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Supervised Learning and the Finite-Temperature
String Method for Computing Committor Functions

and Reaction Rates

Muhammad R. Hasyim1,∗ ,† , Clay H. Batton1,∗,‡ , Kranthi K. Mandadapu1,2,§
1Department of Chemical & Biomolecular Engineering, University of California at Berkeley

2Chemical Sciences Division, Lawrence Berkeley National Laboratory

Abstract

A central object in the computational studies of rare events is the committor
function. Though costly to compute, the committor function encodes complete
mechanistic information of the processes involving rare events, including reaction
rates and transition-state ensembles. Under the framework of transition path theory
(TPT), recent work [1] proposes an algorithm where a feedback loop couples a
neural network that models the committor function with importance sampling,
mainly umbrella sampling, which collects data needed for adaptive training. In
this work, we show additional modifications are needed to improve the accuracy of
the algorithm. The first modification adds elements of supervised learning, which
allows the neural network to improve its prediction by fitting to sample-mean
estimates of committor values obtained from short molecular dynamics trajectories.
The second modification replaces the committor-based umbrella sampling with the
finite-temperature string (FTS) method, which enables homogeneous sampling in
regions where transition pathways are located. We test our modifications on low-
dimensional systems with non-convex potential energy where reference solutions
can be found via analytical or the finite element methods, and show how combining
supervised learning and the FTS method yields accurate computation of committor
functions and reaction rates. We also provide an error analysis for algorithms
that use the FTS method, using which reaction rates can be accurately estimated
during training with a small number of samples. The methods are then applied
to a molecular system in which no reference solution is known, where accurate
computations of committor functions and reaction rates can still be obtained.

1 Introduction

A fundamental problem in chemistry is to discover the mechanistic pathways governing kinetic
processes at the microscopic level. These processes include phase transitions in colloidal systems
[2], chemical reactions at aqueous interfaces [3], and protein folding [4]. While diverse in context,
they exhibit a common bottleneck in the form of high-energy barriers, which separate the reactant
and product states of the pathway. Despite remarkable progress in high-performance molecular
simulations [5–7], finding these pathways is difficult due to the rarity of barrier-crossing events at
timescales achievable by current computational resources. Studying these rare events constitute
identifying the transition pathways, and sampling them is an important part of obtaining a mechanistic
understanding of the problem.
∗These two authors contributed equally to this work.
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Several strategies exist for capturing rare barrier-crossing events, one of which is transition path
sampling (TPS) [8, 9]; an importance sampling technique for generating an ensemble of transition
pathways. An alternative strategy is to rely on transition path theory (TPT) [10, 11], which can
outline various computational methods to obtain an average characteristic pathway, e.g., the finite-
temperature string (FTS) method [12, 13]. Both strategies involve the calculation of the committor
function q(x); the probability that a trajectory starting from some initial configuration x enters the
product state before the reactant state. The committor function can be further used to obtain reaction
rates and transition-state ensembles. Its standard computation entails generating many trajectories for
every initial configuration x, which may become prohibitively expensive [14].

In the framework of TPT, the committor function can be computed by solving a high-dimensional
partial differential equation (PDE) in configuration space, called the backward Kolmogorov equation
(BKE) [10, 11, 15]. The complexity in solving the high-dimensional BKE may be reduced by
constructing a low-dimensional set of collective variables (CVs) [16], but they are not known a priori
and require exhaustive trial-and-error to obtain ones that best describe a reaction pathway [17]. On
the other hand, one does not need to solve the BKE over the entire configuration space to obtain
reaction rates and transition-state ensembles but focuses on important regions across the transition
path. One way to target these regions is importance sampling [18] where molecular simulations are
biased to generate configurations according to target values of the committor function in regions
across the transition path. However, since the committor function has no closed-form expression
as a function of configuration x and intrinsically involves averages over finite-time trajectories,
it is impractical to use it in conjunction with existing importance sampling techniques. Modern
machine learning (ML) approaches can alleviate this issue by representing committor functions via
artificial neural networks. This is the strategy used in recent work [1] to create an ML algorithm that
adopts a feedback loop between importance sampling and neural network training, which involves
minimizing a loss function derived from the BKE. The feedback loop uses the neural network to
acquire high-quality data from short molecular dynamics (MD) or Monte Carlo (MC) simulations via
umbrella sampling [19] where a bias potential built from the neural network enhances sampling of the
transition state. However, as will be shown in this work, umbrella sampling poorly explores regions
across the transition path, which may result in an inaccurate computation of committor functions
and thereby inaccurate, high-variance estimates of the reaction rates. This issue may be mitigated
by a careful fine-tuning of the parameters used in umbrella sampling, which is a non-trivial task, or
increasing the number of samples used during training, which may require long molecular simulations
to reach the desired accuracy. Furthermore, the bias potential built from the neural network can lead
to prohibitively expensive simulation due to the non-local many-body nature and size of the neural
network.

In this work, we improve the algorithm in Ref. [1] to increase its accuracy. The accuracy is evaluated
by computing the error in the committor function and reaction rate, with both errors evaluated
between the neural network and a solution of the BKE computed either using analytical methods or
the finite element method with fine resolution for low-dimensional problems. We show that accuracy
in committor functions can be improved by adding elements of supervised learning, where the neural
network is trained on estimates of committor values generated via short trajectories. Accuracy in
reaction rates can be improved by replacing the committor-based umbrella sampling with the FTS
method [13], which samples configurations homogeneously across the transition path, and enables
accurate low-variance on-the-fly estimation of reaction rates. The resulting algorithm with the FTS
method is also amenable to error analysis, enabling accurate estimation of reaction rates with a lower
number of samples. We also demonstrate the applicability of this method to a molecular system with
a high-dimensional configuration space and demonstrate that accurate computations of the committor
function and reaction rate can be obtained.

Our paper is organized as follows: in Section 2.1, we review the framework of TPT to introduce the
BKE and construct an optimization problem from the BKE that is feasible to solve using ML. In
Section 2.2, we review the ML algorithm proposed in Ref. [1], and describe how it uses umbrella
sampling with feedback loops. We propose modifications to this algorithm starting with the addition
of supervised learning elements in Section 2.3 and ending with the review and use of the FTS
method for importance sampling in Section 2.4. In Sections 3.1 and 3.2, we test all algorithms to
problems corresponding to a particle diffusing in non-convex potential energies, showcasing how
our modifications lead to a more accurate low-variance computation of the committor function and
reaction rates. In Section 3.3, we provide an error analysis for algorithms that use the FTS method,
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Configuration Space

Ω ⊆ RNd

q(x) = 0.9

q(x) = 0.5

q(x) = 0.1

A
Reactant
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B
Product
State

Transition
Path ϕ(s)

Figure 1: A schematic of transition path theory (TPT). Gray lines are flow lines of the probability flux
J(x), and the transition tube, i.e., the region of high flux, is localized around the transition path ϕ(s).
Dashed lines are isocommittor surfaces, with the middle dashed line defining the transition-state
ensemble where q(x) = 0.5.

demonstrating that the sampling distribution of the estimated reaction rates obeys a log-normal
distribution, which can be used to remove the sampling error in these estimates. In Section 4, we
apply the algorithms to a molecular system, i.e., a solvated dimer undergoing a transition between a
compact to an extended state, and find the previously seen trends in low-dimensional systems to be
applicable to such a high-dimensional system.

2 Theory and Algorithms

2.1 From Transition Path Theory to Machine Learning

To review TPT, consider a d-dimensional system with N -many particles at equilibrium that interact
with a potential energy function V (x), where x ∈ Ω is a configuration of the system and Ω ⊂ RNd
is the configuration space. Equilibrium properties can be computed via ensemble averages 〈. . .〉 =∫

Ω
dxρ(x) . . . over the Boltzmann distribution ρ(x) = e−βV (x)/Z where β = 1/kBT with kB being

the Boltzmann constant, T the temperature, and Z =
∫

Ω
dx e−βV (x) the partition function. Given

this model system, TPT can be used to analyze the system’s transition from a reactant state A ⊂ Ω to
a product state B ⊂ Ω [10, 11, 20]; see Fig. 1 for a schematic of the problem. Central to TPT is the
calculation of the committor function q(x), which is defined as the probability to first reach B before
A given that the system initially starts at x0 = x. The formula for q(x) is given by

q(x) = E [hB (xτ ) | x0 = x] ; τ = arg min
t∈[0,+∞)

{xt ∈ A ∪B : x0 = x} , (2.1)

where E[. . . | x0 = x] is an average over all trajectories starting from x, τ is the first-passage time,
and hC(x) = 1 if x ∈ C and zero otherwise. Using stochastic calculus [21], one may compute the
committor as a solution to the steady-state backward Kolmogorov equation (BKE)

∇x · J(x) = 0 , (2.2)

with J(x) = ρ(x)D(x)∇xq(x) being the probability flux and D(x) being the position-dependent
diffusivity matrix, subjected to the boundary conditions

q(x) = 0, x ∈ ∂A; q(x) = 1, x ∈ ∂B , (2.3)

where ∂A and ∂B are the boundaries of A and B respectively.

Solving the BKE for the committor function allows us to evaluate many quantities including transition
paths, transition-state ensembles, and reaction rates. The transition path is a curve ϕ(s) that encodes
how the system, on average, moves from A to B in the configuration space. For every value
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of s, one can compute ϕ(s) self-consistently as the average configuration weighted by the flux
|J(x)| = ρ(x)kBT

γ |∇xq(x)| at a chosen level set of the committor function q(x), i.e.,

ϕ(s) =

∫
P

dS|J(x)|x∫
P

dS|J(x)| =

∫
P

dSρ(x)|∇xq(x)|x∫
P

dSρ(x)|∇xq(x)| , (2.4)

where
∫
P

dS is a surface integral over the level set P = {x ∈ Ω : q(x) = q(ϕ(s))} [10, 11]. Note
that for processes involving high-energy barriers the region of high flux typically forms a tubular
region called the transition tube, which is localized around ϕ(s); see Fig. 1. The level sets of q(x)
are also referred to as the isocommittor surfaces, where the isocommittor surface corresponding to
the level set {x ∈ Ω : q(x) = 1

2} defines the transition-state ensemble. The reaction rate νR, defined
as the frequency with which a system transitions from A to B, can be evaluated as [10]

νR =
kBT

γ

∫

Ω

dx ρ(x)|∇xq(x)|2 =
kBT

γ

〈
|∇xq(x)|2

〉
. (2.5)

The BKE, which is a high-dimensional PDE, is infeasible to solve via standard finite differ-
ence/elements for large molecular systems, as the number of grid points/elements grows exponentially
with system size N . However, it is in these situations that methods inspired by ML may hold a
feasible alternative, where the committor function can be approximated by a neural network whose
model parameters can be solved by transforming the BKE into an optimization problem [1, 22–24].
To this end, we begin by constructing a variational form of the BKE. Following the standard procedure
for elliptic PDEs [25], we consider a variation of the committor function δq(x), which obeys the
constraints δq(x) = 0 for x ∈ ∂A and x ∈ ∂B to satisfy the boundary conditions in Eq. (2.3).
Multiplying Eq. (2.2) by δq(x), integrating over Ω \A ∪B, and then integrating by parts yields

∫

Ω\A∪B
dx δq(x)∇x [ρ(x)∇xq(x)] = −

∫

Ω\A∪B
dx ρ(x)∇xδq(x) · ∇xq(x) = 0 . (2.6)

Applying Vainberg’s theorem [25] to Eq. (2.6) leads to the following functional:

L [q̃] =
1

2

∫

Ω\A∪B
dxρ(x)|∇xq̃(x)|2 =

1

2

〈
|∇xq̃(x)|2

〉
Ω\A∪B (2.7)

whose extremization over the space of admissible functions q̃(x) subject to boundary conditions
Eq. (2.3) leads to the solution of the BKE. The variational form in Eq. (2.7) therefore transforms the
strong form of BKE into a problem of functional optimization, where the committor function satisfies

q(x) = arg min
q̃

L [q̃] s.t. q̃(x) = 0, x ∈ ∂A; q̃(x) = 1, x ∈ ∂B . (2.8)

Equation (2.8) guides a new ML-based optimization problem, where we may approximate the
committor function with a neural network model q(x) ≈ q̂(x;θ) with the model parameters θ.
Introducing the BKE loss function as

`(x;θ) =
1

2
|∇xq̂(x;θ)|2 (2.9)

and imposing boundary conditions in Eq. (2.3) by the penalty method [26] with the loss functions

`A(xA;θ) =
1

2
(q̂(xA;θ))2 , (2.10)

`B(xB ;θ) =
1

2
(q̂(xB ;θ)− 1)2 , (2.11)

where xA ∈ A and xB ∈ B, the model parameters θ can be obtained by extremizing the following
objective function:

L(θ) = 〈`(x;θ)〉+ λA 〈`A(x;θ)〉A + λB 〈`B(x;θ)〉B . (2.12)

Here, 〈. . .〉C denotes ensemble averaging constrained in a region C ⊂ Ω, and λA and λB control the
penalty strengths that enforce boundary conditions at A and B, respectively. Note that the ensemble
average of the BKE loss function 〈`(x;θ)〉 is proportional to the reaction rate in Eq. (2.5) up to a
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constant factor 2kBT/γ, and thus it is crucial for any ML approach that solves the BKE to be able to
compute 〈`(x;θ)〉 accurately.

The task of minimizing Eq. (2.12) may not yet be feasible in large system sizes, since the ensemble
averages involve high-dimensional integrals, which may be evaluated via standard quadrature but their
computational cost grows exponentially with system size. To resolve this issue, one may approximate
the ensemble averages in Eq. (2.12) with averages over samples obtained via molecular dynamics
(MD) or Monte Carlo (MC) simulations. In this case, Eq. (2.12) can be evaluated as

L̂(θ;S,A,B) =
1

|S|
∑

x∈S
`(x;θ) +

λA

|A|
∑

x∈A
`A(x;θ) +

λB

|B|
∑

x∈B
`B(x;θ) , (2.13)

where A, B and S are batches of samples obtained in the reactant state A, product state B and
configuration space Ω, respectively, and the operator | · | denotes the size of each batch. The outlined
strategy is the basis behind some of the recent ML approaches for solving the BKE [1, 22–24] though
earlier works can be found that utilize a different objective function to train a neural network that
takes collective variables as input and is trained on data obtained from transition path sampling [27,
28]. The main challenge inherent in these approaches is sampling; since the first term in Eq. (2.12)
is proportional to the magnitude of the flux |J(x;θ)| = ρ(x)kBT

γ |∇xq̂(x;θ)|, the optimization
problem is dominated by the rare configurations found in regions of high flux, e.g. the transition-state
ensemble. An inadequate sampling of the transition-state ensemble may lead to poor estimates of
the average BKE loss function in Eq. (2.9), resulting in an inaccurate computation of committor
functions and reaction rates in Eq. (2.5). Inadequate sampling may also lead to poor estimates of
the gradient∇θL, which may negatively impact the performance of the neural network training. In
Ref. [1], this sampling problem is partially resolved via an importance sampling technique, namely
umbrella sampling, that is coupled with the neural network model in a feedback loop.

