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Abstract

Background—The pathogenesis of sporadic brain arteriovenous malformations (BAVM)
remains unknown, but studies suggest a genetic component. We estimated the heritability of
sporadic BAVM and performed a genome-wide association study (GWAS) to investigate
association of common single-nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in
the international, multicenter Genetics of Arteriovenous Malformation (GEN-AVM) consortium.

Methods—The Caucasian discovery cohort included 515 BAVM cases and 1,191 controls
genotyped using Affymetrix genome-wide SNP arrays. Genotype data was imputed to 1000
Genomes Project data, and well-imputed SNPs (>0.01 minor allele frequency) were analyzed for
association with BAVM. Fifty-seven top BAVM-associated SNPs (51 SNPs with P<1070° or
P<107%4 in candidate pathway genes, and 6 candidate BAVM SNPs) were tested in a replication
cohort including 608 BAVM cases and 744 controls.

Results—The estimated heritability of BAVM was 17.6% (SE 8.9%, age and sex-adjusted
p=0.015). None of the SNPs were significantly associated with BAVM in the replication cohort
after correction for multiple testing. Six SNPs had a nominal P<0.1 in the replication cohort and
map to introns in EGFEMIFE SP4, and CDKAL1 or near JAGI and BNCZ. Of the six candidate
SNPs, two in ACVRL1and MMP3 had a nominal P<0.05 in the replication cohort.

Conclusion—We performed the first GWAS of sporadic BAVM in the largest BAVM cohort
assembled to date. No GWAS SNPs were replicated, suggesting that common SNPs do not
contribute strongly to BAVM susceptibility. However, heritability estimates suggest a modest but
significant genetic contribution.

Keywords
brain arteriovenous malformation; genetics; genome-wide association study; risk factor; stroke

INTRODUCTION

Brain arteriovenous malformations (BAVMs) are vascular lesions in which blood shunts
directly from the arterial to venous circulation through a nidus with no intervening capillary
bed. BAVMs are rare, with a detection rate of 1.3 per 100,000 person-years[1] and a
prevalence of 10-18 per 100,000.[2] Patients with BAVM are susceptible to intracranial
hemorrhage (ICH), the presenting symptom in half of all patients.[1] The genetic basis for
several Mendelian syndromes that display BAVM as part of the phenotype has been defined,
including hereditary hemorrhagic telangiectasia (HHT, OMIM #187300) caused by
mutations in ENG, ACVRL1, SMAD4 and possibly BMP9[3-6] and capillary
malformation-arteriovenous malformation (CM-AVM, OMIM #608354) caused by
mutations in RASAL[7] Several studies also suggest familial cases of BAVM occur outside
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the context of these genetic syndromes.[8, 9] However, the genes underlying these linkage
signals have not been identified and the pathogenesis of sporadic BAVM remains elusive.

Candidate gene studies have been the primary approach for evaluating genetic risk of
BAVM. Several common single nucleotide polymorphisms (SNPs) have been reported to be
associated with BAVM.[10-15] Here we report an estimate of heritability of BAVM and
results from the first genome-wide association study (GWAS) of common SNPs in
Caucasian BAVM patients, initiated by the Genetics of Arteriovenous Malformation (GEN-
AVM) Consortium, a major international effort to better understand the genetics of BAVM.

Study population and design

Caucasian BAVM cases and healthy controls were recruited from institutions in the USA,
The Netherlands, Germany, Italy, and Scotland. BAVM diagnosis, morphological, and
clinical characteristics were recorded using standardized definitions.[16] The diagnosis of
AVM was confirmed locally at each site by digital subtraction angiography, pathology,
and/or MR or CT angiography. Patients with known diagnoses of HHT or other Mendelian
vascular disorders were excluded.

Study cohorts are described below and in more detail in the online supplementary data.
Written informed consent was obtained from all participants, and the study was approved by
the respective Institutional Review Boards.

Discovery cohort—The discovery cohort started with 556 BAVM cases and 1,250
controls, and was analyzed in two phases. Phase 1 comprised 371 BAVM patients and 563
controls. BAVM cases were recruited from the University of California, San Francisco
(UCSF) or Kaiser Permanente of Northern California (KPNC). Shared control data
genotyped in the same laboratory as cases included 216 healthy controls participating in a
narcolepsy study[17] and 347 transplant donors from a kidney transplantation study.[18] All
cases and controls provided either blood or saliva specimens for genetic studies, and were of
self-reported Caucasian race/ethnicity.

