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Article

Simulation of receptor triggering by kinetic
segregation shows role of oligomers and close
contacts
Robert Taylor,1 Jun Allard,1,2,3 and Elizabeth L. Read3,4,*
1Department of Physics & Astronomy, University of California, Irvine; 2Department of Mathematics, University of California, Irvine; 3Center for
Complex Biological Systems, University of California, Irvine; and 4Department of Chemical & Biomolecular Engineering, University of
California, Irvine
ABSTRACT The activation of T cells, key players of the immune system, involves local evacuation of phosphatase CD45 from a
region of the T cell’s surface, segregating it from the T cell receptor. What drives this evacuation? In the presence of antigen, what
ensures evacuation happens in the subsecond timescales necessary to initiate signaling? In the absence of antigen, what mech-
anisms ensure that evacuation does not happen spontaneously, which could cause signaling errors? Phenomena known to influ-
encespatial organizationofCD45or similar surfacemolecules includediffusivemotion in the lipidbilayer, oligomerization reactions,
and mechanical compression against a nearby surface, such as that of the cell presenting the antigen. Computer simulations can
investigate hypothesized spatiotemporal mechanisms of T cell signaling. The challenge to computational studies of evacuation is
that the base process, spontaneous evacuation by simple diffusion, is in the extreme rare event limit, meaning direct stochastic
simulation is unfeasible. Here, we combine particle-based spatial stochastic simulation with the weighted ensemble method for
rareevents to compute themeanfirst passage time for cell surfaceavailability by surface reorganizationofCD45.Weconfirmmath-
ematical estimates that, at physiological concentrations, spontaneous evacuation is extremely rare, roughly 300years.Wefind that
dimerization decreases the time required for evacuation. Aweakbimolecular interaction (dissociation constant estimate 460mM) is
sufficient for an order of magnitude reduction of spontaneous evacuation times, and oligomerization to hexamers reduces times to
below1s. This introducesamechanismwherebyexternally inducedCD45oligomerization could significantlymodifyT cell function.
For large regions of close contact, such as those induced by large microvilli, molecular size and compressibility imply a nonzero
reentry probability of 60%, decreasing evacuation times. Simulations show that these reduced evacuation times are still unrealis-
tically long (evenwitha fourfold variationcenteredaroundpreviousestimatesof parameters), suggesting that a yet-to-be-described
mechanism, besides compressional exclusion at a close contact, drives evacuation.
SIGNIFICANCE In the immune system, T cell sensing of pathogens depends on a process called T cell receptor
triggering. In this process, proteins on the cell surface undergo reorganization, including local depletion of large membrane
proteins from the area surrounding the T cell receptor. Computer simulations of protein dynamics provide a means to
investigate phenomena in greater detail than that afforded by experiments. However, even simulations present challenges,
because tracking the motion and interactions of individual molecules is computationally expensive. Combining a rare event
algorithm with spatial simulations, we show that biochemical and mechanical properties drastically affect depletion
timescales, and thus receptor triggering. Quantitative understanding of these timescales will constrain hypothesized
mechanistic models and could suggest new strategies for T cell engineering.
INTRODUCTION

In a T cell-mediated immune response, T cells sense path-
ogens through the interaction of T cell receptors (TCRs)
with antigens presented on the surface of nearby cells
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(shown schematically in Fig. 1 A, left). In a key step
known as TCR triggering, this binding interaction triggers
an intracellular signaling cascade. The physical and
biochemical mechanisms of TCR triggering are not fully
understood. A number of different models have been pro-
posed (reviewed in (1,2)). These models synthesize a vari-
ety of experimental observations, and they help to further
understanding of how T cells can achieve exquisite sensi-
tivity to small amounts of antigens, while also discrimi-
nating antigens.
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FIGURE 1 Surface dynamics for a large, mem-

brane-bound surface molecule such as CD45. (A)

T cell receptor (TCR) binding to an antigen pre-

sented by another cell. Left: if CD45 is uniformly

distributed around the receptor, signaling is in-

hibited. Right: the local depletion of CD45 from

the region of interest (ROI) near the receptor,

approximated here as a circle with radius RROI, is a

key step in TCR signaling (1,2). (B) Intermolecular

interactions between CD45, e.g., oligomerization

of CD45 into dimers. Diffusion coefficients for

monomers and dimers are D1 and D2, respectively

(13,14). (C) Close contacts created by, e.g., micro-

villi, could lead to biased movement of CD45 due

to compressional resistance of the molecule (15).

We represent these close contacts by probabilisti-

cally limiting entry into the ROI. To see this figure

in color, go online.

Rare events in kinetic segregation
TCR triggering is associated with reorganization of cell
surface proteins, shown schematically in Fig. 1 A. Local
depletion of surface proteins from the area surrounding
the receptor—in particular, the large ectodomain protein
phosphatases, CD45 and CD148—has been demonstrated
to be an important step (3,4). This depletion is consistent
with a model of T cell triggering known as the kinetic
segregation model (1). In this model, large ectodomain
proteins segregate from the region of close cell-cell con-
tact that forms when the TCR binds to antigens presented
on a neighboring cell. Depletion of these phosphatases
from the receptor’s vicinity prevents them from inter-
fering with stable phosphorylation of the TCR’s cyto-
plasmic domains. That is, this depletion prevents the
phosphatases from interfering with initiation of the
signaling cascade that ultimately leads to activation of
the T cell.

The kinetic segregation model is supported by various
lines of evidence: CD45 has been shown to have an inhibi-
tory effect on receptor triggering (5,6) and is found in low
concentrations close to triggered receptors (6,7), and syn-
thetically holding a receptor in the CD45 depletion region
augments signaling (8). The model is also consistent with
the known geometry of the rigid extracellular domain of
CD45, �21 nm in length (7,9), which is larger than the dis-
tance spanned by the receptor-antigen complex (�13 nm)
(7,10). However, the kinetic segregation model cannot by it-
self fully explain TCR triggering: other mechanisms likely
contribute (e.g., see (1)), and CD45 plays somewhat contra-
dictory roles (5).
How and when the local depletion (also hereon termed
evacuation) of large ectodomain phosphatases from the re-
ceptor vicinity occurs remains unclear. It could happen pre-
contact formation (e.g., does local evacuation of CD45 clear
the way for receptor-antigen binding?) or post close contact
formation (e.g., a scenario where receptor-antigen binding is
first enabled by close contact due to a microvillus (11), or
active membrane protrusion). The question of what drives
this evacuation can be cast in three different lights: in the
absence of receptor ligation, what mechanisms ensure that
evacuation does not happen accidentally? In the presence
of ligation, what ensures that evacuation happens in subsec-
ond timescales necessary to initiate and sustain a signal?
Finally, if the process of evacuation tips the balance from
inhibitory to stimulatory signaling in T cells, could modu-
lating the evacuation process itself be an avenue accessible
to engineered therapeutics?

