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Article

Quantifying the phenotypic information in
mRNA abundance
Evan Maltz1,2 & Roy Wollman1,2,3,*

Abstract

Quantifying the dependency between mRNA abundance and down-
stream cellular phenotypes is a fundamental open problem in biol-
ogy. Advances in multimodal single-cell measurement technologies
provide an opportunity to apply new computational frameworks to
dissect the contribution of individual genes and gene combinations
to a given phenotype. Using an information theory approach, we
analyzed multimodal data of the expression of 83 genes in the
Ca2+ signaling network and the dynamic Ca2+ response in the
same cell. We found that the overall expression levels of these 83
genes explain approximately 60% of Ca2+ signal entropy. The aver-
age contribution of each single gene was 17%, revealing a large
degree of redundancy between genes. Using different heuristics,
we estimated the dependency between the size of a gene set and
its information content, revealing that on average, a set of 53
genes contains 54% of the information about Ca2+ signaling. Our
results provide the first direct quantification of information
content about complex cellular phenotype that exists in mRNA
abundance measurements.

Keywords cellular heterogeneity; gene expression; information theory;

mutual information; signaling dynamics
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Introduction

Cellular phenotypes emerge from many regulated interactions

between various components. Rates of synthesis and degradation

determine the instantaneous abundances of different biologi-

cal molecules. These kinetic rates are themselves a property of reg-

ulatory interactions between biomolecules creating multilayered

feedback networks (El-Samad, 2021). Both the dynamic and instan-

taneous abundances of biomolecules are key determinants of cellu-

lar phenotypes, underlying their ability to make different decisions

given the same stimulus (Perkins & Swain, 2009; Cheong et al,

2011; Purvis & Lahav, 2013). The ability to systematically measure

the abundance of large sets of different biomolecules such as

mRNA and proteins enables the determination of regulatory

strengths across different nodes of these complex networks.

Pioneering work in Escherichia coli based on instantaneous single-

cell measurements of mRNA and protein copy numbers reveals a

surprisingly low correlation coefficient of r = 0.01 � 0.03 across

129 highly expressed genes (Taniguchi et al, 2010). The lack of

correlation between mRNA and protein in E. coli might be due to

their small size and magnitude of temporal fluctuation in mRNA

levels. However, more recent advances in multimodal assays in

mammalian cells also identified low correlations between the

abundances of most proteins and corresponding mRNAs (Darmanis

et al, 2016; Gong et al, 2017; Stoeckius et al, 2017; Schulz et al,

2018; Mair et al, 2020). This low correlation appears to contradict

intuition that protein and mRNA levels should strongly correspond

within cells because of the dependency suggested by the central

dogma (Liu et al, 2016). An alternative hypothesis is that the

majority of regulatory steps and phenotypically relevant informa-

tion lie in posttranscriptional processes. Posttranscriptional regula-

tion can modulate both protein activity and abundance via protein

interactions, posttranslational modifications, RNA interactions/

structure, and more. Stochastic processes also obscure the impor-

tance of molecular composition to phenotypic outcomes (Perkins &

Swain, 2009; Bal�azsi et al, 2011; Cheong et al, 2011). Yet, many

studies have pointed to differences in mRNA levels among clonal

cells to explain differences in cellular phenotypes (Shaffer et al,

2020; Emert et al, 2021). These observations highlight a need for a

better framework to address fundamental questions: Does mRNA

abundance matter? What fraction of the information about cellular

phenotype is determined by mRNA abundance, and what fraction

is due to posttranscriptional regulation?

Quantifying the information content in mRNA abundance about

cellular phenotypes is technically and computationally challenging

due to the many layers of complex interactions in cellular networks

(Macaulay et al, 2017). Phenotypic information displayed in clonal

cells is controlled by molecular composition, stochastic factors,

intermediate regulation, and crosstalk (Azeloglu & Iyengar, 2015).

Many approaches have been developed to disentangle these com-

plex and distributed dependencies. Feature engineering has been

one powerful tool to reveal interpretable characteristics of signaling
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dynamics, finding multiple motifs that encode information about

stimulus dose and type (Nelson et al, 2004; Hafner et al, 2017;

Zhang et al, 2017; Wong et al, 2019; Adelaja et al, 2021). However,

these features do not capture all the information in complex dynam-

ics, which are difficult to study and fully recapitulate in mechanistic

models (Myers et al, 2021). Another common approach is to per-

form dimensionality reduction and/or clustering to integrate differ-

ent modalities (Subramanian et al, 2020; Kinnunen et al, 2021).

Several studies have clustered groups of genes or cells based on sig-

nal patterns to reveal general mechanisms of how signaling dynam-

ics affect transcription (Hafner et al, 2017; Lane et al, 2017).

