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We theoretically investigate the tunneling of two-dimensional surface polaritons (2DSPs) through 

nanometer-wide gaps in atomically thin crystals. For quantitatively accurate results, we developed 

a rigorous model based on the diffraction of 2DSPs for strongly confined surface polaritons (i.e., 

the polariton wavelength much shorter than the free-pace photon wavelength). We find distinctive 

features of the tunneling of 2DSPs. First, radiation loss during the tunneling is shown to be 

negligible. Second, the reflection coefficient R and tunneling coefficient T are shown to exhibit an 

anomalous logarithm singularity in their dependency on the gap width. Even for a gap size over 

two orders of magnitude smaller than the surface polariton wavelength, an appreciable reflection 



coefficient was observed in our calculation. Finally, we show that when the gap size increases, the 

phase of R saturates very rapidly to a non-trivial value of π/4. Based on these results, we further 

examine resonant tunneling of 2DSP through two identical gaps separated by a distance L, and 

establish a resonance condition defined by L ≈ λsp(4n-1)/8 with a positive integer n.  

  



I. Introduction 

Two-dimensional (2D) surface polaritons (SPs), coupled excitation of photons and conduction 

electrons [1–4], optical phonons [5,6], or excitons residing in atomically thin 2D crystals [7–10], 

exhibit deep sub-wavelength confinement and hold great promises for nanoscale integration of 

polariton optics [2,11–15]. Understanding of propagation behaviors of 2DSPs is at the core of 

further manipulation of low-dimensional polariton optics. Recently there have been extensive 

studies of the reflection of 2DSPs at the crystal’s edge, which have enabled direct visualization of 

2DSPs in near-field infrared nanoscopy [16–19]. The edge reflection of 2DSP has almost a unity 

reflection amplitude, but the reflection phase is non-zero due to the near-field evanescence wave 

close to the 2D crystal edge [16–18]. The existence of the evanescent wave naturally leads to the 

question of near-field coupling, i.e., 2DSP tunneling across a finite-sized gap in a 2D crystal. Such 

near-field tunneling of 2DSP was investigated by recent works  [20]. Due to the reduced 

dimensionality of atomically thin 2D crystals, the tunneling of 2DSP can exhibit different gap-

size-dependent tunneling efficiency and phase shifts compared with conventional evanescence 

wave coupling.  

In this letter we investigate theoretically the behavior of strongly confined 2DSP’s tunneling 

through nanometer-sized gaps in atomically thin 2D crystals. Through our model that guarantees 

quantitative accuracy, we find several distinctive properties of the tunneling of strongly confined 

2DSPs (i.e., λsp << λ0 where λsp and λ0 are wavelengths of polaritons and free-space photon, 

respectively). First, for ideal lossless 2D crystals, radiation loss during the tunneling is shown to 

be negligible, implying that the tunneling always satisfies the conservation |T|2 + |R|2 ≈ 1 where T 

and R are tunneling and reflection coefficients, respectively. Second, we find that the tunneling 



efficiency shows a strong gap size dependence when the gap size approaches zero: the reflection 

and tunneling coefficient of 2DSP shows a logarithm singularity close to a zero gap, in contrast to 

a smooth exponential decay of conventional evanescence wave coupling across a three-

dimensional gap. This logarithm singularity is found to originate from the multiple interaction 

between the planewave modes in the gap and the unbounded modes in the 2D crystal region. 

Finally, we reveal that the phase of the reflection coefficient also changes rapidly with the increase 

of the gap size, and saturates at a non-trivial value of π/4 for large gap size. This unusual phase 

information allows further examination of resonant tunneling of 2DSPs across two identical 

nanogaps in 2D crystals, and we show that the resonant tunneling condition is defined by L ≈ 

λsp(4n-1)/8 where L is the distance between the two gaps and n is a positive integer. 

