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Abstract

A network of sensors for spatially representative water‐balance 
measurements was developed and deployed across the 2000 km2 snow‐
dominated portion of the upper American River basin, primarily to measure 
changes in snowpack and soil‐water storage, air temperature, and humidity. 
This wireless sensor network (WSN) consists of 14 sensor clusters, each with 
10 measurement nodes that were strategically placed within a 1 km2 area, 
across different elevations, aspects, slopes, and canopy covers. Compared to
existing operational sensor installations, the WSN reduces hydrologic 
uncertainty in at least three ways. First, redundant measurements improved 
estimation of lapse rates for air and dew‐point temperature. Second, 
distributed measurements captured local variability and constrained 
uncertainty in air and dew‐point temperature, snow accumulation, and 
derived hydrologic attributes important for modeling and prediction. Third, 
the distributed relative‐humidity measurements offer a unique capability to 
monitor upper‐basin patterns in dew‐point temperature and characterize 
elevation gradient of water vapor‐pressure deficit across steep, variable 
topography. Network statistics during the first year of operation 
demonstrated that the WSN was robust for cold, wet, and windy conditions in
the basin. The electronic technology used in the WSN‐reduced adverse 
effects, such as high current consumption, multipath signal fading, and clock 
drift, seen in previous remote WSNs.

Keywords: wireless-sensor network, water-information system, snow 
observation, mountain hydrology, Sierra Nevada

1 Introduction

Currently, in situ measurements of mountain water cycles at the basin scale 
are limited in both spatial coverage and temporal resolution, with data 
largely provided by a relatively small number of operational precipitation, 
snowpack, climate, and stream‐gauging stations [Bales et al., 2006; Dozier, 
2011]. In the Sierra Nevada, measurement sites supporting operational 
water‐resources decision making are also biased to middle and lower 
elevations and flat terrain in forest clearings [Molotch and Bales, 2005].



Hydrologic prediction, particularly when constrained by the practical 
demands of water‐resources management, relies heavily on calibrated 
models to mitigate both limitations in model formulation and inadequate 
data for rigorous model testing [Kuczera et al., 2010; Semenova and Beven, 
2015]. There are increasing demands on distributed models as predictive 
tools for situations in which lumped models may fall short, such as 
nonstationarity in catchment conditions or climate; however, their use in 
water‐resources management is limited by the level of field data available 
[Refsgaard, 1997]. The need for improved coverage by in situ measurements
is both local and global, and new network designs should complement 
satellite data [Wood et al., 2011]. Ground‐based sensors provide critical 
ground truth for remotely sensed satellite and aircraft data, and offer a wide 
suite of independent data that can help provide much‐needed gains in 
predictive modeling. Realizing gains in accuracy from the next generation of 
spatially explicit models at the scale of water‐resources decision making will 
require both the broad spatial coverage of remotely sensed data and the 
accuracy of in situ measurements [Lehning et al., 2009]. An adaptive rather 
than one‐size‐fits‐all approach is needed to realize these gains [Fenicia et al.,
2008].

Wireless Sensor Networks (WSNs) are an efficient and economical solution 
for distributed sensing. It is often costly and disruptive to create networks of 
spatially representative wired sensors at the scale desired since it might 
require kilometers of cables placed either above ground or buried. Similarly, 
access to data for distributed sensors with only local logging is limited by the
need to visit sites to download data. Reliable wireless solutions are now 
enabled by reduced production costs of wireless equipment and by advances
in networking protocols, effectively combining traditionally wired sensors 
with a wireless platform [Akyildiz et al., 2002; Yick et al., 2008; Gilbert, 
2012].

A few WSN solutions, using different network technologies, were developed 
specifically for applications in hydrology. These studies have not provided 
quantifiable assessments of network design, operation, and hydrologic 
results at the river‐basin scale. A review of these prior deployments, and a 
comparison of three existing WSN solutions that have been used, is provided
in supporting information Text S1 [Digi, n.d.; Bogena et al., 2010; Pister and 
Doherty, 2008; Gungor and Hancke, 2009; International, 2009; Ritsema et 
al., 2010; Simoni et al., 2011; Trubilowicz et al., 2010; Horvat, 2012; Huang 
et al., 2012; Kerkez et al., 2012; Accettura and Piro, 2014; Pohl et al., 2014; 
Document, 2009].

