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Abstract  

 
Business to business (B2B) auctions have become a dominant mechanism used by 

large shippers to procure contracts for transportation services from logistics companies.  
The bid analysis problem is of critical importance to shippers and determines which 
contracts are assigned to specific carriers and at what price.  In practice this problem is 
further complicated by the consideration of shipper business rules, such as restrictions on 
carrier numbers, limits on the number of individual packages awarded and preferences 
for incumbent carriers.  This paper examines the case in which bidding packages are 
mutually exclusive.  This is referred to as a non-combinatorial auction.  In practice, this 
type of auction is preferred to a full combinatorial auction because it allows the 
auctioneer (the shipper) to maintain control of the packages and creates much less 
cognitive strain for bidders (trucking companies).  A mathematical programming model 
for the bid analysis problem is presented and heuristic construction algorithms and 
Lagrangian relaxation based algorithms are developed to solve the problem.  Numerical 
results show that our Lagrangian relaxation based heuristics perform better than other 
heuristics and that the solutions are very close to optimal.  

 
 



 

 - 2 - 

Introduction 
 

Transportation service procurement is a critical task in the logistics operations of 
large shippers.  Auctions have become a dominant price discover mechanism for this task.   
In this process, shippers intend to outsource their transportation functions to commercial 
carriers (trucking companies, for example) by letting them bid for periodically renewed 
contracts to serve specific origin destination pairs (lanes).  While B2B auctions present 
shippers with opportunities to induce true prices from carriers, shippers are confused with 
such decision problems as how to determine the winning carriers and which bids to be 
assigned at what prices.  The optimization problems generated by these auctions can 
involve thousands of lanes and hundreds of carriers.  The sheer size of the problems faced 
by large shippers, as well as the fact that they have complicated business constraints to 
consider, make these problems very hard to solve.  
 

Further, a procurement auction can be implemented with various auction 
mechanisms.  In non-combinatorial auctions, shippers pre-specify bid packages before 
the auction; while in combinatorial auctions, carriers have the flexibility to define their 
own packages.  The bid analysis problems for these two mechanisms are quite different.  
 

In this paper, we will discuss how to model the bid analysis problem in 
transportation procurement auctions, particularly how to incorporate shippers’ business 
requirements.  This problem is modeled as a combinatorial optimization problem, further, 
greedy and optimization based heuristic algorithms are proposed to provide near-optimal 
solutions in reasonable time.  Numerical experiments are also developed to examine the 
performance of our algorithms.  In this paper, we focus on non-combinatorial 
procurement auctions which are still preferred by a majority of shippers in practice.  In 
the end we will also discuss potential solution approaches to attack the bid analysis 
problem in combinatorial auctions, which is typically harder to solve. 
 

In the following sections, first we briefly review the background for this research.  
Then we will discuss why non-combinatorial auctions are used by many shippers, and we 
will discuss typical shipper business requirements that arise in the bid analysis stage in 
transportation procurement auctions.  Next, we propose a combinatorial optimization 
model for the bid analysis problem with incorporation of these business constraints.  
Because of the computational complexity of this problem, we develop greedy algorithms 
and a Lagrangian relaxation based algorithm for this problem.  We then provide 
numerical results to analyze the experimental behavior of these algorithms.  We end with 
some conclusions and discussion of extensions of this research.  
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Background 
 

The procurement of freight transportation services is a critical component in large 
shippers’ logistics operations.  Shippers have long realized that depending solely on 
private fleets is inefficient and they are increasingly hiring commercial transportation 
companies under periodically renewed contracts.  Over one-third of the $600 billion 
annual trucking business in the United States is fulfilled by for-hire common carriers 
(American Trucking Association, 2003).  In practice, shippers typically select common 
carriers to fulfill their freight transportation demand based on competitive bidding in 
procurement auctions.  This process, also called request for quotes (RFQ), allows 
shippers and carriers to develop strategic or tactic transportation solutions that benefit 
both parties.  
 

To date, most of the procurement auctions in the transportation industry have 
been implemented as unit or non-combinatorial auctions in which carriers are allowed to 
bid only for individual packages that are pre-defined by shippers – these packages are 
mutually exclusive and each lane is included in only one package.  While this type of 
auction is not as economically efficient as combinatorial auctions in which bidders have 
the freedom to build their own packages and make conditional bids, it has some nice 
properties and dominates the current transportation service procurement market. In 
practice, there are many potential advantages. First, the cognitive or computational strain 
placed on carriers and shippers is significantly reduced.  Identifying efficient prices and 
developing good bids in complex auctions is no simple task.  Second, it gives shippers 
more control over how lanes are grouped.  Since only the shippers have reliable historical 
demand information, this may allow them to develop packages with less overall demand 
stochasticity than could the carriers.  Such a reduction in stochasticity is beneficial to 
carriers who can rely on the income stream from such contracts as well as to shippers, 
who can count on reliable and timely service.  Finally, carriers will often dedicate a sub-
fleet to serve large shippers so they have no intention of leveraging existing contracts to 
make new ones more efficient. In this paper, we only consider the unit procurement 
auctions. 
 