 

II. Theoretical model 

We model the system as an infinitely thin 2D sheet with a gap of width g, as shown in Fig. 1. We 

assume that the 2D sheet is embedded in a surrounding medium with uniform permittivity of εs. 

2DSPs propagate along the crystal in +x direction. 2DSPs can be described by localized 

electromagnetic (EM) waves in the proximity of 2D crystal surfaces [11,16,18]. Specifically, with 

the configuration shown in Fig. 1, Maxwell equations characterize the z-component of magnetic 

field in terms of a surface-bounded mode p  of which the real-space representation y p  forms 

an anti-symmetric distribution,  exp | | / | |yy p iq y y y  with 2 2

0y s xq k q  , and k0 and qx 

are momenta of the photon and the 2DSP, respectively [21]. Here, we assume that there is no 

material loss in 2D crystals. Then, 2DSPs propagating in x direction can be described by taking 



into account the phase change as  exp xp iq x . When 2DSPs arrive at the edge of the crystal (x=0), 

there is a mismatch between eigen-functions of the gap (0≤x≤g) and crystal (x≤0) regions. This 

results in the coupling to the reflected 2DSP as well as diffracting waves. Bases for the diffracting 

waves can be represented by unbounded modes 
kyu  in 2D crystal region and plane-wave modes 

kyf  in the gap that will be coupled to p  and 
kyu  at x=g [18]. In Figs. 2(a) and (b), those 2DSP 

and diffracting waves are separately shown for an exemplary tunneling case. The coupling between 

p  and 
kyu  eventually determines the tunneling efficiency, and as shown in Fig. 2(c) and (d), 

the efficiency changes dramatically with the gap size.  

All those macroscopic procedures can be explicitly described by the following field expansion of 

z-component magnetic field,  
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Here, R and T respectively are the reflection and tunneling coefficients of 2DSP that will be fixed 

later, and 2 2

0x s yk k k  . The real-space representations for 
kyu  and 

kyf  respectively are 

given by   
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Note that 
kyu  describes unbounded diffracting waves in the 2D crystal region. The completeness 

of our modal expansion in the crystal region is justified by the orthogonal relationship between 

p  and 
kyu  as 
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After the diffraction at the nanogap, the coupling of incident 2DSP to the reflected 2DSP and 

diffracting waves can be determined by the following basis dependencies, 
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Here, the kernel K is defined as 

  1 2 2

1

, .
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y

y y
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K k k
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Corresponding electric fields can be easily obtained from Eq. (1) by using the Maxwell’s equations. 

We can then readily apply the boundary conditions. Boundary conditions require the continuity of 

tangential components of EM waves at two interfaces, x=0 and x=g. The continuity of Hz and Ey 

at x=0 gives continuity conditions,  
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Also, at x=g, we have 
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Then, we can project the first lines of Eqs. (6) and (7) onto p  and 
kyu , and project the 

remaining second lines onto the free-space plane-wave basis 
kyf  [16,18]. Projections onto p  

and 
kyu  yield four coupled integral equations, 
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where T, R, ρky, τky, αky and βky can be determined by another set of two coupled integral equations 

obtained from the projection onto 
kyf , 
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Here, 2 2

1 0 1x s yk k k  . Note that integral equations in Eqs. (8) and (9)  are in the Fredholm form. 

The complexity of Eqs. (8) and (9) is due to the presence of the kernel K(ky1,ky), which originated 

from the non-vanishing dependency between two vectors 
1kyu  and 

kyf  with ky≠ky1. To solve the 



coupled integral equations, we adopt super-lattice approximation (SLA) that allows semi-analytic 

treatment via the quantization of the integrals.  

 

III. Super-lattice approximation (SLA) 

SLA is a method to approximate the system as a periodic one with sufficiently large periodicity, 

allowing quantitatively accurate calculation via quantization of the bases. To make a periodic 

system, consider that the 2D crystal is embedded in two perfect electric conductor (PEC) plates, 

located at y = ±d and parallel to x-axis. We assume that d is much larger than the 2DSP wavelength. 