While sensor networks deployed in headwater catchments for short durations
offer lessons for local‐scale WSNs, they provide limited guidance for WSN 
design, performance, and hydrologic benefits for systems in larger mountain 
river basins, characterized by steep gradients in temperature, precipitation, 
rain‐versus‐snow fraction, growing season, vegetation density, and 
evapotranspiration. The proposed approach to scaling WSN measurements to



larger basins involves strategically placing local clusters to capture the 
variability in hydrologically important basin attributes [Welch et al., 2013].

The aim of the research described in this technical report is to develop a 
flexible, robust method for measurement of the spatial water balance across 
a seasonally snow‐covered mountain basin. In doing this, we address three 
questions. First, to what extent can a basin‐scale distributed wireless‐sensor 
network with a limited number of sensors arrayed in local clusters sample 
hydrologic variables across a representative range of landscape attributes in 
a seasonally snow‐covered mountain basin? Second, to what extent can this 
low‐power, distributed wireless‐sensor network reliably provide hydrologic 
data during harsh winter conditions? Third, what types of gains in hydrologic 
information may result from this network? Further development and more‐
detailed analysis of the third question is also the subject of subsequent 
analysis.

2 Methods

The network was deployed in the American River Hydrologic Observatory 
(ARHO), in the upper, snow‐dominated portion of the American River basin 
on the western slope of the Sierra Nevada in California (36.069 N, 120.583 
W). The basin is incised with steep river canyons and is comprised of three 
subbasins: the North, Middle, and South forks, which combine to form a 
drainage basin of 5311 km2 above the Folsom Reservoir, the main 
impoundment on the river (Figure 1a). Basin elevations range from 15 m at 
Folsom to 3147 m at the Sierra crest, with precipitation transitioning from 
rain to snow at about 1400–1600 m elevation [Raleigh and Lundquist, 2012; 
Klos et al., 2014]. Forty percent or about 2000 km2, of the basin is above 
1500 m, the lowest elevation for siting our WSNs. About 0.5% of the basin is 
above the highest node that was sited (2678 m).



In 2013–2015, 14 clusters of wireless nodes were deployed (Figure 1a), with 
locations selected to represent the range of elevation, aspect, canopy 
coverage, and solar loading in the basin (Figure 1b and supporting 
information Figure S1). Each node had a number of sensors, as described in 
supporting information; with air temperature, relative humidity, and snow 
depth the subject of this report. The number of local clusters was based on 
results of Welch et al. [2013], and constrained by project budget. The Welch 



et al. analysis used spatial time‐series data over 11 years and a rank‐based 
clustering approach to identify measurement locations that will be most 
informative for real‐time estimation of snow depth, and derived a set of 
regions that remained relatively stable over time. They found a point of 
marginal return at about 15 measurement locations, after which placing 
more local sensor networks did not significantly improve estimation 
performance. The Welch et al. study also showed that there is some 
flexibility in placing the local clusters to capture representative parts of the 
basin, and thus all sites, except MTL and DOR, were colocated with existing 
snow pillows and met stations. Each cluster consists of ten measurement 
nodes, limited due to budget, seven to 35 signal‐repeater nodes, and a 
network manager (see supporting information Table S1 for details and Figure
S2 for system hierarchy).

Measurement‐node placement consisted of three steps. First, major 
physiographic variables that affect snow distribution, and by extension other 
components of the water balance, were characterized in a 1 km2 area around
each site [Balk and Elder, 2000; Erxleben et al., 2002; Anderton et al., 2004; 
Essery and Pomeroy, 2004; Sturm and Benson, 2004; Erickson et al., 2005; 
Marchand and Killingtveit, 2005; Bales et al., 2006]. Second, at each site, 10 
points representing different physiographic attributes were selected by a 
random‐stratified technique, and the attributes aggregated to assess their 
representativeness in the larger basin (see supporting information Text S2) 
[Jin et al., 2013]. Rice and Bales [2010] showed that a 10 sensor network 
could capture the mean and distribution of snow depths at this scale. Third, 
final location adjustments were made in the field to a small subset of sensor 
nodes, ensuring a complete sampling of the physiographic features together 
with a strong WSN connection mesh. See supporting information Text S3 for 
node details.

The network statistics presented were evaluated over a period of 7 months. 
Each node provided 15 min data for snow depth, air temperature, and 
relative humidity. Hourly and daily products were developed for periods 
where no less than 75% of data were present and valid within the averaging 
window. Extreme values in the data were removed following Daly et al. 
[2008]. Operational data were downloaded from the California Department of
Water Resources (http://cdec.water.ca.gov/). Data from SNODAS, a gridded 
national operational product that is developed from weather‐forecast and 
snowmelt models, plus ground‐based and remotely sensed data, were used 
as an additional point of comparison with our snow measurements 
(http://nsidc.org/data/). Hourly dew‐point temperature for each node was 
computed based on an empirical equation [Lawrence, 2005].