A transportation procurement auction involves three steps: bid preparation, bid 
execution and bid analysis/assignment.  Caplice (1996) discussed the bid preparation 
stage where shippers determine how to combine lanes into packages.  Gibson et al (1993, 
1995) discussed the criteria to select candidate carriers as participants (pre-screening).  
The bid execution stage is concerned with participants’ bidding strategies.  Nisan (2000) 
and Abrache et al (2002) discussed various bidding languages designed to describe 
bidders’ preference structures in combinatorial auctions.  Song and Regan (2003) 
examined the bid construction problem from the carrier perspective in the context of 
combinatorial auctions and presents optimization based tools to construct bids.  In this 
paper, we focus on the bid analysis stage after bids are submitted, that is, how shippers 
should analyze these bids and assign contracts to carriers in an optimal way.  Note that 
the contracts have the following form.  A shipper expects to have X loads on lane AB per 
week during the time of the contract.  The carrier agrees to carry the loads at a pre-
defined price, if the carrier has sufficient capacity when a request for service is made.  
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The shipper does not typically guarantee that it will have the loads nor does it specify 
how the loads will be distributed during the week.   The carrier does not guarantee to 
carry the loads but guarantees a price, if it does carry the loads.  
 

Bid analysis can be a daunting task for shippers even in unit auctions.  The first 
issue is problem size – a transportation procurement auction can involve thousands of 
lanes and hundreds of carriers (Caplice and Sheffi, 2003, Elmaghraby and Keskinocak, 
2003).  If shippers can assign contracts solely based on bid price, the bid analysis 
problem would still be simple – a sorting algorithm can solve the problem very quickly 
since there is no interrelationship between different bid packages.  What really makes it 
complicated is when sophisticated business rules are involved.  For example, shippers 
may wish to select a limited number of carriers as their service providers due to the 
difficulty of managing too many accounts.  And they may want to explicitly include 
carrier performance in the selection process, rather than viewing all pre-screened carriers 
as equal. As a result, shippers have to balance prices, costs associated with managing 
multiple accounts and expected service levels.  These business constraints further 
complicate the bid analysis problem.  For this reason, several third party logistics 
companies are dedicated to developing decision support tools for transportation 
procurement auctions, for instance, the Transportation Bid Collaboration tool developed 
by i2 inc. and OptiBid developed by Manhattan Associates.  
 

These business constraints also vary with among shippers and industry 
applications.  Caplice and Sheffi (2003) discussed the constraints found in transportation 
service procurement auctions and presented the general formulation for the bid analysis 
(carrier assignment) problem.  These include: 

 
• Minimum / maximum number of winning carriers: On the one hand, a shipper would 

not take the risk to put all their business into a single carrier’s hand; on the other hand, 
they prefer to contract with a limited number of carriers both to reduce overhead costs 
associated with multiple suppliers and to give their core carriers more volume such 
that it can be a dominant customer for their core carriers.  

• Favor of incumbents: It is typical for shippers to favor particular incumbents to be 
their core carriers at the lane, facility or system level; or wish to restrict some carriers 
from serving certain lanes.  Caplice and Sheffi (2003) noticed “incumbents are often 
favored by 3% to 5% - especially on service-critical lanes to key customers or time-
sensitive plants”. 

• Back up concerns: A shipper may require carriers to submit both bids as a primary 
and backup service provider.  

• Minimum / maximum coverage: A shipper often wants to aggregate their demand and 
ensure the amount of traffic that a carrier wins within certain bounds, at a lane, 
facility or system level.  

• Threshold volumes: Shippers can specify that if a carrier wins any freight (on a lane, 
from or to a facility, or system wide), it is of either a certain minimum threshold 
amount, or they win nothing at all.  
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• Complete regional coverage: Shippers may require every bid for services from a 
certain location or within a particular region to be able to cover all lanes from that 
location or region.  

• Performance factors: For shippers, there are certainly tradeoffs between a carrier’s 
bid prices and its level of services. A carrier may bid for less but does not have the 
capability to fulfill services they promised – this is called “lose the auction, win the 
freight” in practice. 

 
Guo et al (2003) discusses how to incorporate some of these constraints into their 

carrier assignment models in unit procurement auctions for transportation services.  Their 
formulation is somewhat different from ours.  In our formulation, the items to be assigned 
are packages. In theirs, the items are lanes and the business constraint considered is 
shipper preference for specific carriers (expressed as penalty costs for carriers that are not 
preferred.)  These penalties are modeled as negotiation costs at points of transit in their 
formulation.  The bid analysis problems were solved using meta-heuristics and 
experimental results are presented in their paper. 
 
 The bid analysis problems in combinatorial auctions have also received wide 
attention in the research arena.  This problem is coined the Winner Determination 
Problem in general combinatorial auctions.  This problem, essentially a variant of the 
classic Set Partitioning Problem, has been studied by several groups of operations 
researchers and computer scientists (see for example de Vries and Vohra, 2001 and 
Sandholm and Suri, 2001) and has been applied in a variety of industries.  Due to the 
complexity of this problem, shippers do not typically take business constraints into 
consideration in the bid analysis stage when implementing combinatorial auctions.  For 
example, Ledyard et al (2002) reported on the execution of combinatorial auctions for 
Sears Logistics which solved winner determination problems without specific business 
constraints.  
 

This paper examines the bid analysis problem with shipper’s side constraints in 
unit or non-combinatorial procurement auctions.  This research also provides insight on 
the general combinatorial auction problem and on similar problems in other industries.  
 
