (normal CRT ≤ 3 s)

Strengths Simple and quickly measurable. Visual assessment. Easy team adhesion

Challenge for the future Since it is a visual assessment, important to obtain objective and reliable measures of CRT​

Contrast-enhanced ultrasound (CEUS)
Technique Ultrasound device with a probe appropriate to the region studied

Uses gas microbubbles surrounded by a stabilizing envelope (phospholipid or protein envelope) of a size like that 
of red blood cells allowing them to cross the pulmonary capillary bed and reach the capillaries of the different 
organs. At the same time, their size is large enough that they do not cross the endothelium, making them true 
intravascular agents

Microbubbles can be injected as a bolus or as a continuous infusion (with a rotating syringe pump). When a 
constant infusion is administered, a “destruction-replacement technique” can be used (interest of a baseline 
measurement)

Quantitative analysis can be performed by different software. For each regions of interest (ROI), the software 
generates a time–intensity curve and calculates amplitude and time parameters which are proportional to blood 
volume and microvascular blood flow

Strengths Can be used at the patient bedside. Availability of echography with specific software in ICU

Analysis of the microcirculation and regional perfusion of deep organs

Challenge for the future High variability of measurements

Need for contrast with a specific cost

Need for a shared perfusion protocol

Hand-held vital microscopes (HVMs)
Technique Direct noninvasive real-time visualization of capillary network

Sublingual microcirculation is the most frequently studied microcirculation at the bedside

Videos are analyzed with software to document changes in small blood vessels (blood vessels < 20 μm in diam-
eter)

Based on the software available

 Semiquantitative blood flow characteristics, as well as microcirculation flow index (MFI), total vessel density 
(TVD), perfusion and blood vessel ratio (PPV), and perfusion vessel density (PVD) are analyzed

 Quantitative per vascular diameter class analysis of vascular density, glycocalyx dimensions (PBR) and red 
blood cell velocity in static/dynamic state. Combining microvascular and glycocalyx variables allows the calcu-
lation of microvascular health score (MVHS)

Strengths International consensus for video capture

Large database validation of automated quantification of microvessel density and red blood cell velocity which 
can take the next steps toward real-time clinical application at the bedside

Allows assessment of leukocyte behavior and glycocalyx integrity

Challenge for the future Simplification of image acquisition and analysis

Addition of Hb and SO2 measurements

Measurements of local metabolism and/or redox states

Setting clear microvascular targets

Laser-Doppler flowmetry
Technique Shift in light wavelength is proportional to the red blood cell velocity in the studied area

Noninvasive measurement

Expressed as arbitrary perfusion units (PUs)Simplification of image acquisition and analysis

Strengths Skin laser Doppler coupled with local thermal challenge may provide a measure of microcirculatory reactivity

Microcirculatory reactivity is decreased in patients with circulatory shock and has prognostic value

Challenge for the future Impact of monitoring SDF with local thermal challenge on outcome in critically ill patients?

Magnetic resonance imaging (MRI)
Technique Several techniques available today, which can be combined into a single multiparametric MRI (phase contrast 

(PC-MRI), arterial spin labeling (ASL), diffusion weighted imaging (DWI) and blood oxygen level-dependent 
(BOLD) MRI

Strengths Can help characterize the intensity of microvascular and oxygenation alterations in multiple organs (heart, brain 
and kidney) in a range of clinical scenarios

Can also provide information to assess recovery from these alterations
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[36]. In a recent prospective study, skin blood flow 
(SBF) using skin laser Doppler was impaired in patients 
in circulatory shock, even though patients were hemo-
dynamically stabilized [37]. SBF was lower in non-
survivors than in survivors with a persistently blunted 
SBF response to thermal challenge test. Baseline SBF 
and SBF thermal challenge were both better predictors 
of ICU mortality than blood lactate, Scvo2, CRT and 
peripheral perfusion index (PPI) [37]. These peripheral 
perfusion assessment techniques are exciting tools for 

the future. The challenge now is to demonstrate that 
they are reproducible and can guide resuscitation and 
reduce organ dysfunction. In addition, the relation 
between these skin perfusion variables and the micro-
circulation and function of essential organs such as the 
kidney heart and brain still requires further study.