Various mechanisms for this evacuation process have
been proposed, and there is no scientific consensus on which
are likely to be most important. These include: simple
Brownian motion of CD45 in the plasma membrane (12),
oligomerization reactions between the molecules (13,14)
shown schematically in Fig. 1 B, and mechanical compres-
sion by a nearby surface, such as that of the cell presenting
the antigen. The compression region can be conceptually
categorized as either a close contact of �100 nm (15,16),
shown schematically in Fig. 1 C, where there is no net
lateral pressure on the molecules within the close contact,
or something more similar to the wedge or tent shape result-
ing from a force on a single receptor pulling the membrane
Biophysical Journal 121, 1660–1674, May 3, 2022 1661
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at a point (17). The latter case has been studied theoretically
(17,18). Beyond the scope explored in this work, there are
many more possible mechanisms, including spatial hetero-
geneity due to lipid composition, interaction with the cyto-
skeleton (19–21), or crowding out by CD3 (22). Also,
modulation of the configurational state of the individual
molecules themselves can modulate their organization,
e.g., by electrostatic interaction with the lipid membrane
(23,24).

Computer simulations of the spatiotemporal events
involved in receptor triggering and immune synapse forma-
tion can provide a means to investigate phenomena that lie
beyond the spatiotemporal resolution of measurement tech-
niques (25). More generally, computational modeling is use-
ful for formalizing assumptions, isolating the effects of
individual parameters, and uncovering new phenomena
(among other purposes, reviewed in (26)). In this paper,
we investigate the evacuation process through computer
simulations tracking reaction-diffusion dynamics of protein
molecules on the cell surface. To simulate wide ranges of
parameters, including different molecular phenomena,
with a physiological and near-physiological numbers of
molecules, we made recourse to the weighted ensemble al-
gorithm (27), an enhanced sampling simulation method.

The paper is outlined as follows. We first describe the rare
event reaction-diffusion framework. We use this to confirm
previous mathematical estimates that, at physiological con-
centrations, spontaneous evacuation is extremely rare (12).
Following that, in ‘‘oligomerization’’ we explore the impli-
cations of molecular interactions between the surface mole-
cules. We find that dimerization decreases the timescale of
evacuation for even weak bimolecular interaction by several
orders of magnitude. The formation of higher-order oligo-
mers reduces evacuation to a subsecond process, opening
the possibility that an engineered oligomer of CD45 could
significantly modulate receptor triggering. In ‘‘close con-
tacts,’’ we simulate the motion of surface molecules in and
around a region where the membrane is near another sur-
face, and molecules in this region are compressed. We
find that formation of close contacts also decreases the time-
scale of evacuation. However, for large regions of close con-
tact, such as those induced by large microvilli, our model
predicts evacuation times that are still too long by several or-
ders of magnitude, using current estimates for the molecular
size and compressibility of CD45. This suggests that the
change in molecular motion driven by close contact alone
is not sufficient to drive receptor triggering.
RESULTS

A rare event reaction-diffusion simulation

Molecules in our model are represented as individual parti-
cles moving on a two-dimensional (2D) surface. Their mean
density is r, and we assume there is a region of interest
1662 Biophysical Journal 121, 1660–1674, May 3, 2022
(ROI), for example, near a single TCR, that we approximate
as a disk with radius RROI. We make the simplifying
assumption that the receptor motion is negligible relative
to the motion of the individual CD45 molecules. The ROI
lies in the center of a 2D square domain with edge length
L. The quantity we wish to compute is the mean time until
the ROI is empty—which we refer to as the evacuation
time or mean first passage time (MFPT) —under various as-
sumptions about the dynamics of the molecules. In the base
case, we assume that motion is purely diffusive with coeffi-
cient D (which could be thermal or include active, random
forces (28)). Note that previous work (12) has shown that
diffusion alone is too slow to be consistent with experi-
mental data, giving MFPTs of �1010, whereas triggering
can occur in reality within seconds (29,30). That is, the
simultaneous evacuation of all molecules from the ROI by
simple diffusion, given physiological surface density and
ROI size, is a rare event. We are interested in the rare event
limit because, first, its quantification helps reject this null
hypothesis, and, second, it provides a necessary starting
point for hypothesizing what may accelerate the biological
process of T cell activation out of the rare event limit.
Summary of key parameters in the base model

We parameterize our model based on experiment-derived
estimates. The key parameters of the base model are the
size of the evacuation region, the diffusion coefficient of
CD45, and the surface density of CD45. The size of the
evacuation region (that is, the radius of the ROI) provides
a characteristic length scale for the model system. Assuming
RROI ¼ 100 nm (15,17,31), and assuming the diffusion co-
efficient to be D ¼ 0:01 mm2=s (32), these provide a char-
acteristic timescale for the system of R2

ROI=Dz 1 s. We
define scaled units for molecule density, r, as molecules
per R2

ROI. In these scaled units, we estimate the physiolog-
ical surface density of CD45 to be r z 9 molecules per
R2

ROI(17). Parameters are listed in Table S1; further details
of parameter values are discussed in Methods.

Combining weighted ensemble (WE) and Smoldyn
allows simulation of long timescale stochastic spatial
phenomena.

To simulate evacuation in the rare event limit, we
combine the particle-based reaction-diffusion simulator
Smoldyn (33) with a weighted ensemble algorithm
(27,34–36). The algorithm has been shown to be statistically
exact for many stochastic processes (35) and has been
applied to many systems, especially in molecular dynamics
(37). In this algorithm, shown schematically in Fig. 2, many
Smoldyn simulations are run in parallel, each assigned a
weight wi, with

P
iwi ¼ 1. An order parameter is used

(here, the number of particles in the ROI, nin) to bin the state
space (Fig. 2 A). Periodic redistribution of weights and tra-
jectories among the bins occurs after each time interval t.
More simulations are run in probabilistically less-likely
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FIGURE 2 Weighted ensemble algorithmwith Smoldyn spatial dynamics simulations. (A) Partitioning of simulation state space into bins based on the num-

ber of molecules in the ROI, 0CninCN, where N is the total number of molecules. Bar heights represent the relative probability of the system to be found in the

corresponding bin at equilibrium. In the simplest case inwhichmolecules experience diffusion-only dynamics, this is a binomial distribution. (B) Description of

the algorithm. Individual simulations (replicas) are shown as purple circles, and have statistical weights that can vary from replica to replica, represented here

through circle size. Simulations are allowed to propagate according to dynamics simulated by the dynamics engine Smoldyn (33) for a period of time t. After

the dynamics step has completed, the replicas are reexamined to see their new bin locations. The number of replicas in each bin is then comparedwithmtarg, the

desired number of replicas in each bin. Bins with more than mtarg replicas have a ‘‘merging’’ event, where the replicas with the smallest individual weights

are removed and their weight is redistributed to another replica within the same bin. Bins with fewer than mtarg (but still ˃0) replicas have ‘‘splitting’’ events
where the replicas with the most weight are duplicated into two daughter replicas, with the weight from the parent being redistributed equally to the daughters.