A Bid Analysis Model with Shipper’s Business Constraints 
 

The fundamental problem at the bid analysis stage in transportation procurement 
auctions can be formulated as the following integer program:  
 

,

min 

. . 1            (1)

                                    (2)

       (0,1)                     (3)

kj kj
j J k K

kj
k K

kj

c x

s t x j J

x

∈ ∈

∈

= ∀ ∈

∈

∑

∑

∏
           (BAP) 
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where: 
 
j : a bid package in set J  which may or may not include multiple lanes  
k : a bidding carrier in set K ; 

kjc : the shipper’s cost to select carrier k  to serve package j; 

kjx : is a binary variable indicating whether a carrier k  wins a package j ; 

∏ : any business or logical constraints; 
 

The objective function of the bid analysis problem BAP is to minimize shipper’s 
total costs to procure transportation services for a group of lanes in set L .  Note that the 
cost function can be defined to incorporate non-price parameters such as service 
performance ratings in addition to prices.  The first constraint ensures that each package 
is assigned to one and only one carrier.  The second constraint models specific business 
constraints defined by shippers.   
 

Note that packages are mutually exclusive in a unit or non-combinatorial auction, 
that is, 1 2j j∩ =∅ .  As a result, no lane will appear in more than one package.  Further 
note that without the second constraint set, the bid analysis problem can be easily solved 
by sorting the bid price for each package and assigning a package to the bidder with the 
least price.  However, when business constraints are incorporated, it becomes a very hard 
problem.  
 

The complete incorporation of all possible business constraints requires building a 
sophisticated decision support system and is beyond the scope of our paper.  In the 
following, we focus on those constraints discussed in Caplice and Sheffi (2003).  In 
particular, we clearly modeled these business requirements as side constraints in our 
model: maximum / minimum number of winning carriers, incumbent preference, 
maximum / minimum coverage, performance factors.  The service backup issue can be 
illustrated in the bid preparation stage by requiring each carrier to submit both primary 
and alternate bids and hence is not considered here.  The complete regional coverage 
constraint can be addressed by combining all traffic lanes from that location or within 
that region into a single bid package at the bid preparation stage.  For performance factors, 
some shippers conduct pre-screening activities on bidder’s qualifications at the bid 
preparation stage to ensure minimum level of services (Ledyard et al, 2002); another way 
to model this constraint is to use an adjusted price instead of pure bid price for the cost 
function.  Essentially, this allows the shipper to penalize carriers that have not been pre-
screened without completely eliminating them from consideration. Finally, we assume 
that the freight volume on each lane is not separable. 
 

Now the bid analysis problem with shipper’s business constraints and penalty 
costs in unit auctions can be written as follows:  
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min max

min max
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1,                                   (4)

,                             (5)
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     (BAP-P) 

 
where:  
 

kp  is the penalty cost for carrier k  to be selected as a winner, 0kp ≥ ; 

maxK  is the maximum number of carriers to be selected as winners; 

minK  is the minimum number of carriers to be selected as winners; 

max
kT  is the maximum number of packages (lanes) assigned to carrier k  if it wins; 

min
kT  is the minimum number of packages (lanes) assigned to carrier k  if it wins; 

 
In this model we also have max min 1k kT T≥ ≥  and max min 1K K> ≥ .  In addition to kjx , 

we have another decision variable ky  – a binary variable indicating whether a carrier is a 
winner or not; 
 

The objective function of the BAP-P problem minimizes total procurement costs 
including the bid prices and the penalty costs to manage multiple carrier accounts.  As 
shown in Figure 1, there is actually a trade-off between these two costs: a very large 
carrier base will reduce bid prices, i.e., the actual transportation costs; however, 
contracting with too many carriers will increase shipper’s overhead costs. 
 

 
Further, note that a penalty cost can also be used to capture the shipper’s favoring 

of specific carriers at the system level – incumbents have a zero penalty cost and non-
incumbents have a positive penalty cost.  The first constraint in the BAP-P formulation 
ensures that each package (lane) is served by one and only one carrier.  The second 

# of Carriers 

Cost 

Figure 1. Relationship between procurement costs and number of winners 
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constraint restricts the number of winners (size of carrier base) across the system in the 
final assignment.  Constraint set (6) indicates the minimum and maximum coverage for 
each winner.  That is, shippers want to make sure that a carrier carries a minimum and/or 
maximum amount of traffic volumes if this carrier is selected as a winner ( 1ky = ).  
Though we only model this constraint at the system level, it can be easily modified to 
express restrictions at facility level.  Also note that max

kT  can be used to model a carrier’s 
capacity.  For example, a small carrier may bid for more than it can handle. 
 

Constraint (6) is also a coupling constraint which models the following 
relationship between decision variables kjx  and ky : 
 

1,  if and only if 1    (8)

0,   otherwise                       (9)

kj
j

k

x
y

⎧ ≥⎪= ⎨
⎪⎩

∑
 

 
Next we analyze the complexity of this problem by transforming it to a 

Capacitated Fixed Charge Facility Location Problem (CFCFLP).  The CFCFLP problem 
finds the number and location of facilities to serve a set of demand nodes while 
minimizing the sum of fixed facility location costs and the transportation costs between 
facilities and demand nodes (see for example Daskin, 1995).   

