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RESEARCH ARTICLE
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Abstract

Microbes alter their transcriptomic profiles in response to the environment. The physiologi-

cal conditions experienced by a microbial community can thus be inferred using meta-tran-

scriptomic sequencing by comparing transcription levels of specifically chosen genes.

However, this analysis requires accurate reference genomes to identify the specific genes

from which RNA reads originate. In addition, such an analysis should avoid biases in tran-

script counts related to differences in organism abundance. In this study we describe an

approach to address these difficulties. Sample-specific meta-genomic assembled genomes

(MAGs) were used as reference genomes to accurately identify the origin of RNA reads,

and transcript ratios of genes with opposite transcription responses were compared to elimi-

nate biases related to differences in organismal abundance, an approach hereafter named

the “diametric ratio” method. We used this approach to probe the environmental conditions

experienced by Escherichia spp. in the gut of 4 premature infants, 2 of whom developed

necrotizing enterocolitis (NEC), a severe inflammatory intestinal disease. We analyzed

twenty fecal samples taken from four premature infants (4–6 time points from each infant),

and found significantly higher diametric ratios of genes associated with low oxygen levels in

samples of infants later diagnosed with NEC than in samples without NEC. We also show

this method can be used for examining other physiological conditions, such as exposure to

nitric oxide and osmotic pressure. These study results should be treated with caution, due to

the presence of confounding factors that might also distinguish between NEC and control

infants. Nevertheless, together with benchmarking analyses, we show here that the diamet-

ric ratio approach can be applied for evaluating the physiological conditions experienced by

microbes in situ. Results from similar studies can be further applied for designing diagnostic

methods to detect NEC in its early developmental stages.
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Introduction

Physiological conditions within the gut are important metrics to measure when studying gut

inflammatory diseases [1,2], yet are notoriously difficult to measure in vivo. Transcriptional

profiling provides information on the pool of genes that microbial cells express, and therefore

can reveal the physiological conditions experienced by these cells. Microbial transcriptional

patterns have been analyzed using many methods, including reverse transcription quantitative

PCR [3], microarrays [4], and in recent years, RNA sequencing [5]. Analyzing transcription

patterns within microbial communities, i.e. meta-transcriptomics, is challenging because it is

necessary to specifically identify the microbial species from which transcripts originate. In

addition, it is also important to account for changes in the abundance of different microbial

species from which transcripts originate, as changes in transcript abundance can also be

related to changes in organismal abundances [6].

A relevant case in which such an approach would be useful is the study of necrotizing

enterocolitis (NEC) in premature infants. The hallmark of NEC is inflammation of the

small and/or large bowel that can progress rapidly to intestinal necrosis, sepsis, and death

[7,8]. Because the onset of the disease is often fulminant, treatment options for severe cases

are limited and often futile. Thus, the need for disease biomarkers, to enable early and accu-

rate diagnosis, motivates ongoing research on early stages of NEC development. A recent

meta-analysis of 14 DNA-based studies reported that fecal samples from preterm infants,

later diagnosed with NEC, contained modest but statistically significant increased abun-

dance of facultative anaerobes from the Proteobacteria phylum and a modest decrease in

abundance of strict anaerobes [9]. As others have previously noted, an understudied

approach to effectively study the bacterial response to local conditions within the infant gut

is to pair taxonomic profiling with functional information [9,10]. This understudied

approach can be addressed by applying the transcriptomic analysis approaches described

here.

Here we established a new method of measuring transcriptomic data, named the diametric

ratio, to measure physiological conditions from microbial community transcriptomic data.

We used this approach to study NEC in a pilot cohort of premature infants, to infer about the

transcriptional patterns associated with physiological conditions occurring before NEC is

diagnosed, specifically targeting genes related to oxygen exposure.