Near-infrared spectroscopy (NIRS) (Table  1) has 
been studied as a noninvasive methodology for assess-
ing tissue oxygenation since the 1970s [38]. It has been 
assessed as a potential monitoring tool during surgery, 

Table 1  (continued)

Challenge for the future Cannot be used to dynamically monitor the microcirculation in real time at the patient’s bed

Need for radiological expertise

Nailfold videocapillaroscopy (NVC)
Technique Digital videocapillaroscope connected to analysis software. Semiquantitative score NVC abnormalities. An aver-

age score is calculated by analyzing 4 consecutive one-mm fields in the middle of the nail fold of each finger. The 
average scores of eight fingers are taken into account

Strengths Noninvasive technique with standardization

Challenge for the future Demonstrate the feasibility of the technique in ICU

Need to develop an automated analysis of NVC images (with incorporation of red blood cell velocity)

Near-infrared spectroscopy (NIRS)
Technique Tissue oxygenation saturation (StO2) is the ratio of oxygenated to total tissue hemoglobin concentration ((oxy-

hemoglobin/(oxyhemoglobin + deoxyhemoglobin)) × 100%)

Strengths Noninvasive and easy to use

Thenar NIRS with a vascular occlusion test (VOT), Cerebral and renal NIRS

Challenge for the future Clearly define the physiological significance of the NIRS-derived values

Standardization of NIRS VOT (duration, level of inflation of cuff, timing between two inflations)

Which target values should be reached?

Plethysmography
Technique Pulse co-oximetry continuously provides a noninvasive measure of peripheral perfusion, called perfusion index 

(PI)

Peripheral PI is derived from the photoelectric plethysmography signal of pulse oximetry

PI reflects the ratio of pulsatile and non-pulsatile light absorbance of the red and infrared light passing through 
the tissue

Strengths Easy adherence by teams

PI can be used to assess fluid responsiveness. Also allows for continuous noninvasive monitoring of hemoglobin 
concentration (SpHb) and oxygen reserve index (ORi)

ORi monitoring anticipates SpO2 < 94% episodes and reduces the incidence of hypoxemia by giving the clinician 
additional time to act and optimize oxygenation and ventilation

Challenge for the future  Need to evaluate accuracy (bias) and precision (i.e., repeatability), but also in terms of the ability to identify trends

Reproducibility of measurements using different devices/software (are PI measurements obtained by different 
devices identical?)

Veno-arterial PCO2 gap
Technique Veno-arterial difference in the partial pressure of carbon dioxide (Pv-aCO2 gap)

Strengths Reliable indicator of impaired tissue perfusion, whether the result of a global reduction in cardiac output or to 
microcirculatory abnormalities

Does not track tissue dysoxia, unless related to low flow conditions

Easily accessible and available. Can be included in diagnostic and therapeutic algorithms

Challenge for the future Demonstrate that normalization of a Pva-CO2 difference has an impact on the outcome of patients in shock
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particularly in cardiac surgery, or in ECMO patients to 
assess brain oxygenation [39, 40]. It has also been used 
to assess muscle tissue oxygenation in sepsis [41, 42] 
and traumatic hemorrhagic shock [43]. Associated with 
a vascular occlusion test (VOT), NIRS proposes an 
analysis of dynamic parameters of tissue O2 extraction 
and microvascular reactivity. A slower recovery of StO2 
during the reperfusion phase is an independent predic-
tor of mortality in patients with sepsis [44].

Magnetic resonance imaging (MRI) (Table 1) allows for 
the assessment of tissue perfusion and oxygenation [45–
47]. There are several techniques available today, which 
can be combined into a single multiparametric MRI (phase 
contrast (PC-MRI) and include: arterial spin labeling (ASL), 
diffusion weighted imaging (DWI) and blood oxygen level-
dependent (BOLD) MRI). Unfortunately, it is not feasible 
to use MRI to dynamically monitor the microcirculation at 
bedside.

The monitoring of brain microcirculation is a challenge 
due to its inaccessibility. However, the retina is consid-
ered a window to the brain [48] and retinal oximetry is a 
potential bedside technique [49] to assess brain micro-
circulatory dysfunction. Future HVM with long focal 
distances hold potential to directly observe the retinal 

microcirculation which could serve as an indirect measure 
of brain microcirculation.