However, it is still unknown how differences in arbitrary sets of

transcripts relate to dynamic signals in the same cells. Signaling

phenomena may emerge due to differences among many combina-

tions of genes, which may be missed when simplified to either indi-

vidual genes or gene clusters. Single-cell network states are

notoriously difficult to fully measure, and insights into the relation-

ships between many components require high-dimensional and

multimodal data from the same cells (Spencer et al, 2009; Azeloglu

& Iyengar, 2015; Macaulay et al, 2017; Adelaja et al, 2021).

Although useful in many contexts, feature engineering, clustering,

and dimensionality reduction are not guaranteed to capture all use-

ful information.

Directly quantifying the relationship between many transcripts

and a phenotype via an information theoretic approach can provide

a direct measure of the importance of mRNA abundance. However,

three challenges prevent the general use of information theory in

quantifying information content in RNA abundance. (i) Biological

feedbacks entangle mRNA abundance and cellular phenotype. Cellu-

lar phenotypes that emerge over long timescale, for example, cellu-

lar differentiations, have a longer timescale than the lifetime of

mRNA molecules that potentially determine the emerging pheno-

types. In these cases, mRNA abundances themselves change dynam-

ically adding additional complexities. (ii) Quantification of

importance of mRNA abundance requires paired measurements of

mRNA and the emerging cellular phenotype in question, measure-

ments that are technically challenging due to the destructive nature

of mRNA quantification methods. (iii) The statistical measures

needed to answer these questions, entropy and mutual information,

are notoriously hard to infer. Below, we discuss how these chal-

lenges could be addressed to provide direct quantification of the

information content in mRNA abundance.

Ca2+ signaling is a useful model system to quantify the depen-

dency between mRNA abundance and emerging cellular pheno-

types. Ca2+ signaling is a system in which the emerging phenotype

is faster than changes in mRNA abundance. This timescale separa-

tion allows us to assume mRNA abundances are at a quasi-steady

state and do not change significantly during the experiment. The

dynamics of the Ca2+ signaling response to ATP is a well-studied

model system for environmental sensing, featuring one of the most

ubiquitous and multifunctional pathways across cell types. An

important role of Ca2+ signaling is the coordination of responses to

changes in extracellular environment. In the physiological context

of tissues, cell lysis causes an unusual local increase in extracellular

ATP, among other molecules. This type of damage sensing relies on

the purinergic cell surface receptors, P1 and P2, which detect adeno-

sine and ATP, respectively (Alves et al, 2018). The P2Y GPCR

triggers a downstream signaling cascade via protein interactions.

Gq-GTP is released from the P2Y receptor where it can then bind to

and activate phospholipase C (PLCβ). PLCβ cleaves PIP2 into IP3 and

DAG, which facilitate signaling by binding to their respective recep-

tors, IP3R and DAGR. The IP3R is embedded in the membrane of

the endoplasmic reticulum and functions as a gated Ca2+ channel

that releases Ca2+ into the cytoplasm upon IP3 binding. Cytoplasmic

Ca2+ concentrations are kept relatively low at 50–100 nM and spike

up to 1uM during signaling with significant and rapid fluctuations

producing unique dynamics in every cell (Bagur & Hajn�oczky,

2017). Changes in cytoplasmic Ca2+ concentration over time (i.e., its

signaling dynamics) have many emergent features such as oscilla-

tions caused by coupling between positive and negative feedback

loops (Azeloglu & Iyengar, 2015). Studies have shown these dynam-

ics specifically propagate relevant environmental and stimulus infor-

mation (Selimkhanov et al, 2014). While in the cytoplasm, Ca2+

regulates many signaling molecules, for example, kinases and phos-

phatases, through direct binding to Ca2+ binding domains such as

the EF-hand and through binding to calmodulin isoforms that

enables it to activate kinases such as protein kinase C. These

kinases affect many downstream transcriptional and protein-

mediated responses that ultimately regulate cell behavior. The time-

scale of Ca2+ dynamics is significantly faster than the timescale of

gene expression differentiation, allowing us to interpret a symmetric

measure of dependency, such as mutual information, in a directed

manner (Putney, 2012). Overall, the Ca2+ signaling pathway is a

complex network with regulation at transcriptional and posttran-

scriptional levels, providing us with a great model system to dissect

the phenotypic information content in mRNA abundances.