3 Results

3.1 WSN Performance

The wireless‐network links formed a redundant multihopped mesh network of
sensors and repeaters for data transport. Figure 2 shows the stable layout of 



sensor nodes for the Alpha cluster (ALP), and illustrates how repeaters were 
nonuniformly distributed to connect the sensor nodes via at least two 
independent paths to the base station (see supporting information Figure S5 
for photographs of base station, nodes and repeater). During 213 days of 
consecutive recording only 662 out of over 56 million packets were lost in 
transmission. The average number of hops for packets to transmit from a 
node to the base station was 3.6 and the maximum seven. The average 
latency of the network, the time it takes from the packet being sent until it 
arrived at the base station, was 1.01 s. On average, each node received 
181,000 packets over the period when network statistics were gathered.

Two measures indicate the reliability and performance of the network: (i) the
number of other sensor or repeater nodes connected to each node and (ii) 
the average received signal strength indicator (RSSI). RSSI is closely 
associated with an important network‐performance indicator called packet 
delivery ratio (PDR). In aggregate, each node was connected to at least two 
other nodes over 95% of the time, and to three or more nodes 68% of the 
time (see supporting information Figure S6). Taking all nodes together, RSSI 
values were above −85 dBm, the manufacturer‐specified threshold for 
efficient transmission over 54% of the time, with values above −80 dBm 33%
of the time.

Environmental factors have been thought to impact the performance of 
WSNs [Boano et al., 2010; Marfievici et al., 2013]. For our local clusters, 



there was no clear influence of environmental factors, e.g., temperature, 
humidity, and snow‐induced topographic changes, on network performance 
(Figure 3). Each node was connected to one to five other nodes at each time 
step (Figure 3a). RSSI values at each node typically fluctuated ±5 dBm, and 
the average RSSI (Figure 3b) depended on node location as opposed to 
temperature (Figure 3c), humidity (Figure 3d), or topographic changes due to
snow accumulation (see water‐year days 72 and 80, Figure 3e). What was 
found was that antenna‐choice‐had the largest influence on connectivity. 
Surprisingly it turns out that 4 dB antennas, with a “fatter” radiation pattern, 
performed better than 12 dB antennas.



3.2 Temperature, Humidity, and Snow Patterns

Daily air and dew‐point temperatures from the 10 wireless‐sensor clusters 
that were installed prior to the 2014 water year showed very similar 
temporal patterns (Figure 4a), with average temperature differences 
reflecting elevation differences between clusters. Temperatures for all pairs 
of clusters were highly correlated, r > 0.91 for air temperature and r > 0.86 
for dew‐point temperature, p < 0.05.

Daily temperatures were used to derive surface‐level lapse rates, which over 
the 8 month period varied from close to zero to −12°C/km for both air and 
dew‐point temperatures (Figure 4b). The respective average lapse rates for 
the months before snow accumulation (October–December) were −4.6 and 
−5.7°C/km, increasing to −5.5°C/km for air temperature and decreasing to 
−4.7°C/km for dew‐point temperature during the snow season. The day‐to‐
day variability in lapse rates during the snow‐covered period was also lower 
than earlier in the water year. The transition to a period with less variability 
in lapse rate is also illustrated by the higher R2 values starting on water‐year 
day 121, when snow started accumulating in the basin (Figure 4c). Note that 
less‐negative air‐temperature lapse rates, associated with lower R2 values, 
were associated with temperature inversions.

Daily mean air and dew‐point temperatures taken across the 10 clusters 
were adjusted to 2100 m using the mean daily lapse rates (Figure 4d). The 



average standard deviation is 3.3°C for air temperature and 3.5°C for dew‐
point temperature, a variability equivalent to the average difference over 
about 600 m and 545 m elevation based on the 8 month average lapse rate 
of −5.5 and −5.0°C/km, respectively. While any index elevation could be 
used for this comparison, 2100 m is generally representative of the upper 
part of the rain‐snow‐transition elevation zone.