What evidence is needed to facilitate adoption 
of microcirculation analysis as a routine part of ICU 
therapeutic management?
In order to establish microcirculation analysis as a stand-
ard of care, it is necessary to demonstrate that the inte-
gration of microcirculation analysis has an impact on the 
prevention and treatment of organ dysfunction (Fig.  3). 
It is also essential to have a microcirculation analysis 
device that is relevant (at best convective and diffusive 
microcirculatory analysis) and easily usable at the bed-
side (Fig. 3). Ideally, this would entail the combination of 
bedside equipment with software that performs reliable 
and immediate data analysis. Initial application of artifi-
cial intelligence shows promise as a technique to identify 
specific patterns of microvascular alterations that could 
identify microcirculatory impairment and guide therapy 
in future applications.

Very few studies have used microcirculation-targeted 
resuscitation. The ANDROMEDA-SHOCK trial [36, 50] 
suggested that a microcirculation-guided strategy based 
on CRT, as a surrogate parameter for microcirculatory 

Fig. 2  Illustration of the different types of microvascular alterations occurring despite macrovascular optimization of the macrocirculation. A 
Heterogeneous distribution, with perfused capillaries next to non-circulating capillaries, observed mainly in inflammatory and/or severe septic 
states. B Dilution of red blood cells occurring during hemodilution (for example in hemorrhagic shock during fluid resuscitation) and anemia. C 
Congestion due to increased venous pressure. D Tissue edema with increased oxygen diffusion distances
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perfusion, might limit organ failure and lower mortality 
compared to a lactate-targeted one. However, mortal-
ity was high in this study, and further studies are needed 
to develop more fine-grained microcirculation assess-
ment approaches that provide a better understanding 
of the complexity of microvascular damage. Indeed, 
microvascular damage is not limited to hypoperfusion, 
and it is important to detect endothelial damage, glyco-
calyx damage and imbalances in antiprocoagulant bal-
ance (shock-induced endotheliopathy). Still, with the 
goal of impacting mortality, a focus on patients in whom 
microvascular alterations persist despite macrocircula-
tory hemodynamic optimization is needed. Once these 
patients are identified, we must then develop and test 
treatments that target restoration of the microcircula-
tion. In this sense, the I-MICRO RCT [51] proposes to 
test the impact of ilomedin (a prostacyclin analogue with 
vasodilatory and antithrombotic properties) on organ 
failure in septic shock patients with persistent micro-
circulatory disorders (assessed by mottling score and/or 
skin recoloration time) despite hemodynamic optimiza-
tion. In the future, there is a need to design studies that 
integrate the implementation of microcirculation-guided 
resuscitation in hemodynamic optimization, and to iden-
tify microvascular-targeted treatment and strategies that 
improve outcomes in critical care patients.

We can speculate on how the future diagnostic plat-
form of the critically ill patient could be realized as 

technology develops, and more and more insight is 
gained into the pathogenesis and cellular origin of dis-
ease. Ultimately such a holistic diagnostic platform 
aimed at understanding the mechanism of disease and 
guiding therapy would have to encompass the total hier-
archy of the cardiovascular system from the macrocir-
culation to the microcirculation including both cellular 
and subcellular components (Fig. 4). The various compo-
nents of blood would also be integrated into this platform 
(Fig. 4). It is anticipated that HVM may include sensors 
and imaging modules, possibly even embedded into the 
tips of endoscopes or even digestible capsules, to observe 
the microcirculatory and cellular constituents in distant 
organs. The amount of information being generated con-
tinuously changing in time will be enormous. In this way, 
the system would create a virtual physiological model of 
the patient to allow for control of organ functions from 
the microcirculation down to the cells. Continuous sur-
veillance of such a virtual patient would allow precise 
identification of (patho)physiological alterations in need 
of intervention. As technology progresses, future applica-
tions may include placing sensors and imaging modali-
ties inside the patient for continuous monitoring of the 
variables known to control organ function, possibly in 
an automatically controlled loop manner. As advanced 
sensors and HVM imaging modalities develop and are 
placed in the patient, it may envision the creation of an 
ICU future with continuous in vivo monitoring [52].