Precise measurements of dynamic single-cell, multimodal data

have been collected to address these questions. Studies featuring

multiomic image-based measurements have mostly focused on fixed

cell measurements such as immunofluorescence, spatial arrange-

ment of cells in tissues, and chromatin structure (Wang et al, 2018;

Liu et al, 2021; Zhang et al, 2021). Studies that have involved

dynamic phenotypes were limited by the low sensitivity of

scRNAseq (Lane et al, 2017) or had to focus on only a handful of

genes (Lee et al, 2014). Nonetheless, methods are being developed

to integrate live cell dynamics and reliable RNA quantification of

hundreds of genes (Foreman & Wollman, 2020; Genshaft et al,

2021). Measuring the transcriptional state of the Ca2+ signaling path-

way requires the quantification of the abundance of hundreds of

genes. Multiplexed error-robust fluorescence in situ hybridization

(MERFISH) has been developed as a high-throughput, single-cell

method for accurately counting large numbers of transcripts (Moffitt

et al, 2016). Because it is performed in situ, MERFISH can be com-

bined with other imaging methods to create high-dimensional, mul-

timodal data consisting of both dynamic and instantaneous

measurements. Combining transcriptomic and live-cell data offers

unique insights into the role of dynamic regulation and sources of

phenotypic information. The challenge of collecting high-

dimensional, single cell, paired transcriptomic, and signaling

dynamics data has been successfully addressed in recent work

(Foreman & Wollman, 2020). There, we demonstrated a single-cell

method for collecting paired measurements of live Ca2+ signaling

dynamics and relevant gene expression using MERFISH. In that

work, nontransformed epithelial cells that express a Ca2+ biosensor

were activated with extracellular ATP, imaged for 13 min, and fixed

for mRNA abundance quantification using MERFISH. Pairing of cells
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between the two modalities of the experiment created a unique

dataset of 5,128 cells with 314 timepoints of Ca2+ signaling dynam-

ics and counts for 83 transcripts. This dataset was the basis for the

work described here.

New analytical frameworks have emerged for understanding

complex dependencies in multimodal measurements with intract-

able data distributions. Information theory provides a powerful

analytical framework for understanding the relationship between

system structure and output (Brennan et al, 2012). Shannon’s

mutual information is a statistical approach for measuring the mag-

nitude of shared, or symmetric, information between two random

variables. This framework is powerful because it captures nonlin-

ear relationships and measures true dependence in absolute terms,

although it has been difficult to apply to biochemical systems with-

out strict assumptions about the data distribution (Tostevin & ten

Wolde, 2010; Uda et al, 2013). However, multiomic measurements

of single cells often involve different data types that are difficult to

relate, that is to define a joint probability distribution. In the case

of Ca2+ signaling networks, signaling data are sampled from a con-

tinuous process, whereas RNA abundances are discrete. Many

paradigms rely on separate analysis of each data type, often via

dimensionality reduction or clustering, before relationships can be

quantified (Welch et al, 2019; Lee et al, 2020; Fang et al, 2021).

While other approaches (e.g., binning or kernel-density estimation)

exist for defining a joint probability distribution over some data

types, they fail to perform well outside of strict assumptions about

the distributions (e.g., gaussianity) or limited dimensionality; a

general, scalable approach is necessary to reduce the need for com-

plex and highly specific analytical pipelines that have emerged

(Gayoso et al, 2021; Zuo & Chen, 2021). Highly flexible neural net-

works have demonstrated their ability to estimate characteristics of

these probability distributions to allow a deeper understanding of

the statistical and information theoretic properties of the data. Deep

learning has proven useful for classification of and feature genera-

tion from ERK and Akt signaling dynamics (Jacques et al, 2021).

However, direct interpretation of latent embeddings in these neural

network outputs is challenging. An alternative use of deep learning

methodologies is a universal functional approximator where neural

networks are used to approximate unknown functions to achieve

different objective functions. This approach was codified within

variational inference and has been proven very useful in probabil-

ity estimates. For complex data of mixed types where mutual infor-

mation is analytically intractable, optimization of neural network

functional approximator could be used to find a lower bound. This

approach was recently demonstrated under the name mutual infor-

mation neural estimator (MINE), which uses a deep neural net-

work to learn a function that can encode the data and find a tight

lower bound on the mutual information (preprint: Belghazi et al,

2018). Briefly, MINE is a universal function approximator that

searches for a mapping function T in a large space of encoder func-

tions parameterized by θ. T maps the data consisting of mRNA

counts and Ca2+ signal dynamics, G and Ca2þ respectively, of arbi-

trary dimensionality such that Tθ : G;Ca2þ
� �! R. Remarkably, the

data require no significant transformations, MINE is simply trained

on the raw data because all transformations required for an effi-

cient mapping are theoretically learnable by a model with enough

parameters and samples. Letting ℙ≔ℙG;Ca2þ represent the joint

probability, that is, paired data, and ℚ≔ℙG�ℙCa2þ represent the

product of the marginal probabilities, that is, independently sam-

pled data, the mutual information between G and Ca2þ is the dis-

tance between the joint and marginal distributions. This distance is

measured using the Kullback–Leibler divergence (DKL), and a

stronger relationship between G and Ca2þ is equivalent to a greater

distance between the joint and marginals: I G;Ca2þ
� � ¼ DKL ℙ k ℚð Þ.