Flux events, representing complete evacuations of theROI (red) have their replicas deleted andweight redistributed to replicas outside of the flux bin. For details

on this redistribution ofweights fromflux events, see Fig. S1. (C) Fluxmeasurements frommultiple, independent runs displayed in two differentways: total flux

accumulated (top, y axis scaled linearly) and flux accumulated per weighted ensemble (WE) iteration (bottom, y axis scaled logarithmically; fewer runs shown

for clarity). For eachWE run, themeasurements in the first half of the run are discarded to exclude the fluxes thatmight bemeasured duringweight redistribution

between the initial simulation state and the simulation state after many WE steps have passed. The mean fluxes measured during this period from multiple in-

dependent runs (slopes of dashed lines) are then used to estimate themeanfirst passage time to the evacuated state. Cumulative fluxes for seven runs are shown in

the top figure, with the time series for three of those runs being shown in the bottom plot. Since the bottom plot is on a logarithmic scale,WE iterationswhere no

flux was measured (in this case, �90% of iterations) do not appear. To see this figure in color, go online.

Rare events in kinetic segregation
regions of state space, but assigned a smaller weight. This
focuses computational power on rare events while still
maintaining an algorithmically exact statistical ensemble
(35,37). Every t time units, we record the probability flux
into the evacuated state (i.e., the summed weights of trajec-
tories that reached the bin with nin ¼ 0 during that time in-
terval), as shown schematically by red arrows and circles in
Fig. 2 B, and actual evacuated weights shown in Fig. 2 C.
Trajectories that reach evacuation are killed, and their
weights are redistributed into the system. Once the system
reaches steady state, the mean flux gives the reciprocal of
the MFPT (34). In practice, an estimate of the MFPT is ob-
tained based on multiple independent simulations, as indi-
cated by different colored lines in Fig. 2 C. For full details
see Methods and Fig.S1. We name this algorithm and com-
bination WE-Smoldyn.

A summary of WE and simulation hyperparameters is
given in Table S1.

WE-Smoldyn agrees with brute force stochastic simula-
tion at low densities and approaches asymptotic calculation
for high densities.

We first simulate evacuation for a density of particles r un-
dergoing diffusion only, and compute the mean time to evac-
uation. In Fig. 3 A, we demonstrate the computational ability
to simulate evacuation and compute MFPTs for a range of
surface density values, reaching r ¼ 10, which is consistent
with experimental estimates (15,17) and which corresponds
to a mean number inside the ROI of nin ¼ pr ¼ 31. The
Biophysical Journal 121, 1660–1674, May 3, 2022 1663
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Dt ¼ 10�6. To see this figure in color, go online.

Taylor et al.
MFPT grows superexponentially with r, reaching Tz 1012 s
at the highest simulated density. The MFPT has an uncer-
tainty of less than one order ofmagnitude (error bars are stan-
dard error of the mean).

To validate our method, we compare it with a brute force
simulation using Smoldyn at low r (red). At high r, we
compare it with the asymptotic approximation from (12)
(black dashed), which gives the following value for the
MFPT.

T ¼ k2DR
2
ROIe

nin

Dnin
2

; nin[1: (1)

Here, k2Dz0:7 is a constant independent of all parame-
ters (see (12)). In the rare event limit, agreement to the as-
ymptotics is within two orders of magnitude, and we
hypothesized that the disagreement is due to a finite domain
size in our simulation (whereas the asymptotic approxima-
tion is in the limit of infinite domain). We confirm that the
MFPT, estimated from our simulations as a function of
increasing domain size, approaches the value in Eq. 1 (see
Fig. S2). The domain size effect can be intuitively under-
stood to result from the difference in particle distributions
1664 Biophysical Journal 121, 1660–1674, May 3, 2022
for a small domain versus a large domain during an evacu-
ation event. For evacuation to occur, the density of particles
outside the ROI must increase, while the density of particles
inside the ROI must decrease (to zero). Also, the ROI area
makes up a greater fraction of the total system area for a
small domain, as compared with a large domain. Therefore,
more particles must be ‘‘squeezed’’ into a smaller area (that
is, the density of particles outside the ROI must increase
further from the equilibrium value) for evacuation to occur
in the small domain case, as compared with the large
domain.

The computational scaling in Fig. 3 B suggests that sim-
ple time stepping would take 4� 105 years of CPU time for
1000 evacuation events, whereas the WE method took
approximately 25 days per MFPT measurement (2.5 days
per measurement, then repeated 10 times) on a single
CPU core. Thus, the simulations we present throughout
this paper would be unfeasible without recourse to an
enhanced sampling algorithm such as WE.

The definition of evacuation time we use here and in (12)
is instantaneous, in other words until the last molecule rea-
ches the boundary of the ROI. This raises two notes: first,
this is an approximation, since in the T cell it is likely that
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Rare events in kinetic segregation
a TCR in an almost-evacuated ROI could still become trig-
gered, just at a lower rate. Second, the time-stepping algo-
rithm we use here could lead to overestimates of the
MFPT. To control for this second approximation, we
confirm in Fig. S2 that MFPTs are independent of simula-
tion time step Dt.
Oligomerization

Model for intermolecular interactions

There is some evidence that CD45 dimerizes (13,14). In this
section, we explore the impact this would have on the evac-
uation process. To include dimerization, we add a reversible
binding reaction to the model, with unbinding rate koff , and
binding occurring whenever two particles are within a dis-
tance gbind ¼ 10�2, which corresponds to a physical dis-
tance of 1 nm. Binding distance roughly corresponds to a
binding rate. See Fig. S3 and Methods for details on simu-
lation of reversible dimerization of surface molecules. We
further assume that dimers diffuse more slowly by twofold
(38). We explore the effect of varying koff , i.e., of varying
the equilibrium constant for the dimerization reaction.

Dimerization decreases the timescale of evacuation by orders
of magnitude even for weak bimolecular interaction strengths

At low koff, evacuation times are decreased by over five or-
ders of magnitude, as shown in Fig. 4 A (toward left of hor-
izontal axis). Order of magnitude changes in MFPT appear
to track closely with corresponding steady-state monomer
fractions as a function of koff (Fig. 4 B). We can understand
this heuristically as follows, making use of the asymptotic
approximation (for monomer evacuation) in Eq. 1 (12). At
low koff, most molecules are in dimer form. Evacuation is
Biophysical Journal 121, 1660–1674, May 3, 2022 1665
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nominally slowed by the reduction in diffusion coefficient,

since the evacuation timescales as T ¼ aD�1 in the asymp-
totic (infinite domain) limit. However, this effect is out-
weighed by the reduction in the number of independent

particles, since T ¼ a eN
�
N2, which leads to an almost

exponentially lower MFPT (12). Thus, the linear reduction
in diffusion coefficient is dominated by the near-exponential
dependence on the (linear) reduction in number of particles.
Indeed when we compute MFPTas a function of the fraction
of monomers in Fig. 4 C, we observe an approximately
exponential relationship.