Fig. 3  The challenge for the future of microcirculation monitoring in ICU
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Parallel to such hardware developments will be the 
development of an innovative mathematical resource that 
continuously develops physiological models of the virtual 
patient and has the ability to identify changes in the phe-
notype of organ and cellular systems. It is expected that 
AI will play a central role in the translation of the evalua-
tion of the clinical condition of the virtual patient and to 
predict response to clinical interventions. This is achiev-
able, for example, for the case of the microcirculation, by 
integrating AI methodologies with algorithmic analysis 
of microcirculatory images able to differentially diag-
nose specific alterations in the phenotype of the micro-
circulation known to be corrected by specific therapeutic 
interventions [53]. AI will allow to have a global vision of 
macrocirculatory and microcirculatory parameters and 
to better analyze their response to interventions. Ideally, 
AI may even suggest what might be the best interven-
tion to implement taking into account the specificities 
of microcirculatory and microcirculatory alterations. AI 
could help us appreciate and test the coherence between 
macrocirculation and microcirculation. The insight 
provided into the functional state of the cardiovascu-
lar system using such a platform and aided by advanced 
machine learning algorithms and physiological models 

will provide targets for a more effective guidance of ther-
apy of the critically ill patient.

What are the future therapies targeting 
microcirculation in critical care?
The classical therapeutical interventions have vari-
able effects. Fluids may improve microcirculation in 
the early stages of shock, but this improvement may 
not occur in the later stages [19]. The optimal amount 
of fluids administered remains difficult to determine, as 
an initial bolus may increase microvascular perfusion, 
whereas additional boluses may not affect microcircula-
tion despite increased SV [20, 21]. On the other hand, 
excessive amounts of fluids and/or right ventricular dys-
function or high intrathoracic pressure are associated 
with venous stasis and glycocalyx damage, which further 
compromises microvascular perfusion [54]. The adequate 
amount of fluids required to resuscitate the microcircula-
tion of a given patient is highly variable and remains dif-
ficult to determine.

Vasoactive agents also have variable effects on micro-
circulation, improving microcirculation in some patients 
but failing in others. It should always be kept in mind that 
the effect of vasopressors is dependent on blood volume, 

Fig. 4  Integrative diagnostic platform: the future diagnostic platform will include hemodynamic components from macro to microcirculation, 
cellular and subcellular components and the immune function of cells. Artificial intelligence could assist in the development of algorithms and 
allow clinicians to make therapeutic decisions regarding the treatment of microcirculatory alterations
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the functionality of vasopressor receptors and the inten-
sity of microvascular alterations.

The development of new therapeutics is warranted to 
restore microcirculation when it is compromised.

Manipulation of nitric oxide (NO) pathways was one of 
the first routes explored given its crucial role in control-
ling microvascular perfusion [56]. In experimental sep-
tic shock, favorable results have been reported with the 
administration of l-arginine [63] and tetrahydrobiopterin 
(BH4) (cofactor of nitric oxide synthases) [57]. But stud-
ies that have tested the utility of direct or indirect nitric 
oxide augmentation in septic patients have not demon-
strated improvement in sublingual microcirculation or 
organ dysfunction [59, 60].

Alternatively, manipulating the arachidonic pathway 
is an attractive future direction and trials evaluating the 
impact of vasodilatory prostaglandins are underway. 
Legrand et  al. [51, 55] are currently conducting a mul-
ticenter, double-blind study, testing the impact of ilo-
medin (a prostacyclin analogue with vasodilatory and 
antithrombotic properties) on organ failure in septic 
shock patients with persistent microcirculation disor-
ders (i.e., skin mottling or increased capillary refill time) 
despite hemodynamic optimization. This approach is 
extremely interesting, especially since in a recent multi-
center, randomized clinical trial in COVID-19 adults with 
severe endotheliopathy, a 72  h infusion of prostacyclin 
(1 ng/kg/min) did not induce a statistically significant dif-
ference in the number of days of life without mechanical 
ventilation within 28 days; however, the point estimates 
favored the prostacyclin group in all analyses, including 
mortality and mean daily SOFA scores [56].