Mean relative humidity across WSN clusters varied from 15 to 100%, with 
similar patterns across all 10 clusters (Figure 4e). The correlations were 
strong; r = 0.91, p < 0.05, for all pairs of clusters. Differences in absolute 
humidity and vapor‐pressure deficit between clusters were in some cases 
relatively large. The mean water vapor‐pressure deficit for each cluster 
ranged from zero to 1.5 kPa (Figure 4f), with daily intercluster differences 
between the lowest and highest values as much as 55%. The highest 
variability in vapor‐pressure deficit was associated with periods of higher 
temperature and lower relative humidity, indicating a warmer and drier 
condition. Periods with lower variability of intersite vapor‐pressure deficit 
were closely associated with subzero temperatures in the basin, typically 
triggered by precipitation events.

Snow‐depth data (Figure 5) show a clear elevation trend, with variability also
increasing with elevation. One exception was SCN, which has a tighter 
grouping of measured snow depths as compared to lower‐elevation sites. 
During the very warm and dry WY‐2014 snow season, sustained snow cover 
accumulated mainly at elevations above 2100 m.



Snow depths were also compared with colocated or nearby snow‐course 
measurements (Figure 5). At lower‐elevation clusters, due to the timing of 
the snow‐course measurements, most surveys missed the snow‐cover peak 
accumulation. At ONN, snow‐course data showed a small amount of snow 



throughout the season, missing the few individual peaks. Snow‐course values
at ECP were generally lower than the mean cluster value across the season.

There were substantial differences between the WSN, nearby operational 
snow‐depth sensors, and SNODAS snow depth at most clusters. Compared to
WSN means, nearby operational sensors tended to overestimate snow depth 
during early season (e.g., at ECP, CAP, and ALP), and better matched the 
WSN mean at peak accumulation. Nearby operational sensors also showed 
faster melt than indicated by cluster means for the same sites. The time 
series of SNODAS values is comparable to the WSN data at MTL and SCN for 
much of the season, with similar magnitude and high correlation. SNODAS 
data generally fall within one standard deviation of WSN nodes at these 
sites. At lower‐elevation sites, such as BTP, VAN, and DUN, SNODAS 
underestimated snow depth at peak accumulation by as much as 50% 
compared to the WSN. At all other sites, SNODAS overestimated peak‐
accumulation snow depth by as much as 80% compared to the WSN mean.

A one‐way analysis of variance analysis (ANOVA) was done for a 20 day 
period around the time of peak snow accumulation to assess within‐cluster 
versus between‐cluster variability. On average, over 85% of the variability in 
daily air temperature is between clusters, with a peak within‐cluster 
variability of 24% (Figure 6a). The within‐cluster variation can be more 
significant at night, as seen by the pattern in the hourly data, when up to 
40% of the variability was within cluster. We also considered the difference 
between daily temperatures for operational sites versus cluster values. 
Comparing sensor‐node values for sensor stations having the same 
landscape features as operational measurements (flat, open) to other nodes 
shows a 0.8°C difference for one site, and 0–0.3°C for five other sites; 
however the values are not different at the 95% confidence level (supporting
information Figure S8a).



The ANOVA results for daily snow depth show the importance of within‐
cluster and between‐cluster variability. About 60% of the variability was 
between clusters and 40% within clusters immediately after the 
accumulation event ending on water‐year day 183, with both values 
converging toward 50% over the next 2 weeks. The compared nodes having 
landscape attributes like those of operational sites (flat, open). At most of 
the six sites evaluated (supporting information Figure S8c) there were 
relatively large within‐cluster differences between the compared sets.

4 Discussion

4.1 WSN Design and Performance

With 555 sensors across 14 clusters, the WSN offers representative, real‐
time monitoring of the meteorological and hydrologic conditions of much of 
the upper reaches of the basin. The size of this network, arguably the largest
long‐term, remote wireless‐sensor platform deployed for environmental 
monitoring, shows that WSNs are now capable of being used for major 
instrumentation projects. Even though some aspects of the networks in 
ARHO share similar properties with the prototype installation at the Southern
California Critical Zone Observatory [Kerkez et al., 2012], the more‐recently 
recorded network statistics help to resolve several previously unanswered 
networking questions important to the broader wireless communications 



community as well as to field hydrologists. The longer‐term performance of 
the networks, subjected to the test of a full snow season, showed that WSNs 
can be a viable solution for distributed sensing at this scale. ARHO networks 
showed resilience to factors such as humidity and snow‐induced topographic 
changes across different part of the basin. The positive result is likely due to 
the combination of the Dust Network's radio technologies such as time‐
synchronized channel‐hopping, time‐slotted mesh protocol (see supporting 
information section S1.2.3 for details of the technology), effective network 
topology, and the use of lower‐gain antennas.