 
First note that if we add another coupling constraint to the BAP-P problem:  

 
   ,          (10)kj kx y k K j J≤ ∀ ∈ ∈  

 
it will not change the problem structure and we still have the same problem.  Now by 
removing constraint (5) on the number of winners, the problem turns into an instance of 
the CFCFLP problem with non-fractional demand.  In our problem, a demand node is a 
bid package with unit demand, a candidate facility is a carrier k K∈ , the transportation 
cost between a facility and demand node is the carrier’s bid price for that package, and 
the facility cost corresponds to that carrier’s penalty cost.  Finally, the cost per unit 
distance per unit demand is 1.  Since the CFCFLP problem is known to be NP-hard, by 
adding constraint (5) and non-fractional demand constraint, the BAP-P problem is also 
NP-hard. 
 
Proposition: The bid analysis problem BAP-P with shipper’s business constraints in unit 
procurement auctions is an NP-hard problem. 
 

Inspired by the resemblance of the BAP-P problem to the facility location 
problem, we developed the following greedy and optimization-based heuristics to solve 
this bid analysis problem. 
 



 

 - 9 - 

Greedy Algorithms 
 

These algorithms either construct a solution from the ground up or try to improve 
from an initial solution.  In addition we combine the two approaches in a hybrid heuristic.  
They are “greedy” in nature because in each step we choose the best carrier or bid 
package that can reduce total costs as much as possible.  
 
Heuristic Construction Algorithms 
 

We use two approaches to construct a base of winning carriers: sequentially 
adding more carriers into or dropping carriers from that base.  We call the first one a 
Modified ADD algorithm (MADD) and the second one a Modified DROP algorithm 
(MDROP).  
 

In the MADD algorithm, we gradually add more carriers into the winner set to see 
if we can further improve the solution.  At the beginning, we assume each bid package is 
assigned to a dummy carrier with very large bid prices.  Then at each iteration, we select 
a winner who can reduce the total cost at the greatest amount or increase the total cost at 
the least amount without violating other constraints.  This procedure is continued until 
either, (1) the minimum-number-of-winners constraint is satisfied and adding more 
carriers will result in cost increment; or, (2) the maximum-number-of-winners constraint 
will be violated if more carriers are added.  Letting TC = total cost including 
transportation costs and penalty costs, the MADD algorithm is outlined in Appendix 1. 

 
Specifically, we select winners with iterative steps: let the set of winning carriers 

be nK  at iteration n.  First we do not consider the min max[ , ]k kT T  bound and for each carrier 

nr K∉ , we compute rTC  – the total cost if this carrier r  is added into nK .  Then we 
temporarily add the carrier with the minimal rTC  to the winner set and assign this carrier 
with all packages which it has a less bid price.  

 
In this procedure, some winners might violate the min max[ , ]k kT T  bound, so we need 

to balance traffic lanes among winners in next step.  If a carrier k  wins only a number of 
packages less than min

kT , then we balance the traffic volume in the following way.  For 
each package carrier k  does not win, calculate the incremental of bid price if this bid 
package is assigned to k , assign these packages to this carrier according to the increasing 
order of this bid price increment under the condition that other carriers still have enough 
packages.  This process is continued until constraint (6) is satisfied for each carrier.  A 
similar balancing process can be implemented for those winners with the number of 
assigned packages greater than max

kT . 
 
Note that after we balance traffic lanes among winners, the total cost could 

possibly increase could exceed the cost of adding another carrier.  If that occurs, repeat 
the process to check whether adding another carrier instead will result in a better 
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balanced assignment.  As a result, there might be a back-and-forth process between the 
third and fourth steps in the procedure.  
 

The MDROP algorithm works in a similar manner.  Initially for each bid package, 
we select the carrier with the minimum bid price to serve that package and add that 
carrier into our set of winners.  If the total number of winning carriers exceeds minK , then 
we check which carrier to be dropped will result in the maximum savings.  We greedily 
continue our search until either no further cost reductions can be found or the total 
number of winning carrier drops to minK .  The lane balancing step is similar to that in the 
MADD algorithm. 
 

The procedure of an MDROP algorithm is outlined in Appendix 2. 
 
In the MADD and MDROP algorithms, we add winners first and balance lanes 

second.  It is also noticed that this process can be reversed, that is, we can balance lanes 
first and add winners second.  The procedure is similar so we omit the details here. 
 
Heuristic Improvement Algorithms 
 

Given a feasible solution to the bid analysis problem using either construction 
algorithm, we can further improve on the solution through exchange of bid packages or 
substitution of carriers.  In particular, a heuristic improvement algorithm can be 
implemented following these two steps:  

1. Keep the winning carrier set, exchange bid packages among carriers within this 
set.  This reduces to an assignment problem where bid packages are assigned to a 
fixed number of carriers with minimal total bid prices.  Heuristics for assignment 
problems can be applied here with small modifications. 

2. Keep the number of winning carriers and assignment of bid packages, but 
substitute one winner with another carrier not in the set of winners to see whether 
solutions can be further improved.  This approach is easy to implement. 