Methods

Study design and sampling

This study made use of a previously analyzed dataset of metagenomic DNA sequencing of pre-

mature infant stool samples [10–13]. In this study a subset of these stool samples from four

infants, two of which were diagnosed with NEC, were additionally subjected to RNA sequenc-

ing. As previously described [12], stool samples for establishing these datasets were collected

after perineal stimulation [14], so that fecal samples were collected under direct vision imme-

diately upon evacuation, to minimize changes in the transcription pattern of gut microbes out-

side the intestine. After collection of the samples, they were stored at -80˚C until DNA and

RNA extraction. Medical information for these infants is presented in Table 1, and sampling

schedule for each infant is available in Table 2. To analyze changes in transcription patterns

over time and with a balanced distribution of samples, five samples from both NEC and Con-

trol infants from day of life (DOL) 10–19 were grouped over the 1st time block, and those from

DOL 20–37 were grouped over the 2nd time block (Table 2).
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DNA and RNA sequencing

Procedures for DNA extraction and sequencing were previously described [13]. RNA was

extracted from selected stool samples using MOBIO PowerMicrobiome RNA isolation kit.

The only modification to the manufacturer’s protocol was that phenol:chloroform:isoamyl

alcohol was added to the glass bead tubes prior to the addition of the stool sample. RNAseq

libraries were prepared with Illumina’s ’TruSeq Stranded RNAseq Sample Prep kit’. Prior to

library preparation, eukaryotic rRNA was removed using the ’Ribo-Zero rRNA Removal Kit

(Human/Mouse/Rat)’, and bacterial rRNA was removed using the ’Ribo-Zero rRNA Removal

Kit (Bacteria)’ from Illumina. DNA and RNA were sequenced on HiSeq2500, RNA sequencing

was performed at the Roy J. Carver Biotechnology Center at the University of Illinois at

Urbana-Champaign. DNA sequencing yielded an average of 35,127,007 reads per sample,

while RNA sequencing of corresponding samples yielded an average of 13,786,716 reads per

sample.

Genome reconstruction

DNA reads were trimmed using Sickle (v1.33) (https://github.com/najoshi/sickle), and assem-

bled into scaffolds with IDBA_UD (v1.1.1) [15]. Scaffolds were binned into genomes using

DAS tool (v1.0), which uses a combination of established binning algorithms [16]. Recon-

structed genomes from each infant were de-replicated according to 99% average nucleotide

identity using dRep (v2.3.2) [17]. One genome of each identified bacterial species was manu-

ally chosen from each infant gut microbiome for downstream RNA analysis. Scaffolds from

MAG’s are accessible on ggkbase interface (https://ggkbase.berkeley.edu/), with a ‘scaffold to

bin’ file available as supporting information files that can be used to reconstruct all selected

genome bins used in this study (S3–S6 Files). In addition, Table A in S1 File shows accessions

for the different Escherichia spp. genes used in this study.

Table 1. Infant medical information.

Infant Gestational age (Weeks) Study Gender Delivery Weight (g) Feeding Condition NEC Diagnosis (DOL)

64 28 NIH2 M Vaginal 1100 Combination Control –

66 28 NIH2 F Vaginal 1028 Breast Control –

69 26 NIH2 M C-section 637 Combination NEC 32

71 25 NIH2 M C-section 754 Combination NEC 31

https://doi.org/10.1371/journal.pone.0229537.t001

Table 2. Infant stool sampling scheme.

Diagnosis infant 1st time block 2nd time block

NEC 71 ✓ ✓ ✓ ✓ ✓ ✓ �

69 ✓ ✓ ✓ ✓ �

Control 66 ✓ ✓ ✓ ✓ ✓

64 ✓ ✓ ✓ ✓ ✓

10 11 13 14 15 16 17 19 20 21 25 27 28 31 32 33 36 37

Days of life

✓ indicate dates stool samples were taken
�

indicate NEC diagnosis

https://doi.org/10.1371/journal.pone.0229537.t002
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Phylogenetic profiling

Taxonomic classification was done according to ‘shared affiliation of predicted proteins’ pro-

cedure, which compares each predicted protein on genome scaffolds, assembled from metage-

nomic sequences, to UniProt database, as described previously [11]. When more than 50% of

predicted proteins on a scaffold shared the same taxonomic affiliation, which can be on any

taxonomic level (from species to kingdom), this scaffold was classified according to the shared

taxonomic affiliation [11].

Gene identification and annotation

Open reading frames (ORFs) were predicted using Prodigal (v2.6.3) [18] with the option to

run in metagenome mode selected. Sequences of predicted ORFs were annotated using Hid-

den Markov Models (HMM) [19]. Annotations of the set of genes later analyzed in transcript

ratio analyses were also confirmed by aligning against UniProtKB and UNIREF100 databases.