More surprisingly, this dramatic reduction in evacuation
time occurs even for weak dimerization. When monomer
fraction is as high as 80%, meaning only 20% of CD45 sub-
units are in dimers, the MFPT is already reduced by 10-fold.

These relatively high unbinding rates correspond to weak
homodimerization affinities. We can compute an effective
2D dissociation constant, defined as the concentration of re-
actants at which half the reactants are in the product (dimer).
Wefind that a reactionwith k2DD ¼ 0:0058 nm�2 would yield
a 10-fold reduction in evacuation time.A reactionwith k2DD ¼
0:0009 nm�2 would yield a 1000-fold reduction. Conver-
sion of 2D chemical properties to the equivalent 3D proper-
ties is nontrivial (39,40), but a lower-bound estimate can be
obtained by dividing the 2D density by the confinement
height of the reaction (39,41,42). In this case, the upper
1666 Biophysical Journal 121, 1660–1674, May 3, 2022
bound for the confinement height is the height of CD45 (9).
Using this, we can compute a lower-bound affinity for
10-fold reduction of MFPT, k3DD ¼ 460 mM, which corre-
sponds to a standard binding free energy of DGbind ¼
kBT lnK3D

D ¼ � 19 kJ=mol. These binding strengths are an
order of magnitude weaker than those measured for agonist
TCR-peptide-MHC (43). Note that these overestimate the
needed strength, since the confinement length we assumed
to convert to a 3D affinity is an overestimate.

Effects of higher-order oligomers on evacuation

This led us to wonder how evacuation times would be
affected by the formation of higher-order complex molecu-
lar assemblies; for example, as could be engineered using
extracellular molecular linkers.

Full simulation of higher-order oligomerization was
beyond our limits due to the combinatorial complexity of
the number of molecular species and reactions between
these. (This is algorithmically feasible, especially with
rule-based modeling tools (44,45) but would be difficult
to parameterize, i.e., we would either need to estimate or
explore a combinatorially large number of rate constants.)
However, we can use WE to compute the evacuation time
assuming that koff is sufficiently low, such that all mole-
cules are in the highest-order oligomer (as shown in
Fig. 5). Here, again, we assume that the diffusion coeffi-
cient is reduced proportional to the number of subunits in
the complex.

For oligomers larger than dimers, we assume that the
ensemble is homogenous and only made of the largest com-
plex. Between oligomer size 1 and 2, we show heteroge-
neous mixtures using the same sweep of koff from Fig. 4,
but plotted as a function of the average number of subunits
in each independently diffusing particle,

Avg:# subunits ¼ 2½# dimers� þ ½# monomers�
½# dimers� þ ½# monomers� : (2)

Consistent with the result for dimers, these larger oligo-
mers evacuate faster, despite diffusing more slowly. Indeed,
hexamers with strong binding evacuate within 1 s.

We have assumed that the diffusion coefficient of oligo-
mers is Dn ¼ D1=n, where n is the number of subunits.
Note that for a single molecule with a transmembrane
domain, or multiple transmembrane domains very close
together, previous findings suggest a linear decrease in D
with lateral radius of the diffusing membrane protein (46),
while other studies found that D depends more weakly on
protein radius (47), and it has also been shown that the
size-dependent decrease in D of membrane proteins de-
pends on factors such as membrane crowding (48). In our
case, we assume that the oligomers result from the attach-
ment of multiple molecules each with a single transmem-
brane domain of unchanged size. So, the transmembrane
domains are further apart than in (46–48), and therefore
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FIGURE 6 Formation of close contacts creates an energetic barrier for entry into the ROI. Even moderate energy barriers can create order of magnitude

reduction in evacuation time at physiological densities. (A) Schematic of close contacts and how we chose to model them in Smoldyn. Close contacts, such

as those from microvilli, can cause compression of large transmembrane particles, such as CD45. The energy associated with this compression is modeled

as a compressed springEspring ¼ 1 =

2 kDz2, where k is the compressional spring constant, andDz is the distance of compression. This leads to dynamics in which

movement into theROI is reduced.Wemodel the reduction as a probability pentry from the thermodynamic relationEq. 3. (B) Heatmap of pentry for a variety of

compressional stiffnesses kspring and the compression size Dz. Pink dashed lines represent physiological estimates of both. The solid pink rectangle represents

twofold increase and decrease of kspring. (C) Evacuation time (MFPT) versus pentry, with the physiological estimate for pentry given by thevertical dashed, pink

line. Included are results fromWE simulations (blue) or brute force simulations (purple). At pentry¼ 1, we include the diffusion-only simulation result from

Fig. 3 (red). At pentry¼ 0, we compute an analytic expression for theMFPT in Eq. 34 (supportingmaterial) and Fig. S4, shown here in green. The inset shows,

with a linear y axis, close agreement between brute force andWE for pentry ˂ 0.1. ForWE runs, an alternative method of redistributing weight in the flux bin is

used (see Fig. S1). Gray dashed lines show pentry andMFPTif the spring constantwere increased or decreased by twofold. (D) Evacuation timeversus radius of

close contact,RROI, rescaled to physical units (s,mm) to show the impact of physical parameters, assuming the ansatz Eq. 4. Here, we use lower density of CD45

of 160 mm�2 (lower than central estimate used elsewhere) to achieve simulation at larger ROIs. To see this figure in color, go online.

Rare events in kinetic segregation
hydrodynamic interactions between the transmembrane do-
mains are weaker. Previous studies suggest that, if separated
by the size of a protein, the hydrodynamic interactions are
weak and the scaling of drag coefficient with n becomes
linear (38). Nonetheless, our assumption of Dn ¼ D1=n
may overestimate the decrease in D upon oligomerization;
in this case, the effect (decrease of MFPT upon dimeriza-
tion/oligomerization) would be stronger than that shown
in Figs. 4 and 5.
Close contacts

Model for molecule behavior at a close contact

TCR triggering can be induced by the formation of cellular
protrusions called microvilli, which push against a surface,
creating a region in close contact (15) between two surfaces,
as shown schematically in Fig. 6 A. If the close contact
membrane separation is smaller than the resting size of
CD45, it has been hypothesized that this leads to dynamics
in which CD45 can diffuse out but not back into the area of
close contact (15). Note that this is distinct from models in
which the membrane deformation is tent shaped or wedge
shaped, and therefore induces nondiffusive advection on
compressed molecules (17). We begin this section by
exploring the model regime in which CD45 has an unspec-
ified compressional resistance at a close contact size.