 
Finally, a combination of heuristic construction algorithm and improvement 

algorithm will result in a hybrid heuristic algorithm.  In this paper, we are more interested 
in optimization based heuristic algorithms than greedy algorithms.  Indeed, we found a 
Lagrangian  relaxation based approach performs much better with reasonable computing 
time.  
 
Lagrangian Relaxation based Approach 
 

In this section, we propose a Lagrangian relaxation based approach to solve the 
bid analysis problem BAP-P.  Lagrangian relaxation is a very efficient optimization-
based approach to solving a number of combinatorial optimization problems (Fisher, 
1981).  The general idea is first to relax some side constraint of the original problem and 
to produce a Lagrangian problem that is easy to solve and whose optimal solution 
provides a lower bound for the original problem; a feasible solution is further constructed 
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for the original problem from this optimal solution with some heuristic and provides an 
upper bound; this procedure is repeated to reduce the gap between the lower and upper 
bound by changing Lagrangian multipliers.  
 

The structure of the bid analysis problem suggests a number of relaxations on 
different constraints.  Due to the strong similarity between this problem and the facility 
location problem, we only dualize constraint (4) in the BAP-P problem with unsigned 
Lagrangian multipliers 1( ... ...)ju u u=  and obtain the following Lagrangian relaxation 
problem:   
 

,

min max

min max

max  min  ( )

. .
                              (11)

,             (12)

,  (0,1)                                       (13)

kj j kj k k jx yu k j k j
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∑

∑

     (BAP-P-LR) 

 
Next we discuss how we solve each instance of this relaxed problem BAP-P-LR 

to optimality in polynomial time given a vector of Lagrangian multipliers.  
 
First note that the relaxed Lagrangian problem BAP-P-LR can be modeled as a 

network flow problem.  In the following graph, we need to push a flow with a total 
volume L  from dummy node s  to dummy node t  via intermediate node k  (carrier) and 
j  (package) at the minimal costs.  Each node k  has a capacity bound min max[ , ]k kT T  and a 

penalty cost kp , each edge linking k  and j  has an adjusted cost kj kj jc c u= + . 
 

 
 

s t

k
j

ckj 
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Inspired by this observation, we developed the following solution approach.  For 
each carrier, we first build a list of bid packages kT .  We associate each carrier k  with a 

sorted list of kjc , then we continuously add a package j  into kT  from an increasing order 

of kjc .  This procedure stops when either (1) the size of kT  is equal to min
kT  and the next 

kjc  in the list is greater than zero; or (2) kjc  is still less than zero but the size of 

max
k

k kj
j

T x T= =∑ .   

 
Now for each carrier, we have a list of candidate packages kT and the total cost 

{ | }k k kj k
j

TC p c j T= + ∈∑ .  Next we sort all carriers in increasing order of kTC . Then we 

add the minK  number of carriers with smallest kTC  into the winner set optK ; for the rest 
of carriers, we continue to add those with 0kTC <  into the winner set optK  until the 

constraint maxk
k

y K≤∑  is violated.   

 
Finally, we let 1ky =  for all optk K∈  and 0ky =  for other carriers.  Further, we 

set 1kjx =  for all bid packages in the list kT , that is,  & opt kk K j T∈ ∈ , and 0kjx =  for 
others.  

  
Now this solution is an optimal one to the Lagrangian problem BAP-P-LR with 

ju  and is also a lower bound to the original bid analysis problem.  In addition, this 
solution approach can be implemented in polynomial time.  In each iteration, the time to 
solve a relaxed Lagrangian problem is ( * ( ))O sK Sort sJ , where sK  is the total number 
of carriers and ( )Sort sJ  is the time to sort bid prices for sJ  number of bid packages.  
There are many good sorting algorithms with polynomial running time.  

 
Once we can find an optimal solution for the Lagrangian problem, we need to 

construct a feasible solution for the original BAP-P problem.  
 

Note that an optimal solution for the Lagrangian problem may violate constraint 4 
( 1kj

k
x =∑ ) in the BAP-P problem with either of the following two variable sets:  

1. A bid package is not covered, that is, 0kj
k

x =∑  for some j ; 

2. A bid package is covered by more than one carrier, that is, 2kj
k

x ≥∑  for some j ; 

 
For the first case, we simply assign such a bid package j  to the best carrier *k  

such that: * *
*| ,k i ki optk k c c k K= ≤ ∀ ∈ , where optK  is the optimal winner set. 
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For the second case, we will risk making some carriers win less packages than 
their min

kT  if we simply remove redundant carriers for each bid package.  As a result, the 
following heuristics is developed to tackle with this case. 

 
(1)  if min

opt

k

k K
T sJ

∈

>∑ , where sJ  is the total number of bid packages; 

This situation often occurs when shippers have to choose some large carriers but 
not all of them.  However, the optimal solution might pick more carriers than shippers 
can afford.  As a result, we need to either remove some carriers from the set of winners or 
substitute some carriers with others having less min

kT .  Let min
k

k OPT
f T sJ

∈

= −∑ , the 

procedure can be implemented as: 

 If min
opt

k
k K

y K
∈

>∑ , for each carrier k , compute the incremental cost of removing 

this carrier and assigning its packages to other carriers in optK .  Remove the 

carrier who will result in the minimal increment of costs until min
opt

k

k K
T sJ

∈

≤∑  is 

satisfied. 
 If min

opt

k
k K

y K
∈

=∑ , for each carrier optk K∈ , compute the incremental cost of by 

removing this carrier from the set of winners and assigning its lanes to other 
carriers not in optK .  Substitute the carrier whose removal will result in the 
minimal increase in costs with its corresponding carriers not in optK  until 

min
opt

k

k K
T sJ

∈

≤∑  is satisfied. 