2.2 Solving the BKE with Umbrella Sampling and Feedback Loops

In this section, we review the algorithm in Ref. [1] that utilizes umbrella sampling for obtaining the
committor functions. To this end, consider a system that evolves via discrete overdamped Langevin
dynamics with noise wt that has zero mean and unit variance. Umbrella sampling biases the system’s
dynamics by adding a potential of the form W (x;θ) = 1

2κ(q̂(x;θ) − q0)2 to the potential energy
function V (x), where q0 is the target committor value and κ is the bias strength. This bias leads to
modified equations of motion

xt+1 = xt − γ−1∇x [V (xt) +W (xt;θ)] ∆t+
√

2kBT∆tγ−1wt , (2.14)

which sample a target distribution given by ρ(x;θ) ∝ e−β[V (x)+W (x;θ)] as ∆t → 0. With a
suitable choice of q0 and κ, the system may explore configurations x and values of q̂(x;θ) that
are rare according to the unbiased equilibrium distribution ρ(x) ∼ e−βV (x). In Ref. [1], this
strategy is expanded to target a range of q̂(x;θ) values between zero and one by introducing
M -many simulation systems, each of which uses a biasing potential with a unique target value
and biasing strength. Referring to these simulation systems as replicas and enumerating them
via an indexing variable α ∈ {1, . . . ,M}, the bias potential for each replica can be written as
Wα(x;θ) = 1

2κα(q̂(x;θ)−qα)2, which induces a biased distribution ρα(x;θ) ∝ e−β[V (x)+Wα(x;θ)].
The set of target committor values and biasing strengths is denoted as {(κα, qα)}Mα=1. Note that the
configurations corresponding to the target distributions can also be generated via MC or other MD
methods instead of Eq. (2.14).

The algorithm for solving the BKE is a closed feedback loop between the replica dynamics and any
chosen optimizer, such as stochastic gradient descent (SGD) [29], Heavy-Ball [30], or Adam [31], to
obtain model parameters θ that extremize Eq. (2.13). At the k-th iteration, replicas generate samples
that are stored into a collection of batches {Mα

k}Mα=1, where the α-th batchMα
k consists of samples

obtained from a short MD/MC trajectory run of the α-th replica. This data is then used to compute
the gradient ∇θL̂ in order to update the model parameters θk → θk+1. At the (k + 1)-th iteration,
the process repeats by using q̂(x;θk+1) to obtain new samples for further optimization.

The algorithm requires two additional components. First, the reactant and product batchesA and B are
generated using short MD/MC trajectories constrained in the reactant and product states, respectively.
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Algorithm 1: The BKE–US Method [1]
Data: Initial conditions θ0. Reactant and

product batches A and B.
Hyperparameters for optimizer η. Bias
potential parameters {(κα, qα)}Mα=1.
Penalty strengths λA and λB.

1 for k = 0, . . . ,K do
2 for α = 1, . . . ,M in parallel do
3 form = 1, . . . , |Mα

k | do
4 Sample xαm ∼ ρα(x;θk) with

MD/MC simulation, e.g.,
Eq. (2.14).

5 Store xαm in batchMα
k .

6 Sample mini-batch Ak ⊂ A and Bk ⊂ B.
7 Compute zα with a free-energy method,

e.g., FEP Eq. (2.19).
8 Compute ∇θL̂(θk; {(Mα

k , zα)},Ak,Bk)
with Eq. (2.15).

9 Update θk → θk+1 with optimizer.

0.00 0.25 0.50 0.75 1.00

q̂

0

50

100

150

200

C
ou

nt
s

0.00 0.05 0.10
0

50

0.90 0.95 1.00
0

50

Figure 2: (Left) Pseudo-code corresponding to the BKE–US method. Lines 2-6 are the sampling steps,
Lines 7-9 are the optimization steps, and a feedback loop couples the sampling and optimization
steps together. Note that the sampling of configuration xαm in Line 4 utilizes a fixed simulation
length to obtain uncorrelated samples in the batch Mα

k—a convention used for all subsequent
algorithms proposed in this work. (Right) Histograms of committor values from committor-based
umbrella sampling. The histograms overlap near the transition state, with inset plots showing that the
histograms are non-overlapping near the reactant and product states. See also Fig. 9(b, top) for the
corresponding histograms in configuration space.

Second, a formula for∇θL̂ is needed for the optimizer and is obtained using a reweighting procedure
[32] to compute the unbiased sample averages from biased samples. This yields

∇θL̂ (θk; {(Mα
k , zα)},Ak,Bk) =

M∑
α=1

zα
|Mα

k |
∑

x∈Mα
k

[∇θ`(x;θk)

c(x;θk)

]

M∑
α=1

zα
|Mα

k |
∑

x∈Mα
k

[
1

c(x;θk)

] +
λA

|Ak|
∑

x∈Ak
∇θ`A(x;θk)

+
λB

|Bk|
∑

x∈Bk
∇θ`B(x;θk) , (2.15)

where Ak ⊂ A and Bk ⊂ B are mini-batches obtained from random sub-sampling of the reactant
and product batches, respectively, and c(x;θ) =

∑M
α=1 e

−βWα(x;θ). Here, zα is a reweighting factor
given by the relative partition function

zα =
Zα∑M

α′=1 Zα′
=

∫
dx e−β[V (x)+Wα(x;θ)]

∑M
α′=1

∫
dx e−β[V (x)+Wα′ (x;θ)]

, (2.16)

where Zα is the partition function of the α-th replica. Given the batches of samples {Mα
k}Mα=1,

various free-energy methods [33] can be used to compute Zα via the free-energy Fα = − 1
β lnZα. In

this work, we use free-energy perturbation (FEP) [34] where the estimator for zα is derived from the
following exact identity:

zα
zα′

= e−β∆Fα,α′ =

〈
φα(x;θ)

φα′(x;θ)

〉

α′
, (2.17)

where 〈. . .〉α′ is an ensemble average over the distribution ρα′ ∝ e−β[V (x)+Wα′ (x;θ)] obeyed by the
α′-th replica, ∆Fα,α′ = Fα−Fα′ is the relative free-energy difference, and φα(x;θ) = e−βWα(x;θ).
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Given a batchMα′

k from the α′-th replica, Eq. (2.17) can be estimated as

zα
zα′
≈ 1

|Mα′
k |

∑

x∈Mα′
k

φα(x;θk)

φα′(x;θk)
. (2.18)

The accuracy of Eq. (2.18) quickly deteriorates if samples obtained between the α-th and α′-th
replicas do not overlap [35]. To mitigate this issue, we can employ a strategy called stratification [36],
where the forward and backward free-energy differences per Eq. (2.18) between adjacent replicas are
used to compute the overall free-energy difference of replica α in reference to replica γ. This strategy
yields the following formula:

zα =
z?α∑M
α=1 z

?
α

; z?α =





α−1∏
i=γ

e−β∆F(i+1),i ≈
α−1∏
i=γ


 1

|Mi
k|
∑

x∈Mi
k

φi+1(x;θk)

φi(x;θk)


 α > γ

γ−1∏
i=α

e−β∆F(i−1),i ≈
γ−1∏
i=α


 1

|Mi
k|
∑

x∈Mi
k

φi−1(x;θk)

φi(x;θk)


 α < γ

1 α = γ

,

(2.19)

where γ ∼ unif{1,M} is randomly chosen at every iteration. In what follows, we shall refer to
this complete algorithm as the BKE–US method, whose pseudocode is described in Algorithm 1
(Fig. 2, left). Note that Ref. [1] recommends choosing a different set of biasing potentials such that
c(x;θk) ≈ 1, which corresponds to a special case of Eq. (2.15). Additionally, Ref. [1] uses replica
exchange, where configurations are exchanged between neighboring replicas to alleviate issues with
metastability, which is not used here.

The challenge in the BKE–US method lies in selecting the bias potential parameters {(κα, qα)}Mα=1
such that the average loss functions and their gradients are accurately estimated with low variance.
Since these estimates are obtained by reweighting procedures their accuracy depends severely on
obtaining an accurate estimate of the free-energy differences ∆Fα,α′ , and hence the reweighting
factors zα. If one follows the procedures common to umbrella sampling and free-energy calculations,
this is achieved by ensuring overlap in the histograms of the biased q̂(x;θ) values [36]. One may
choose as initial guess qα = (α − 1)/(M − 1) with equal biasing strengths, which is the setting
recommended in Ref. [1], to obtain such overlap. However, since the committor varies rapidly near the
transition state in the presence of high-energy barriers, this setting may lead to inadequate sampling
of regions between the transition state and reactant/product state. This reduces the overlap between
histograms, thereby reducing the accuracy as well as increasing the variance of the estimated average
loss functions obtained from reweighting. Figure 2(right) shows such behavior in the histograms
of q̂-values, with the replicas near the edges having progressively worse overlaps than the replicas
biased towards the transition state. Such a non-overlapping behavior is even more apparent in the
configuration space, as shown in Fig. 9(b) for a one-dimensional system, where large gaps in the
histograms between the reactant/product basins and the transition states can be observed. It may be
plausible that further importance sampling near the edges increases the overlap, but this requires
further fine-tuning of the bias parameters to focus more heavily on regions where q̂(x;θ) ≈ 0 and
q̂(x;θ) ≈ 1; a non-trivial procedure to perform in high-dimensional systems. Alternatively, one
may also increase the batch size to improve the chances of obtaining samples in the poorly targeted
regions, but this task may require prohibitively long simulations. Altogether, these issues motivate us
to construct modifications to the BKE–US method, described in the next sections.

2.3 Adding Elements of Supervised Learning

To begin with, the accuracy of the BKE–US method (Algorithm 1) can be improved by adding
supervised learning elements, where one can train the neural network to fit q̂(x;θ) to known estimates
of q(x). It has been found that supervised learning elements in the context of training neural network
models achieve better performance by finding global minima in problems originally devoid of such
elements [37–39]. In our case, supervised learning can be implemented by evaluating an estimate of
q(x) denoted as the empirical committor function qemp(x) using short trajectories that start from a

7



Algorithm 2: The BKE–US+SL Method
Data: Initial conditions θ0. Reactant and product batches A and B. Hyperparameters for

optimizer η. Bias potential parameters {(κα, qα)}Mα=1. Penalty strengths λA, λB, and
λSL. Starting and ending iteration index, kemp,s and kemp,e, and sampling period τemp for
supervised learning.

1 for k = 0, . . . ,K do
2 for α = 1, . . . ,M in parallel do
3 form = 1, . . . , |Mα

k | do
4 Sample xαm ∼ ρα(x;θk) with MD/MC simulation, e.g., Eq. (2.14).
5 Store xαm in batchMα

k .
6 if k ≥ kemp,s and k < kemp,e and k (mod τemp) = 0 then
7 Evaluate qemp at xα ∈Mα

k with Eq. (2.20).
8 Store (qemp,x

α) in batch Cα.
9 Sample mini-batch Ak ⊂ A, Bk ⊂ B, and Cαk ⊂ Cα.

10 Compute zα with a free-energy method, e.g., FEP Eq. (2.19).
11 Compute ∇θL̂(θk; {(Mα

k , zα)},Ak,Bk) +∇θL̂SL(θk; {Cαk }) with Eqs. (2.15) and (2.24).
12 Update θk → θk+1 with optimizer.

Figure 3: Pseudo-code for the BKE–US+SL method.

configuration x. The quantity qemp(x) can be obtained from a sample-mean estimator of Eq. (2.1):

qemp(x) =
1

H

H∑

i=1

hB (xτ ; x0 = x) , (2.20)

where the averaging is performed over H-many trajectories that are conditioned upon starting at
x0 = x, and ending at the first-passage time τ . This estimator obeys the binomial distribution and its
variance scales as 1

H [14]. It is important to note that supervised learning of committor functions
without importance sampling is ineffective since it is necessary for the neural network to be trained
on empirical committor values corresponding to rare events, i.e., configurations along the transition
tube including the transition state. To this end, one may use either umbrella sampling as described
before or the FTS method, which will be introduced in Section 2.4, to target the transition tube.

At this stage, an objective function must be formulated to inform q̂(x;θ) with the empirical committor
function qemp(x). To this end, a loss function in supervised learning is typically postulated as the
squared error for every configuration x:

`MSE(qemp,x;θ) =
1

2
(q̂(x;θ)− qemp)2 . (2.21)

Suppose that qemp(x) is computed from configurations sampled by different replicas during impor-
tance sampling. For every α-th replica, this allows us to generate a batch of samples Cα, which is
a set of pairs of empirical committor function and its corresponding configuration. Denoting the
collection of batches as {Cα}Mα=1, and given Eq. (2.21), the objective function as a mean-squared
error has the form

L̂MSE(θ; {Cα}) =
λMSE

M

M∑

α=1

1

|Cα|
∑

(qemp,x)∈Cα
`MSE(qemp,x;θ) , (2.22)

where λMSE is the penalty strength. In practice, an optimizer to train the neural network requires
the gradient∇θL̂MSE as additional input, which can be computed using a collection of mini-batches
{Cαk } with Cαk ⊂ Cα generated via random sub-sampling of the original batch Cα similar to the
sub-sampling procedure in Eq. (2.15).

Note that a finite number of trajectories are used to obtain estimates of committor values for each
configuration x, resulting in a statistically noisy variation of qemp(x). Therefore, using the objective
function Eq. (2.22) to train the neural network may lead to overfitting issues and loss in accuracy. To
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alleviate this problem, we introduce a modified form of the objective function where we first evaluate
the squared mean error for a batch of samples Cα corresponding to the α-th replica:

`ME(Cα;θ) =
1

2

[
1

|Cα|
∑

(qemp,x)∈Cα
(q̂(x;θ)− qemp)

]2

. (2.23)

This is then reduced across all replicas, yielding the modified supervised learning objective function

L̂SL(θ; {Cα}) =
λSL

M

M∑

α=1

`ME(Cα;θ) , (2.24)

where λSL is the penalty strength. Equation (2.24) indicates the neural network is trained on
committor errors that are locally-averaged over a single replica. Such an averaging smears out the
statistical error in qemp(x), alleviates the issue of overfitting, and further helps the neural network
generalize to regions outside of the ones covered by sampling. A more detailed discussion, which
shows results comparing the standard (Eq. (2.22)) and modified (Eq. (2.24)) objective functions for a
two-dimensional system can be found in Appendix B.3

To incorporate the supervised learning strategy in the BKE–US method, each replica computes
qemp(xα) between the sampling and optimization steps of the algorithm, where xα is the current
configuration of replica α. The committor evaluation can be initiated at a chosen iteration k = kemp,s

until k = kemp,e, after which no more qemp(xα) values are computed. Since each qemp(xα) requires
the initiation of H-many trajectories starting at x0 = xα, the committor is evaluated infrequently
every τemp iterations to reduce the computational cost. The pseudocode combining supervised
learning with the BKE–US method is described in Algorithm 1 (Fig. 3), and is herein referred to as
the BKE–US+SL method.

2.4 Replacing Feedback Loops with the Finite-Temperature String Method

For methods employing umbrella sampling, it is important to ensure sufficient overlap in samples
obtained from neighboring replicas, since the overlap guarantees accurate computation of reweighting
factors zα, and further controls the accuracy in the estimator for the average loss functions, e.g.,
the average BKE loss function, which sets the reaction rate. As mentioned before, this may require
exhaustive fine-tuning of the algorithm parameters, or long simulations to obtain a larger number
of samples. On the other hand, the framework of TPT already provides an algorithm called the
finite-temperature string (FTS) method [12, 13], which can homogeneously sample overlapping
regions across the transition tube with few control parameters. The FTS method also yields the
transition path ϕ(s) without needing to compute the committor function q(x). Therefore, if we
replace the committor-based umbrella sampling with the FTS method, we eliminate the feedback
loop between importance sampling and the neural network training in learning q(x). Furthermore, it
is also possible to obtain a low-variance estimate of the reaction rate due to the overlaps in samples
obtained from the FTS method. In what follows, we review the FTS method in Section 2.4.1 and
describe new algorithms for solving the BKE in Section 2.4.2; see also Ref. [13] for additional details
on the FTS method. Readers who are familiar with the FTS method may skip Section 2.4.1 and read
Section 2.4.2 directly for details on solving the BKE with the FTS method.