The system is now effectively periodic in y-direction through the PEC boundary condition, 
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By Eq. (10), the momenta of diffracting waves can be quantized. After the same field expansions 

and projection procedures, we can rewrite Eq. (8) as 
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and Eq. (9) as 
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Here, ky,m ≡ (2m-1)π/2d is the quantized momentum of diffracting waves in the nanogap with mode 

number m, and 
2 2

, 0 , .x m s y mk k k   The momentum of diffracting waves in 2D crystal region is 

denoted by κy,m that can be obtained by the following eigenvalue equation, 
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Then, 
2 2

, 0 ,x m s y mk     can also be fixed. One can find that Eq. (13) satisfies the orthogonal 

relationship between bases of 2DSP and diffracting waves. We note that, to simplify the problem, 

the momentum of 2DSP is not quantized. This assumption is a reasonable approximation when d 

is much larger than the 2DSP wavelength. 

Now, we can truncate the total number of the quantized modes, and rewrite the second and third 

lines of Eq. (11) and Eq. (12) in the following coupled matrix equations, 
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Here, ρ, τ, α, β, and c are column vectors defined as 
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and Ma, Mb, G+, and G- are N × N matrices with matrix elements 
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N is the number of considered quantized modes. Note that G± are diagonal matrices. After some 

manipulations, Eq. (14) can be simplified as 

    1 ,     1 ,T R R T      
f1 f2 + f1 + f2

α M c M c β G M c G M c   (17) 

where Mf1,2 are defined as 
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Here, I is the identity matrix. By inserting Eq. (17) into the first line of Eq. (11), we can finally 

obtain reflection and tunneling coefficients R and T as 
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with B1 and B2 given by 
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Shown in Fig. 3 are gap-size-dependent tunneling and reflection coefficients. We find that the 

tunneling efficiency decays anomalously rapidly with deep sub-λsp gap size, e.g., g<0.01λsp, while 

it exhibits much slower decay when the gap size gets larger. For comparison, we also calculated 



the coefficients by using the finite-difference time-domain (FDTD) method. Results from SLA, 

based on Eq. (8) and (9), are in excellent agreement with FDTD results. We also note that the 

radiative loss involved by the tunneling is negligibly small for strongly-confined 2DSP (qx>>k0) 

with ideal lossless crystals, as |T|2+|R|2 in Fig. 3 is very close to 1. This means that the diffracted 

waves in both free-space and crystal regions are mostly in the form of evanescent waves that do 

not transfer the electromagnetic energy to the far-field. 

 

IV. Born Approximation 

SLA as we have discussed so far allows very accurate results, but it is not easy to find a closed 

form of 2DSP tunneling behavior in this approximation. To understand the surprisingly strong gap 

size dependency of the tunneling behavior with g→0 limit, we apply the Born approximation (BA) 

to the integral equations to obtain closed forms of T and R. A straight forward calculation with the 

first BA gives rise to the closed-forms of tunneling and reflection coefficients [22]: 
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Here, for an extremely narrow gap (g<<λsp), two factors I1 and I2 can be written as  
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Also, for a strongly-confined 2DSP, qy can be approximated as 
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Equation (23) clearly shows that the tunneling and reflection coefficients are governed by 

anomalous logarithmic dependency on the gap size, which is consistent with an earlier study [20]. 

This leads to very strong reflection of 2DSP even with an extremely narrow gap although no 

reflection is expected for exact zero gap. The origin of the logarithmic singularity is the multiple 

interaction between 
kyf  and 

kyu  at x=0 and g [22]. However, it should be noted that in such deep 

sub-λsp gap size case, quantum effects are expected to start playing important roles, especially 

when the gap size is in sub-nanometer scale. Several models including so-called quantum corrected 

model [23,24] and nonlocal hydrodynamic model [25,26] can be adopted to take into account the 

quantum effects.  