 
(2)  if min

opt

k

k K
T sJ

∈

≤∑  

In this situation, we only need to reassign packages among winning carriers such 
that each of bid packages is served by only one carrier.  

 For each package | 2kj
k

j x ≥∑ , remove redundant carriers as follows: 

Set * 1k jx = , if * min{ | 1}kj kjk
k c x= = ; 0  *kjx k k= ∀ ≠  

 Now each package j  is connected to only one carrier, then we check whether 
each carrier’s min

kT constraint is satisfied.  Split the set of winners optK  into two 
subsets: 

min{ | }k
kj

j

P k x T= <∑  and min{ | }k
kj

j

Q k x T= ≥∑  

For each k Q∈ , sort | 1kj kjc x =  into a list with increasing order, identify min
kT  

number of packages at the top of this list, put the rest of packages into a set kRQ , 
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note the size of min
k

k kj
j

RQ x T= −∑ .  Let kk Q
RQ RQ

∈
= ∪ .  This set includes all 

candidate packages that can be reassigned to carriers in P . 
 
Now for each package j RQ∈ , compute the incremental price if it is not served 
by its assigned carrier 'k Q∈ , instead, by a carrier k P∈ , that is, 'kj k jc c− . Start 
from the triplet ( , ', )k k j  with the least incremental increase in price, let 1kjx =  
and ' 0k jx = , remove package j  from set RQ .  Once carrier k  has enough 

demand such that min
k

kj
j

x T=∑ , remove k  from set P .  Repeat this procedure 

until set P  is empty. 
 

Now this solution is indeed a feasible one to the original bid analysis problem 
BAP-P, and it also provides an upper bound to the problem.  In addition, this heuristic 
algorithm of finding feasible solution can be implemented in ( * ( ))O sJ sort sK  time. 

 
We can further improve the Lagrangian lower bound and reduce the gap between 

the upper bound and lower bound.  There are alternative ways to do this, among them is 
the well-known subgradient search method.  Let 0 ( )n

iZ u  be the optimal solution from the 
Lagrangian problem BAP-P-LR (lower bound) and ,n nx y  be the optimal assignment at 
iteration step n , and let *Z  be the feasible solution (upper bound), the subgradient search 
method starts with an initial value 0u  for the Lagrangian multipliers and updates them 
over the iterations as:  
 

1 ( 1)n n
j j n kj

k
u u t x+ = + −∑  

where: 
0

2

( * ( ))
( 1)

n
k j

n n
kj

j k

Z Z u
t

x
λ −

=
−∑ ∑

 

 
In the above equation, nt  is a scalar satisfying 0 2nt< ≤ , normally we have 0 2t =  

and it will be divided in two whenever 0 ( )n
iZ u  has failed to increase in a fixed number of 

iterations.  
 

To summarize, the procedure for Lagrangian relaxation based approach is as the 
following: 
 

1. Relax constraint (4), start from 0u u= , solve a relaxed Lagrangian problem BAP-
P-LR to optimality; 

2. Find a feasible solution for the original BAP-P problem from the optimal solution 
of BAP-P-LR using the heuristics we describe; 
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3. Check whether any stoping rule is satisfied, if not, go to the next step, else stop 
the program.  Common stop rules include whether the lower bound is close to the 
upper bound and whether there have been too many iterations; 

4. Update Lagrangian multipliers u  using the Subgradient method and return to step 
1. 

 
Experimental Results 
 
 Numerical experiments were developed to examine the performance of our 
heuristics including MADD, MDROP and Lagrangian relaxation based method.  In 
particular, we implemented these algorithms on a suite of randomly generated problems 
and compared their solution qualities and running time.   
 
 In order to implement our Lagrangian relaxation based method, we need to 
specify several system settings.  First, as indicated above, the running time of the 
Lagrangian relaxation based method is closely related to the performance of the sorting 
algorithm.  In our experiments, we used the quicksort algorithm (Cormen et al, 2001) 
with a running time ( log )O n n .  As a result, the running time of our Lagrangian 
relaxation based method is ( * *log )O K L L .   
 
 The solution quality of Lagrangian relaxation based method also heavily depends 
on the choice of initial values for Lagrangian multipliers.  We explored a few initial 
values and found the following two perform best on average:   
 

0 0

,

/j kj k
k j k

u u c sJ p= = +∑ ∑  and 0
j kj

k
u c=∑  

 
As a result, we use these two to generate initial values for Lagrangian multipliers 

in parallel and stop the program whenever either of them finds a near optimal solution.  
In addition, the subgradient method is used to update Lagrangian multipliers during the 
program.  The initial value of positive scalar kλ  is set to 2, and is halved whenever the 
optimal solution for the relaxed problem cannot be improved in 4 successive iterations. 