2.4.1 Review of the Finite-Temperature String Method

The FTS method is an algorithm for obtaining a transition path ϕ(s), as defined in Eq. (2.4), using
sampling and optimization techniques. It emerges from an approximation of the committor function
q(x), which is locally built around the transition path ϕ(s). This local approximation is achieved
by constructing suitable functions sγ(x), which represent isocommittor surfaces as hyperplanes
centered around ϕ(s). If ϕ(s) follows an arc-length parameterization, where s is the arc-length, the
approximation for q(x) and the formula for sγ(x) can be written as

q(x) ≈ f(sγ(x)) , (2.25)

sγ(x) ≡ arg min
s∈[0,L]

1

2
|x−ϕ(s)|2 , (2.26)
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sγ(x) = 0.95L
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Figure 4: The local approximation of isocommittor surfaces as hyper-planes, which also correspond
to the level sets of sγ(x). The normal vector of each hyper-plane is the tangent vector dϕ(s)

ds .

where L is the total arc-length of the path, and f : [0, L]→ [0, 1] is an invertible scalar function. To
see that the function sγ(x) approximates isocommittor surfaces as hyper-planes, one may perform
the minimization in Eq. (2.26) to obtain the following equation:

dϕ(s)

ds
· (x−ϕ(s)) = 0 , (2.27)

which is a linear equation in x, indicating the set of all configurations satisfying Eq. (2.27) for fixed
value of s ∈ [0, L] is a hyperplane; see Fig. 4 for illustration. On the other hand, the operation of fixing
a configuration x, and finding s that satisfies Eq. (2.27) defines a mapping between configurations
x ∈ Ω and the variable s ∈ [0, L]. This mapping is what we denote as sγ(x).

Given sγ(x) in Eq. (2.26), the problem of finding ϕ(s) can be posed as an optimization problem. To
this end, using Eq. (2.25), Eq. (2.4) can be approximated as an integral over the hyperplane defined
by sγ(x):

ϕ(s) ≈
∫
P̃

dSρ(x)f ′(sγ(x))|∇xsγ(x)|x∫
P̃

dSρ(x)f ′(sγ(x))|∇xsγ(x)| , (2.28)

where P̃ is a level set of the function sγ(x) given by P̃ = {x ∈ Ω : sγ(x) = s}. Since f ′(sγ(x)) is
constant over the level set P̃ , Eq. (2.28) can be rewritten as

ϕ(s) ≈
∫
P̃

dSρ(x)|∇xsγ(x)|x∫
P̃

dSρ(x)|∇xsγ(x)| . (2.29)

Using the identity [40] ∫

P̃

dS =

∫

Ω

dxδ(sγ(x)− s)|∇xsγ(x)| , (2.30)

with δ(sγ(x)− s) as the Dirac delta function, Eq. (2.29) can be rewritten as

ϕ(s) ≈
∫

Ω
dxρ(x)δ(sγ(x)− s)|∇xsγ(x)|2x∫

Ω
dxρ(x)δ(sγ(x)− s)|∇xsγ(x)|2 =

〈δ(sγ(x)− s)|∇xsγ(x)|2x〉
〈δ(sγ(x)− s)|∇xsγ(x)|2〉 . (2.31)

Furthermore, assuming the path’s curvature to be small, which implies that |∇xsγ(x)|2 ≈ 1 (see
Appendix A of Ref. [13] for a proof), Eq. (2.31) can be simplified into a conditional average given by

ϕ(s) ≈ 〈δ(sγ(x)− s)x〉
〈δ(sγ(x)− s)〉 = 〈x | sγ(x) = s〉 . (2.32)

Lastly, one may use variational techniques to show that Eq. (2.32) is the result of extremizing the
following functional [13, 41]:

C[ϕ] =

∫ L

0

ds

〈
1

2
|ϕ(s)− x|2δ(sγ(x)− s)

〉
(2.33)
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such that ∣∣∣∣
dϕ(s)

ds

∣∣∣∣ = 1 . (2.34)

Equation (2.34) is the definition of arc-length parameterization, which sets a constraint on the possible
paths that extremize Eq. (2.33).

Equations (2.33) and (2.34) form the starting points for developing the FTS method, with several
discretization and approximation steps leading to a solvable optimization problem. To this end,
discretizing ϕ(s) into a set of equidistant nodal points {ϕα}Mα=1, satisfying Eq. (2.34), i.e., |ϕα+1 −
ϕα| = |ϕα −ϕα−1|, ∀α ∈ {1, . . . ,M}, Eq. (2.33) can be approximated as

C({ϕα}) =

M∑

α=1

∆s

〈
1

2
|ϕα − x|2δ(sγ(x)− sα)

〉
, (2.35)

where sα =
(
α−1
M−1

)
L is the arc-length of the path up to node ϕα, and ∆s is the arc-length between

any two nodes. Furthermore, the Dirac delta function δ(sγ(x)− sα) can be approximated with an
indicator function (see Appendix B of Ref. [13]):

hRα(x) =

{
1

∆s x ∈ Rα({ϕα}) = {x ∈ Ω : |x−ϕα| < |x−ϕα′ | ∀α′ 6= α}
0 otherwise

, (2.36)

where Rα denotes a Voronoi cell centered at node ϕα. With these steps, Eq. (2.35) can then be
expressed as a least-squares function:

C({ϕα}) =

M∑

α=1

∆s

〈
1

2
|ϕα − x|2hRα(x)

〉
=

M∑

α=1

〈
1

2
|ϕα − x|2

〉

Rα({ϕα})
(2.37)

where 〈. . .〉Rα({ϕα}) is an ensemble average constrained inside a Voronoi cell.

The ensemble averages in Eq. (2.37) can be estimated as averages over samples obtained from
molecular simulations, which are constrained to be inside the Voronoi cells and are initiated with the
configuration of the corresponding node. As illustrated in Fig. 5(left), this step involves introducing
M -many replicas of the system to sample configurations within each of the M -many Voronoi cells,
where each replica can evolve according to discrete overdamped Langevin dynamics with a rejection
rule:

xα? = xαt − γ−1∇xV (xαt )∆t+
√

2∆tkBTγ−1wα
t , (2.38)

xαt+1 =

{
xα? if xα? ∈ Rα
xαt otherwise

, (2.39)

where wα
t is a random variable with zero-mean and unit variance. Note that Eq. (2.38) can be replaced

with an MC step. IntroducingRα as the batch of samples obtained from the α-th replica, Eq. (2.37)
can be estimated as

Ĉ({ϕα}; {Rα}) =

M∑

α=1

1

|Rα|
∑

x∈Rα

1

2
|ϕα − x|2 . (2.40)

To avoid large displacements in neighboring nodal points, a penalty function is added to Eq. (2.40),
which yields

Ĉ({ϕα}; {Rα}) =

M∑

α=1

1

|Rα|
∑

x∈Rα

1

2
|ϕα − x|2 +

λS

2

M−1∑

α=1

|ϕα+1 −ϕα|2 , (2.41)

s.t. |ϕα+1 −ϕα| = |ϕα −ϕα−1| , (2.42)

where λS is the penalty strength.

The FTS method minimizes Eq. (2.41) using a closed feedback loop between the replica dynamics,
e.g., Eqs. (2.38) and (2.39), and a modified gradient-descent step. At the k-th iteration of the loop,
replicas generate a collection of batches {Rαk}Mα=1, where the batchRαk consists of a short MD/MC
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Algorithm 3: The BKE–FTS(ME) Method
Data: Initial conditions θ0, {ϕα0 }. Reactant and

product batches A and B.
Hyperparameters for optimizers η. The
FTS Method step size ∆τ and penalty
strength λS. Penalty strengths λA and
λB.

1 for k = 0, . . . ,K do
2 for α = 1, . . . ,M in parallel do
3 form = 1, . . . , |Rαk | do
4 Sample xαm with MD/MC simulation

constrained in the Voronoi cell
Rα({ϕαk}), e.g., Eqs. (2.38)
and (2.39).

5 Store xαm in batchRαk .

6 ϕk+1
α ← Eqs. (2.43) and (2.44).

7 Sample mini-batch Ak ⊂ A and Bk ⊂ B.
8 Compute zα by solving the master equation

Eq. (2.48).
9 Compute ∇θL̂(θk; {(Rαk , zα)},Ak,Bk)

with Eq. (2.46).
10 Update θk → θk+1 with optimizer.

Figure 5: (Left) An illustration of the FTS method, where each replica samples configurations inside
a Voronoi cell. (Right) Pseudo-code for the BKE–FTS(ME) method. Note that the path is updated
concurrently with the neural network at the k-th iteration.

trajectory run from the α-th replica. This data is then used in a two-part gradient descent update,
where the first part corresponds to the following update:

ϕα? = ϕαk −∆τ∇ϕαĈ({ϕαk}; {Rαk}) , (2.43)

with ∆τ the step size. Note that one can replace Eq. (2.43) with an implicit update for increased
stability or a momentum-variant, such as the Heavy-Ball [30] and the Nesterov method [42], for
accelerated convergence. The second part enforces the constraint Eq. (2.42) with a reparameterization
of the path using linear interpolation:

ϕαk+1 = ϕ
a(α)−1
? +

(
LM

α− 1

M − 1
− La(α)−1

)
ϕ
a(α)
? −ϕa(α)−1

?∣∣∣ϕa(α)
? −ϕa(α)−1

?

∣∣∣
, (2.44)

where Lα =
∑α
α′=2 |ϕα

′

? −ϕα
′−1
? | is the length of the path up to node ϕα? , and a(α) ∈ {1, . . . ,M}

is an index such that La(α)−1 <
(
α−1
M−1

)
LM < La(α). This process is repeated until convergence is

achieved, yielding the transition path ϕ(s).

2.4.2 Solving the BKE with the Finite-Temperature String Method

With the FTS method described in Section 2.4.1, we now proceed to construct new algorithms for
minimizing the loss in Eq. (2.13). The key idea behind all subsequent new algorithms is to replace
the committor-based umbrella sampling in the BKE–US method with the FTS method. This allows
the replicas to generate samples that homogeneously cover the transition tube with little fine-tuning,
and enables accurate low-variance estimation of the average loss functions and their gradients. As
mentioned before, since the average BKE loss function is proportional to the chemical reaction rate,
the FTS method also enables accurate estimation of reaction rates.

The FTS method with master equation: The first algorithm that we construct involves updating the
transition path, represented as a set of nodal points, simultaneously with the neural network training.
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In particular, the replicas from the FTS method generate batches of sampled configurations {Rαk}Mα=1
to update the current path {ϕαk} via Eqs. (2.43)–(2.44), as well as the neural network parameters θk
by computing the gradient of the loss in Eq. (2.13). Note that, in this algorithm, there is no feedback
loop between the neural network and updates to the path. In this case, the loss gradient∇θL̂ can be
calculated using modified versions of Eqs. (2.15)–(2.16), where the bias potentials Wα are replaced
with hard-wall potentials constraining each replica to its Voronoi cell, i.e.,

Wα(x; {ϕα}) =

{
0 x ∈ Rα
∞ otherwise

. (2.45)

This yields

∇θL̂ (θk; {(Rαk , zα)},Ak,Bk) =

M∑

α=1

zα
|Rαk |

∑

x∈Rαk

∇θ`(x;θk) +
λA

|Ak|
∑

x∈Ak
∇θ`A(x;θk)

+
λB

|Bk|
∑

x∈Bk
∇θ`B(x;θk) , (2.46)

where the reweighting factors zα are

zα =

∫
Rα

dx e−βV (x)

∫⋃M
α=1 Rα

dx e−βV (x)
=

∫
Rα

dx e−βV (x)

∫
Ω

dx e−βV (x)
=

∫

Rα

dx ρ(x) . (2.47)

Equation (2.47) indicates zα is the equilibrium probability of finding x to be in a Voronoi cell Rα.
This set of equilibrium probabilities can be computed as a solution to a steady-state master equation,
whose form is found by identifying the instantaneous rates (or fluxes) between neighboring Voronoi
cells [13]. To this end, let Nαα′ be the number of times that the α-th replica attempts to exit its
Voronoi cell Rα and enter a neighboring Voronoi cell Rα′ , e.g., the number of times that xα? ∈ Rα′
for the replica dynamics given by Eqs. (2.38)–(2.39). Let kαα′ be the rate at which the system
transitions between Rα to Rα′ . Denoting Nα

steps as the total simulation length of the α-th replica,
the previous rate can be evaluated as kαα′ ≈ Nαα′/Nα

steps. The steady-state master equation is then
given by a balance between the total rate of leaving and entering the Voronoi cell Rα:

M∑

α′=1

zα′kα′α =

M∑

α′=1

zαkαα′ , ∀α ∈ {1, . . . ,M} , (2.48)

which can be solved to obtain zα; see Appendix A for more details, and also Section III of Ref. [43]
for a more detailed discussion of Eq. (2.48). Equations (2.46) and (2.48) constitute the new algorithm,
and will herein be referred to as the BKE–FTS(ME) method, whose pseudocode is described in
Algorithm 3 (Fig. 5, right).

The FTS method with umbrella sampling: As mentioned before, given a sufficient number of
nodes, the BKE–FTS(ME) method guarantees homogeneous sampling across the transition path
(see also Fig. 9(b)), which better ensures low-variance estimation from reweighting. Accuracy can
also be improved by running longer simulations, i.e., larger Nα

steps, since they lead to more accurate
estimates of the rates kαα′ , thereby reducing the error in the estimated reweighting factor zα. Despite
this, the error in zα is difficult to study as it involves the error propagation of kαα′ , which forms a
random matrix in the master equation. On the other hand, zα computed from umbrella sampling is
amenable to error analysis [32, 44], which makes it feasible to determine the error in the estimates
computed from reweighting as a function of batch size. This motivates us to construct a modification
to the BKE–FTS(ME) method where the computation of zα is based on umbrella sampling and FEP
(Eq. (2.19)). The modified algorithm consists of running the FTS method before the neural network
training to obtain the transition path {ϕα}Mα=1, which is then used as a basis for umbrella sampling
across the transition tube to subsequently train the neural network.

The path-based umbrella sampling requires new bias potentials that can lead to better overlaps
between adjacent replicas, as well as sufficient exploration of regions transverse to the path. The
latter is necessary to ensure the neural network representing the committor function is also accurate
in regions away from the transition path. To this end, we construct new bias potentials such that
different bias strengths can be specified in directions parallel and transverse to the path. Let tα be
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Algorithm 4: The BKE–FTS(US) Method
Data: Initial conditions θ0. Nodal points of the transition path {ϕα} obtained from the FTS

method. Reactant and product batches A and B. Hyperparameters for optimizers η.
Penalty strengths λA and λB.

1 for k = 0, . . . ,K do
2 for α = 1, . . . ,M in parallel do
3 form = 1, . . . , |Mα

k | do
4 Sample xαm ∼ ρα(x; {ϕα}) with MD/MC simulation, e.g., Eq. (2.14) and Eq. (2.49).
5 Store xαm in batchMα

k .