Calculating diametric ratios (DR)

Before analysis RNA reads were trimmed using Cutadapt [20], these RNA reads are available

on the short-read archive (SRA) on NCBI, Bio-project ID PRJNA505710. To calculate Diamet-

ric Ratios (DR), RNA reads were mapped to the nucleotide sequence of all open reading

frames, identified by Prodigal, in each scaffold of the de-replicated genomes sets, of each

infant, using Bowtie2.

Further filtering of RNA reads, mapped to each gene sequences, was performed using the

script ‘mapped.py’ (https://github.com/christophertbrown/bioscripts/blob/master/ctbBio/

mapped.py). This script filters out any reads that map with more than one mismatch to the ref-

erence genome.

Transcript abundance was measured as coverage depth, by calculating the number of RNA

reads per gene length. To calculate RNA reads coverage depth on each gene sequence we used

the script ‘calculate_coverage.py’ (https://github.com/christophertbrown/bioscripts/blob/

master/ctbBio/calculate_coverage.py). mapped.py and calculate_coverage.py are part of ctbbio

version 0.45.

Gene expression levels were measured using diametric transcript ratios (DR), calculated

according to Eq (1):q

DR G;Eð Þ ¼
RNAðaGÞ

RNAðaGÞ
þ RNAðbGÞ

where a are genes within G that increase in response to E

and b are genes within G that decrease in response to E
ð1Þ

Where α is the transcript (RNA) abundance of a certain gene/genes (average abundances if

abundances of several genes are considered, as denoted with the overbar) in a specific genome

(G), and β is the transcript (RNA) abundance of a different gene/genes in the same genome

(G) with an opposite transcriptional response to a surrounding physiological condition (E).

For example, if a certain surrounding physiological condition (E; e.g. oxygen level)

increases transcription of gene α in genome G than for the same physiological condition (E)

transcription of gene β in genome G decreases (Table 3). Because of the opposite transcrip-

tional responses of examined genes these transcript ratios are referred to as diametric ratios

(DR). Coupled genes for DR must have a transcriptional response that is opposite to a given

physiological condition (such as norVW vs norR; Table 3) or respond to opposing physiologi-

cal condition (such as ompC vs ompF Table 3). Calculating transcriptional responses this way

allows measuring shifts in transcriptional responses while minimizing biases associated with

changes in genome abundance. As noted, transcripts of the two sets of genes (α and β)
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originate from the same genome (G). Thus, given that the values of α and β are composed

from transcript abundance per genome multiplied by genome abundance, the DR formula fac-

tors out genome abundance and the DR are comparable between samples.

In each sample of our DR analysis we discarded genes that didn’t have any RNA reads

mapped to them after the stringent filtering, to avoid α or β values of 0 leading to extreme DR

values of 1 or 0.

Mapping to cytochrome oxidases from infant MAG’s compared to

cytochrome oxidases from KEGG

In order to compare between mapping of RNA reads to genes from assembled genomes from

premature infant’s gut microbiome to mapping of RNA reads to genes from available data-

bases, E. coli (K-12 MG1655) cytochrome oxidases sequences were downloaded from KEGG

(Kyoto Encyclopedia of Genes and Genomes) database. RNA reads were mapped to these

genes and filtered as described previously for genes from assembled genomes. Diametric ratios

were created for those mappings.

Statistical analyses

Differences in transcript ratios were visualized with boxplots constructed with R software for

statistical computing (v3.5.1), using ggplot2 package (v3.1.1) [27].

Differences in DR of examined microbial genes were compared within time blocks between

NEC and control infants. The first-time block was from 10th day of life till 19th day of life and a

second time block was from 20th day of life till 36th day of life. In addition, differences in the

DR of examined microbial genes were compared between all NEC and all control infants.

Comparisons were done with Welch’s t-test. To avoid type 1 error due to multiple compari-

sons, p values were adjusted with Bonferroni correction.