 
Further, the following rules are deployed to determine whether we should stop the 

iterations of Lagrangian relaxation based method: 
 

1. Optimal solution is found (optimal solutions for Lagrangian problem are also 
feasible to the original problem, or the best upper bound is equal to the best lower 
bound); 

2. Near optimal solution is found (upper bound – lower bound < 0.001); 
3. The total number of iterations exceeds 2000 (we allow the program to run up to 

4000 iterations if the solution is not good and the running time is small); 
4. kλ  is too small ( 1 10k eλ < − ); 
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In this experiment, we use solution quality and running time to measure the 
performance of different algorithms.  In terms of solution quality, we examine the gap 
between solutions from our heuristic algorithms and optimal solutions from commercial 
optimization software CPLEX version 8.1.  For very large problems which CPLEX 
cannot solve to optimality within a working day, we evaluate the performance based on 
the gap between upper bound and lower bound in Lagrangian relaxation based method, 
and the gap between greedy algorithm solutions and Lagrangian upper bound.  

 
Two data sets are developed for this purpose in our experiments.  In practice a 

transportation procurement auction involves a dozen to several hundreds of carriers and a 
few hundreds to ten thousands of lanes (Caplice and Sheffi, 2003).  Therefore we 
designed our test data sets including a set of small problems (20 to 50 carriers and 200 to 
400 lanes) and another set of large problems (100 to 500 carriers and 2000 to 10000 
lanes).  It is noted in our experiments that CPLEX can solve most problems in the first set 
within a working day, but it cannot guarantee to solve the large problems in the second 
data set even if given much longer computation time. (All experiments conducted on an 
AMD Athlon 1200 machine with 512 MB memory).  The size of each problem set is 
listed in Table 1 and 2.  For each type of problem, we tested a dozen instances and the 
results are presented as the average over those instances.  

 
Input data for each problem includes each carrier’s bid prices, penalty cost, 

minimum and maximum number of lanes if this carriers is a winner, minimum and 
maximum number of winners.  In our experiments, a carrier’s bid price kjc  is randomly 
distributed between 10 and 100, and the penalty cost is randomly distributed between 0 
and 3% of total bid prices.  Please note that this method of generating test data is without 
loss of generality because of the structure of the unit auction.  If this were a general 
combinatorial auction then input data would have to come either from a real world 
dataset or from data generated over a transportation network. We set min 5K =  and maxK  
is set to be the number of bidders.  In addition, each carrier has a min

kT  that is uniformly 
distributed over [ ]max1,  /1.5sJ K  and [ ]max min/1.5 ,  kT sJ K sJ∈ . 
 
 The numerical results are summarized reported from Table 1 to Table 4.  Table 1 
lists both optimal solution by CPLEX and near-optimal solution obtained using the 
heuristic algorithms for small problems.  The gap between the lower bound and upper 
bound solution given by the Lagrangian based method is very tight and the ratio between 
them is above 97% almost in all cases; in addition, the Lagrangian feasible solution is 
also very close to the optimal solution.  Surprisingly, even though greedy algorithms do 
not perform as well as the Lagrangian based method, their solutions are close to optimal  
as well.  Further, the solution by MDROP algorithm is slightly better than the MADD 
solution, but the difference might not be statistically significant. 
 
 As shown in Table 2, the computation time used by CPLEX is not comparable 
with the heuristic algorithms.  The CPLEX solution time increases exponentially with the 
size of problems and in some cases this time exceeds 10 hours for a relatively small 
problem while the heuristic algorithms can solve these in less than 1 minute.  As was 
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expected, the time used by the Lagrangian based method is slightly higher than those of 
the greedy algorithms.  
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Table 1 Average Solution Quality of Small Bid Analysis Problems Under Alternative 
Heuristics 

Case Index 1 2 3 4 5 6 7 8 9 

# of carriers 20 20 20 30 30 40 40 40 50 

# of lanes 200 300 400 300 400 300 400 500 400 

Lower / Upper  99.8% 99.9% 99.3% 99.6% 96.9% 97.4% 97.9% 97.5% 97.9% 

Upper / CPLEX 1.0 1.0 1.0 1.0 1.0 1.001 1.001 1.0 1.0 

MADD / CPLEX 1.01 1.0 1.001 1.007 1.003 1.009 1.004 1.002 1.003 

MDROP / CPLEX 1.0 1.0 1.001 1.0 1.0 1.003 1.001 1.001 1.001 
 

Table 2 Average Computation Time for Small Bid Analysis Problems (Minutes) 

Case Index 1 2 3 4 5 6 7 8 9 

CPLEX   0.5 2.2 9.2 10.8 66.3 66.2 137.5 231.0 192.5 

Lagrangian  0.6 0.3 0.6 0.5 0.7 0.6 0.8 0.7 0.7 

MADD  0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.06 0.07 

MDROP  0.00 0.01 0.01 0.02 0.03 0.03 0.04 0.04 0.05 
 
 
 The performance of the Lagrangian based method is constant with the increase of 
problem size as indicated in Table 3 and 4.  Even with a very large problem size of 500 
carriers and 10,000 lanes, the gap between lower bound and upper bound is less than 1%.  
And its computation time is less than 4 hours.   
 
 However, the performance of the greedy algorithms deteriorates when the 
problem size is relatively large.  Even though the average ratio between their solutions 
and feasible solutions given by Lagrangian based method (upper bound) is less than 1.1 
on average, we have spotted cases where this ratio exceeds 1.3.  The advantage of these 
greedy algorithms are clearly fast computational time. 
 