As during inflammatory and infectious states, cellular 
interactions within the microcirculation evolve toward 
a proadhesive and procoagulant phenotype, attempts 
to minimize cell aggregation should be tested. Multi-
ple interventions were tested in experimental condi-
tions, but few reached the clinical arena. Among these, 
ascorbate and several anticoagulants were particularly 
promising. Prior preclinical studies have repeatedly 
demonstrated that ascorbate improves microvascular 
perfusion and decrease white blood cells and platelets 
adhesion in experimental models of sepsis [57–59]. In 
septic patients, ascorbate also improved microvascular 
perfusion [60]. Due to the complex interaction between 
endothelial function, coagulation and inflammation, 
various anticoagulants have been tested. Activated pro-
tein C was the most promising agent, with clear demon-
stration of an improvement in microvascular perfusion 
both in experimental and clinical sepsis [61–63]. Other 
agents such as antithrombin or thrombomodulin also 
improved the microcirculation in experimental condi-
tions [64, 65]. Interestingly, these papers showed not only 

an improvement in microvascular perfusion but also a 
reduction in aggregation and adhesion of white blood 
cells and platelets to the endothelium, a protection of 
the glycocalyx and a decrease in endothelial permeability 
(and thus vascular leakage), possibly through angiopoie-
tin/TIE2 axis [66, 67]. However, The PROWESS-SHOCK 
study failed to confirm the benefit of activated protein 
C in sepsis [68], while the KyberSept study even showed 
harmful effects of antithrombin [69]. However, these 
molecules have not been administered with an individu-
alized approach by limiting their use to patients with per-
sistent microcirculatory alterations.

Because of its antioxidant properties, albumin is also an 
interesting therapeutic option to limit glycocalyx altera-
tions and preserve endothelial function in intensive care 
patients [70]. However, the ALBIOS trial did not iden-
tify a significant benefit of albumin infusion in patients 
with sepsis [71]. However, a significant difference was 
observed in a post hoc analysis in patients with septic 
shock [71].

Future hemodynamic strategies in ICU patients should 
integrate macrocirculatory and microcirculatory optimi-
zation in an attempt to give clinicians the most complete 
picture of their patient’s physiology and thus provide a 
clear path to treatment (Fig. 5). In the face of persistent 
microvascular alterations, clinicians should assess the 
microvascular response to a fluid challenge, and then in 
the absence of a response, test the administration and/
or increase of vasopressor doses (with question about 
the optimal blood pressure level) (Fig. 5). The addition of 
packed RBC may be considered, especially in the face of 
decreased capillary density. In the future, the availability 
of capillary hemoglobin should make it possible to refine 
the administration of RBC. Finally, in the absence of 
response to previous therapeutic strategies, the adminis-
tration of microvascular vasodilators may be considered 
in the future (Fig. 5). New algorithms should be tested in 
prospective randomized controlled trials on homogene-
ous populations of resuscitation patients at risk of micro-
vascular alterations. Artificial intelligence could allow 
us to establish these algorithms and help the clinician to 
make therapeutic decisions regarding the treatment of 
microcirculatory alterations (Fig. 5).

Conclusion
Hemodynamic management requires individualization 
of macrovascular and microvascular parameters. Cli-
nicians are currently blind to what is happening in the 
microcirculation of organs, which prevents them from 
individualizing resuscitation by targeting the micro-
circulation. Limiting hemodynamic resuscitation to an 
optimization of the systemic hemodynamics without 
knowledge of the microcirculation exposes to persisting 
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alterations in tissue perfusion or excessive therapeutic 
interventions. The challenge for the future is to have 
noninvasive, easy-to-use equipment that allows for reli-
able assessment and immediate quantitative analysis of 
the microcirculation at the patient’s bedside. The use of 
automatic analysis and the future possibility of intro-
ducing artificial intelligence into the analysis software 
(e.g., in HVM-integrated software) could make it pos-
sible to eliminate observer bias and provide orientation 
of therapeutic options coupled with an analysis of the 
microvascular responses to the applied interventions. 
In addition, to gain caregiver confidence and support 
for the need to monitor the microcirculation, it is nec-
essary to demonstrate that incorporating microcircula-
tion analysis into the reasoning guiding hemodynamic 
resuscitation prevents organ dysfunction and improves 
the outcome of resuscitation patients.
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