Results

Establishment of the diametric ratio as a quantitative metric

In this study, a new approach was examined to circumvent potential biases associated with

meta-transcriptomic analysis. This approach involved accurate mapping of RNA reads to

metagenomic assembled genomes (MAG’s) from the same pool of samples from which RNA

reads were retrieved, to be more confident to the genomic origin of the transcripts. Next,

Table 3. Genes examined in this study and the factors controlling their transcription.

Coupled genes for DR Genes Factors controlling transcription§ Variable in Eq (1) Reference

1) cydAB Micro-aerobic" α [21]

1) cyoABCD Aerobic" β [21]

2) arcA Anaerobic " α [22]

2) fnr Oxygen in-depended β [23]

3) nrdDG Anaerobic and Micro-aerobic" α [24]

3) nrdAB Aerobic" β [24]

4) norVW Nitric oxide " α [25]

4) norR Nitric oxide # β [25]

5) ompC High osmolarity " α [26]

5) ompF Low osmolarity " β [26]

§ Arrow direction indicates whether the controlling factor up or down regulate transcription of the gene.

https://doi.org/10.1371/journal.pone.0229537.t003
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transcript abundance ratios of genes that are known to have opposing transcriptional

responses to a specific environmental exposure were calculated. To avoid biases related to

changes in genome abundances, ratios were calculated only using transcripts belonging to the

same genome within the same sample. This approach was designated as Diametric Ratios

(DR) analysis, due to the expected opposite expression patterns of chosen genes. The

approaches described here are hypothesis-driven, and are distinct from other recent

approaches described for meta-transcriptomic observations, which aim to achieve a wide-

spread comprehensive view of the changes in relative abundances of gene families and path-

ways [6,28].

To assess this approach, we analyzed 20 meta-transcriptomic datasets paired with MAG’s

from gut microbiomes of 4 premature infants. Two of those premature infants were eventually

diagnosed with NEC.

We focused our analysis to Escherichia spp. as this genus was ubiquitous in almost all of the

analyzed samples (as representatives of this genus occurred in most of the samples, allowing

statistical analysis between NEC and control samples), while other species or genera were not

adequately ubiquitous for conducting comparisons between NEC and control samples (Fig A

in S1 File). More than 85% of the predicted proteins on the same scaffolds of each of Escheri-
chia spp. genomes had shared affiliation with Escherichia genus. On the species taxonomic

level more than 84% of the predicted proteins on the same scaffolds had shared affiliation with

either E. coli or E. vulneris (Table B in S1 File). Relative abundances of different bacterial gen-

era were calculated by the ratio of genome coverage to sum of coverages of all genomes in a

sample (Fig A in S1 File). Coverage depth and relative abundances data of other MAG’s in

each sample is also available in S3–S6 Files. Each sample included about 15 MAG’s (max-24,

min-10), with the genus Escherichia occurring in most samples. It is important to note, that

RNA reads from each sample were mapped to the Escherichia sp. genome found in the same

sample, as not all of the infants had E.coli species. Subsequent analyses were carried out on the

genus level of Escherichia. Therefore, calculated DRs for all Escherichia spp. found in the differ-

ent samples were gathered and compared between NEC infants and control infants. As Escher-
ichia spp. are facultative anaerobes, they can adjust their life style according to available

oxygen, which was well represented in its transcription pattern [3]. Thus, by examining Escher-
ichia spp. we addressed a longstanding idea that inadequate oxygen tension in the intestine,

due to reduced regional blood flow (ischemia), may be a key contributor to NEC development

[29,30]. In vivo patterns of microbial gene expression in the infant gut may be an indicator of

insufficient oxygen supply to the intestine and the progression of NEC. Furthermore, diamet-

ric ratios of different sets of genes related to other physiological conditions, such as exposure

to different nitric oxide (NO) and osmolarity levels, were examined as well.

We examined transcripts abundances of cydAB and cyoABCD, genes encoding cytochrome

oxidases with high and low affinity to oxygen (respectively; see below ‘cydAB cyoABCD dia-

metric ratio’ section). Transcript abundances of each of these two sets of genes (either cydAB
or cyoABCD, without any normalization accounting for genome abundance) was extremely

variable within all-time blocks of either NEC or control infants. This high variation was exem-

plified through the high standard deviation compared to the average transcript abundance,

yielding high coefficients of variance (between 93–174; Table 4). However, in NEC samples

there was a trend showing differences between abundances of cydAB genes compared to

cyoABCD genes while in Control infants no differences were found, inspiring the idea of dia-

metric ratios. After DR calculation, much lower variation was found, yielding much lower

coefficients of variance (20 and 24 for NEC and control infants, respectively; Table 4).
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cydAB cyoABCD diametric ratio

To examine the association between microbiome oxygen exposure and NEC development in

the gut of premature infants, we first examined genes encoding for cytochrome oxidases.