Using the Donsker-Varadhan representation of the DKL, the model

parameters θ are optimal when gradient ascent has maximized

ℙ Tθ½ ��log ℚ eTθ½ �ð Þ ≤ DKL ℙ k ℚð Þ, where  denotes the expected

value.This estimate represents a lower bound on the mutual infor-

mation. MINE is highly flexible because it makes almost no

assumptions about the structure of the data. MINE searches

through a large function space for the optimal transformation func-

tion to encode the data types assuming there are enough samples

to constrain the model. The result is a lower-bound estimate of the

mutual information between paired modalities of almost any

dimensionality and complexity.

The recent technological development in multiplexed single-cell

measurements and machine learning approaches for the inference

of mutual information could be integrated to provide direct quantifi-

cation of the phenotypic information content of mRNA abundances.

Here, we utilize these developments and focus on a model with

timescale separation between an emerging phenotype and mRNA

abundance. We relied on highly multiplexed FISH-based quantifica-

tion of mRNA levels that is more accurate than sequencing-based

approaches and also allows integration with other imaging modali-

ties. Inference of mutual information was done using the Ca2+ sig-

naling network as a model; we fit MINE on various subsets of 83

genes and 314 Ca2+ timepoints to quantify the contribution of tran-

script abundance to signaling dynamics. To establish a baseline, we

first calculated the dependency between individual genes and Ca2+

signals. We then calculated the mutual information between gene

pairs and Ca2+ signals to account for redundancy. Gene sets of all

sizes were then sampled using various strategies to measure how

information changes with set size. Using PCA, we evaluate how use-

ful phenotypic information accounts for transcript-level variance.

Overall, we demonstrate a new information theoretic framework for

analyzing paired single-cell data that provide a quantification of the

dependency between sets of mRNAs and an emergent cell-scale

dynamic phenotype.

Results

To investigate the information content of transcript counts and

dynamic Ca2+ signals, we first analyzed each modality on their

own. Ca2+ signals display significant heterogeneity across cells

(Fig 1A). Likewise, most transcripts had a large range of abun-

dances across cells, although distributions varied depending on

the transcript. Pairwise correlation coefficients were calculated for

83 genes across 5,128 cells (Fig 1B). The magnitude of the correla-

tions for all gene pairs was relatively low with an average of

r = 0.16 compared to just cell cycle genes at r = 0.44. Assuming

most genes are generally informative, one interpretation of the

low correlations and heterogeneous transcript distributions is that

transcripts contain unique information. To test this hypothesis, we

quantified the transcriptional information by performing PCA then

calculating the differential entropy, a measure of information for
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continuous probability distributions, of the components (equa-

tion 2, Fig 1C–E). Because each principal component is an inde-

pendent, weighted sum of the row vectors of the data, we can

approximate the differential entropy among orthogonal compo-

nents assuming normality via the central limit theorem. Differen-

tial entropy across principal components does not measure the

information in absolute terms but can describe how the informa-

tion is distributed relative to the explained variance. We found

that six principal components explain 75% of the variance, but

only 15% of the gene entropy. The contrast between Fig 1C and D

appears contradictory in that few orthogonal components explain

most of the variance, yet entropy is steadily added across compo-

nents with no obvious plateau. This analysis shows that simple

measures such as explained variance that are often used for

dimensionality reduction are not necessarily appropriate proxies of

information content. Accounting for relevant, phenotypic informa-

tion could help resolve discrepancies between explained variance

and differential entropy. To estimate the signal entropy, that is,

information content in Ca2+ signaling, we took advantage of its

dynamic patterns. Differential entropy of Ca2+ can be estimated

using spectral entropy (equation 1), a scale-invariant measure of

information (Burg, 1975). The periodogram shows a continuum of

signal frequencies with apparently low variance (Fig 1F). Signal

entropy can be calculated using this distribution of frequencies,

which we found to be 4.2 bits or ~18 signaling states. The mutual

information between mRNA abundance and Ca2+ signaling is

bounded by the distribution with the lowest entropy. Thus, 4.2

bits provides a likely upper bound to the true mutual information

between transcripts and Ca2+ signals.

To quantify how useful phenotypic information is distributed

across genes, we estimated mutual information between individual

genes and Ca2+ signals (Fig 2A). To help choose hyperparameters

and evaluate MINE’s performance, we tested the model on multi-

variate gaussian distributions and found a mean residual of 0.37 bits

with a Pearson’s correlation coefficient of 0.97 to the ground truth

(Appendix Fig S2). Applied to the experimental data, we measured

the total mutual information between all genes and Ca2+ at

2.5 � 0.4 bits. Most individual genes contain significant information

about Ca2+ signals, an average of 0.7 bits, and the most informative

gene accounts for 34% of the 4.2 bits of signal entropy. Cell cycle-
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Figure 1. Structure of gene and Ca2+ data.