Although the compressional resistance of CD45 is a key
property in kinetic segregation models, estimates are chal-
lenging. Efforts to measure a similar molecule (49) have
yielded estimates around kspring ¼ 0:1 p N=nm. If a close
contact is held in place by TCRs bound to antigen, the
height difference between the rest size of CD45 and the
close contact size has been estimated to be Dz ¼ 6:6 nm (9).
Biophysical Journal 121, 1660–1674, May 3, 2022 1667
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For large regions of close contact, such as those induced by
large microvilli, molecular size and compressibility imply an
intermediate reentry probability

Using a Boltzmann relationship between the compression
energy and the reentry probability (see Methods and
Eq. 3), we can compute how these two molecular properties
influence the ability of CD45 to enter the close contact
shown in Fig. 6 B. Stiff or large molecules enter the ROI
with near-zero probability, and soft or small molecules enter
with high probability, but the physiologically estimated pa-
rameters lead to an entry probability of pentry entry. Our
finding is in contrast to previous models (e.g., (15)), which
assumed pentry ¼ 0. We perform simulations of the evacu-
ation process with varying pentry to investigate its effect on
evacuation.

How well approximated is the evacuation time by
assuming zero reentry, or by assuming free diffusion? It
cannot be well approximated by both, since the evacuation
time we found above at pentry¼ 1 is many orders of magni-
tude larger than the evacuation time in simulations from Fer-
nandes et al. (15), who assumed pentry ¼ 0.
Physiological levels of molecular compressibility lead to sig-
nificant reentry, leading in turn to significant delays in evac-
uation compared with purely one-way evacuation

We use our WE-Smoldyn algorithm to simulate a density
r ¼ 9 of molecules undergoing diffusion, but with the
assumption that a given molecule, after exiting the ROI, re-
enters with probability pentry. We find that the evacuation
times, shown in Fig. 6 C, indeed vary between the simple
diffusion case pentry ¼ 1 and the no-entry case pentry.
The evacuation time, given physiological estimates of
kspring and Dz, is around 105 s (pink vertical bar in Fig. 6
C). Although this value is orders of magnitude faster than
the evacuation time computed for the pentry ¼ 1 case (sim-
ple diffusion), it remains substantially longer than T cell
triggering times.

Note that estimates of kspring have varied widely (49,50).
As empirical uncertainty bounds are not presently available,
we explored the effect of a potential twofold increase or
decrease of kspring. Propagation of this uncertainty to pentry
implies a range from 0.36 to 0.77 (gray dashed lines in
Fig. 6 C), with a corresponding variation in the computed
MFPT over approximately five orders of magnitude. These
results demonstrate the high sensitivity of evacuation times
on pentry and, in turn, on the biophysical parameters that
govern CD45 movement near the close contact.

We validate our results at pentry ¼ 1 by comparison with
our simulations for simple, unhindered diffusion. We also
solve for an analytic expression for the MFPT at pentry ¼
0. This calculation is performed in the supporting material
and shown in Fig. S4. Agreement with WE-Smoldyn is
shown as the open green circle in Fig. 6 C. We further per-
formed brute force simulation for 0 < pentry <0.3.
1668 Biophysical Journal 121, 1660–1674, May 3, 2022
The dramatic effect of even small changes in pentry led us
to wonder about the relative importance of close contact size
and gap size (which determined pentry). Note that, so far, all
figure panels have shown evacuation time and densities non-
dimensionalized by scaling with the radius of the ROI. Re-
scaling to physical units, at a fixed physical density ~r;would
require simulations over a range of pentry and r. Instead, we
make use of our finding that evacuation time is an approxi-
mately exponential function of pentry, and use this as an an-
satz in Eq. 4 (Methods).

Evacuation times in physical units are shown in Fig. 6 D,
for a density 160� mm�2. Note that this is lower than the
physiological estimates used elsewhere by about fourfold
but at the limit of our current computational capability. At
these parameters, a close contact region of radius less than
�100 nm evacuates spontaneously in subsecond time. Close
contacts that are perfectly impenetrable also evacuate in
subsecond time, up to at least 250 nm, comparable with
the size observed (15,31). However, close contacts larger
than 100 nm with 20% or more reentry probability have
significant slow down in evacuation. Here, an observed
change in the shape of the curves leads to an interesting pre-
diction: at low pentry< 0.2, relative changes in lead to more
significant changes in evacuation time compared with the
same relative change in close contact radius. At high
pentry > 0.6, relative changes in close contact radius RROI

lead to more significant changes in evacuation time
compared with the same relative change in entry probability.
At the physiological estimate pentry ¼ 0.6, a roughly 20%
reduction in pentry has the same effect in reducing MFPT
as a roughly 20% reduction in size of the close contact.
DISCUSSION

The paradigm of kinetic segregation—triggering a receptor
by local depletion of its deactivating enzyme—has been
proposed for a variety of surface receptors (51,52). The
most developed example is TCR triggering by CD45 deple-
tion. In this work, we show that, first, simple diffusive mo-
tion of CD45 leads to spontaneous depletion extremely
rarely, in agreement with previous results (12). Spontaneous
depletion is therefore not at risk of false positive receptor
triggering in the absence of an external cue. Second, we
show that oligomerization of CD45 dramatically increases
the speed of depletion. And, third, we show that a close con-
tact may accelerate depletion but, depending on its gap size
and the mechanical properties of CD45, depletion may
nevertheless be extremely slow.

Our results on oligomerization make a prediction: that
externally induced oligomerization of CD45 into higher-or-
der structures would lead to more rapid receptor triggering,
and indeed that sufficient oligomerization (e.g., dominant
heptamers, Fig. 5) would lead to spontaneous receptor trig-
gering. Such oligomerization could be performed on the
extracellular regions of CD45. This could therefore provide
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a test of the prediction, particularly in a controlled system,
such as a liposomal reconstitution (53). It also predicts a
mechanism through which CD45 modulation leads to orders
of magnitude changes in a very proximal step in T cell func-
tion. It is intriguing to speculate the effect of oligomeriza-
tion on overall T cell signaling and on engineered T cell
function, e.g., T cells used in therapeutics (54,55). However,
the observation that CD45 has both positive and negative
regulation of overall T cell signaling (13,14,56) suggests a
highly nonlinear system, which demands more careful quan-
titation and quantitative modeling. Outside the context of
CD45, galectins (57,58) can cross-link surface proteins via
their sugars, but their role is not clear. These galectins can
generate higher-order oligomers. They also have weak spec-
ificity, and therefore could be a general mechanism to evac-
uate molecules with many sugars. It could also be that
oligomerization is induced not by direct protein-protein
interaction, but rather by a mobile raft of lipid heterogeneity.
Such oligomers would satisfy a similar mathematical model,
perhaps with a different diffusion coefficient.