These protein complexes are a part of the electron transport chain that pass electrons to O2

during aerobic respiration. We constructed DR from transcript abundances of bacterial cyto-

chrome oxidase genes that have different affinities for oxygen: cytochrome bd oxidase (cydAB)

with high affinity for oxygen and cytochrome o oxidase (cyoABCD) with low affinity for oxy-

gen [31,32]. Consistent with these biochemical predictions, a previous study showed that

under microaerophilic conditions there was higher expression of cydAB whereas under aerobic

conditions expression of cyoABCD genes increases [21]. Our results showed that Escherichia
spp. had higher cydAB to cyoABCD transcript ratio in the gut of NEC infants compared to con-

trol infants (Fig 1A), and these differences were significant within both time blocks (p< 0.05)

and also across all time blocks (p< 0.01).

To evaluate whether mapping RNA reads to genes from sample-specific MAG’s could

improve results sensitivity compared to mapping to genes retrieved from KEGG databases, we

examined results of cydAB and cyoABCD diametric ratios between the two mapping

approaches. We found that mapping RNA reads to genes from Escherichia spp. from each

infant microbiome MAG’s had more significantly distinguishable DR between NEC and con-

trol infants then DR found for RNA reads mapped to genes retrieved from KEGG database

(Fig 1A and Fig 1B, respectively). Further evaluation of differences between MAG’s and E.coli
K12 gene sequences through alignments of cydA genes showed variable number of mismatches

(S8 File), ranging from 1 to 19 in E.coli species and 269 mismatches with E.vulneris. This signal

was enhanced when filtering out reads that had more than 1 base mismatch (Fig 1A compared

to Fig 1C). After filtering, mapping to KEGG database genes was even less assured as there

were less data points due to filtering out of reads that were inaccurately mapped (Fig 1B com-

pared to Fig 1D). These results highlighted the necessity for having MAG’s retrieved from the

same sample set as RNA reads were retrieved, as well as accurate mapping of RNA reads.

fnr arcA and nrdGD nrdAB diametric ratios

To further strengthen our observations that Escherichia spp. in the gut of NEC infants were

exposed to lower oxygen levels, we analyzed another set of genes that are differentially tran-

scribed in response to oxygen levels, fnr and arcA (Fumarate and nitrate reductase, and Aero-

bic respiration control protein, respectively). fnr transcription is consistent in both aerobic

and anaerobic conditions [22], and the regulatory mode is through changes in FNR protein

Table 4. Comparison between transcript abundances and diametric ratio (DR) of Escherichia spp. cytochrome oxidases across all time blocks in NEC and control

infants.

Infants Genes/DR Average Standard Deviation Coefficient of Variance F-TEST§ T-TEST§

NEC cydAB 233 217 93.0 1.53E-12 0.008

cyoABCD 71.7 125 174 2.03E-09 0.117

cydAB-cyoABCD DR 0.82 0.17 20.3 0.226 2.11E-05

Control cydAB 2.18 2.73 125

cyoABCD 3.09 4.40 142

cydAB-cyoABCD DR 0.43 0.10 23.9

§ p-values

https://doi.org/10.1371/journal.pone.0229537.t004
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conformation at different oxygen levels [33]. However, the transcription of arcA, which is reg-

ulated by fnr, increases when low oxygen conditions prevail [22].

A third set of genes that their transcription is associated to oxygen levels, nrd, encodes ribo-

nucleotide reductase, which catalyzes the enzymatic reduction of ribonucleotides to deoxyri-

bonucleotides. Escherichia spp. have two sets of nrd genes that are differently expressed

depending on prevailing oxygen levels. Under aerobic conditions transcription of nrdAB is

upregulated, while under anaerobic condition transcription of nrdDG is upregulated [24].