A stringent criterion of design was low power consumption, allowing the 
sensor node to be powered with a 6 Ah battery recharged by a 10 W solar 
panel. The low‐power requirement constrains radio‐power output, so the 
range of the radio limits the size and performance of the network. Through 
iterative design and careful control over circuitry, we were able to attain our 
goal. The final design is basically two very low‐power‐consumption 
microchips—a Cypress PSoC5 and Dust Networks radio module. This design 
is useful to the community, which by and large uses systems based on 
technology that has 100 or more times the power consumption (see 
supporting information).

Topographic relief is one of the more‐serious challenges to overcome for 
good system performance. Different from earlier installations, the networks 
in ARHO encountered more‐challenging, steep‐forested terrain. A lower‐gain 
4 dBm omnidirectional antenna provided improved network connectivity due 
to its “fatter” radiation pattern, especially in steep terrain, compared to the 
12 dBm antennas used by Kerkez et al [2012] on more‐even terrain. Even 
with the improvement, the capability of the network to communicate over 
steep slopes is limited by the antenna. The ALP site is a good example of 
where some radio links operated at the edge of the acceptable RSSI level 
due to steep topography. A relatively large number of repeaters were 
installed to provide redundant paths to sensor nodes 6, 8, and 9, where a 
steep change in slope produced a radio path “kink” and reliable network 
links were challenging to establish. The network performance was stable but 
less efficient, indicated by the lower PDR values, compared to Kerkez et al. 
[2012], who had shorter data hops.

4.2 Spatial Pattern and Variability of Hydrologic Attributes

The following three examples illustrate how our spatially distributed, daily 
data over complex terrain set provides improved estimates of important 
hydrologic attributes, compared to less‐dense operational measurements. A 
more‐detailed analysis will be the subject of a subsequent report.

4.2.1 Air and Dew‐Point Temperature

A widely accepted model of near‐surface air temperature in mountains is the 
ground‐level lapse rate [Dodson and Marks, 1997; Rolland, 2003; Huang et 
al., 2008; Kirchner et al., 2013]. Scientists and modelers use lapse‐rate‐



derived temperature to evaluate model responses due to temperature 
perturbations [Gardner and Sharp, 2009; Bales et al., 2015]. In those 
applications the lapse rate, often averaged over a monthly to annual period, 
is used to approximate input temperature for models with a much shorter 
(daily) time increment. This approach, however, does not account for short‐
term variability. WSN data show that the day‐to‐day lapse rate was highly 
variable, particularly before snow accumulation (Figure 4b). Not only does 
the array of sensors provide a more temporally resolved lapse‐rate estimate,
we also found that the redundancy of sensors provides a more‐robust 
estimate of the amplitude. Linear models of daily air temperature were 
constructed with a training set and a cross‐validation set of 60 randomly 
selected nodes. The results were compared with models computed using 
seven nearby met stations. On average, the cross‐validation root‐mean‐
square error was reduced from 1.4 to 1.2°C using random sets of 60 
measurements versus data from seven nearby met stations. The uncertainty 
in air temperature was reduced by 16%.

Dew‐point temperature complements air temperature in providing a reliable 
estimate of the timing and phase of precipitation. The reduction of 
uncertainty in temperature and humidity patterns helps to better determine 
the elevation range of the rain/snow transition. Air temperature is 
approximately equal to dew‐point temperature, indicating saturated air, 
when precipitation occurs (Figure 4). The phase change from rain to snow 
usually occurs around the 0°C dew‐point [Marks et al., 2013]. Compared to 
air‐temperature‐based methods, dew‐point temperature is a less 
geographically dependent variable to determine the solid or liquid 
precipitation [Ye et al., 2013]. Due to lack of relative‐humidity 
measurements for most met stations, calculation of dew‐point temperature 
cannot be performed from met‐station data alone.

Feld et al. [2013] assessed various methods of estimating daily dew point, 
and found that a weather‐forecast model that captured some aspects of local
topography provided less‐biased estimates than did simpler constant‐lapse‐
rate or constant‐humidity approaches. Their median dew‐point lapse rate, 
based on 15 met stations and 35 hygrochons deployed in the North Fork 
American basin and averaged over 3 years, was −5.3°C/km, comparable to 
our mean of −5.0°C/km. However, our −5.5°C/km mean air‐temperature 
lapse rate was smaller than their 3 year average of −6.3°C/km. More 
extensive analysis of our seasonal and spatial patterns will be the subject of 
a subsequent report.