Calculation of the theoretical evacuation time at a close
contact has implications for models of close contact surface
molecule dynamics. In particular, Fernandes et al. (15) made
the assumption that once a CD45 leaves the close contact re-
gion it cannot reenter (pentry¼ 0). We confirm here that this
leads to depletion times on the order of seconds. However,
using estimates of CD45 geometry and mechanics, we
compute that, if there is a 60% chance of reentry, the deple-
tion time increases to 105 s, much slower than observed
timescales of receptor triggering (15,29,30). Formally, there
are several possible resolutions to this discrepancy: if the
estimated geometry and mechanical properties of CD45
are accurate, there must be another phenomenon contrib-
uting to evacuation. Alternatively, the molecular spacing
could be smaller than estimated in (9), or the molecules
could be much stiffer. Indeed, according to our model, a fac-
tor of two change in the estimate of the latter parameter (i.e.,
in the spring constant of CD45) induced a greater than
100-fold change in the evacuation time. This sensitivity
shows that close contacts under the current model could
indeed result in short enough (or nearly so) evacuation times
under different estimates of biophysical parameters. Thus,
the question of what mechanisms drive evacuation, and
particularly the estimation of pentry, warrants further study.

The model we used is minimal in its assumptions and
therefore subject to limitations. Our model focuses on the
kinetic segregation mechanism; however, it has been pro-
posed that kinetic segregation is just one of many mecha-
nisms contributing to TCR triggering (1). Moreover, we
focus on the inhibitory effect of CD45 on TCR signaling,
whereas CD45 can both positively and negatively influence
TCR signaling (5).

Within the kinetic segregation model, one limitation is our
focus exclusively on total depletion, when the last molecule
leaves the ROI. In reality, other steps in receptor triggering
include ligand binding and receptor phosphorylation (16).
So, a more realistic model could be formulated in which
the number of CD45 in the ROI determine a next-event
rate. This rate would be high for total evacuation, and slower
for partial evacuation. The MFPTone would study would be
the time until the next event has occurred.Without further as-
sumptions, it is possible this next event could happen slower
than the total evacuation time because it adds a subsequent
step, or faster, since it can be triggered when evacuation is
not total.

Another limitation is the assumption of a flat, 2D mem-
brane. In particular, our consideration of microvilli ignored
the purely geometric effect of a microvillus, in which dis-
tances around the perimeter of the microvillus are smaller
than distances around the ROI in our flat simulations. Simu-
lating diffusion on such curved surfaces is computationally
possible, but more expensive, in Smoldyn (44), and would
require more characterization of the 3D shape of microvilli.

Yet another limitation is our focus on the motion of
CD45, when in reality the receptor moves as well (16).
Further integrative models, at the cell scale, may also
include multiple receptors, and therefore multiple opportu-
nities for a T cell to activate. Future research may explore
these directions.

Crowding is prevalent in biology (59–65). For that
reason, there are examples in which un-crowding may be
important—that is, when molecules must evacuate from a
region before a given process can occur, and so the problem
of making space is of general interest. These include the
many transient cell-cell contacts which occur during tissue
development (e.g., the delta-notch system (66,67)). There
are also membrane-membrane contacts within cells,
including between the endoplasmic reticulum and plasma
membrane (where crowding could modulate interactions
of molecules including Ora1 and Slim1 (68)). In 1D, an
example is offered by transcriptional control in eukaryotes,
which is achieved by the binding of many classes of pro-
teins to DNA (69,70). Transcription factors (TFs) locate
to binding sites within promoters and enhancers by 1D
diffusion along the DNA and by attachment/detachment
into the 3D cytoplasm (71–73). The binding of larger struc-
tures, such as nucleosomes, which occupy �150 basepairs
(bp) of DNA, is inhibited by the presence of TFs, and there-
fore it is intriguing to wonder whether evacuation time-
scales are significant. Furthermore, enhancers, which are
�200 bp stretches of DNA with 5–30 TF binding sites of
various classes, may require evacuation of nucleosomes
and transcriptional repressors to activate their target genes.
Again in 1D, microtubules (inflexible polymers of the
protein tubulin) are decorated by hundreds of microtu-
bule-associated proteins (74,75). These proteins exhibit sig-
nificant crowding (62,63) and lateral diffusion along the
microtubule lattice (76,77). Large microtubule-binding
molecules may therefore have to wait for a region to be
clear before binding.
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Simulations performed here would be unfeasible without
recourse to an enhanced sampling algorithm. WE has been
applied to many different types of stochastic dynamics sim-
ulations; however, ongoing challenges are present, e.g., in a
priori selection of state-space binning strategies, hyperpara-
meters, and weighting schemes to optimize convergence of
desired observables (37). Further systematic study ofWE hy-
perparameter selection and analysis methods should lead to
further increases in efficiency and empower future rare event
simulation studies. OurWE-Smoldyn code base was built on
top of the Smoldyn dynamics engine, which is widely used,
flexible, and with a large user base. We anticipate the combi-
nation of WE with spatial stochastic simulation, as high-
lighted by full-featured software such as MCell-WESTPA
(78), will open new avenues of research, including for the
evacuation questions posed in the previous paragraph.
METHODS

Model and dynamics

Diffusion

Smoldyn is a time-stepping simulator with a continuous spatial domain (as

opposed to a lattice method). At each time step, molecule displacements are

drawn from a Gaussian distribution whose width is determined by their

diffusion coefficient D, with each chemical species having their own diffu-

sion coefficient. At each Smoldyn time step, Smoldyn tracks the location of

each molecule, and stops when it observes a complete evacuation of the

ROI (Fig. 1 A, right). Aside from interactions with boundaries, barriers,

and for molecular binding, all molecules diffuse independently and do

not interact with each other. Boundary conditions were chosen to be reflec-

tive, although preliminary results did not show substantial differences be-

tween reflective and periodic boundary conditions.

As we are using a time-stepping-based method, the determination of

whether or not a molecule has evacuated the ROI within a time step is based

only on its starting and ending locations, and specific details of the trajec-

tory between the time steps are lost. This representation results in evacua-

tion events that occur between two sequential time steps that are not

observed by the method. As evacuation events are lost but none are gained,

this would result in estimates of the MFPT that are higher than the true

value rather than an underestimate. To minimize the number of evacuation

events lost from these missing trajectories, we chose to use a small Smoldyn

time step, Dt ¼ 10�6. To ensure that this choice of Dt is small enough we

confirmed that smaller time steps give similar results, as shown in Fig. S2.

Intermolecular interactions and reversible dimerization

Smoldyn uses an algorithm that is qualitatively similar to the Collins-Kim-

ball model of bimolecular reactions and approaches the Smoluchowski

model for short time steps (79). The association reaction occurs when

two monomers diffuse within a predefined distance of each other, referred

to as the binding radius, rbind.