According to the cydAB and cyoABCD diametric ratios we hypothesized that diametric

ratios of arcA and fnr genes and nrdDG and nrdAB genes transcribed by Escherichia spp. in

Fig 1. Transcriptional response to oxygen by Escherichia spp. in the gut of NEC and control premature infants. (A) Diametric ratios

were compared between NEC and control infants in each time block (short lines above) and across all time points (longer lines).

Distributions of diametric ratios were compared using Welch’s t-test with Bonferroni correction. Asterisks and double asterisks (�, ��)

represent p< 0.05 and p<0.01, respectively. (B) Diametric ratios of cydAB and cyoABCD transcript abundances of RNA reads mapped to

gene sequences of Escherichia spp. genomes found in infants’ gut. Filtering of reads with more than 1 miss matches was applied. (C)

Diametric ratios of cydAB and cyoABCD transcript abundances of RNA reads mapped to gene sequences of E. coli (K-12 MG1655)

downloaded from KEGG (Kyoto Encyclopedia of Genes and Genomes) database. Filtering of reads with more than 1 miss matches was

applied. (D) Diametric ratios of cydAB and cyoABCD transcript abundances of RNA reads mapped to gene sequences of Escherichia spp.

genomes found in infants’ gut. No filtering of reads with miss matches was applied.

https://doi.org/10.1371/journal.pone.0229537.g001
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the gut of NEC infants would be higher compared to control infants. Indeed, results of these

diametric ratios confirmed the results of cydAB and cyoABCD diametric ratios, showing that

higher ratios of both arcA and fnr genes nrdDG and nrdAB genes of Escherichia spp. in the gut

of the NEC premature infants were significantly higher, across all time blocks (p< 0.05 and

p< 0.01, respectively; Fig 2A and 2B) and specifically in the 1st time block (p< 0.01 and

p< 0.05, respectively; Fig 2A and 2B). These results further suggested that Escherichia spp. in

the gut of the NEC premature infants were exposed to lower oxygen levels.

ompC ompF and norVW norR diametric ratios

The next set of genes we examined encode the Outer Membrane Proteins, ompC and ompF.

These genes were previously shown to be transcribed under different osmotic conditions, with

high abundance of ompC being associated with inflammatory bowel diseases [34]. High

expression of ompC, which has small porin size, occurs during high osmotic conditions, while

ompF, which has large porin size, occurs during low osmotic conditions [26]. These genes are

reciprocally regulated by ompR, depending on its phosphorylation state [26]. Interestingly, sig-

nificantly higher diametric ratios of ompC to opmF were found to be transcribed by Escherichia
spp. in the gut of NEC premature infants compared to control premature infants across all

time blocks (p> 0.05), specifically in the 1st time block (p< 0.05; Fig 2C).

The last set of genes we examined were the norVW genes, coding for NO detoxifying

enzyme Nitric Oxide Reductase, and their oppositely transcribed regulating gene norR [25].

Nitric oxide binds to constitutively expressed NorR, which up-regulates the transcription of

norVW and down-regulates norR expression [25]. Thus, to assess microbial transcriptional

response to NO prior to NEC diagnosis, we measured the ratio of transcript abundances for

norVW and norR. Higher diametric ratios of NO detoxifying enzymes compared to norR tran-

scribed by Escherichia spp. were found in the guts of the control infants compared to NEC

infants, in both time blocks and across time blocks (p< 0.01, for all cases; Fig 2D). Interest-

ingly, the ratio of norVW to norR transcript abundances was higher at earlier compared to

later time points, for both NEC and control infants (Welch’s t test, p = 0.009). This may reflect

the response of the preterm infant gut to initial microbial colonization.

Discussion

Using diametric ratios and RNAseq mapping to MAG’s to infer

physiological conditions in the gut of premature infants

Here we demonstrate that calculating diametric ratios of genes with opposite transcriptional

responses to ambient physiological conditions is an approach that can be effectively used for

analyzing meta-transcriptomic data (Table 4; Fig 1). In addition, we show that mapping to

sample specific MAG’s provides the most clear and significant signal. Results based on three

sets of genes (cytochrome oxidase genes, aerobic/anaerobic regulation genes and ribonucleo-

tide reductase genes) suggest that Escherichia spp. in the gut of two premature infants that

developed NEC were exposed to lower oxygen levels than Escherichia spp. in the gut of two

premature infants without NEC. Together, these data suggest that hypoxic conditions may

exist in the gut prior to NEC development.