6 Sample mini-batch Ak ⊂ A and Bk ⊂ B.
7 Compute zα with a free-energy method, e.g., FEP Eq. (2.19).
8 Compute ∇θL̂(θk; {(Mα

k , zα)},Ak,Bk) with Eq. (2.15).
9 Update θk → θk+1 with optimizer.

Figure 6: Pseudo-code for the BKE–FTS(US) method.

Algorithm 5: The BKE–FTS(ME)+SL Method
Data: Initial conditions θ0, {ϕα0 }. Reactant and product batches A and B. Hyperparameters for

optimizers η. The FTS Method step size ∆τ and penalty strength λS. Penalty strengths
λA, λB, and λSL. Starting and ending iteration index, kemp,s and kemp,e, and sampling
period τemp for supervised learning.

1 for k = 0, . . . ,K do
2 for α = 1, . . . ,M in parallel do
3 form = 1, . . . , |Rαk | do
4 Sample xαm with MD/MC simulation constrained in the Voronoi cell Rα({ϕαk}), e.g.,

Eqs. (2.38)–(2.39).
5 Store xαm in batchRαk .
6 if k ≥ kemp,s and k < kemp,e and k (mod τemp) = 0 then
7 Evaluate qemp at xα ∈ Rαk with Eq. (2.20).
8 Store (qemp,x

α) in batch Cα.

9 ϕk+1
α ← Eqs. (2.43)–(2.44).

10 Sample mini-batch Ak ⊂ A, Bk ⊂ B, and Cαk ⊂ Cα.
11 Compute zα by solving the master equation Eq. (2.48).
12 Compute ∇θL̂(θk; {(Rαk , zα)},Ak,Bk) +∇θL̂SL(θk; {Cαk }) with Eqs. (2.24) and (2.46).
13 Update θk → θk+1 with optimizer.

Figure 7: Pseudo-code for the BKE–FTS(ME)+SL method.

the unit tangent vector at node ϕα, evaluated using finite differences. We then form the projection
matrices P

‖
α = tα ⊗ tα and P⊥α = I − tα ⊗ tα to decompose a vector into a component that is

parallel and transverse to tα, respectively. The bias potential for the α-th replica can be written as

Wα(x; {ϕα}) =
1

2
κ‖α(x−ϕα)P‖α(x−ϕα) +

1

2
κ⊥α (x−ϕα)P⊥α (x−ϕα) , (2.49)

where κ‖α and κ⊥α are the bias strengths for the parallel and transverse direction, respectively. To
promote exploration of regions transverse to the path, the bias strengths are set such that κ⊥α < κ

‖
α.

For sufficiently strong bias, this results in every replica exploring an oblate ellipsoidal region, where
the center of the ellipsoid is located at node ϕα, and its axis of rotation is parallel to the tangent
vector tα. Note that a similar bias potential has also been used in Ref. [45] but defined with respect
to a low-dimensional collective-variable space.

The loss gradient ∇θL̂ needed for this algorithm can be computed with Eq. (2.15) and Eq. (2.19)
from the BKE–US method, using samples obtained from biased MD/MC simulations. As in the
BKE–FTS(ME) method, there exists no feedback loop between the neural network and umbrella

14



Algorithm 6: The BKE–FTS(US)+SL Method
Data: Initial conditions θ0. Nodal points of the transition path {ϕα} obtained from the FTS

method. Reactant and product batches A and B. Hyperparameters for optimizers η.
Penalty strengths λA, λB, and λSL. Starting and ending iteration index, kemp,s and
kemp,e, and sampling period τemp for supervised learning.

1 for k = 0, . . . ,K do
2 for α = 1, . . . ,M in parallel do
3 form = 1, . . . , |Mα

k | do
4 Sample xαm ∼ ρα(x; {ϕα}) with MD/MC simulation, e.g., Eqs. (2.14) and (2.49).
5 Store xαm in batchMα

k .
6 if k ≥ kemp,s and k < kemp,e and k (mod τemp) = 0 then
7 Evaluate qemp at xα ∈Mα

k with Eq. (2.20).
8 Store (qemp,x

α) in batch Cα.
9 Sample mini-batch Ak ⊂ A, Bk ⊂ B, and Cαk ⊂ Cα.

10 Compute zα with a free-energy method, e.g., FEP Eq. (2.19).
11 Compute ∇θL̂(θk; {(Mα

k , zα)},Ak,Bk) +∇θL̂SL(θk; {Cαk }) with Eqs. (2.15) and (2.24).
12 Update θk → θk+1 with optimizer.

Figure 8: Pseudo-code for the BKE–FTS(US)+SL method.

sampling because the bias potentials are based on the transition path, which remains static during
training. This modification to the BKE–FTS(ME) method shall be referred to as the BKE–FTS(US)
method, whose pseudocode is described in Algorithm 4 (Fig. 6). The algorithm shares similar
advantages as the BKE–FTS(ME) method, since homogeneous sampling across the transition tube
and overlap in configuration space is readily achieved for large enough bias strengths. Unlike the
master-equation approach, the bias and variance in the reweighting factors zα estimated from FEP
are amenable to error analysis [44]. As shown later in Section 3.3, we provide an error analysis of
the estimated average loss function, and a procedure where the bias in the estimator can be removed,
thereby enabling accurate estimation of reaction rates with smaller batch sizes.

The FTS method with supervised learning: Both the BKE–FTS(ME) and BKE–FTS(US) methods
can be combined with the supervised learning methodology developed in Section 2.3 to further
improve the accuracy of the committor function. Since the samples obtained by either method
homogeneously cover the transition tube, they provide access to configurations that can be used for
computing empirical committor function qemp(x) necessary for supervised learning. The empirical
committor function qemp(x) may be evaluated by the replicas between the sampling and optimization
step of the algorithms. Similar to the procedure described in Section 2.3, it can be evaluated at a
rate τemp between a starting iteration kemp,s and an ending iteration kemp,e. Given these estimates,
the supervised-learning loss in Eq. (2.24) can be used to compute the compound loss gradient to
update the neural network. We shall call these composite algorithms as the BKE–FTS(ME)+SL
and BKE–FTS(US)+SL method, whose pseudo-codes are described in Algorithm 5 (Fig. 7) and
Algorithm 6 (Fig. 8), respectively.

Limitations of the FTS Method: The proposed methods for solving the BKE with the FTS method
inherit the limitations of the FTS method itself. For instance, the application of the FTS method to
molecular systems may fail since the distance metrics defining the Voronoi cells are not invariant with
respect to rigid-body transformations. As a result, replicas can escape from their respective Voronoi
cells without any structural change via rotations and/or translations alone. To resolve this issue,
the FTS method is typically applied in the space of collective variables (CVs), which are invariant
under translation and rotation by construction. While a solution independent of CVs remains an
open problem, the work in Ref. [13] proposes a sufficiently general CV, denoted as Θ, if the system
configuration x can be divided into a sub-system configuration xS that undergoes the structural
change and solvent degrees of freedom xE that make up the surrounding environment. This CV takes
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xS and a string nodal point ϕα as input, and it can be written as

Θ(xS; R∗,b∗) = R∗ (xS − b∗) , (2.50)
(R∗,b∗) = arg min

(R,b)

|R (xS − b)−ϕα| , (2.51)

where R∗ and b∗ are a rotation matrix and translation vector, respectively, that form a rigid body
transformation of the sub-system. By minimizing the distance metric in Eq. (2.51), the chosen rigid
transformation has the effect of matching the center-of-mass and orientation axis of xS to that of
ϕα. This results in a CV that not only retains some of the original molecular degrees of freedom,
but also removes the degeneracy due to translations and rotations. The transformation defined by
Eq. (2.51) can also be done at a relatively low computational cost by translating the sub-system to
match its center of mass with the center of mass of ϕα and subsequently rotating the sub-system
via the Kabsch algorithm [46]. Other CVs are also possible and may be needed when dealing with
rare-event problems where the system cannot be subdivided, e.g., nucleation and self-assembly.

Despite the generality of Eq. (2.50), it may not be sufficient at high densities where the solvent
molecules/particles move in a highly correlated fashion during the transition, i.e., solvent reorgani-
zation. In this situation, the BKE–FTS methods can still use the FTS method with the CV as given
in Eq. (2.50) to train neural networks that are implicitly aware of the solvent reorganization, since
each replica samples the solvent configurations that participate in the transition. Such a strategy
of utilizing the FTS method with the CV in Eq. (2.50) is used in Section 4 to compute committor
functions and reaction rates in a solvated dimer system with relatively high accuracy.

The FTS method is also ill-suited for problems involving multiple reaction pathways. This problem
can possibly be addressed by evolving multiple independent strings that are repulsive with respect
to each other, as is done in an extension of the string method in the CV space termed the climbing
multistring method [47], but it remains to be extended to the FTS method. Other methods more
amendable to studying processes with multiple reaction pathways, such as Markov State Models
[48–50], could also be considered in future work.

3 Computational Studies in Low-Dimensional Systems

In this section, we test Algorithms 1–6 to two model systems consisting of a single particle diffusing
in non-convex potential energies in one dimension (1D) and two dimensions (2D), respectively.
Reference solutions can be obtained in 1D and 2D via analytical method and the finite element
method (FEM), respectively, which will be used to ascertain the relative accuracy of the algorithms.
Before we introduce these two systems, we elaborate on the choice of the neural network, optimizer,
and initial conditions. For both systems, we use a single-hidden layer neural network with ReLU
activation functions and a sigmoidal output layer [39]:

q̂(x;θ = {W1,w2,b}) = σ (w2 · ReLU(W1x + b1)) , (3.1)

where ReLU(s) = max(0, s), σ(s) = 1
1+e−s , W1 is an m-by-d matrix of weights of the hidden

layer, w2 and b1 are m-dimensional vectors of weights of the output layer and biases of the hidden
layer, respectively, and the number of neurons is m = 200. The chosen optimizer is the Heavy-Ball
method [30] and Adam [31] for the 1D and 2D system, respectively; see Appendix B for a brief
review of each optimizer and associated hyperparameters for each study.

The neural network parameters are initialized randomly and subsequently updated by minimizing the
following mean-squared error function

I(θ; {xα0 }) =
1

M

M∑

α=1

(
q̂(xα0 ;θ)− α− 1

M − 1

)2

, (3.2)

where a gradient descent algorithm is used with a stepsize of 0.001 until I(θ) ≤ 10−3. Here, xα0 is
the initial configuration of the α-th replica, and is chosen to be the linear interpolation between a
known energy-minimizing configuration at the reactant state xA

0 and product state xB
0 :

xα0 =

(
1− α− 1

M − 1

)
xA

0 +

(
α− 1

M − 1

)
xB

0 . (3.3)
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For the BKE–FTS(ME) and BKE–FTS(ME)+SL methods, the initial nodal points of the path are
chosen as ϕα0 = xα0 . For the BKE–FTS(US) and the BKE–FTS(US)+SL method, since the FTS
method is run before the neural network training, xα0 is set to the nodal point ϕα of the converged
path. The choice in Eq. (3.2) ensures an initial guess of θ that results in a monotonic increase of
the committor function from the reactant to the product states. It also provides an initial value of
the committor function that is compatible with the target value of the committor-based umbrella
sampling, avoiding large force evaluations for MD simulations. Additional details pertaining to
individual studies such as sampling schemes generating mini-batches for optimization, choices of
penalty strengths, and parameters controlling the FTS method can be found in the Appendix B.

The accuracy of the algorithms is measured using both an L1 norm measuring error in q̂(x;θ), and
the ensemble average of the BKE loss function given by Eq. (2.9). The latter is proportional to the
reaction rate in Eq. (2.5). The L1-norm error is defined over the region spanned by the transition tube,
TΛ = {x ∈ Ω : |J(x)| ≥ Λ} where Λ is a cut-off value, and normalized by the volume of the region.
This yields

||q̂ − q||1 =
1∫

TΛ
dx

∫

TΛ

dx|q̂(x;θ)− q(x)| . (3.4)

In all algorithms, an on-the-fly estimate of the ensemble average of Eq. (2.9) is computed at the k-th
iteration with the following formula:

〈
1

2
|∇xq̂(x;θk)|2

〉

fly

=





M∑
α=1

zα
|Mα

k |
∑

x∈Mα
k

 `(x;θk)

c(x;θk)


M∑
α=1

zα
|Mα

k |
∑

x∈Mα
k

[
1

c(x;θk)

] for umbrella sampling

M∑
α=1

zα
|Rαk |

∑
x∈Rαk

`(x;θk) for the master equation

, (3.5)

where the reweighting factors zα are evaluated using Eq. (2.19) for umbrella sampling and Eq. (2.48)
for the master equation, respectively. The estimate in Eq. (3.5) is then compared to the average BKE
loss function that is evaluated using reference solutions.

3.1 First Study: 1D Quartic Potential

In this section we study a 1D particle diffusing in a quartic potential V (x) = (1 − x2)2 with
kBT = 1/15. This potential has two minima at x = −1, 1 with a saddle point at x = 0, which
is the transition state of the model. Setting the reactant state A = (−∞,−1] and product state
B = [1,∞+), the exact solution for the committor function qexact(x) can be obtained as

qexact(x) =

∫ x

−1
dx′e15V (x′)

∫ 1

−1
dx′e15V (x′)

. (3.6)

Using Eq. (3.6), the average of the BKE loss function
〈

1
2 |∇xqexact(x)|2

〉
can be computed as

〈
1

2
|∇xqexact(x)|2

〉
=

1

2

(
Z

(∫ 1

−1

dx eβV (x)

))−1

≈ 10−6 . (3.7)

To compute the L1-norm error, we set the transition tube region TΛ = Ω \A ∪B = (−1, 1).

Figure 9(a) shows that the neural network approximations q̂(x;θ) obtained from all methods converge
to the exact solution. However, the histograms of sampled configurations obtained from committor-
based umbrella sampling lack overlap between the reactant/product states and the transition state
(Fig. 9(b), top). As discussed in Section 2.2, this lack of overlap indicates that on-the-fly estimates of
the average BKE loss, and thus the chemical reaction rates, may not be accurate and are subject to
large variance/noise. On the other hand, the histograms from algorithms that use the FTS method
(Fig. 9(b), middle and bottom) show homogeneous sampling across the transition tube with sufficient
overlaps, which should translate to accurate low-variance estimates of reaction rates. Indeed, Fig. 9(c)
shows that the on-the-fly estimates from the BKE–US and BKE–US+SL methods exhibit large
fluctuations, spanning six orders in magnitude for a batch size of 16, while the algorithms that use the
FTS method can reduce this variance by approximately one order of magnitude for the same batch
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Figure 9: (a) Committor function obtained from all methods compared with the exact solution.
(b) Histograms of samples obtained from the BKE–US method (top), the BKE–FTS(ME) method
(middle), and the BKE–FTS(US) method (bottom). (c) On-the-fly estimates of the average BKE loss
obtained at every iteration and computed using a batch size of 16, with an inset plot showing their
cumulative averages over the last 1500 iterations. (d) The L1-norm error as a function of iterations.

size. When these on-the-fly estimates are cumulatively averaged, as shown in the inset of Fig. 9(c),
we also see that the BKE–US and BKE–US+SL methods yield inaccurate estimates of the average
BKE loss when compared to the algorithms employing the FTS method, as these estimates are off
from the exact value by two orders of magnitude. Irrespective of the sampling method, the addition
of supervised learning elements can yield an order-of-magnitude increase in the accuracy of the
committor function, as seen from the L1-norm error in Fig. 9(d). Based on these results, we may
conclude that the addition of the FTS method and SL elements yields accurate committor functions
and low-variance estimates of the reaction rates.