Dissociation of dimers into two monomers is probabilistically deter-

mined at each time step, with probability determined by the detachment

rate koff (79).

2D reactions are more complicated to analyze than their 3D counterparts

(80,81). For example, there is no exact relationship between rbind and a

well-mixed kon. We confirm that, for our choice of Dt ¼ 10�6 and ranges

of rbind and koff , the steady-state unbound (monomeric) fraction is a

smoothly increasing function of koff and decreasing function of rbind, as
shown in Fig. S3 A. The dissociation constant, meaning the value of koff
at which half of subunits are in monomers, is a weakly increasing function
1670 Biophysical Journal 121, 1660–1674, May 3, 2022
of rbind, as expected by previous theoretical treatments (80,81). The unbind-

ing radius, the distance between two monomers that dissociated in the pre-

vious step, was set such that the geminate recombination probability was

0.2, which gives runbind a nominal value of 0.0443134 (z4 nm).
Close contacts

By representing close contacts of the system as energy barriers caused by

compression of molecules inside the ROI/close contact, we can then model

these energy barriers by creating asymmetric behavior between molecules

attempting to enter the ROI and those leaving it. Molecules attempting to

leave the ROI are free to do so, while those attempting to enter are only al-

lowed to do so probabilistically. The energy barrier between the ROI and

rest of the domain is taken to be the energy required to compress a spring,

Espring ¼ 1 =

2 kDz2, where k is the physiological spring constant andDz is the

size of the compression. The thermodynamic relationship between this

probability and the energy compression is given by

pentry ¼ e
�Espring

kbT ; (3)

where kb is Boltzmann’s constant and T is the temperature. According to

this definition, pentry gives the probability that a molecule has energy

greater than Espring (and thus may gain entry to the ROI); it follows that pen-

try also equals the ratio of concentrations of molecules inside versus outside

the ROI at equilibrium. (Note, however, that pentry is not the same as the

instantaneous probability of entry of a single molecule during a collision

event in the simulation. Particle-based simulation of this type of partial

transmission was discussed previously by Andrews (82), and we made

use of Smoldyn’s built-in functionality for implementation.) In the absence

of evidence otherwise, we assume that the presence of the close contact

does not influence diffusion coefficient D.

Parameter estimates and model nondimensional scaling

Estimates for RROI range from 100 to 200 nm (15,17,31), depending in part

on the definition, e.g., whether it is the minimum region necessary for re-

ceptor triggering, or the observed depletion zone size. The diffusion coef-

ficient D has been estimated to range from 0:01 mm2=s (32) to 0:3 mm2=s

(15). Roughly setting RROI ¼ 100 nm and D ¼ 0:01 mm2=s conveniently

sets the characteristic timescale D=R2
ROI ¼ 1s:

Given the wide ranges of estimates, throughout this work we report times

and distances in these scaled (nondimensional) units. Where appropriate,

we report results in physical units, denoting these by explicitly including

the unit (e.g., s or nm), and, if clarity necessitates, we use a tilde to denote

the parameter with physical units. Domain size L and binding radius rbind
have units of RROI. The corresponding physical parameters ~L ¼ LRROI

and ~rbind ¼ rbindRROI have units of nanometers or microns. The dynamics

engine time step Dt has units of D=R2
ROI and the detachment rate koff has

units of R2
ROI=D.

The scaled molecule density r has units of molecules per R2
ROI, and the

physical molecular density ~r ¼ r =R2
ROI has units of molecules per square

nanometer. Another interchangeable quantity is the number of particles in

the ROI in a uniform distribution, nin ¼ pr ¼ pR2

ROI~r
. For CD45, estimates

range from 482 mm�2 (15) to 1000 mm�2 (17). For RROI ¼ 100nm, this cor-

responds to a density ranging from r ¼ 4.82 to r ¼ 10. We use r ¼ 9 as our

focus (17) in all figures unless otherwise noted (e.g., in the r sweeps in

Fig. 3 and the physical unit plot in Fig. 6 D).
Ansatz for rescaling close contact evacuation
time to physical units

To return to physical dimensions, a constant physical density ~r requires

varying scaled density r since ~r ¼ r =R2
ROI. In Fig. 6 D, we plot the evac-

uation time in physical units over a range of RROI. Doing so would require a
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full exploration of both nondimensional r and pentry, which is outside of

our computational capacity. So, as an approximation, we take the result

in Fig. 6 C, which suggests that evacuation time T(pentry) is a simple expo-

nential function of pentry, that varies between the pentry ¼ 0 limit and

pentry ¼ 1 limit. In other words,

TðpÞzTð0Þ
�
Tð1Þ
Tð0Þ

�p

; (4)

where p ¼ pentry. The MFPTs for T(1) can be obtained from the simple

diffusion simulations in Fig. 3 A, while the MFPTs for T(0) can be obtained

analytically, see Fig. S4 B.
WE

Algorithm overview

WE obtains information of long timescale processes through multiple short

timescale trajectories, hereafter denoted as replicas. A group of simulation

replicas are initialized and attributed a probabilistic weight (see Fig. 2 A).

These replicas are allowed to evolve into a steady-state distribution based

on the ensemble space, which is then organized into bins based on location

inside the state space. After the definition of these bins, the simulations are

allowed to evolve for a fixed amount of time twith periodic duplication and

deletion of certain simulations (Fig. 2 B). These duplications and deletions,

dubbed splitting and merging, respectively, are done in such a way that pre-

serves the total probabilistic weight of the system: splitting involves sepa-

rating a simulation into two identical simulations each with half as much

weight, and merging involves giving the weight from a deleted simulation

to a simulation inside the same bin as the deleted simulation. While the total

weight and its distribution between bins might change as the simulation

evolves, the number of simulations inside each bin is manipulated so that

computation power is evenly split between bins. Our binning order param-

eter is the number of subunits inside the ROI, nin. So each monomer inside

the ROI increased the order parameter by 1, while for simulations with

dimerization, each dimer inside the ROI increased the order parameter by 2.

If a replica reached the bin where nin ¼ 0, hereafter referred to as the flux

bin, the replica is removed frommemory, its probabilistic weight is recorded

as outgoing flux, and then theweight is redistributed according to one of two

different methods (see Fig. S1 and Reweighting methods, below).

Model initialization

Each WE simulation is initialized with 1000 replicas of a Smoldyn simula-

tion. In each replica, each of Nmolecules is randomly and uniformly placed

throughout the entire domain. After this initialization, WE splitting and

merging and flux measurements are performed before each subsequent

step of Smoldyn dynamics (Fig. S1 C).