The Phase 2 discovery cohort started with 185 BAVM cases (149 recruited from the
University Medical Center Utrecht, The Netherlands; 36 recruited from UCSF). In the
absence of a second set of in-house genotyped controls, we used European Caucasian
controls with GWAS data participating in the Wellcome Trust Case Control Consortium
(WTCCC) British 1958 Birth Cohort (http://www.wtccc.org.uk/). Starting with a set of 2,706
WTCCC controls, we genetically matched controls to the phase 2 BAVM cases using
GEMTools (version January 10, 2011).[19] Using 10,527 markers (minor allele frequency
(MAF)>5%, r2<0.2), we identified 687 well-matched controls (distance from case to closest
control < 0.1).

Replication cohort—The replication cohort initially included 623 BAVM cases and 757
controls, all Caucasian, participating in the GEN-AVM Consortium. 608 cases and 744
controls remained after QC (online supplementary table S1).
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Genotyping and quality control (QC) filtering

Discovery cohort—Phase 1 samples were genotyped at the UCSF Genomics Core
Facility (GCF) using the Affymetrix® Genome-Wide Human SNP Array 6.0 (Affymetrix,
Santa Clara, California), according to the manufacturer’s protocols (http://
www.affymetrix.com). Genotypes for 906,600 SNPs for cases and controls were called
together using the Birdseed v2 algorithm implemented in Affymetrix® Genotyping
Console™ Software. SNPs with MAF<0.01 or deviating from Hardy-Weinberg (HWE)
equilibrium (A<10795) in controls were excluded. Samples with >5% missing genotypes,
cryptic duplicates or disagreement between computed and reported gender were discarded.
Only autosomal SNPs were analyzed. After QC, the overall average genotyping call rate was
99% in 338 cases and 504 controls. To adjust for potential population stratification in Phase
1, 72,456 unlinked markers distributed uniformly along the genome with MAF>5% and low
pair-wise linkage disequilibrium (LD) (r2<0.2) were used to calculate principal components
using EIGENSTRAT v3.0.[20] Genomic inflation factor (1) and quantile-quantile (Q-Q)
plots were used to compare the genome-wide distribution of the test statistic against the
expected null distribution.[21]

Phase 2 samples were obtained later and newer technology was in use at the UCSF GCF
laboratory; these cases were genotyped using the custom Affymetrix Axiom® Genome-
Wide World Array EUR1, containing 675,369 probes.[22] Genotypes were called using
Affymetrix® Genotyping Console™ software. Indel polymorphisms (6,252 probes), SNPs
with >3% missing genotypes, MAF<0.01 or HWE A<10795 were removed. Samples with
call rate <97%, cryptic duplicates and sex mismatches were dropped from the analysis.
WTCCC controls were genotyped in an outside laboratory using the Affymetrix® Genome-
Wide Human SNP Array 6.0, with similar QC as described for Phase 1. After QC, there
were 177 BAVM cases (144 Utrecht and 33 UCSF) and 687 matched WTCCC controls in
the Phase 2 discovery cohort.

Genotype imputation—To combine results across different genotyping platforms, we
performed genotype imputation with the 1000 Genomes Project European haplotypes as a
reference using MaCH[23] and Minimac,[24] and combining cases and controls together in
Phase 1 samples. For Phase 2, cases and controls were imputed separately as they were
genotyped on different platforms. Analysis of imputed data (i.e., SNP dosage) was restricted
to well-imputed SNPs (r2>0.8) in Phases 1 and 2 cohorts with the same direction of effect
and with MAF=1%.

Replication cohort—SNPs selected for replication were genotyped at the UCSF GCF
using the Illumina Golden Gate Veracode assay and the Assay Design Tool (ADT) (https://
my.illumina.com/custom/UploadVeraCodePrelim). SNPs with designability scores <0.6
were replaced with the next most significantly associated SNP in the same LD block if one
with a higher designability score (=0.6) was available.

A total of 61 SNPs were selected for genotyping in the replication cohort using the
following criteria: (1) 22 SNPs with P<10705 in meta-analysis of discovery cohorts; (2) 30
SNPs with P<10704 in meta-analysis and in 752 genes from eight candidate pathways related
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to BAVM biology (transforming growth factor (TGF)-beta signaling, notch, vascular
endothelial growth factor (VEGF), inflammation, mitogen-activated protein kinase (MAPK),
vascular endothelial growth, vascular development, hedgehog); (3) 3 SNPs with P<107% in
Phase 1 but not passing imputation QC in Phase 2; and (d) 6 candidate SNPs reportedly
associated with sporadic BAVM (rs522616, rs2071219, rs1333040, rs10486391, rs1800587,
rs1143627).[10-15] Of these, 57 SNPs were successfully genotyped in the replication cohort
(call rate >96.9%). Samples with >10% missing genotypes were excluded, resulting in 608
cases and 744 controls.