Previous animal model studies and analyses of early microbial colonization of premature

infant guts showed that at early gestational age the gut milieu was more aerobic [35–38]. Dur-

ing NEC, however, hypoxic conditions were observed in the gut tissue of many patients [39].

Furthermore, histologic examination of removed dead intestine tissue of NEC patients demon-

strated coagulation necrosis, evidence for ischemic injury [40], in either small or large
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intestine. Yet, hypoxia is highly debated as a primary controlling factor of NEC [29,41–43].

Recent theories on NEC development point to the role of gut tissue immaturity, impairing

intestinal microcirculation and oxygen delivery [44], which might explain the observed tran-

scriptional response to lower O2 levels in the gut microbiomes of NEC infants (Fig 1A; Fig 2A

and 2B). It should be noted also that these circumstances are distinct from those that occur in

mature gut systems, where anaerobic conditions are linked to a healthy condition and aerobi-

city is linked to inflammation [45].

Another potential indicator for progression of inflammatory response in the infant gut is

exposure of the gut microbiome to nitric oxide (NO). Increased expression of inducible nitric

Fig 2. Transcriptional response to oxygen, Nitric oxide and osmotic conditions by Escherichia spp. in the gut of NEC and control

premature infants. (A) Diametric ratios were compared between NEC and control infants in each time block (short lines above) and across

all time points (longer lines). Distributions of diametric ratios were compared using Welch’s t-test with Bonferroni correction. Asterisks

and double asterisks (�, ��) represent p< 0.05 and p<0.01, respectively.(A) Diametric ratios of arcA and fnr transcript abundances of RNA

reads mapped to sequences of Escherichia spp. genomes found in infants’ gut. (B) Diametric ratios of nrdDG and nrdAB transcript

abundances of RNA reads mapped to sequences of Escherichia spp. genomes found in infants’ gut. (C) Diametric ratios of ompC and ompF
transcript abundances of RNA reads mapped to gene sequences of Escherichia spp. genomes found in infants’ gut. (D) Diametric ratios of

norVW and norV transcript abundances of RNA reads mapped to gene sequences of Escherichia spp. genomes found in infants’ gut.

https://doi.org/10.1371/journal.pone.0229537.g002
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oxide synthase (iNOS) by host’s gut epithelial cells often occurs as a part of the inflammatory

response, and recent studies have suggested that TLR4-mediated iNOS expression is a key ele-

ment of NEC progression [46]. Thus, diametric ratios for nitric oxide reductase can help infer

about exposure of Escherichia spp. to different nitric oxide levels in the gut of premature

infants. Counter-intuitively to progression of an inflammatory response in the gut of NEC

infants, results of this study indicate down regulation of bacterial genes for NO detoxification

in the gut of NEC infants (Fig 2D), indicating lower NO levels in the gut lumen. This might be

explained by low oxygen supply to the gut lumen, as suggested by results found by previous

examined genes (Fig 1A; Fig 2A and 2B), reducing host epithelial cells iNOS activity to pro-

duce the antimicrobial agent NO, as these enzymes need oxygen to produce NO [47,48]. Alter-

natively, these results might also be explained by the report that norVW transcription

decreases with combined oxidative and nitrosative stresses in contrast to nitrosative stress

alone [49], as occurs during inflammation [50]. Inflammatory response inducing combined

oxidative and nitrosative stresses also stimulates higher cydAB transcription (Fig 1A; [51,52]).

An additional physiological condition that can be associated with inflammatory response is

altered osmotic conditions [53].

Results of diametric ratios between transcripts of outer membrane protein genes indicate

that Escherichia spp. in the gut of NEC premature infants might be exposed to high osmotic

conditions (Fig 2C). Consistent with previous observation of high expression of ompC by E.

coli during high osmolarity levels and increased adherence to host gut epithelial cell through

the development of Crohn’s disease [34]. To the best of our knowledge, little is known about

gut lumen osmolarity and the development of NEC. Osmolality of feeding formula and its

association with NEC development has been studied, but no clear connection was found [54].