3.2 Second Study: 2D Müller-Brown Potential

Although the 1D system already showcases the salient advantages of incorporating SL elements and
the FTS method, it only serves as a check to ensure that all algorithms can converge in a setting where
an exact solution is available. The advantages and disadvantages of all algorithms can be observed
with a more complex problem involving a 2D potential energy landscape, where the transition path is
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Figure 10: (a) MB potential along with isocommittor lines from the FEM solution. Note the MB
contours correspond to βVMB. (b) MB potential along with contours indicating the lines of increasing
flux J(x) from white to red along with the transition path in black, computed using the FEM solution
via Eq. (2.4).

curved. To this end, we now study a particle subject to the 2D Müller-Brown (MB) potential [51],
which is a Gaussian mixture potential given by

VMB(x) =

4∑

k=1

Ak exp
(
ai (x− x̄i)2

+ bi (x− x̄i) (y − ȳi) + ci (y − ȳ)
2
)
, (3.8)

A = (−200,−100,−170, 15), a = (−1,−1,−6.5,−0.7) ,

b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7) ,

x̄ = (1, 0,−0.5,−1), ȳ = (0, 0.5, 1.5, 1) .

It has two minima at xA
0 ≈ (−0.558, 1.442) and xB

0 ≈ (0.623, 0.028). In what follows, we
study this model at a temperature where kBT = 10. While an analytical form of q(x) for the
MB potential is unknown, we use FEM to numerically solve the BKE (Eq. (2.2)) via FEniCS
[52, 53], and obtain a solution to the committor function qFEM(x). This is done on the domain
Ω = [−1.75, 1.25] × [−0.5, 2.25], with the reactant and product states defined by A = {x ∈ Ω :
|x − xA

0 | < 0.025} and B = {x ∈ Ω : |x − xB
0 | < 0.025}, respectively. The FEM solution is

obtained by applying Dirichlet boundary conditions as per Eq. (2.3) along with a zero-flux Neumann
boundary condition on ∂Ω, and a mesh of roughly 3 · 105 elements. Contours of the MB potential
along with isocommittor lines of qFEM(x) are shown in Fig. 10(a), along with contours of increasing
flux and the transition path in Fig. 10(b).

The ensemble-averaged BKE loss with qFEM(x) over Ω is obtained by evaluating the variational
objective function in Eq. (2.7):

〈
1

2
|∇xqFEM|2

〉
≈ 2.46 · 10−4 . (3.9)

To compute the L1-norm error, we select the transition tube domain to be TΛ = {x ∈ Ω : |J(x)| >
Λ = 1.61 · 10−4}, which corresponds to the outermost white line in Fig. 10(b). In addition to
on-the-fly estimates, the ensemble average of the BKE loss from the neural network representation
q̂(x;θ) can be evaluated by numerically integrating over the entire domain, and is given by

〈
1

2
|∇xq̂(x;θk)|2

〉

full

=

∫

Ω

dxρ(x)`(x;θk) = 〈`(x;θk)〉 . (3.10)

Equation (3.10) provides an additional metric for evaluating accuracy; in particular, comparing
Eq. (3.10) with the on-the-fly estimates allows us to evaluate the sampling error that arises from the
choice of estimator, while comparing Eq. (3.10) with the FEM value (Eq. (3.9)) allows us to evaluate
the error inherent to the neural network.

Figures 11(a-c) show the isocommittor lines and sampled configurations obtained from all algorithms.
We see from the isocommittor lines that methods employing supervised learning elements improve the
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Figure 11: Isocommittor lines for q = 0.1, 0.5, and 0.9 (left to right) from (a) the BKE–US and BKE–
US+SL method, (b) the BKE–FTS(ME) and BKE–FTS(ME)+SL method, and (c) the BKE–FTS(US)
and BKE–FTS(US)+SL method. × markers denote representative samples obtained from algorithms
without supervised learning. Dotted lines are the transition paths obtained from the FTS method. (d)
The L1-norm error of the committor function as a function of iterations.

accuracy of the committor functions both in and outside the transition tube, as these surfaces follow
the FEM solution far more closely than the ones without such elements. This increase in accuracy is
also reflected in the L1-norm error shown in Fig. 11(d), where the error from methods with supervised
learning is reduced by an order of magnitude regardless of the chosen sampling method. Furthermore,
similar to the 1D system, committor-based umbrella sampling yields samples that are focused near
the transition state with little overlap between the reactant/product basins and the transition state
region; see Fig. 11(a). As mentioned in Section 2.2, this lack of overlap can negatively impact the
accuracy of the estimated reaction rates due to inaccurate estimates of free energy differences between
neighboring replicas and thereby the reweighting factors (Fig. 30). Conversely, all algorithms using
the FTS method yield overlapping samples that homogeneously cover the transition tube and hence
accurate estimates of reweighting factors (Figs. 31 and 32), indicating that reaction rate estimates
may be computed with higher accuracy and lower variance.

Figure 12(a) shows the on-the-fly estimates of the reaction rates or the average BKE loss from
all methods, computed using a smaller batch size of 64 samples and filtered over the nearest 200
iterations. With the exception of the BKE–FTS(ME) and BKE–FTS(ME)+SL methods, these on-the-
fly estimates converge towards values far from the FEM solution even though the ensemble-averaged
BKE loss computed by numerical integration (Eq. (3.10)) shows convergence towards the FEM value
(Fig. 12(c)). This shows the sampling error is still large, and larger batch sizes (Nbatch) are needed
to obtain accurate on-the-fly estimates. Figure 13(a) shows the ratio of the FEM and the on-the-fly
estimates as a function of batch size, where all the methods employing the FTS methods converge
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training.

towards the FEM value with the exception of the BKE–US and BKE–US+SL methods, which plateau
to a ratio of 0.1. As mentioned in Section 2.2, this discrepancy is related to the lack of overlaps in
the samples between the transition state and the reactant/product basins, resulting in the inaccurate
estimates of zα (Fig. 30). These results show that replacing the committor-based umbrella sampling
with the FTS method results in more accurate estimates of the reaction rates.

Furthermore, the FTS method with path-based umbrella sampling is amenable to error analysis,
allowing us to estimate the errors in the reaction rates. In what follows, we provide such an analysis
for the BKE–FTS(US) and BKE–FTS(US)+SL methods, using which the sampling errors in the
on-the-fly estimates can be eliminated. As will be shown later in Fig. 21, this allows accurate
computation of the average BKE loss functions for the BKE–FTS(US) and BKE–FTS(US)+SL
methods at any batch size. Lastly, although the average BKE loss computed by numerical integration
may be closer to the FEM solution than the on-the-fly estimates, such computation is impractical
for high-dimensional problems due to the increased cost of quadrature, necessitating the procedure
constructed from error analysis to improve the accuracy in the on-the-fly estimates.
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3.3 Error Analysis of the Average BKE Loss Estimator

Before we begin the error analysis, we first plot the normalized histograms, i.e., the empirical probabil-
ity density functions (PDFs), of the logarithm of on-the-fly BKE loss for both the BKE–FTS(US) and
BKE–FTS(US)+SL methods (Fig. 14), which show that fluctuations of these estimates are centered
around the FEM value. Furthermore, the resulting PDFs can be fitted to a log-normal distribution via
the method of moments [54] with increasing agreement as the batch size is increased. The emergence
of the log-normal distribution can be attributed to either the change in model parameters θk during
optimization or the nature of umbrella sampling when used in conjunction with the estimator given
by Eq. (3.5). Since the log-normal statistics emerge when the neural network is already converged, it
is more likely for sampling to be the chief cause of these statistics, rather than the optimization. This
hypothesis can be tested by computing the on-the-fly BKE loss when the neural network parameters
are fixed at every iteration, which has the effect of decoupling the influence of optimization from
sampling. The histograms from this numerical experiment are shown in Fig. 15, where log-normal
distributions are produced as before, and their peaks are located precisely at the ensemble-averaged
BKE loss computed by numerical integration (Eq. (3.10)). The logarithm of the average BKE loss can
be shifted by the mean and normalized by the standard deviation of the corresponding distributions to
produce approximate standard normal distributions as seen in Fig. 16, with increasing batch sizes
having an increasing agreement with a standard normal distribution.

With the observation of log-normal statistics established, we now determine its origin by investigating
each component that contributes to the computation of the on-the-fly BKE loss in Eq. (3.5). To this
end, we provide a more concise notation for the estimator (Eq. (3.5)) by re-writing it as

〈
1

2
|∇xq̂(x;θk)|2

〉

fly

=

M∑

α=1

zα


 1

|Mα
k |
∑

x∈Mα
k

[
`(x;θk)

c(x;θk)

]


M∑

α=1

zα


 1

|Mα
k |
∑

x∈Mα
k

[
1

c(x;θk)

]


=

M∑

α=1

zα ¯̀∗
α

M∑

α=1

zα1̄∗α

, (3.11)

where we define the division by c(x;θk) per sample with the ∗ operator, and denote the standard
sample mean using the bar operator. Equation (3.11) requires computing free energies through
zα, and sample means from each replica through ¯̀∗

α and 1̄∗α, which indicates that the origin of the
log-normal statistics of the average BKE loss can be found once the statistics for zα, ¯̀∗

α, and 1̄∗α are
determined individually. In what follows, we first investigate the statistics of zα as computed via FEP.

To begin, we write the free-energy difference ∆Fα,α′ = Fα − Fα′ per Eq. (2.18) as

β∆Fα,α′ = − log


 1

|Mα′
k |

∑

x∈Mα′
k

exp(−β∆Wα,α′(x;θk))


 , (3.12)

where ∆Wα,α′(x;θk) = Wα(x;θk)−Wα′(x;θk). Note that free-energy differences are typically
computed for adjacent replicas, so that α = α′ ± 1. For sufficiently small ∆Wα,α′(x;θk), use of
Taylor series expansions yields

β∆Fα,α′ ≈ − log


 1

|Mα′
k |

∑

x∈Mα′
k

(1− β∆Wα,α′(x;θk))


 (3.13)

≈ − log


1− 1

|Mα′
k |

∑

x∈Mα′
k

β∆Wα,α′(x;θk)


 (3.14)

≈ 1

|Mα′
k |

∑

x∈Mα′
k

β∆Wα,α′(x;θk) . (3.15)

According to the central limit theorem and assuming that the samples x ∈Mα
k are independent and

identically distributed, the sample mean of ∆Wα,α′ is normally distributed, and thus the free-energy
differences ∆Fα,α′ are also normally distributed. This argument only holds for small ∆Wα,α′(x;θk),
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Figure 14: Histograms yielding the probability density functions for the on-the-fly estimate of the
BKE loss at various batch sizes from the last 3000 iterations of training for the (a) BKE–FTS(US),
and (b) BKE–FTS(US)+SL methods. Corresponding dashed lines are log-normal distributions fitted
using the method of moments [54], while the dashed vertical black line corresponds to the average
BKE loss from the FEM solution.
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Figure 15: Histograms of the on-the-fly estimate of the average BKE loss at various batch sizes,
with the neural network parameters fixed at every iteration for the (a) BKE–FTS(US), and (b) BKE–
FTS(US)+SL methods. The neural network configuration corresponds to the one obtained from
training at batch size 4. Corresponding dashed lines are log-normal distributions fitted using the
method of moments [54], while the dashed vertical black line corresponds to the average BKE loss
computed by numerical integration (Eq. (3.10)).
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Figure 16: Histograms of the on-the-fly estimate of the average BKE loss shifted by the mean µ and
normalized by the standard deviation σ at various batch sizes, with the neural network parameters
fixed at every iteration for the (a) BKE–FTS(US), and (b) BKE–FTS(US)+SL methods. The neural
network configuration corresponds to the one obtained from training with a batch size of 4. The black
dashed line is a log-normal distributions with µ = 0 and σ = 1.

which can be achieved when there is overlap in configuration space—a condition that is ensured with a
good choice of the bias strength parameters. Since ∆Fα,α′ is normally distributed, its exponentiation
e−β∆Fα,α′ is log-normally distributed. Using Eq. (2.19), for α not equal to the reference index γ,
the un-normalized reweighting factor z?α obtained from FEP is also log-normally distributed, since
it is computed from products of e−β∆Fα,α′ factors that are log-normally distributed [55]. Upon
normalizing z?α to obtain zα, we should observe approximately log-normal statistics for zα, since the
normalization requires dividing z?α with its sum, which is approximately log-normal [56–60].

The arguments we put forth for the statistics of β∆Fα,α′ and zα can be verified in simulations
by evaluating the probability density functions for the quantities of interest. For the forward free-
energy differences β∆F(α+1),α and the backward free-energy differences β∆F(α−1),α, the observed
distributions can be described by normal distributions (Figs. 33 and 34), which immediately imply
that their exponentiation is log-normally distributed. The resulting reweighting factors zα are found
to be log-normally distributed, in agreement with our heuristic arguments, as seen from the PDFs of
ln zα in the first row of Fig. 17 for representative replicas, and Fig. 35 for all replicas. Note that there
exist free-energy differences, such as β∆F9,8 and β∆F10,9, that have a slight deviation in the tails
due to the presence of higher-moment terms. These effects are mostly removed when evaluating the
PDFs for ln zα, and it is expected that these tails disappear as the batch size is increased since this
leads to free-energy differences that further obey a normal distribution. To summarize the statistics
observed in all replicas, we group replicas with similar behaviors into four groups, corresponding to
the reactant (1-10), transition (11-13), metastable (14-18), and product (19-24) states. The results for
zα for these groups are shown in the second column of Table 1.

With the sampling distributions of zα understood, we now study the sampling distributions for ¯̀∗
α and

1̄∗α. Assuming the values of `∗α and 1∗α are independent and identically distributed, one may expect
the corresponding sample means ¯̀∗

α and 1̄∗α to be normally distributed according to the central limit
theorem. However, we observe from simulations that these sample means are better described by
log-normal distributions; see the second and third rows of Fig. 17 for representative histograms, and
Figs. 36 and 37 for all histograms. Since log-normality arises when normally-distributed random

24



−1.4 −1.2

ln(z4)

10−3

10−1

101

103

P
D

F

−11 −10 −9

ln(z12)

10−3

10−1

101

103

P
D

F

−9 −8 −7

ln(z15)

10−3

10−1

101

103

P
D

F

−7.5 −5.0

ln(z22)

10−3

10−1

101

103

P
D

F

−12.5−10.0 −7.5

ln ¯̀∗
4

10−3

10−1

101

103

P
D

F

0 1

ln ¯̀∗
12

10−3

10−1

101

103

P
D

F

−5 0

ln ¯̀∗
15

10−3

10−1

101

103

P
D

F

−10 −8

ln ¯̀∗
22

10−3

10−1

101

103

P
D

F

−0.525 −0.500

ln 1̄∗4

10−3

10−1

101

103

P
D

F

0 1

ln 1̄∗12

10−3

10−1

101

103

P
D

F

0 1

ln 1̄∗15

10−3

10−1

101

103

P
D

F
−0.4 −0.2

ln 1̄∗22

10−3

10−1

101

103

P
D

F
−15 −10

ln(z4
¯̀∗
4)

10−3

10−1

101

103

P
D

F

−11 −10 −9

ln(z12
¯̀∗
12)

10−3

10−1

101

103

P
D

F

−12.5−10.0 −7.5

ln(z15
¯̀∗
15)

10−3

10−1

101

103

P
D

F

−16 −14

ln(z22
¯̀∗
22)

10−3

10−1

101

103

P
D

F

−2.0 −1.8

ln(z41̄∗4)

10−3

10−1

101

103

P
D

F

−10 −8

ln(z121̄∗12)

10−3

10−1

101

103

P
D

F

−10 −8

ln(z151̄∗15)

10−3

10−1

101

103

P
D

F

−7.5 −5.0

ln(z221̄∗22)

10−3

10−1

101

103

P
D

F

Figure 17: Probability density functions of the various quantities representative of Table 1. Data
is obtained from sampling with batch size 1024, with a fixed neural network obtained from the
BKE–FTS(US)+SL method at the same batch size. Dashed blue lines are log-normal distributions
fitted using the method of moments [54], while the vertical dotted orange and solid black lines
correspond to the mean of the histograms and the corresponding ensemble average computed via
numerical integration, respectively.

variables are exponentiated, its origin is likely due to the sums of exponentials in c(x;θk) for 1̄∗α,
and the neural network model q̂(x;θk) for ¯̀∗

α, where the output layer of q̂(x;θk) contains the
sigmoidal function σ(s) = 1/(1 + e−s). Nevertheless, the distributions possess tails that render the
log-normality only approximate in nature. We summarize these observations in the third and fourth
columns of Table 1.