Statistical analysis

Heritability analysis—We computed the narrow-sense heritability (both unadjusted and
age and sex adjusted) of BAVM susceptibility using Phase 1 samples as these cases and
controls were genotyped on the same platform and lab. The variance or liability explained by
common SNPs on the array was estimated using an expectation maximization algorithm
implemented within GCTA (Genome-wide Complex Trait Analysis, version 1.13).[25, 26]
Prior to analysis, we removed: (1) SNPs with MAF <0.01, (2) SNPs with missingness >0.02,
(3) subjects with >0.02 missing genotypes, (4) SNPs with significant differences (P<0.05) in
missingness between cases and controls, (5) individuals more than 5 standard deviations
away from the mean of the first two principal components, (6) SNPs out of HWE (P<0.05)
within cases, within controls, and across all individuals, and (7) one subject from each pair
with high genome-wide similarities (relatedness >0.025). This resulted in a final sample size
for heritability analysis that differed slightly from the GWAS Phase 1 analysis (described
below), and included 297 cases, 468 controls, and 484,737 SNPs. Additionally, we
performed a permutation test by permuting case/control status (or case/control status and age
and sex simultaneously for the adjusted estimates) 1,000 times to determine whether
heritability was significantly greater than zero.

GWAS analysis—Logistic regression analysis of SNP dosages was performed using an
additive model adjusting for age, sex, and the top three principal components in Phase 1 and
adjusting for sex in Phase 2 (age was not available for WTCCC controls, and samples were
genetically matched). To combine Phase 1 and Phase 2 results, we performed an effect-size
based meta-analysis using METAL software (version 2011-03-25).[27]

In replication, we considered GWAS SNPs with one-sided P<0.05 with the same direction of
effect in the replication cohort and in the meta-analysis of discovery cohorts as nominally
statistically significant. We computed the minimum detectable odds ratios (OR) at 80%
power for minor allele frequencies ranging from 1% to 50% using the CaTS power
calculator.[28] Our study was powered to detect ORs ranging from 1.3-3.1 for SNPs with
MAF between 0.01-0.50 (online supplementary table S2). Permutation P-values were used
to correct for multiple comparisons. Each SNP was regressed on age, sex, and cohort using
linear regression and corresponding sets of residuals statistically uncorrelated with age, sex,
and cohort were calculated and then permuted. Next, logistic regression analysis of case/
control status was run with age, sex, cohort, and permuted residuals as predictors. P-values
for the residual effect for the 51 SNPs selected from GWAS meta-analysis were computed
based on the minimum permutation P-value across all SNPs within each of 1,000
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permutations. The 6 candidate SNPs were analyzed separately, assuming the same direction
of effect as published papers and applying the same permutation method as described above.

Sensitivity analysis was performed to evaluate the effect of including four individuals in the
study who were subsequently found to have an HHT diagnosis (3 in discovery cohort and 1
in replication cohort). Excluding these individuals did not significantly alter results (data not
shown).

Functional analysis—Bioinformatic evaluation of the functional impact of top SNPs
from the replication analysis and SNPs in LD with them (r2 > 0.8) was performed using
RegulomeDB (http://regulome.stanford.edu) for evaluation of regulatory potential of
noncoding SNPs and GTEx Database Portal (http://www.gtexportal.org) for gene expression
levels and expression quantitative trait loci (eQTL) in relevant tissues (brain and artery).

Discovery and replication cohort demographics are summarized in table 1 and in online
supplementary table S1. The mean age of BAVM cases was around 40 years and
approximately 50% were male, similar for all cohorts. Hemorrhage at presentation was
higher in the replication cohort compared to the discovery cohort (55% vs. 38%, P<0.001).

Heritability analysis

The unadjusted estimate of heritability of BAVM was 19.3% (SE 8.9%, P=0.004) and the
age and sex-adjusted estimate was 17.6% (SE 8.9%, P=0.015), suggesting that heritability
due to additive genetic effects is significantly greater than zero.