A Representative examples of Ca2+ dynamics of four cells in the dataset.
B A histogram of the pairwise gene correlation matrix (tri-up) which highlights the relatively low correlations.
C Explained variance of mRNA transcript counts from PCA.
D Differential entropy of transcripts estimated by PCA.
E Plot of explained variance (panel C) vs differential entropy (panel D) with an increasing number of principal components.
F Dynamic Ca2+ signal periodogram (cropped to show only the lower wavelength, higher power frequencies). Ca2+ dynamic signals were found to contain a spectral

entropy of 4.2 bits.

Data information: Collectively, panels (C–E) show that most of the entropy comes from components that do not explain much of the variance.
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associated genes were well distributed throughout the list, whereas

genes coding for Ca2+ and/ or calmodulin-dependent proteins such

as PPP3CA and CCDC47 were at the top of the list. If each gene con-

tained completely unique information, then the sum of the pheno-

typic information in each gene should add up to the total of 2.5

� 0.4 bits. Interestingly, this sum is significantly larger than the

total I(G;Ca2+), indicating a high degree of redundancy (Fig 2B).

The average mutual information between a single gene and Ca2+ sig-

nals is 0.7 bits, which is 17% of the signal entropy (Fig 2C). How

the mutual information is shared across genes is not immediately

clear. We further tested whether informative genes, that is, genes

that have high average pairwise mutual information to other genes,

are also informative about Ca2+ dynamics (Fig 2D). Overall, genes

that are more informative about Ca2+ signaling are also more infor-

mative about the expression of other genes. These genes that are

highly informative about Ca2+ and many other transcripts may be

interpreted as summary genes containing redundant, but distributed

information. The second most informative single gene, PPP1CA,

exemplifies this effect, as it codes for a subunit of PP1 that interacts

with >200 regulatory proteins involved in a myriad of critical cell

processes. Notably, the top two most informative genes, PPP3CA

and PPP1CA, are both broadly connected phosphatases; kinases

and phosphatases were consistently informative and concentrated

toward the top of the list. However, from this analysis alone, it is

not clear how many genes contain redundant information and to

what extent.

To better understand how the superfluous information in Fig 2B

is distributed among genes, we calculated the synergy redundancy

index (SRI) between gene pairs with respect to Ca2+ (Dietterich et

al, 2002; Schneidman et al, 2003). SRI(Gi,Gj | Ca2+) measures the

information overlap between genes by subtracting I(Gi;Ca
2+) and I

(Gj;Ca
2+) from I({Gi,Gj};Ca

2+). A gene pair with negative SRI means

that the sum of the mutual information between each gene and Ca2+

was greater than the gene pair, so the genes must contain some of

the same information (redundant). A positive SRI indicates that

there is more information about Ca2+ in the gene pair than in the

sum of the individual genes (synergistic). An SRI of 0 describes a

pair of genes that are either generally uninformative or are indepen-

dent, containing unique and nonoverlapping information about

Ca2+. Calculating SRI between all gene pairs reveals that most pairs

are significantly redundant (Fig 3A and B). On average, gene pairs

share 0.43 bits which accounts for 61% of the 0.7 bits of phenotypic

information contained in the average individual gene. Furthermore,

the more informative a gene is about Ca2+, the more redundant it is

with other genes (Fig 3C). This finding supports that some genes

aggregate information from many others and the more information

a gene has, the more it shares. Consistent with findings in Fig 2A,

phosphatases and kinases such as PPP3CA, PRKCI, PPP2CA, PI4KB,
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D I(Gi;Gj) represents the pairwise mutual information between genes, the information that genes have about each other. This plot shows that genes that are more
informative about other genes tend to be more informative about Ca2+ dynamics.
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and PPP1CA were among the most redundant. Interestingly, some

genes are highly synergistic on average. One such synergistic gene

is PLCD3, which appears to have no information about Ca2+ on its

own, but suddenly becomes informative in gene pairs. PLCD3 codes

for an isoform of phospholipase C, a critical step in the Ca2+ in the

signal transduction of extracellular ATP. It is surprising that PLCD3

expression appears to contain little information about Ca2+ on its

own considering its relevance to stimulus sensing, but this apparent

paradox is reconciled by its high synergy. The most synergistic gene

on average was ATP2C1, which codes for a calcium-transporting

ATPase that couples ATP hydrolysis with Ca2+ transport into the

Golgi lumen. Genes which are critical for modulating Ca2+ concen-

trations in the cytoplasm represent steps in linear processes, rather

than cooperating with many other components to achieve their

function. Generally, the most synergistic genes were not very infor-

mative on their own (Fig 2A) but became informative in a group of

2 (Fig 3C). The high degree of synergy suggests that these genes

provide contextual or conditional information that is absent from

most other genes, even genes that were independently informative.

Most of the genes with near zero SRI were generally uninformative

about signaling based on Fig 2A. Although, genes typically function

in larger sets beyond pairs, and a thorough understanding of

transcriptional information requires evaluation of higher-order

interactions.