We also note that, in Eq. (21) and (22), the effect of the surrounding medium only appears at 

2 2

0y s xq k q   for a given qx. This suggests that, as long as |qx| >> |εsk0| is satisfied, the presence 

of a substrate does not have a significant impact on the tunneling and reflection behavior, and that 

we can use the same equations for T and R by considering only the polariton momentum change 

induced by the substrate.  

 

V. Phase of R, and the resonant tunneling 

Another important physical quantity that should be taken into account is the phase information of 

T and R. Near-field infrared nanoscopy measurements enables real-space visualization of 2DSPs 



where the phase of R directly determines the positions of nodes and anti-nodes of the 2DSPs 

interference patterns. Understanding the phase information is critical for quantitative interpretation 

of near-field studies. Figure 4(a) shows phases of T and R, calculated by SLA. In the zero-gap 

limit, we can see that the phase of R and T goes to π/2 and 0, respectively. However, as the gap 

size gets larger, the phases of R saturates very rapidly to π/4, the known value of phase shift of 

edge-reflected (infinitely large gap) 2DSP in the limit qx/k0→∞ [18]. The phase of T is shown to 

saturate to –π/4 with increasing gap size. Here, we note that the difference between those two 

phases is shown to be π/2 independent on the gap size. This fact is quite interesting because the 

π/2 phase difference can be found in other completely different systems such as the tunneling of a 

free-space plane-wave through a lossless metallic slab. 

So far, we have discussed properties of tunneling of 2DSPs in terms of gap-dependent tunneling 

efficiency and phase shift. In analogy with resonant quantum tunneling through multiple potential 

barriers, 2DSP resonant tunneling can also happen with additional nanogaps in the 2D crystal. The 

simplest structure is a 2D crystal with two identical gaps separated by a 2D crystal island of width 

L, as shown in Fig. 4(b). To be rigorous, we can use the same field expansions as in Eq. (1) for all 

five separated regions. However, as shown in Fig. 2(a), the diffracting waves exhibit a rapid decay 

with increasing distance from the nanogap. This nature suggests that the interaction between two 

nanogaps is mainly mediated by the 2DSP p  and the role of unbounded diffracting modes kyu  

in the nanogap interaction is relatively small, especially when two nanogaps are separated by a 

sufficiently wide 2D crystal island. Then, the system can be reduced to a simple cavity in which 

only a multiple reflection of 2DSP on the island needs to be taken into account. This simple cavity 

model immediately gives rise to the tunneling and reflection coefficients Tdouble and Rdouble as 
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where T and R respectively are tunneling and reflection coefficients in Eq. (19). Figure 4(b) shows 

tunneling of 2DSP with varying island width L. We can clearly see that resonant tunneling arises 

periodically with the island width. Also, for three exemplary gap sizes, 0.05λsp, 0.1λsp and 0.2λsp, 

the resonance condition is shown not to be highly dependent on them. This stems from the rapid 

saturation of phase of R with increasing gap size, as shown in Fig. 4(a). Therefore, when the gap 

size is not extremely small, the phase of R is close to π/4, and we can approximately define the 

resonant tunneling condition as 

  4 1 ,   1,2,3...
8

sp

resL n n


     (25) 

The first two solutions for Eq. (25) are denoted as two vertical dashed lines in Fig. 4(b). We also 

point out that, owing to the nearly non-radiative nature of the tunneling, resonant tunneling with 

almost 100% efficiency is possible with an ideal lossless 2D crystal. Overall, analytic results based 

on the simple cavity-model show good agreement with FDTD results, justifying our assumption 

that the interaction between two gaps is dominated by p , and that role of kyu  in the resonant 

tunneling is small. 