GWAS in discovery cohort

A total of 4,300,568 SNPs with MAF>0.01 were well-imputed (MACH r2>0.8) in both
Phase 1 and Phase 2. GWAS results are summarized in Manhattan plots for Phase 1 (figure
1A) and Phase 2 (figure 1B). In Phase 1, Q-Q analysis indicated potential population sub-
structure (A=1.11, online supplementary figure S1), which was reduced by including the top
three principal components as covariates (A=1.04, online supplementary figure S1). Six
SNPs were marginally associated with BAVM at P<0.0001 (figure 1A, table 2). In Phase 2,
five SNPs were marginally associated with BAVM at P<0.0001 (figure 1B, table 2),
including one SNP that met genome-wide level of significance (rs2292155, intron ZNF423,
P=3.49x10724). However, this SNP was not significantly associated with BAVM in Phase 1
(P=0.029).

Results from meta-analysis of the combined discovery cohort of 515 BAVM cases and 1,191
controls are summarized in figure 1C and table 2. One intronic SNP, rs2292155 in ZNF423,
was significantly associated with BAVM (OR= 0.54, P=2.88x10719) in the meta-analysis.
An additional 20 SNPs had P<1079% including 10 SNPs mapping within genes (SLC22A20,
POLAZ, SP4, DNAH11, CDKALI1and SP110).
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Replication analysis

A total of 61 SNPs were selected for replication (22 SNPs with P<107% in meta-analysis of
discovery cohorts; 30 SNPs with P<107%4 in meta-analysis and in candidate pathways
related to BAVM biology; 3 SNPs with P<1079° in Phase 1 but not passing imputation QC in
Phase 2; and 6 candidate SNPs reported to be associated with sporadic BAVM). Fifty-seven
SNPs were successfully genotyped in the replication cohort. None of these SNPs were
significantly associated with BAVM after correction for multiple comparisons (table 2). Six
SNPs with nominal one-sided P<0.10 mapped to the following genes/regions: rs9863784
(intergenic LOC389174/EGFEMIP), rs6040426 (intergenic JAG1/LOC728573), rs1332479
(intergenic BNC2/CCDC171), rs10233357 (intron SP4), rs9460577 and rs9465934 (intron 9
CDKALJI). The top BAVM-associated SNP from the discovery cohort (ZNF423rs2292155)
was not associated with BAVM in the replication cohort (P=0.746). Further inspection of the
SNP cluster plot for rs2292155 revealed a genotype clustering error, resulting in a falsely
low MAF in Phase 2 cases that was driving the association.

Two of the six previously reported candidate SNPs showed nominally significant
associations with BAVM (ACVRL1rs2071219, OR=0.83, P=0.014, and MMP3rs522616,
OR=0.82, P=0.023, table 2). However, these associations did not survive correction for
multiple testing.

Functional analysis in silico

We queried the RegulomeDB for the top six SNPs from the replication analysis and found
that four SNPs (rs17144483, rs7033995, rs62551099, and rs116744349) in LD with the top
SNPs (r2 >0.8 in the 1000 Genomes Caucasians (Utah residents with ancestry from northern
and western Europe, CEU)) are likely to affect regulatory protein binding (online
supplementary table S3A).

All top six loci contain genes that are expressed in brain and/or artery tissue according to
GTEX database (online supplementary table S3B). For example, SP4 (SNP rs10233357) is
highly expressed in brain tissue and moderately expressed in artery tissue, but was not
differentially expressed in the blood of BAVM patients compared to controls.[29] Known
eQTLs for each locus (defined by gene/nearest gene) include: EGFEMIP (n=2), HRH1
(n=1), SP4(n=1), BNC2 (n=3) and CDKAL1 (n=14) (online supplementary table S3C), but
none are in high LD with the top BAVM-associated SNPs. Only one of these eQTL
(rs9358372, CDKALI) regulates expression in vascular tissue (artery) (online
supplementary table S3C).

DISCUSSION

In order to evaluate the role of common genetic variation in sporadic BAVM, we assembled
the largest multi-national sporadic BAVM cohort studied to date, comprising 515 Caucasian
cases and 1,191 controls in the discovery phase and 608 Caucasian cases and 744 controls in
the replication phase, and performed the first GWAS of sporadic BAVM. We used the
genome-wide common variation data to estimate sporadic BAVM heritability, and found a
significant genetic influence to BAVM (18%, SE 8.9%). This heritability estimate is in the
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range of what has been reported for other vascular diseases using similar methods. For
example, heritability estimates of primary ICH was estimated at 29% (SE 11%) for non-
apolipoprotein E (APOE) loci and 15% (SE 10%) for APOE.[30] Thus, our heritability
analysis suggests a modest but significant genetic influence to BAVM.