Despite the approximate log-normality in ¯̀∗
α and 1̄∗α, one need not understand accurately the distribu-

tions of ¯̀∗
α and 1̄∗α, as the distributions obtained for the products zα ¯̀∗

α and zα1̄∗α, which are needed by
the estimator in Eq. (3.12), are log-normal; see the fourth and fifth rows of Fig. 17 for representative
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Replicas zα ¯̀∗
α 1̄∗α zα ¯̀∗

α zα1̄∗α
Var(ln zα) >

Var(ln ¯̀∗
α)

Var(ln zα) >

Var(ln 1̄∗α)
Reactant State (1-10) 3 7 7 7 3 7 3
Transition State (11-13) 3 3 7 3 3 3 3
Metastable State (14-18) 3 7 7 7 3 7 3
Product State (19-24) 3 3 7 3 3 3 3

Table 1: Summary of error analysis results. For columns two through six, 3 indicates the distributions
in all or most replicas are log-normal, while 7 indicates the distributions in all or most replicas are
approximately log-normal with a skew or slight deviations in the tails. For columns seven and eight,
they indicate if the inequality holds. The corresponding histograms for columns two through six can
be found in Figs. 35–39.

histograms, and Figs. 38 and 39 for all histograms, as well as the fifth and sixth columns of Table 1
for a concise summary. The only exceptions are the histograms for zα ¯̀∗

α at the reactant (1-10) and
metastable state (14-18), which have slightly skewed log-normal behavior. However, these do not
contribute significantly to the overall BKE loss when compared to the transition state. To understand
why log-normality emerges again for zα ¯̀∗

α and zα1̄∗α, let us convert the products into sums by taking
the logarithm, so that ln zα ¯̀∗

α = ln zα + ln ¯̀∗
α and ln zα1̄∗α = ln zα + ln 1̄∗α. The distribution of the

sum of two independent random variables, denoted more generally as Y = X1 +X2, can be obtained
from the distributions for X1 and X2 in terms of a convolution

ρY (y) =

∫ ∞

−∞
dx ρX1(x)ρX2(y − x) . (3.16)

When one random variable, e.g., X2, possesses a much lower variance than the other random variable,
we expect that the value of X2 will be constant relative to X1. In this limit, we may approximate
ρX2

(x) with a Dirac delta function to yield

ρY (y) ≈
∫ ∞

−∞
dx ρX1(x)δ(y − x) = ρX1(y) . (3.17)

Thus, the distribution for the sum is solely determined by the distribution of the random variable with
the highest variance. Although this argument is only a weak approximation, as the random variables
involved in zα ¯̀∗

α and zα1̄∗α are correlated due to being processed from the same x values, it gives
an insight as to why zα ¯̀∗

α and zα1̄∗α are log-normally distributed. Note that the true distributions of
ln ¯̀∗

α and ln 1̄∗α are not exactly known, but the distributions of ln zα consist of normal distributions.
If ln zα possesses a larger variance than ln ¯̀∗

α or ln 1̄∗α we expect from Eq. (3.17) that the distribution
of the sum in ln zα ¯̀∗

α and ln zα1̄∗α matches the normal distribution of ln zα. This argument is verified
in the seventh and eighth columns of Table 1, where we see that ln zα ¯̀∗

α and ln zα1̄∗α are normally
distributed whenever ln zα possess higher variance.

With the log-normality of zα ¯̀∗
α and zα1̄∗α verified, we can examine the numerator

∑M
α=1 zα

¯̀∗
α and

denominator
∑M
α=1 zα1̄∗α of Eq. (3.11), which make up the on-the-fly average BKE loss. Since the

sum of log-normal random variables can be approximately described by a log-normal distribution [56–
60], both the numerator and denominator should be approximately log-normal. From simulations, we
find that the numerator is log-normally distributed (Fig. 18(a)) while the denominator is log-normally
distributed with slight deviations in the tails (Fig. 18(b)). Since the ratio of two log-normal random
variables is also log-normal, the resulting on-the-fly BKE loss should be log-normal, as shown in
Fig. 18(c). This is also in agreement with what is observed during training (Fig. 14), and when the
neural network is fixed (Fig. 15). Although the log-normality of the denominator is only approximate,
one can use the previous argument on sums of random variables, i.e., Eq. (3.17), to show that the
sampling distribution of the on-the-fly BKE loss is still log-normal, since the numerator has higher
variance than the denominator, thereby allowing the log-normality of the numerator to dominate in
the on-the-fly BKE loss. Given these results, we conclude that the on-the-fly estimates of the average
BKE loss obtained from the BKE–FTS(US) and BKE–FTS(US)+SL methods are approximately
log-normal.

Using the log-normal distribution of the average BKE loss, one can determine the asymptotic behavior
of the sampling error as a function of batch size Nbatch. Denoting the mean and variance of the
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Figure 18: Probability density functions of sums of zα ¯̀∗
α, zα1̄∗α, and the on-the-fly estimate of the

BKE loss function in logarithmic space. Data is obtained from sampling with batch size 1024, with a
fixed neural network obtained from the BKE–FTS(US)+SL method at the same batch size. Dashed
blue lines are log-normal distributions fitted using the method of moments [54], while the vertical
dotted orange and solid black lines correspond to the mean of the histograms and the corresponding
ensemble average computed via numerical integration, respectively.
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Figure 19: The absolute error in the on-the-fly BKE loss at different batch sizes, with respect to the
largest batch size. All error bars are 95 confidence intervals.

log-normal distribution as µ and σ2, respectively, we expect that the cumulative mean of the on-the-fly
BKE loss over iterations is given by [55]

1

K − k? + 1

K∑

k=k?

〈
1

2
|∇xq̂(x;θk)|2

〉

fly

≈ exp

(
µ+

1

2
σ2

)
, (3.18)

where K is the final iteration index, and k? is the iteration index when the on-the-fly estimates begin
to fluctuate around a plateau. Equation (3.18) implies that the cumulative mean of on-the-fly estimates
is always multiplied by a factor exp

(
1
2σ

2
)
> 1, since σ2 > 0. This explains why the on-the-fly

estimates in Fig. 11(a) from both the BKE–FTS(US) and BKE–FTS(US)+SL methods are larger than
the FEM value, and why the ratio between the FEM value and the on-the-fly estimates in Fig. 12 is
always less than one. Furthermore, σ2 ∼ O(1/Nbatch), implying for large Nbatch that

1

K − k? + 1

K∑

k=k?

〈
1

2
|∇xq̂(x;θk)|2

〉

fly

∼ exp (µ) (1 +O(1/Nbatch)) , (3.19)

thus showing the sampling error in the on-the-fly estimates scales as O(1/Nbatch). Defining the
absolute error as the difference between the cumulative mean of the on-the-fly estimates obtained
at smaller batch sizes and the one obtained at the largest batch size, we plot the absolute error as a
function of Nbatch in Figure 13 for both the BKE–FTS(US) and BKE–FTS(US)+SL methods, where
the O(1/Nbatch) scaling can be observed.
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Figure 20: Using the geometric mean (a,b) and median (c,d) to remove the sampling error in the
filtered on-the-fly estimates (left column) and cumulative average (right column) of the on-the-fly
estimates in the BKE–FTS(US) method for batch size 64. Note that the remaining error between
the FEM value and the average BKE loss computed per Eq. (3.10) is due to the inherent error of the
chosen neural network. Cumulative mean and median are performed over the last 3000 iterations of
the algorithm. Shaded colors in (b) and (d) are 95 confidence intervals.
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median. Error bars are 95 confidence interval.
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Figure 22: Dimer particles in (left) compact and (right) extended states for r0 = 21/6 and s = 0.25
for a system with ρ = 0.9. Only the seven nearest neighbors of each solvent particle are visualized
and made transparent. Image created using Ovito [61].

The knowledge of the log-normal distribution can also be used to remove the sampling error be-
tween the on-the-fly estimates and the ensemble-averaged loss computed by numerical integration
(Eq. (3.10)). This can be achieved by taking the median and geometric mean of the on-the-fly
estimates since they are equal to the true mean exp(µ) for log-normally distributed random variables
[55]. We demonstrate this by applying the geometric mean (Figs. 20(a,b)) and median (Figs. 20(c,d))
to remove the sampling error in the filtered on-the-fly estimates and the cumulative mean from the
BKE–FTS(US) method.

Furthermore, the geometric mean or median can be used to obtain similar accuracy in the average
BKE loss across all batch sizes, as seen in Fig. 21 where we plot the ratio between the FEM value
and the geometric mean and median of the on-the-fly estimates from the BKE–FTS(US) and BKE–
FTS(US)+SL methods. Note that the ratio obtained from the BKE–FTS(US) method at the smallest
batch size is larger than one, in contrast to the expected log-normal prediction that is less than one,
but this result is consistent with the presence of the tails in the histograms for the smallest batch size;
see Figs. 14(a) and 15(a). Nevertheless, the accuracy obtained from the smallest batch size after
applying the geometric mean and median is comparable to the accuracy obtained from the largest
batch size. Thus, one can use the BKE–FTS(US) and BKE-FTS(US)+SL methods to train neural
networks with smaller batch sizes, which results in cheaper simulation costs, without loss in the
accuracy in the reaction rates estimated on-the-fly.

4 Computational Study of a Solvated Dimer System

Until now, all previous studies correspond to a single particle diffusing in low-dimensional energy
landscapes where a reference solution for q(x) is known through analytical or numerical methods,
allowing us to understand the accuracy of the proposed methods. However, the neural network
representation of the committor function can also be employed in molecular systems with a high-
dimensional configuration space with no reference solution, demonstrating the applicability of the
proposed methods. To this end, we now test Algorithms 1–6 on a solvated dimer system [62], where
the dimer transitions between a compact and an extended state; see Fig. 22. In what follows, we
compute the committor function and reaction rate corresponding to the transition between the compact
and the extended states of the dimer.

In this system, the dimer particles interact via a bond potential given by

Vdimer (r) = h

[
1− (r − r0 − s)2

s2

]2

, (4.1)

where r is the distance between the particles, h = 5.0 kBT is the height of the barrier, r0 = 21/6

sets the distance in the compact state, and s = 0.25 sets the distance in the extended state. The
distance in the compact state is r = r0, and the distance in the extended state is r = r0 + 2s (Fig. 22).
The solvent particles interact between themselves and the dimer particles by the Weeks-Chandler-
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Andersen potential [63]

VWCA (r) =

(
4ε

[(
1

r

)12

−
(

1

r

)6
]

+ ε

)
Θ (rWCA − r) , (4.2)

where ε = 1.0, rWCA = 21/6, and Θ (x) is the Heaviside function. We test all the methods on systems
of densities 0.05, 0.4, and 0.7 with a dimer and 30 solvent particles, and a system of density 0.9 with
a dimer and 46 solvent particles. For all systems, the temperature is maintained at kBT = 1.

In comparison to the low-dimensional systems, molecular systems may have many particles with
different species identities. To increase efficiency in training, the neural network should satisfy
invariances with respect to translations, rotations, and permutations of the particle positions x and
species identities z. To this end, we use a neural network of the form

q̂(x, z;θ) = σ (f(x, z;θ)) , (4.3)

where the species identities z correspond to z = 1 for a dimer particle and z = 0 for a solvent
particle, and f(x, z;θ) being the implementation of SchNet [64] available with PyTorch Geometric
[65]. SchNet is a message-passing neural network that determines the contribution to the committor
function for each particle, satisfying permutation invariance of the particle identities, using a scheme
dependent only on the distances between particles, satisfying the aforementioned translational and
rotational invariances. SchNet first maps for each particle a high dimensional feature vector that is
obtained from an embedding of the particle identities. The feature vectors are then updated using
continuous-filter convolutions over the relative distances of a particle to its neighboring particles,
which incorporate information about the particle environment; these operations are termed interaction
blocks. The use of the feature vectors and interaction blocks allows for SchNet to learn the effect of
particle environments on the per particle contribution to the committor function without the use of
handcrafted descriptors. The feature vectors are then reduced into a scalar per particle contribution
to the committor function through a dense neural network, which are summed together and passed
through a sigmoid to obtain the neural network representation of the committor function. In this
work, we use a feature vector size of 64 and 3 interaction blocks and perform the continuous-filter
convolution for each particle over all other particles. For details on the associated hyper-parameters for
each study and parameters used for BKE–US, BKE–FTS(ME), and BKE–FTS(US), see Appendix B.3.
See also Ref. [64] for more details on the general architecture of SchNet and our code repository† for
its implementation in this work.

We apply the same training procedure as done for the 1D and 2D systems with the BKE–US, BKE–
FTS(ME), and BKE–FTS(US) methods plus their SL variants, where all methods use 24 replicas of
a batch size of 8 samples collected every 25 steps. Initial configurations for sampling are obtained
using umbrella sampling simulations with respect to the dimer bond distance r with a potential of the
form

Wα =
1

2
κα (r − rα)

2
, (4.4)

where κα = 1200 kBT and rα = 0.75+ 1.9−0.75
31 (α− 1) for α ∈ [1, 32]. These simulations generate

a set of equilibrium configurations corresponding to the reactant, product, and in-between states.
Furthermore, they are used to initialize the neural network and evaluate the quality of the trained
neural network with a fixed data set. This data set consists of 104 samples per umbrella sampling
replica generated from simulations of length 107 time steps with a sampling period of 103 time steps.

The neural network initialization is done through a similar procedure as described in Section 3. The
neural network parameters are initialized randomly, and updated by minimizing Eq. (3.2) using
Adam with a stepsize of 1 · 10−5 until I(θ) ≤ 10−4. The initial configurations xα0 are chosen to
be the configurations obtained using the above umbrella sampling procedure with bond distances
closest to rα = 0.98 + 1.75−0.98

23 (α − 1) for α ∈ [1, 24]. As in the previous 1D and 2D cases, the
BKE–FTS(ME) and BKE–FTS(ME)+SL methods use ϕα0 = xα0 , and the BKE–FTS(US) and the
BKE–FTS(US)+SL methods sets xα0 to be the nodal point ϕα of the converged path. All additional
details related to sampling schemes generating mini-batches for optimization, penalty strengths, and
parameters controlling the FTS method can be found in the Appendix B.3.