To explore the mutual information between Ca2+ and gene sets

of various sizes, we tested various sets using gene annotations, a

sequential search, and PCA. To quantify set level information at a

functional level, we summarized pairwise SRIs based on gene anno-

tations (Fig 4A). Calculating the mean SRI for combinations of

annotations revealed how different functional gene sets contain phe-

notypic information. The Ca2+/ER annotation contains the most

redundancies by a large margin, whereas the miscellaneous cate-

gory “Other” is the most synergistic which can be explained by the

functional diversity in this group. The Ca2+/ER annotation contains

the genes most relevant to the stimulus and appear to provide simi-

lar information. To understand how phenotypic information

depends on gene set size, we calculated the mutual information

between Ca2+ signals and gene sets of all sizes. Because testing all

possible sets is prohibitively computationally expensive, we first

sampled random sets of all possible sizes (4B). Each set size was

sampled four times. For random sets, 53 genes contained 54% of

the phenotypic information. To understand the upper and lower

bounds on information in each set, we performed two directed

heuristic searches. The directed searches first picked the most

(least) informative gene, and then tested every possible addition to

the set to add the member that contributed the most (least) informa-

tion until the sets were of maximum size. The upper bound in green

shows that the information quickly plateaus as the best 12 genes

contain 54% of the phenotypic information, and all further addi-

tions contribute minimal additional information. Compared to

random gene sets, using only the most informative combination of

genes dramatically reduces the number of genes required to recapit-

ulate most of the phenotypic information from 53 to 12. The lower

bound in purple shows the unique information per gene given the
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Figure 3. Synergy and redundancy of gene pairs with respect to Ca2+.

A SRI(Gi,Gj¦C) sorted by average SRI.
B Histogram of SRI showing that most gene pairs are highly redundant with an average score of −0.43 bits.
C The mean rank of all synergistic pairs compared to the mutual information between that gene and Ca2+ signals, (spearman r = 0.5, P < 2e-6), indicating that genes

with more information about Ca2+ are also more redundant.
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set, sorted from least to greatest. Because the lower bound always

adds the least informative and most redundant genes first, the last

genes contain the most unique information. PPP3CA is the first gene

added to the upper bound and the last gene to be added to the lower

bound, which means it must have both the most absolute informa-

tion and the most unique information. Interestingly, the growth of

information in the least informative set was approximately linear,

meaning that there is always some unique information in every

gene. The slope of the lower bound is 0.03 bits, which represents

the average unique information per gene.

Using the mean mutual information between a gene set and

Ca2+, we can also estimate the “redundancy explained” of all sets

of genes of a given size according to equation (5) (Fig 4C). We

found that sets of only three genes explain 66% of the redundancy.

Small gene sets contain much more redundant phenotypic informa-

tion than larger gene sets. The point at which this curve begins to

level off can be interpreted as a fundamental set size above which

most phenotypic information lies within the sets. We observe that

small gene sets contain most of the information on Ca2+ dynamics

suggesting that higher-order interactions in larger sets are not

required to capture the full dependency between mRNA abundance

and Ca2+ dynamics.

Finally, we calculated the mutual information between tran-

script principal components and Ca2+ signals to compare with

differential entropy (from Fig 1D) and understand how useful

phenotypic information is distributed (Fig 4D). In agreement with

Fig 4C, phenotypic information saturates quickly with only three

principal components accounting for 74% of the 2.5 bits of

mutual information between transcripts and signals. This result

starkly contrasts with the differential entropy of gene principal

components independent of Ca2+ signals which rises slowly and

does not appear to plateau. By accounting for phenotypic infor-

mation, far fewer orthogonal components are required to pre-

serve the useful information. The difference between these

curves indicates that focusing on phenotypic information may fil-

ter or compress transcriptional information. I(PC;Ca2+) resembles

the curve in Fig 1C, although still plateaus more quickly. These

results confirm that phenotypic information is mostly explainable

by a few components and higher-order interactions do not signif-

icantly contribute.
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Figure 4. Mutual information between gene sets and Ca2+ signals.

A Mean pairwise SRI from Fig 3 for sets based on annotation. MCF 10A differentiation and Ca2+-dependent response are abbreviated.
B Gene sets of various sizes were constructed using three different strategies: an upper bound (green) that always adds the most informative gene to the set given the

genes already included, random strategy (boxes, center band shows the median, box covers the 25–75% and whiskers show 95% confidence interval. Boxes are based
on 12 random samples of genes) that samples random sets of genes, and a lower bound (purple) that always adds the least informative gene to the set given the
genes already included.

C The blue line shows the fraction of redundant information using the expected value of I({G0, . . ., Gn};Ca
2+) from equation (3).