Table 3 Average Solution Quality of Large Bid Analysis Problems Under Alternative 
Heuristics 

Case Index 11 12 13 14 15 16 17 18 19 

# of carriers 100 100 200 200 300 300 400 400 500 

# of lanes 2000 4000 4000 6000 6000 8000 8000 10000 10000 

Lower/Upper 99.2% 96.9% 97.9% 99.0% 99.6% 99.3% 99.0% 99.1% 99.0% 

MADD/Upper 1.057 1.051 1.063 1.063 1.070 1.067 1.068 1.090 1.080 

MDROP/Upper 1.056 1.050 1.058 1.062 1.065 1.066 1.067 1.076 1.071 
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Table 4 Average Computation Time for Large Bid Analysis Problems (Minutes) 

Case Index 11 12 13 14 15 16 17 18 19 

Lagrangian  6 14 31 48 76 101 136 181 225 

MADD  0.4 0.4 0.6 1 1.1 1.4 2.1 4 7.6 

MDROP  0.5 1.1 3.9 6.6 13.9 20 34 46 69 
 
 In summary, both greedy algorithms and Lagrangian based heuristics have an 
unbeatable advantage over exact algorithms.  The latter cannot be guaranteed to solve 
practical bid analysis problems.  Further, the Lagrangian based algorithm can provide 
feasible solutions that are very close to optimal.  
 
Conclusion and Extensions 
 

Procurement auctions have been used by shippers to contract with common 
carriers for several years.  E-commerce further boosted this price discovery mechanism.  
Shippers used to select carriers based solely on bid price, however, this may lead to sub 
optimal choices if non-price attributes are not considered.  In addition, shippers have 
other sophisticated business considerations such as “core carrier programs” in which 
shippers want to give more transportation volume to fewer carriers.  

 
In this paper, we considered the bid analysis problem with shipper’s business 

requirements in the popular unit or non-combinatorial auctions for the procurement of 
transportation services.  That is, how shippers should select winning carriers and assign 
bid packages among them while taking their business rules explicitly into consideration.  
Further, a combinatorial optimization model was proposed to incorporate such business 
considerations as limitations on the number of winners and winning volume, incumbent 
preferences etc.  While the problem is NP-hard, greedy and optimization based heuristic 
algorithms were developed to solve this problem.  In addition, numerical experiments 
were designed to measure the performance of different algorithms.  The results showed 
that heuristic algorithms are much faster than the exact algorithms included commercial 
software such as CPLEX.  We further showed that greedy algorithms can provide very 
good solutions for small problems but that solution quality deteriorates for large problems.  
However, the Lagrangian based method is consistent in terms of solution quality and can 
fairly quickly generate solutions very close to optimal regardless of problem size.  
 

While this work represents an effort to model and solve the sophisticated bid 
analysis problems in transportation procurement auctions, several topics need to be 
examined and elaborated in the future.  First, while this work modeled the most common 
business considerations explicitly, these rules may vary in practice from shipper to 
shipper.  In addition, shippers may prefer to conduct sensitivity analysis to determine 
which business constraints should be included in the model.    

 
In this paper, the bid analysis problem was considered in the context of unit 

auctions.  While this will likely be the primary procurement method for quite some time, 
it has been observed that combinatorial auctions are more economically efficient and 
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better characterize the economies of scope properties inherent in transportation services. 
Shippers, especially large ones, are increasingly designing combinatorial auctions to 
procure transportation services. The bid analysis problem is much more complicated in 
those auctions and can be formulated as follows:  

 

min max

min max

min 

. .
1,                              (14)

                          (15)

,        (16)
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∑
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         (17)

 

 
where i L∈  is the index of lanes, and ija  is a binary coefficient indicating 

whether lane i  is included in bid package j . 
 
 Note that even without any business constraints, this Winner Determination 
problem is very hard and can be reduced to a Set Partitioning problem.  Most of the past 
research on winner determination problems in combinatorial auctions has focused on the 
pure set partitioning problem.  However, methodologies for incorporating non-price 
business factors have not yet emerged in the literature.  That issue is the topic of our 
ongoing research.  
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Appendix 1 
 

 

1. Find one carrier 
with least TC for 
all lanes

2. Carrier size is 
less than Kmax?  

3. Search a carrier s.t.    
TC is reduced the most  

Yes

No

No

No

5. is TC reduced?  
Yes

6. Carrier size is 
less than Kmin? 

Yes 

Stop

7. Permanently 
add this carrier 
into carrier base  

4. Balance traffic lanes

Figure 2 Flowchart of MADD Algorithm for the Bid Analysis Problem 



 

 - 23 - 

Appendix 2 
 

 

1. Assign the least-
bid-price carrier to 
each lane

2. Carrier size is 
greater than Kmin?  

3. Search for a carrier s.t. 
TC is reduced if it is removed; 
Balance traffic volume

Yes

No

No

No

4. is TC reduced?  
Yes

5. Carrier size is 
greater than Kmax? 

Yes 

Stop

MADD 

6. Permanently 
drop this carrier 
from carrier base  

Figure 3 Flowchart of MDROP Algorithm for the Bid Analysis Problem 