Figure 23 shows the on-the-fly estimates of the reaction rates or the average BKE loss from all
methods tested on various densities for a batch size of 8 samples. For densities of 0.05, 0.4, and

†https://github.com/muhammadhasyim/tps-torch
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Figure 23: The filtered on-the-fly estimate of the BKE loss obtained at every iteration for the solvated
dimer system, with the filtering window set to 200 iterations. A total of 104 unbiased trajectories are
used to compute a direct estimate of the reaction rate (dashed line) for comparison with the proposed
methods.

0.7 (Fig. 23(a-c)), the BKE–FTS(ME) and BKE–FTS(US) estimates plateau around the same value
near the estimate obtained from direct simulation, while BKE–US has high variance around a
different plateau. For a density of 0.9 all methods plateau around the same value. As with the low-
dimensional systems, the BKE–FTS(ME) and BKE–FTS(US) methods sample the reaction pathway,
corresponding to dimer distances between the compact and extended states, homogeneously across
all densities. In contrast, the BKE–US method does not homogeneously sample the reaction pathway
although the transition state is better sampled at ρ = 0.9 compared to lower densities (Fig. 24).
This behavior results in slightly improved overlaps between samples from the reactant/product state
and the transition state, which may explain why the reasonable agreement is obtained between the
BKE–US method and the direct estimate at ρ = 0.9.

The accuracy of all methods can be assessed by comparing an empirical committor function qemp(r)
computed at a fixed value of bond length r with the corresponding value q̂(r, z;θ) obtained from the
neural network. At fixed r, the committor values are spread across a distribution since the committor
depends not only on r but also on solvent configurations. Thus, both qemp(r) and q̂(r, z;θ) represent
estimates of the mean committor at fixed r. Given the full empirical committor function qemp(x)
(Eq. (2.20)) and neural network q̂(x, z;θ), we can compute these means via a binning procedure.
Letting Qi be a set of configurations such that every x ∈ Qi satisfies r ∈ (ri−1, ri], the binning
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Figure 24: Histograms of dimer distances obtained from the BKE–US method (top), the BKE–
FTS(ME) method (middle), and the BKE–FTS(US) method (bottom) for (a) ρ = 0.05, (b) ρ = 0.4,
(c) ρ = 0.7, and (d) ρ = 0.9.
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Figure 25: Average committor profiles for the methods compared to the empirical results for dimer in
solvent systems. The values are binned for 31 windows between rmin = 0.95 and rmax = 1.75.

procedure yields the following formulas:

q̂(ri, z;θ) =
1

|Qi|
∑

x∈Qi
q̂(x, z;θ) , (4.5)

qemp(ri) =
1

|Qi|
∑

x∈Qi
qemp(x) , (4.6)

where every x ∈ Qi is obtained from the configurations sampled via the umbrella potential in Eq. (4.4)
and qemp(x) is computed using 1250 trajectories per configuration x. Figure 25 plots qemp(ri) and
q̂(ri, z;θ) with their respective variances, which represent the intrinsic spread of committor values
around their mean at r = ri. We see that the BKE–US and BKE–US+SL methods have a systematic
difference between the average binned neural network and empirical values. Meanwhile, the BKE–
FTS(ME) and BKE–FTS(US) have a slightly lower systematic difference, which decreases further
upon the use of supervised learning.

We further assess the accuracy of all methods by computing the mean of absolute error between the
binned values of the neural network committor and the empirical committor, i.e.,

||q̂(ri)− qemp(ri)||1 =
1

|Qi|
∑

x∈Qi
|q̂(x, z;θ)− qemp(x)| . (4.7)

Figure 26 shows the mean of absolute errors for all densities, where we find that the error is the
largest near q(r) = 1/2. Furthermore, we observe a hierarchy in the reduction of errors. For densities
ρ of 0.05–0.7, the order of methods with increasing accuracy goes as BKE–US < BKE–FTS(ME) <
BKE–FTS(US), and the addition of supervised learning improves the accuracy of each respective
method.
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Figure 26: Mean absolute error profiles for the methods compared to the empirical results for dimer
in solvent systems. The values are binned for 31 windows between rmin = 0.95 and rmax = 1.75.

We now assess the accuracy of the methods through the average BKE loss, and thereby the reaction
rates. Unlike the low-dimensional studies, where the average BKE loss of the neural network
can be evaluated via quadrature (Eq. (3.10)), numerically exact calculation is not possible in high-
dimensional problems and a new scheme is needed. To this end, we choose umbrella sampling with
a reweighting procedure to compute the average BKE loss with minimal sampling error. This new
scheme utilizes the earlier dataset obtained for the initialization of the neural network as a validation
dataset, where umbrella sampling with respect to Eq. (4.4) was used to obtain 104 configurations
from all 32 replicas. Given this dataset, we compute the reweighting factors zα using the multistate
Bennett acceptance ratio (MBAR) method. Note that MBAR is used instead of FEP since it yields
estimates of zα with lower error than FEP, albeit at a higher computational cost [66]. Once the MBAR
reweighting factors zMBAR

α are computed, the reaction rate from the neural network can be estimated
from a modification of Eq. (3.5) for umbrella sampling,

ν̂R =
〈
|∇xq̂(x;θ)|2

〉
=

32∑

α=1

2zMBAR
α

|Mα|
∑

x∈Mα

[
`(x;θ)

c(x;θ)

]

32∑

α=1

zMBAR
α

|Mα|
∑

x∈Mα

[
1

c(x;θ)

] . (4.8)

Evaluating Eq. (4.8) produces the results seen in Fig. 27(a), which are compared to the true reaction
rate as estimated by direct molecular simulation. The results in Fig. 27(a) mirror the trends seen in
Fig. 26.

As established by the error analysis in Section 3.3, we may avoid costly computation in Eq. (4.8) for
the BKE–FTS(US) and BKE–FTS(US)+SL methods via the geometric-mean estimate to eliminate
sampling error at low batch sizes. The comparison between the arithmetic and geometric mean on
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Figure 27: (a) The reaction rate ν̂R of the neural network per Eq. (4.8) as a function of density. (b)
Comparison between the arithmetic mean and geometric mean applied to the last 3000 samples from
training to direct simulation as a function of density. Error bars are 95 confidence interval.

the on-the-fly estimates, taken from the last portion of training, is shown in Fig. 27(b). Similar to the
low-dimensional case, the geometric mean is able to recover estimates of the reaction rate closer to
the true reaction rate than the arithmetic mean, demonstrating the generality of the results from the
error analysis. Furthermore, the trend between the geometric mean agrees reasonably well with the
true reaction rate across all densities. This result supports the points made in Section 2.4.2 that the
BKE–FTS methods are able to account for solvent effects despite using a CV that ignores solvent
configurations and thereby predicting the correct trend of the reaction rate as a function of density.

5 Conclusion & Future Work

In summary, building on the work of Ref. [1], we have introduced and discussed a set of ML-based
algorithms for computing accurate and precise committor functions and reaction rates. Accuracy
in computing committor functions is improved by adding elements of supervised learning, where
committor values obtained from short molecular trajectories are used to improve the neural network
training. On the other hand, accuracy in the estimated reaction rates is significantly improved by
incorporating the FTS method, which allows homogeneous sampling across the transition tube
necessary for obtaining accurate free energies and reweighting factors. Furthermore, for the FTS
method via path-based umbrella sampling as in the BKE–FTS(US) and BKE–FTS(US)+SL method,
we provide an error analysis, which shows that the on-the-fly estimates of the average BKE loss obey
log-normal statistics. This analysis also shows that the sampling error in the on-the-fly estimates of
reaction rates can be removed by computing its geometric mean or median. The different combinations
of supervised learning and the FTS method yield five additional algorithms, which were tested against
three model systems. Out of the six algorithms, we recommend the BKE–FTS(US)+SL method,
which combines all the strengths of supervised learning and the FTS method, in conjunction with the
geometric mean/median procedure that allows accurate and precise computation of reaction rates
with a small number of samples, e.g., batch size of O(101).
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Future work involves investigating ways of further increasing the accuracy of the methods on
molecular systems. The accuracy could likely be increased through the use of an equivariant neural
network [67], with neural networks satisfying equivariance throughout the hidden layers having been
shown to yield increased accuracy in predictions of molecular properties over SchNet [68]. Future
work should also explore other model systems ranging from ionic association/dissociation in NaCl
solution, where the transition pathway involves the association/dissociation of Na+–Cl− ionic pairs
[69–72], to excitation events in glassy systems, where the transition state is known to have elastic
signatures that are crucial for the structural relaxation [73].
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A Computing Reweighting Factors in the Master-Equation Approach

Recall that the reweighting factor zα in the BKE–FTS(ME) and BKE–FTS(ME)+SL methods are
computed by solving the master equation Eq. (2.48). One can re-write Eq. (2.48) as a matrix equation:

Kz = 0 , (A.1)

where z = zαeα, K = Kαα′eα ⊗ eα′ , and Kαα′ = kTαα′ for α 6= α′ and Kαα = −∑α′ kαα′ .
Since Eq. (A.1) defines z as the basis vector of the null-space of K, one can use singular value
decomposition (SVD) to factorize K = UΣVT , and set the solution z as the column vector of V
corresponding to the zero singular value. One can then normalize the vector z to satisfy the constraint∑M
α=1 zα = 1.

In extremely short simulation runs, the off-diagonals of Nαα′ can be zero due to the absence of
rejection counts, which may result in estimates of zα, i.e., elements of column vector of V, that
are not strictly positive. To ensure that the algorithm computes the correct column vector, we shift
the off-diagonals kα(α+1) and k(α−1)α by a tolerance value of 2 · 10−9, i.e., slightly lower than the
machine epsilon of single-precision floats, and set the tolerance for zero singular-value detection to
be 10−6. For this choice of tolerance values, the estimated zα converge in the limit of large batch
sizes to the zα computed by numerical integration of Eq. (2.47); see Fig. 31. Note that a range of
tolerance values 10−11–10−8 have also been used with no change to the results.

B Computational Details on Optimization and Sampling

In this section, we provide additional details relevant to both the sampling and optimization steps
of all algorithms. The simulation of multiple replicas are distributed with MPI and interfaced with
PyTorch [74] for performing optimization†.

B.1 First Study: 1D Quartic Potential

In the first study, umbrella sampling is performed with M = 20 replicas with dynamics described
by the overdamped Langevin dynamics in Eq. (2.14). For committor-based umbrella sampling, bias
potential parameters for each replica are set to κα = 50 and qα = α−1

M−1 . For the path- or string-based

umbrella sampling, the bias strength κ‖α = 5, and the choice of κ⊥α is irrelevant since there is no
perpendicular direction in 1D. The transition path used as input for the path-based umbrella sampling
is obtained by running the FTS method up to 100 iterations. Note that the FTS method is also
performed with the same number of replicas, but with dynamics described by Eqs. (2.38)-(2.39). In
all algorithms, the friction coefficient γ = 1, and step size ∆t = 0.005. The size of α-th batch at
every iteration is set to |Mα

k | = 16 and |Rαk | = 16 for methods employing umbrella sampling and
the FTS method, respectively. Each sample x ∈Mα

k and x ∈ Rαk is collected every 25 timesteps.

For the supervised learning component, the penalty strength λSL = 100 at all iterations, and empirical
committor values are collected at every 40 iterations of the algorithm, i.e., τemp = 40. The initial
and final iteration index are set to kemp,s = 10 and kemp,f = 2500, respectively. The number of
trajectories for each replica is H = 100. The size of α-th mini-batch is |Cαk | = 0.5|Cα|, and thus the
size of mini-batch during iterations grows as more samples are stored into Cα

For the boundary conditions, the penalty strengths are λA = λB = 104. The reactant and product
batchesA and B are collected prior to the start of each algorithm using dynamics given by Eqs. (2.38)-
(2.39), but with Rα replaced with A and B, respectively. The size |A| = |B| = 250M and each
sample is also collected every 100 timesteps. During optimization, the mini-batch is randomly
sampled without replacement from the original batch A and B, where the size |Ak| = |Bk| = 125M .

The chosen optimizer to train the neural network is the Heavy-Ball method [30], which takes in
two hyper-parameters as inputs. The first is the step size/learning rate η, while the second is the
momentum coefficient µ. Given any function f(θ) to minimize, the Heavy-Ball method updates
model parameters θk with the following equation:

mk+1 = µmk +∇θf(θk) , (B.1)
θk+1 = θk − ηmk+1 , (B.2)

†https://github.com/muhammadhasyim/tps-torch
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where m0 = 0. Note that our notation is consistent with PyTorch’s implementation of the Heavy-
Ball method. For all methods, η = 5 · 10−4 and µ = 0.95. The gradient ∇θf(θ) in Eq. (B.1)
corresponds to, e.g., Eq. (2.15) for the BKE–US and BKE–FTS(US) method, and Eq. (2.46) for the
BKE–FTS(ME) method, with additional mini-batches used as inputs to the gradient computation.

For the FTS method, the penalty strength is set to λS = 0.1M , where M = 20 is the number of
replicas. In addition, we replace the SGD step in Eq. (2.43) with a momentum-variant called the
Nesterov’s method [42]. As implemented in PyTorch, which follows the simplified version in [75],
the Nesterov’s update can be written as

mk+1 = µ2mk + (1 + µ)∇ϕαĈ({ϕαk}) , (B.3)
ϕα? = ϕαk −∆τmk+1 , (B.4)

where m0 = 0. We set the step size/learning rate ∆τ = 10−2 and momentum coefficient µ = 0.9.

B.2 Second Study: Muller-Brown Potential

In the second study, umbrella sampling is performed with M = 24 replicas with dynamics given
by Metropolis Monte Carlo [18, 76]. The particle is displaced in both directions by a random
value between −∆r and ∆r to yield a new position x′, which is accepted with probability given
by Pacc = min [1, exp (−β(VMB(x′)− VMB(x)))]. The value of ∆r is 0.05 when generating the
batchesMα

k for umbrella sampling,Rαk for the FTS method, and Cαk for supervised learning, while it
is set to 0.01 for sampling the reactant and product states. For committor-based umbrella sampling,
qα is set to be α−1

M−1 and κα = 10000 for all α. For the path- or string-based umbrella sampling,

we choose bias strength κ‖α = 1100 and κ⊥α = 600 and the transition path used as input is obtained
by running the FTS method up to 100 iterations. Note the FTS method also uses the same amount
of replicas as umbrella sampling, and the Monte Carlo method to sample configurations inside the
Voronoi cells. For Figs. 11 and 12, the size of α-th batch at every iteration is set to |Mα

k | = 16
and |Rαk | = 4 for methods employing umbrella sampling and the FTS method, respectively. For
Figs. 13–39, we use a list of batch sizes [4, 16, 64, 256, 1024], where each sample x ∈ Mα

k and
x ∈ Rαk is collected every 25 timesteps.

For the supervised learning component, the penalty strength is set to λSL = 100 initially. Beginning
at iteration 300, λSL is increased linearly to 25000 at iteration 10000. Empirical committor values
are collected at every 10 iterations of the algorithm, i.e., τemp = 10. The initial and final iteration
index where we start and end supervised learning is set to kemp,s = 10 and kemp,f = 1000. The
number of trials for every window H = 100. The size of α-th mini-batch is |Cαk | = 0.5|Cα|, and thus
the size of mini-batch we use during iterations again grows as more samples are stored into Cα as in
the 1D case.