In simulations involving more than one molecular species, initialization

is done with homogeneous molecular mixtures; either N monomers or N =

2

dimers are uniformly distributed in the simulation, depending on which is

closer to the steady state as found by brute force simulations in Fig. S3.
Reweighting methods

There were two methods of redistributing weight removed from the system

through flux into the flux bin (nin ¼ 0, see Fig S1). The first method, which

was the method used unless otherwise noted, involves redistributing the

weight by renormalization; the weight of all remaining replicas is scaled

by the total weight remaining in the simulation. If replica i evacuates, it

is removed and the weight for a replica j remaining in the simulation will

scale according to

wj/
wj

1�wi
: (5)
This method works for calculating the mean transition time from the

steady-state distribution (or small perturbation from steady state) to a

rare fluctuation. In other words, we are measuring the MFPT from A /
B, where B is defined as the bin nin ¼ 0 (which is rarely visited), and A

is defined as encompassing all bins ninD0. Note that, in many WE applica-

tions, significant time is required for the system to reach steady state, before

which accurate MFPT estimates cannot be obtained from the averaged flux-

to-target (34). In our system, we know a priori the equilibrium distribution

of particles undergoing simple diffusion. Our initialization of replicas ac-

cording to the equilibrium distribution thus starts close to the nonequilib-

rium steady-state distribution (reached after some number of t iterations),

where the small weight entering the flux bin is continuously removed and

returned to the remaining bins.

In some scenarios, the evacuated state is not rare, and therefore the

steady-state distribution is not well approximated by the equilibrium distri-

bution assuming no evacuation. Specifically, this occurs for simple diffu-

sion when r%1, at the left of Fig. 3 A, and for close contact simulations

where pentryz0 (Fig. 6). In this latter scenario the steady state is the

completely evacuated state, and we are seeking to compute a different tran-

sition time: from the uniform steady state (as if pentry¼ 1) to the evacuated

state. In these scenarios, a second reweighting method was used. This is

described schematically in Fig S1 B. In these methods, the weight from

an evacuated replica is not redistributed to remaining replicas. Rather,

each time a replica evacuates, a new replica is initialized as described above

and given all of the weight from the evacuating replica. This ensures that the

weight distribution throughout the state space remains statistically accurate,

even when the flux of weight throughout the space is unidirectional.

Hyperparameters

The above-described WE method requires the specification of hyperpara-

meters t, mtarg, and the max number of iterations. In principle, the selection

of these hyperparameters should not impact the results of the WE simula-

tion, but will impact the efficiency of convergence to an accurate MFPT.

In an effort to maximize the observed number of flux events, mtarg was

chosen to be high to maximize the number of replicas in bins near the

flux bin (transient bins), but not higher than allowed by computer memory

limitations. The values weremtarg ¼ 100 for Figs. 3 and S2, and mtarg¼ 200

for Figs. 4 and 5.

The WE step was chosen to be t ¼ 50Dt, which we found to be large

enough to give replicas time to change bins before the splitting and merging

process began, while also avoiding being too long to ensure a high number

of replicas inside the transient bins.

Implementation

Smoldyn simulations were executed through Smoldyn’s C library, libsmol-

dyndyn (44). Combination of Smoldyn with WE was written in C and is

available to the public at: https://github.com/dydtaylor/LibsmolWE. Execu-

tion of libsmoldynWE simulations was done on UCI’s high-performance

cluster. Brute force Smoldyn simulations were executed in libsmoldyndyn,

but outside of the libsmoldynWE weighted ensemble framework. All data

were analyzed in MATLAB. Evaluation of analytical solution for

pentry ¼ 1 was done in Wolfram Mathematica.

Analysis

To allot for burn-in time, i.e., an initial transient while the replicas approach

a steady state, the first half of each run is discarded, and the mean flux

measured in the second half of the run is taken to be a single measurement

of the mean flux 4, averaged across WE steps. Each WE data point in this

paper is calculated from 10 independent WE simulations; multiple indepen-

dent runs are used to minimize the effect of spurious correlations between

iterations (37), which can cause interrun variability in estimates (e.g., as

seen in Fig. 2 C). These 10 repeats are then arithmetically averaged to

give an estimate of the mean flux, averaged across repeats, C4D, with error

bars given by the standard error of the mean for the 10 WE simulations.
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The average flux recorded from replicas reaching the flux bin, 4, is used

to calculate the MFPT from the Hill relation (34,83), T ¼ 1=4. The error

bars of the flux d4 then propagate to MFPT error bars by dT ¼ jTj2d4.
To calculate MFPT from brute force simulations, the arithmetic mean of

1000 (Fig. 3) or 500 (Fig. S4 B) independent repeats was used, with error

bars giving the standard error of the mean for those simulations. To calcu-

late the single molecule first passage time distribution for Fig. S4 A, an

empirical CDF was created from the result of 20,000 brute force evacua-

tions of a single molecule placed uniformly within the ROI.

To calculate monomer fractions from brute force simulations, purely

monomeric Smoldyn simulations are initialized and run for 15 units of

time. Afterward, the monomer fraction we report is average measured

over these last 5 time units.

Method validation

Several methods were used to validate the WE results. For MFPTs where

achieving brute force results was computationally viable, brute force results

were included along with WE results (see Figs. 3 and 6 C). Monomer and

dimer fractions were verified with brute force Smoldyn simulations

(Fig. S3).

For each binding radius presented, the sigmoidal monomer fraction

versus unbinding rate curve was executed for a range of time steps to verify

that the time step of Dt ¼ 10�2 was small enough.

Close contact WE simulations were found to agree with brute force sim-

ulations for low pentry (Fig. 6 C). For pentry ¼ 1 we verified the endpoint

with our simple diffusion WE simulations for r ¼ 9.

An analytical solution for close contact simulations when pentry¼ 0 was

obtained, see supporting material. The analytic solution for a single mole-

cule’s first passage time distribution was compared with an empirical CDF

obtained from 20,000 brute force Smoldyn simulations (Fig. S4 A) and the

analytical form for the MFPT for a variety of evacuating molecules was

compared with the results from brute force Smoldyn simulations, 500 for

each data point (Fig. S4 B). The analytic solution for the parameters used

in the close contact WE simulations is included in Fig. 6 C.

An asymptotic solution for the MFPT for homogeneous monomeric so-

lutions was obtained from previous work (12). When applicable, these as-

ymptotics were used to verify WE results (Figs. 3 A and S2).

However, as can be seen in Figs. 3 and S2, agreement with the asymp-

totics at higher densities is dependent on the size of the domain used. For

a range of densities, we did a sweep of domain sizes (Fig. S2). WE esti-

mates reach to within one order of magnitude of the asymptotics above

zL ¼ 5 at the highest simulated densities.

Convergence in time steps was done by comparing MFPT estimates for

larger time steps with the chosen time step to ensure that MFPT estimates

did not undergo drastic differences in MFPT estimates. The time step of

Dt ¼ 10�6, used for all simulations unless otherwise stated, is compared

with the time step of Dt ¼ 5� 10�6 shown in Figs. S2B–S3D.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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