D A y-y plot of gene differential entropy in blue (same as Fig 1D) and the mutual information between gene principal components and Ca2+ in orange. Both values are
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Discussion

The complexity of biological regulation is staggering. While many

details about biological networks are known, the gaps in our knowl-

edge make some simple questions very challenging to answer. For

example, to what degree does abundance of one set of molecules

matter? Specifically, does the abundance of mRNAs matter for

the regulation of complex cellular phenotypes such as signaling

response to a ligand? Here, we provide a framework for answering

such questions through the combination of paired single-cell data

and application of recent advances at the interface between machine

learning and information theory (preprint: Belghazi et al, 2018).

Applying a recently developed framework for mutual information

estimation to single-cell data of multiplexed mRNA levels paired

with live cell imaging allowed us to quantify the strength of the

causal connection between mRNAs and Ca2+ signaling. We found

that approximately 60% of Ca2+ signal information exists in tran-

script counts, which is 2.5 (�0.4) bits. Furthermore, the frame-

work we developed provides key information about information

synergy and redundancy can be used to quantify the joint informa-

tion in sets of genes, and reveals how overall dependency changes

with the size of the set. On average, genes were found to contain

61% redundant information with each other, although nearly all

genes contained some unique information. Genes that appeared to

contain little phenotypic information individually were in fact the

most synergistic and became informative in pairs. The unique

information present in gene sets is best visualized in Fig 4B, which

illustrates the difference in information among the most, least, and

average set. In the best case, only 12 genes contain 54% of signal

information, which is significantly fewer than an equally informa-

tive 53 random genes. While all genes contain unique information,

some sets are still significantly more informative than others likely

due to their role in the signaling network. Decomposition by prin-

cipal components (Fig 4D) revealed a rapid plateau in phenotypic

information, starkly contrasting the increasing growth in differen-

tial entropy. These results demonstrate the utility of information

theoretic analysis in quantifying the phenotypic information of

mRNA abundance.

The framework we propose is very general and can be applied to

any two “slices” within a complex biological regulatory network.

Our numerical experiments (Supplementary Material) demonstrate

that with minor adaptations for bias removal, MINE can robustly

estimate mutual information between two high-dimensional vectors

containing 100+ features. The generalizability of this framework

provides a new tool to put weights and interpretable numbers on

different “arrows” within complex biological regulatory networks.

Importantly, such “arrows” do not necessarily represent direct

mechanistic steps. There are numerous reactions that occur post-

transcriptionally to determine Ca2+ signaling responses. Yet, using

MINE, we were able to infer the individual contribution of each

gene in controlling the emergent phenotypes. Furthermore, using

pairs of genes and estimation of the effect of gene set size, we deter-

mined how information between multiple mRNA types is integrated.

This inference showed that despite the information having to propa-

gate through multiple layers of regulation, it still shows significant

dependency. Even though correlations between mRNA and protein

levels are generally low, a substantial amount of phenotypically rel-

evant information is still preserved in the transcriptome. Our results

support the use of mRNA measurements to infer and predict useful

phenotypic characteristics of cell populations. One interpretation of

the 2.5 (�0.4) bits of mutual information is that transcripts can dif-

ferentiate approximately six distinct states of Ca2+ signaling dynam-

ics. An important feature of our analysis is that all inference was

done relaying on natural heterogeneity without any experimental

perturbation to gene expression circumventing compensation and

nonlinear dependencies that are common pitfalls of perturbation

analysis (Welf & Danuser, 2014).

While the framework we propose is very general, our findings

are systems specific and will change depending on the set of genes

and measured phenotypes. Here we focused on Ca2+ signaling in

response to activation of GPCR in a clonal population of MCF 10A

cells. In previous work, we estimated that a cellular population is

composed of multiple subtypes (Yao et al, 2016) and have shown

that mRNA variability is dominated by cell state differences with a

minor contribution from transcriptional bursting (Foreman & Woll-

man, 2020). Our current finding that 60% of information in the

emerging Ca2+ signaling phenotypes can be attributed to cellular

transcriptional state largely agrees with these previous findings. It is

likely that in other systems, decomposition of information content

will differ from the 60% transcriptional and 40% posttranscriptional

measured here. For example, broad phenotypes such as cell type

classification that often correspond to larger and highly patterned

transcriptional differences will likely show higher levels of transcrip-

tional dependency. Additionally, it is possible that the full transcrip-

tome may contain more phenotypic information than is found in

just the 83 genes measured in this study. While only 12 genes

accounted for most of the shared information, the apparent plateau

and informational redundancy may result from the strong functional

relationships and dependencies in the selected gene set. Including

significantly more genes related to other cellular processes may

provide more information about the observed phenotype by better

defining the transcriptional state or revealing indirect dependencies

to other cellular processes.

Our approach has several limitations, experimental and computa-

tional, that will need to be addressed in future work. Experimen-

tally, gene selection, that is, the expression of which genes are

measured, is limited due to gene length, specific sequence, and

other experimental constraints that are continuously improving.