For the boundary conditions, the penalty strengths λA = λB = 104. The reactant and product batches
A and B are collected before the start of each algorithm with dynamics confined to regions A and
B, respectively. The size of the number of samples is |A| = |B| = 100M and each sample is also
collected every 10 timesteps. The mini-batch is randomly sampled without replacement from the
original batch A and B with |Ak| = |Bk| = 50M .

The optimizer used to train the neural network in MB systems is Adam [31], which takes in four hyper-
parameters as inputs: the first is the step size/learning rate η, the second and third are momentum
coefficients β1 and β2 that control the change in the momentum and momentum squared respectively,
and the fourth parameter ε is a term added to improve numerical stability. For any function f(θ)
being optimized, the Adam update of model parameters θk can be written as

mk+1 = β1mk + (1− β1)∇θf(θk) , (B.5)
vk+1 = β2vk + (1− β2) [∇θf(θk)�∇θf(θk)] , (B.6)

m̂k+1 =
mk

1− (β1)k
, (B.7)

v̂k =
vk

1− (β2)k
, (B.8)

Hk+1 = diag
[√

v̂k

]
+ ε , (B.9)

θk+1 = θk − η(Hk+1)−1m̂k+1 , (B.10)
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where � is the element-wise product between two vectors that yields a new vector of the same
dimension, the square root in Eq. (B.9) is applied element-wise to the vector, diag [. . .] is a diagonal
matrix obtained from elements of an input vector. Initially m0 = 0 and v0 = 0. Note that our
notation is consistent with PyTorch’s implementation of Adam, and for all methods, η = 1 · 10−3,
β1 = 0.9, β2 = 0.999, and ε = 10−8.

For the FTS method, the penalty strength for the Müller-Brown potential is set to λS = 0.1M . The
previously mentioned Nesterov’s update scheme is also used here, with the step size/learning rate
∆τ = 0.05 and momentum coefficient µ = 0.9.

B.3 Third Study: Solvated Dimer

In the third study, umbrella sampling is performed with M = 24 replicas with dynamics described
by the overdamped Langevin dynamics in Eq. (2.14). For committor-based umbrella sampling, bias
potential parameters for each replica are set to κα = 100 for ρ = 0.05, 0.4, and 0.7 and κα = 50
for ρ = 0.9, and qα = α−1

M−1 for all densities. For the path- or string-based umbrella sampling,

the bias strength κ‖α = κ⊥α = 1200. The transition path used as input for the path-based umbrella
sampling is obtained by running the FTS method to 20000 iterations. Note that the FTS method is
also performed with the same number of replicas, but with dynamics described by Eqs. (2.38)-(2.39).
In all algorithms, the friction coefficient γ = 1, and step size ∆t = 0.0001. The size of α-th batch at
every iteration is set to |Mα

k | = 8 and |Rαk | = 8 for methods employing umbrella sampling and the
FTS method, respectively. Each sample x ∈Mα

k and x ∈ Rαk is collected every 25 timesteps.

For the supervised learning component, the penalty strength is set to λSL = 100 initially. Beginning
at iteration 200, λSL is increased linearly to 1000 at iteration 10000. Empirical committor values are
collected at every 10 iterations of the algorithm, i.e., τemp = 10. The initial and final iteration index
where we start and end supervised learning is set to kemp,s = 10 and kemp,f = 5000. The number of
trials for every window H = 100. The size of α-th mini-batch is |Cαk | = 0.5|Cα|, and thus the size of
mini-batch we use during iterations again grows as more samples are stored into Cα as in the 1D and
2D cases.

For the boundary conditions, the penalty strengths λA = λB = 104. The reactant and product batches
A and B are collected before the start of each algorithm with dynamics confined to regions A and
B, respectively. The size of the number of samples is |A| = |B| = 100M and each sample is also
collected every 10 timesteps. The mini-batch is randomly sampled without replacement from the
original batch A and B with |Ak| = |Bk| = 50M .

The optimizer used to train the neural network in dimer systems is Adam as previously described in
Appendix B.2. Initially m0 = 0 and v0 = 0. For all densities and methods, η = 1 · 10−5, β1 = 0.9,
β2 = 0.999, and ε = 10−8.

For the FTS method, the penalty strength for the Müller-Brown potential is set to λS = 0.1M . The
previously mentioned Nesterov’s update scheme is also used here, with the step size/learning rate
∆τ = 0.001 and momentum coefficient µ = 0.9.

C Comments on the Supervised Learning Loss Function

In this section, we compare the results from the supervised learning scheme used in this work with
that of the more standard scheme seen in the literature [39], which utilizes the mean-squared error
(MSE) loss function given by Eq. (2.22) instead of the supervised-learning loss given by Eq. (2.24).
Switching the supervised-learning loss yields new algorithms denoted as the BKE–US+MSE, BKE–
FTS(ME)+MSE, and the BKE–FTS(US)+MSE methods. The procedure for training the neural
network follows that described in Appendix B.2, except for the BKE–US+MSE method where λMSE

is increased linearly to 2500.

The results demonstrate that the use of the MSE loss function yields worse accuracy, as shown in
the isocommittor lines and L1-norm error in Fig. 28. In fact, the L1-norm error of all methods
employing the MSE loss function increases at later iterations. Furthermore, with the exception of
the BKE–FTS(ME)+MSE method, both the on-the-fly estimates (Fig. 29(a)) and ensemble-averaged
BKE loss function (Fig. 29(b)) increase at higher iterations. This suggests that the MSE loss function
is prone to overfitting [39], and we provide a sketch for why this occurs. To this end, the gradients of
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Figure 28: Isocommittor lines for q = 0.1, 0.5, and 0.9 from (a) the BKE–US+SL and BKE–US+MSE
method, (b) the BKE–FTS(ME)+SL and BKE–FTS(ME)+SL method, (c) the BKE–FTS(US) and
BKE–FTS(US)+MSE method. × markers denote representative samples obtained from algorithms
the SL methods. (d) The L1-norm error as a function of iterations.

the losses with respect to the neural network parameters are evaluated. For the MSE loss function in
Eq. (2.22) this is

∇θL̂MSE(θ; {Cαk }) =
λMSE

M

M∑

α=1

1

|Cαk |
∑

(qemp,x)∈Cαk

∇θ`MSE(qemp,x;θ) (C.1)

=
λMSE

M

M∑

α=1

1

|Cαk |
∑

(qemp,x)∈Cαk

(q̂(x;θ)− qemp)∇θ q̂(x;θ) . (C.2)

Note that the error q̂(x;θ) − qemp for every x is correlated point-wise with the model’s gradient
∇θ q̂(x;θ), which causes large point-wise errors to have more weight in the gradient descent direction.
If the global minimum is reached, this results in fitting every datapoint in x perfectly, despite the
statistical noise in the data. In comparison the gradient of the supervised-learning loss Eq. (2.24) is

∇θL̂SL(θ; {Cαk }) =
λSL

M

M∑

α=1

∇θ`ME(Cαk ;θ) (C.3)

=
λSL

M

M∑

α=1


 1

|Cαk |
∑

(qemp,x)∈Cαk

(q̂(x;θ)− qemp)




 1

|Cαk |
∑

(qemp,x)∈Cαk

∇θ q̂(x;θ)


 ,

(C.4)
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Figure 29: (a) The filtered on-the-fly estimate of the BKE loss obtained at every iteration, with the
filtering window set to 200 iterations. (b) The ensemble-averaged loss per Eq. (3.10) obtained at
every iteration.

where the error q̂(x;θ)− qemp and model gradient ∇θ q̂(x;θ) are now individually averaged with
respect to samples in Cαk . This averaging is crucial as it reduces the statistical noise in the empirical
committor function qemp(x). To see this, we first write qemp(x) in terms of the exact committor
function q(x) as

qemp(x) = q(x) + ε(x) , (C.5)
where ε(x) is some noise. It is expected that ε(x) has zero mean and some unknown variance related
to the number of trajectories used in the estimate. In the limit of large batch sizes, we can approximate
the average over samples with an ensemble average. We then have for a single replica α

`ME(Cα;θ) =
1

2

[
1

|Cα|
∑

(qemp,x)∈Cα
(q̂(x;θ)− qemp)

]2

(C.6)

≈ 1

2
(〈q̂(x;θ)− qemp(x)〉α)

2 (C.7)

≈ 1

2
(〈q̂(x;θ)− q(x)〉α − 〈ε(x)〉α)

2 (C.8)

≈ 1

2
(〈q̂(x;θ)− q(x)〉α)

2
, (C.9)

where 〈...〉α is the ensemble average with respect to replica α. Note that the noise has been approxi-
mately canceled due to the effective matching of negative and positive error terms. In practice, the
locality of the replicas in both umbrella sampling and the FTS method likely ensures that ε(x) is
slowly varying. This leads to the annihilation of noise at the level of summing over batches from
every replica without the need for higher quality qemp(x).

Returning to the gradient of the supervised learning loss function given in Eq. (C.4), we have for
large mini-batch sizes

∇θL̂SL(θ; {Cαk }) ≈
λSL

M

M∑

α=1

〈q̂(x;θ)− q(x)〉α〈∇θ q̂(x;θ)〉α , (C.10)

in which the replica average of the gradient is coupled to a noise-reduced measure of the error. A
global minimum is achieved when

〈q̂(x;θ)〉α = 〈q(x)〉α ∀α . (C.11)
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(b) the estimated reweighting factor zα from each replica α, in comparison to the values obtained by
numerical integration (‘Exact’) for committor-based umbrella sampling. This is done using a fixed
neural network for all batch sizes that is obtained from the BKE–US+SL method.

While this condition can be satisfied for q̂(x;θ) 6= q(x) in the region sampled by replica α, the
additional loss terms in Eq. (2.12) and continuity between replicas seem to prevent trivial solutions in
practice.

In summary, compared to the standard mean-squared loss, the chosen supervised-learning loss
function avoids overfitting. This is likely due to the polling of empirical committor estimates, which
leads to a reduction in the effect of noise on the optimization.

D Examining the Sampling Error in Reweighting Factors

In this section, we examine how sampling error in the reweighting factors zα estimated from all
algorithms is reduced in the limit of large batch sizes. For a given batch size, zα is computed over
many iterations of each algorithm while keeping the neural network fixed. Afterwards, the mean
of zα computed from all iterations is compared to the zα computed from numerical integration of
Eq. (2.16) for umbrella sampling, and Eq. (2.47) for the master-equation approach.

Figure 30(b) shows zα for committor-based umbrella sampling, where inaccurate estimates are
obtained for α ∈ [5, 24]. This result arises due to a lack of overlap in samples obtained from
adjacent replicas since α = 5 coincides with the beginning of non-overlap between samples from
the reactant state (1-4) and the transition state, which begins at α = 5. The inaccuracy in zα can
be contrasted with the sample-mean quantity ¯̀∗

α = 1
|Mα

k |
∑

x∈Mα
k

`(x;θk)
c(x;θk) (Fig. 30(a)), which shows

uniform convergence beginning with the smallest batch size. From these results, we may conclude
that the large sampling error of the on-the-fly estimates from the BKE–US and BKE–US(SL) method
arises from inaccurate reweighting factors due to the lack of overlap in samples between neighboring
replicas, and the accuracy may only be improved with prohibitively large batch sizes for training.

Figure 31 shows both zα and the sample mean of the BKE loss from each replica ¯̀
α =

1
|Rαk |

∑
x∈Rαk `(x;θk), as obtained from the FTS method with master equation. We see that the

quantity ¯̀
α converges quickly and uniformly, but the error in the reweighting factor zα, which is
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Figure 31: (a) The sample mean of the BKE loss from each replica ¯̀
α = 1

|Rαk |
∑

x∈Rαk `(x;θk), and
(b) the estimated reweighting factor zα from each replica α, in comparison to the values obtained by
numerical integration (‘Exact’) for the FTS method with master equation. This is done using a fixed
neural network for all batch sizes that is obtained from the BKE–FTS(ME)+SL method.
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Figure 32: (a) The sample mean of the BKE loss from each replica ¯̀∗
α = 1

|Mα
k |
∑

x∈Mα
k

`(x;θk)
c(x;θk) , and

(b) the estimated reweighting factor ln zα from each replica α, in comparison to the values obtained
by numerical integration (‘Exact’) for the path-based umbrella sampling. This is done using a fixed
neural network for all batch sizes that is obtained from the BKE–FTS(US)+SL method.
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the largest for α ∈ [11, 24], only diminishes at batch sizes that are too large and impractical to use
for neural network training, i.e., at O(4 · 103). Meanwhile, zα computed from path-based umbrella
sampling (Fig. 32(b)) achieves convergence at relatively smaller batch sizes, i.e., at O(102), with
similar quick convergence for the corresponding ¯̀∗

α (Fig. 32(a)). This demonstrates the advantage of
using path-based umbrella sampling for computing accurate reweighting factors, and thus the utility
of the BKE–FTS(US) and BKE–FTS(US)+SL method in obtaining accurate on-the-fly estimates of
reaction rates at a wide range of batch sizes.

E Additional Figures for Examining Log-Normal Behavior

This section contains additional figures for the probability density functions (PDFs) of all quantities
of interest in Section 3.3 for all replicas. The histograms for the forward free-energy differences
are given in Fig. 33. The histograms for the backward free-energy differences are given in Fig. 34.
The histograms for the reweighting factors are given in Fig. 35. The histograms for ln ¯̀∗

α and ln 1̄∗α
are given in Figs. 36 and 37, respectively. The histograms for ln zα ¯̀∗

α and ln zα1̄∗α are given in
Figs. 38 and 39, respectively. For all histograms, data is obtained by sampling a fixed neural network
obtained from the BKE–FTS(US)+SL method at a batch size of 1024. Dashed blue lines correspond
to log-normal distributions fitted using the method of moments [54], while the vertical dotted orange
and solid black lines correspond to the mean of the histograms and the corresponding ensemble
average computed by numerical integration, respectively.

The existence of tails in these PDFs is dependent upon the choice of bias potential parameters that are
needed for the path-based umbrella sampling. For instance, Figs. 40 and 41 show the histograms for
ln zα ¯̀∗

α and ln zα1̄∗α when the bias potential parameters are changed from the ones in Appendix B.2
to κ‖α = 2200 and κ⊥α = 300, where we see that PDFs that originally possess tails, e.g., α ∈ [14, 18]
for ln zα ¯̀∗

α, are log-normal. It is also expected that any tails in the distributions are suppressed as the
batch size is further increased.
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Figure 33: Probability density functions of the forward free-energy differences β∆F(α+1),α.
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Figure 34: Probability density functions of the backward free-energy differences β∆F(α−1),α.
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Figure 35: Probability density functions of the log of reweighting factors ln zα.
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Figure 36: Probability density functions of ln ¯̀∗
α.
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Figure 37: Probability density functions of ln 1̄∗α.
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Figure 38: Probability density functions of ln zα ¯̀∗
α.
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Figure 39: Probability density functions of ln zα1̄∗α.
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Figure 40: Probability density functions of ln zα ¯̀∗
α, where data is obtained from umbrella sampling

with bias strengths κ‖α = 2200 and κ⊥α = 300.
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Figure 41: Probability density functions of ln zα1̄∗α, where data is obtained from umbrella sampling
with bias strengths κ‖α = 2200 and κ⊥α = 300.
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