 

VI. Conclusion 

In conclusion, we have discussed the tunneling of two-dimensional surface polaritons (2DSPs) 

through nanogaps in 2D crystals, applicable to all types of 2DSPs that support strong 



electromagnetic field in the proximity of the crystal’s surface. Through rigorous analytic 

calculations based on the Maxwell’s theory, three main properties of the 2DSP tunneling are 

revealed including anomalous logarithmic singularity in the gap-dependent tunneling efficiency, 

nearly non-radiative nature, and phase information. Our theory provides not only a quantitative 

understanding of the 2DSP tunneling through nanogaps in 2D crystals which is essential for further 

development of relevant theories in low-dimensional polaritonics and applications, but also full 

details of the electromagnetic field configuration of the system, particularly important for the 

understanding of the near-field infrared nano-imaging studies.   
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Appendix – First Born approximation 

The first Born approximation (BA) is equivalent to letting 1 0k kyu f   with k≠k1 in Eq. (4), (8) 

and (9), by ignoring the coupling between two different diffracting waves in the nanogap and the 

2D crystal. The first BA applied to the third and fourth lines of Eq. (8) yields 
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  (A1) 

and from Eq. (9), we have 
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From Eq. (A1) and (A2), we can suppress ρky and τky, and obtain 
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with Fky and Gky given by 
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By substituting Eq. (A3) into the first line of Eq. (8), we arrive at Eq. (21) with two factors I1 and 

I2 defined by 
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that can be reduced to Eq. (22) with the logarithmic dependency.  



To find the origin of the logarithm dependency, we look at Eq. (A1) and (A2) again. We note that, 

under the first Born approximation, the factor –qy/2(ky-qy) in Eq. (A1) is a result of projection of 

kyf  onto 
kyu , representing the dependency between two vectors. Likewise, the factor 2qy/(ky+qy) 

is a result of the reversed projection. By defining Cf→u ≡ –qy/2(ky-qy) and Cu→f  ≡ 2qy/(ky+qy), we 

can rewrite Eq. (A2) as 
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The physical meaning of the factor Cu→f Cf→u is the coupling strength between 
kyf  and 

kyu , 

determining the electromagnetic coupling of two different vectors at given interfaces (x=0 and g). 

Here, we newly introduce the coupling strength W such that 
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Then, αky and βky can be simplified as 
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Clearly, the terms involving W and g in Eq. (A8) are in the multiple reflection form, implicating 

the multiple interaction between 
kyf  and 

kyu  at x=0 and g. These terms are the origin of the 

logarithmic dependency.         



 

 

Figure 1. Schematic of 2DSP tunneling through an abrupt free-space gap in a 2D crystal. 

  



 

Figure 2. Analytically calculated field maps of |Ey| for separated (a) diffracting waves and (b) 

2DSP, obtained from super-lattice approximation (SLA) based on Eq. (2) and (3). (c, d) Maps of 

total field for two different gap sizes. The vertical dashed lines denote the two boundaries between 

the crystal and the gap. We set εs = 1. 



 

Figure 3. Analytically (SLA) and numerically (FDTD) calculated tunneling and reflection 

amplitudes against varying gap size. For both analytic and numerical calculations, we set qx/k0=50 

which is close to the momentum ratio of graphene plasmons near 6 μm photon wavelength. In the 

FDTD numerical calculation, the thickness of 2D crystal is set to be λsp/400 that corresponds to a 

crystal with 0.3 nm thickness and 120 nm 2DSP wavelength. For both cases, we set εs = 1.  

 

  



 

Figure 4. (a) Phases of T and R against the gap size. The horizontal dotted line denotes π/4, the 

limiting value of phase of R with infinitely large gap size [18]. (b) Tunneling of 2DSP through two 

identical gaps. The gaps are separated by an island 2D crystal of width L. Two green vertical 

dashed lines denote the first two resonance conditions predicted by Eq. (25). For both (a) and (b), 

qx is set as 50k0. We considered free-standing crystals (εs = 1) 
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