Furthermore, the approach could be applied to tissue samples with

much higher population diversity where the relationship between

transcripts and phenotype is more relevant. Computationally,

because of stochastic gradient ascent, the model’s estimates are

somewhat noisy and required multiple replicates. Additionally, we

were limited to explore the effect of set sizes with search strategies

and only exhaustively examined pairwise dependencies because the

model was computationally expensive to run. None of the search

strategies are guaranteed to find the truly most or least informative

set because doing so would require a prohibitively time-consuming,

exhaustive search. Despite these limitations, MINE was able to

provide an interpretable and scalable quantification of dependency

between transcript sets and Ca2+ signaling.

Recent advances in single-cell technologies are making high-

dimensional, multimodal measurements feasible. Statistical descrip-

tions of complex phenotypes will become increasingly useful as

single-cell experiments generate more multimodal and multiomic

data. Integrating multiple different data types is still a challenge in
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the field, and this work represents a new approach to synthesize sta-

tistical descriptions of high-dimensional, multimodal data that does

not make any assumptions about the underlying functional relation-

ships. This unbiased approach will enable a deeper understanding

of complex, multidimensional data by quantifying the dependency

between any single cell phenomena.

Materials and Methods

Data selection

Data collection is described in previous work (Foreman & Wollman,

2020). Of the 336 genes measured, 150 genes were measurably

expressed and the top 83 were chosen by the highest magnitude z

scores from multiple linear regression.

Preprocessing

Transcript counts from the 83 genes and 314 timepoints of Ca2+ sig-

nals were independently z-score normalized. Normalization was

applied to the entire matrix of all cells for each data type (e.g.,

5128x83 for transcripts) and not to individual columns, preserving

relative magnitude across genes and timepoints.

Spectral entropy

Spectral entropy of a signal is defined as the Shannon entropy (H) of

the normalized power spectral density (P), calculated here using the

Fourier transform. Although the calculation requires a sampling fre-

quency (f s), the result does not change above a sufficiently large

value.

H fsð Þ ¼ � ∑
f s=2

f¼1

P fð Þlog2P fð Þ (1)

Calculation of spectral entropy was robust to changes in scale

and dimensionality of the input data (see Appendix Fig S4).

Differential entropy

Differential entropy was calculated via the determinant of the

covariance matrix of the PCA-transformed data. This approach was

used to estimate the entropy of the mRNA transcript counts.

n

2
þ nlog22π

2
þ detΣPC (2)

n = number of principal components, Σ = the covariance matrix,

PC = PCA-transformed data for a given n.

MINE

Hyperparameters were chosen by fitting analytically tractable data

from an additive white gaussian noise model of the data across a

range of strengths of dependence (Appendix Fig S1). Additional

bias correction was implemented by fitting, where Iobs tð Þ ¼
Itrue 1�að Þ � e�b�t þ ct, Itrue, a, b and c are the fitting parameters and

is the number of iterations (Appendix Fig S2). Convergence tests

were performed on the real data by comparing the residuals of the

bias correction fit. The chosen hyperparameters of 600 hidden units

and a learning rate = 3e-4 resulted in the highest yield, that is,

fewest failed fits. We performed a jackknife bias correction on all

MINE inferences as shows in Appendix Fig S3.

Synergy redundancy index (SRI)

The synergy redundancy index was developed to evaluate informa-

tion about a stimulus shared among a small population of cells

(Dietterich et al, 2002). Equation (3) describes the calculation,

which involves comparing pairwise and individual mutual informa-

tion between genes and Ca2+ signals.

SRI Gi;Gj;Ca
2þ� � ¼ I Gi;Gj;Ca

2þ� ��I Gi;Ca
2þ� ��I Gj;Ca

2þ� �
(3)

First, the mutual information between each unique pair of genes

and Ca2+ were estimated, I(Gi,Gj; Ca
2+). Then, I(Gi; Ca

2+) was calcu-

lated, and equation (3) was calculated for all genes.

Redundancy explained

This metric represents the amount of extra information assuming no

redundancy between elements. Equation (4) first calculates an

expected value by taking the mean of sampled gene sets of size k.

The expected value is multiplied by the number of possible sets then

divided the number of times an individual gene appears in all sets

to calculate the nonredundant information (NRI) as if all individual

sets contain unique information:

NRI ¼
 I G1; . . . ;Gkf g;Ca2þ� �� � n

k

 !

n�1

k�1

 !

¼  I G1; . . . ;Gkf g;Ca2þ� �� �n
k

(4)

k = set size, n = total number of genes.

From equation (4), we can calculate the fraction of purely redun-

dant information for a set of size k out of the maximum, which is

the NRI at k = 1 minus the full mutual information. The Redun-

dancy Explained (RE) is calculated as follows:

RE ¼ 1�NRIk�I G;Ca2þ
� �

NRI1�I G;Ca2þ
� � (5)

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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