Our GWAS meta-analysis identified 51 SNPs associated at a P<10~4 threshold. However,
upon replication none of these findings met the corrected threshold for significance. Six
SNPs showed a trend (P<0.1) toward association with BAVM in the replication cohort. Two
of these are intronic SNPs in CDKAL 1 encoding CDKS5 regulatory subunit associated
protein 1-like 1 with unknown function. GWAS studies have linked CDKAL 1 with
susceptibility to type 2 diabetes.[31] Although CDKALL is highly expressed in artery tissue
(online supplementary table S3B), we did not detect differential expression in the blood of
BAVM cases compared to controls.[29] Interestingly, CDKN2B-AS1 is a non-coding RNA
located within the COKN2A-CDKNZB gene cluster on 9p21, the strongest genetic locus for
cardiovascular diseases and linked to intracranial aneurysm.[32] More recently, the 9p21
SNP rs1333040 has been associated with BAVM,[15, 33] and replicated in our discovery
cohort (Phase 1). However, this genetic association appears to be explained by the presence
of BAVM-associated aneurysms.[33, 34]

Genes near the other top loci included: EGFEMI1P, HRH1, JAGI1, SP4, CCDC171and
BNC?Z, several of which are implicated in vascular biology. EGFEMI1P s a pseudogene.
HRH1 encodes an integral membrane protein, which is a G-protein coupled receptor that
mediates capillary permeability.[35] JAGZ is the ligand for the NOTCHL1 receptor and plays
a role in hematopoiesis; JAGI mutations cause Alagille syndrome, an autosomal dominant
disorder with diverse clinical features including vascular anomalies with significant
morbidity and mortality.[36] SP4 encodes a transcription factor. BNCZ2 encodes basonuclin
2, which is essential during embryogenesis.[37]

The five genes at the top BAVM-associated loci are all moderately expressed in brain or
artery tissue, and four SNPs in high LD with top-associated SNPs in CDKAL1, SP4, and
BNCZare predicted to have a likely role in regulatory protein binding. In addition, while
several eQTL have been reported within the top loci, only one is associated with gene
expression in a relevant tissue (artery, CDKALI).

Two of the six previously reported BAVM-associated candidate SNPs showed nominal
association in our replication cohort: ACVRL11VS3-35 A>G and MMP3rs522616. The
ACVRL11VS3-35 A>G association was originally reported in two of the cohorts included
in our study (UCSF and Germany),[10, 38] but was not associated in the Dutch cohort.[39]
However, a prior meta-analysis combining the three cohorts revealed that the ACVRL1
variant remained associated with BAVM.[39] Our results confirm that the ACVRLI IVS3—
35 A>G association with BAVM appears to be present in multiple, but not all, Caucasian
populations. Recently, the same SNP has been reported to be associated with AVMs in HHT.
[40] The MMP3rs522616 association was previously reported in a Chinese BAVM case-
control study.[13] Our study is the first replication of that finding, and represents only the
second common polymorphism, after ACVRLI1VS3-35 A>G, identified in candidate gene
studies that is associated with BAVM in more than one cohort; and the first that may be
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associated with sporadic BAVM in two ethnic groups: Caucasians and Chinese. Association
of promoter activity with MMP3rs522616 genotype has been previously reported.[13] The
lack of association with BAVM for the other 4 of 6 previously reported candidate SNPs in
our cohort could represent non-replication, or could be due to population differences, low
power to replicate small effects, and, in the case of the 9p21 SNP (rs1333040), differences in
the prevalence of associated feeding artery aneurysms.[33, 34]

Conclusion

In summary, heritability estimates based on genome-wide common variation suggest a
significant genetic influence in sporadic BAVM. However, our study did not identify any
common SNPs representing strong genetic risk factors for BAVM in Caucasians. Several of
the top GWAS hits implicated genes involved in vascular biology and may represent smaller
effects that we were not powered to reliably detect. Taken together with our previous copy
number variation analysis, these results suggest that common genetic variation is not a major
risk factor for BAVM in Caucasians. Other potential genetic mechanisms may nonetheless
contribute to sporadic BAVM, including modest effect common variants, such as the six
suggestive but non-significant loci revealed by our replication analysis, rare genetic variants,
or somatic or epigenetic variation. Larger cohorts and different study designs will be
required to evaluate these other hypotheses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Results of the genome-wide association analysisfor brain arteriovenous malfor mation
susceptibility

(A) Discovery Phase 1; (B) Discovery Phase 2; (C) Meta-analysis. Data plotted includes
imputed P-values (i.e., the association P-value corresponds to the imputed dosages). The six
top single nucleotide polymorphisms from the replication analysis are shown on the meta-

analysis plot (C).
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