4.2.2 Evaporative Potential

Direct measures of vapor‐pressure‐deficit patterns from a dense array of 
ground‐based sensors can be important for scaling evapotranspiration and 
assessing forest health [Oren et al., 1999, 2001; Bowling et al., 2002]. 
Accurately estimating vapor‐pressure deficit is crucial as the saturation‐
pressure deficit becomes relatively more important in the Penman‐Monteith 



equation [Ziemer, 1979]. Despite the importance of the variable, reliable 
field‐based estimates of vapor‐pressure deficit in mountains are rare. The 
performance of satellite‐based estimates varies, with RMSE values from 
upwards of 0.3–1.1 kPa, limiting their accuracy as estimates of vapor‐
pressure deficit across steep terrain [Prince et al., 1998; Hashimoto et al., 
2008]. A WSN with relative‐humidity measurement at every sensor node fills 
this gap.

The ANOVA results for daily relative humidity are similar to those for 
temperature, with most of the variance being between versus within clusters
(Figure 6b). There was, however, no clear day‐night pattern. In addition, 
there were only small differences in humidity between nodes that represent 
the landscape attributes of operational sensors, versus values for other 
nodes. One of the six sites evaluated had a significant difference, reflecting 
in large part the temperature differences (supporting information Figure 
S8b).

4.2.3 Snow Depth

The differences in snow depth between WSN and nearby operational sensors 
can be explained by the patterns of snow accumulation. Operational snow‐
depth sensors are typically placed near flat meadows or ridge tops free of 
overhead obstructions or hazards, which produce known biases [Molotch and
Bales, 2006; Ainslie and Jackson, 2010; Rice and Bales, 2010]. We placed our
nodes in both forested and nonforested area to produce a more spatially 
representative measurement. Figure 5 indicates that operational snow‐depth
sensors data had a systematic positive bias in snow depth in the early 
season. During the melting season, the canopy acts as a shield, limiting 
energy input to the snowpack [Marks et al., 1998; Sicart et al., 2004; 
Pomeroy et al., 2012]. The canopy also shelters the snow surface from wind, 
reducing turbulent heat transfer. The net result is an extended melt season 
recorded by sensor nodes in the forested area compared to the operational 
snow‐depth sensors.

Due to local redundancy of the WSN, the data stream is more complete than 
operational snow‐depth sensors at CAP and BTP. Large sections of data were 
missing from the operational‐snow‐depth sensors from those two sites during
the storm around water‐year day 180 (Figure 5). This reflects a reality of 
operational water‐resources networks, namely the ability to respond in a 
timely manner to problems in remote sensors. The redundancy provided by 
our WSNs helps to address this constraint.

The differences in snow depth between SNODAS and the WSN were less 
systematic, as there is no apparent trend in the bias across different sites. 
One pronounced difference between WSN and SNODAS snow depth was at 
the steep ECP site, where the 1 km2 SNODAS product overestimated snow 
depth compared to our measurements (Figure 5). This follows previous 
reports that without sufficient data, estimates of snow depth under these 
conditions can be difficult and error prone due to the underlying variance in 



elevation within grid boundaries [Hedrick et al., 2015]. Clow et al. [2012] 
showed that while over forested regions of the Colorado Rockies, SNODAS 
estimates of snow depth accounted for as much as 72% of the variance line 
(1 km resolution) in forested areas, SNODAS was able to account for only 
16% of snow‐depth variance in areas above the treeline.

5 Conclusions

A wireless‐sensor network distributed over the 2000 km2 snow‐dominated 
portion of a mountain basin provided effective coverage of watershed 
attributes. With 10 measurement nodes per each of 14 clusters, the WSNs 
reliably provided spatially distributed measurements of temperature, relative
humidity, and snow depth every 15 min over the basin. The WSN also 
provided measurements of the significant within‐cluster spatial variability of 
these attributes, which were influenced by local topography, possibly 
through cold‐air drainage effects on temperature.

Compared to existing operational sensors, the wireless‐sensor network 
reduces uncertainty in water‐balance measurements in at least three distinct
ways. Redundant measurements in temperature improved the robustness of 
temperature lapse‐rate estimation, reducing cross‐validation error compared
to that of using met‐station data alone. Second, distributed measurements 
capture local variability and constrain uncertainty, compared to point 
measures, in attributes important for hydrologic modeling, such as air and 
dew‐point temperature and snow precipitation. Third, the distributed 
relative‐humidity measurements offer a unique capability to monitor upper‐
basin patterns in dew‐point temperature and better characterize 
precipitation phase and the elevation of the rain/snow transition.
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