Confounding factors of this study dataset

It should be noted, however, that this data set contains confounding factors limiting the inter-

pretation of Escherichia spp. transcriptional differences between NEC and control infants

solely as a result of NEC development. First of all, the limited number of infants (two NEC and

two control) examined in this study impaired our ability to draw conclusions. Low sample

number also restricted our ability to define cutoffs to optimize DR analysis, as discarding more

data points would have limited statistical analysis on the time block level. Secondly, other fac-

tors, such as gestational age, mode of delivery and birth weight, also differed between NEC

cases and controls (Table 1). These factors were previously shown to affect the development of

microbial communities [36,55], suggesting that occurrence of different physiological condi-

tions bring about such alterations in infant gut microbiomes.

Nevertheless, transcription results shown here were opposite than expected according to

some of those factors, such as gestational age. According to previous studies, younger gesta-

tional age infants might have more aerobic conditions as their microbial communities are

associated with a more facultative anaerobic life style compared to older gestational age infants

associated with an obligate anaerobic life style [36,38,56]. Whereas our results show that lower

oxygen exposure occurred at earlier gestational age, in infants that develop NEC (Table 1; Fig

1A; Fig 2A and 2B). Although, larger sized and higher time point resolution gut microbiome

meta-transcriptomic studies would be fundamental to confirm shifts in aerobicity state in the

intestine of premature infants. In addition, many of the studies examining how these factors

affect microbial communities were done on full term infants and data on gut microbiome of

preterm infants is still very scarce. A recent paper examining gut microbiome in preterm

infants showed that cesarean or vaginal birth mode did not significantly affect microbial
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communities [57], unlike full-term infant where delivery mode is a major factor shaping infant

gut microbiome [55,58].

Although it is hard to conclude whether observed differences were associated with NEC

development or other factors, the methodological approach described here still shows a clear

and significant signal distinguishing between NEC and control premature infants. A larger

study is needed to verify these results and confirm that the gut microbiome in early stages of

NEC development senses and responds to different physiological conditions compared to

microbiomes in guts of premature infant where NEC is not developing. Further experiments

can verify this approach, either by experiments where stool samples are inoculated into artifi-

cial media with varying physiological condition (e.g. oxygen levels or NO) or experiments with

animal models inducing wanted physiological conditions in-vivo.

Concluding remarks on examined approaches

The approach described here can add new insights into gut microbiome analysis. It is impor-

tant to note that this approach relies upon prior knowledge on the transcriptional responses of

different genes to physiological conditions. It is, thus, essential to do a preliminary literature

survey on gene expression pathways of dominant species in examined samples to decide on

genomes and genes from which to calculate diametric ratios. In addition, a significant factor

affecting the accuracy of DR measurements is proper read mapping. Mapping RNA reads to

sample-specific MAG’s is shown here to give more significantly distinguishable signal com-

pared to mapping to genes retrieved from an outside database (Fig 1). The mapping exercise

shown here might potentially describe the extreme end of strain heterogeneity, as K-12 E. coli
is a laboratory strain that can be different enough from gut E. coli to result in inquorate RNA

read mapping. Choosing genomes from databases originating from gut microbiome databases

might be more adequate for RNA mapping than KEGG database, as long as chosen genomes

are most similar to those genomes for which RNA was sequenced. Genome databases are valu-

able for taxonomic identification, as done here for confident identification of MAG’s in our

samples. However, based on propositions put forth in this study, further research might fur-

ther enforce the idea that MAG’s enable more accurate mapping and promote better quantifi-

cation of RNA reads than genomes from databases. It is also important to note that potentially

fewer metagenomes are required per individual than meta-transcriptomes, as it was previously

shown that specific strains can remain stable within an individual human host [12,59].

In conclusion, we show here how meta-transcriptomic data combined with sample-specific

MAG’s can be applied effectively to probe the physiological conditions that gut microbial com-

munities experience by comparing diametric ratios. Further application of this approach can

bring new insights on microbe-host interactions within the GI tract systems, and potentially

help identify biomarkers for early detection gut diseases, such as NEC, onset and progression.
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