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Article

Genome-scale metabolic modeling reveals key
features of a minimal gene set
Jean-Christophe Lachance1, Dominick Matteau1, Jo€elle Brodeur1, Colton J Lloyd2, Nathan Mih2,

Zachary A King2, Thomas F Knight3, Adam M Feist2,4 , Jonathan M Monk2,

Bernhard O Palsson2,4,5,6 , Pierre-�Etienne Jacques1 & S�ebastien Rodrigue1,*

Abstract

Mesoplasma florum, a fast-growing near-minimal organism, is a
compelling model to explore rational genome designs. Using
sequence and structural homology, the set of metabolic functions
its genome encodes was identified, allowing the reconstruction of
a metabolic network representing ~ 30% of its protein-coding
genes. Growth medium simplification enabled substrate uptake
and product secretion rate quantification which, along with exper-
imental biomass composition, were integrated as species-specific
constraints to produce the functional iJL208 genome-scale model
(GEM) of metabolism. Genome-wide expression and essentiality
datasets as well as growth data on various carbohydrates were
used to validate and refine iJL208. Discrepancies between model
predictions and observations were mechanistically explained using
protein structures and network analysis. iJL208 was also used to
propose an in silico reduced genome. Comparing this prediction to
the minimal cell JCVI-syn3.0 and its parent JCVI-syn1.0 revealed
key features of a minimal gene set. iJL208 is a stepping-stone
toward model-driven whole-genome engineering.

Keywords genome design; genome-scale models; Mesoplasma florum;

minimal cells; synthetic biology
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Introduction

The increased efficiency of in vitro DNA synthesis and assembly

methods (Hughes & Ellington, 2017) has enabled the development

of organisms living with either large fractions or completely

synthetic genomes (Gibson et al, 2010; Hutchison et al, 2016;

Venetz et al, 2019). The capability to physically write entire chro-

mosomes from synthetic DNA is now an achieved ambition of

synthetic genomics, but the ability to predict whether or not this

assembly will produce a viable cell remains a substantial challenge.

This difficulty is linked to the inherent complexity of living organ-

isms and the incomplete knowledge of the molecular functions they

entail (Danchin & Fang, 2016).

Minimal cells are simple organisms containing the fewest

number of genes necessary to support self-replicating life (Glass

et al, 2017). The number of unknown molecular functions within

these small genomes is proportional to their size (Price et al, 2018),

which makes them especially amenable to the exhaustive characteri-

zation of their content. JCVI-syn3A, a working approximation of a

minimal cell, was recently reported to contain only 91 proteins of

unknown function (Breuer et al, 2019). This number was consider-

ably higher for the phylogenetically related Mycoplasma pneumo-

niae (311 unknowns) and even higher in the model organism

Escherichia coli (1,780 unknowns) (Breuer et al, 2019).

Addressing the lack of knowledge in a given organism can be

aided by a computational framework (Yurkovich & Palsson, 2016)

and could lead to a complete understanding of its molecular func-

tions, an important milestone for reliable biological engineering

(Danchin & Fang, 2016; Lachance et al, 2019b). Furthermore, such

computational frameworks can be used directly for the prediction

and design of minimal gene sets (Wang & Maranas, 2018; Rees-

Garbutt et al, 2020). The development of a genome-scale model

(GEM) of metabolism, which details all known metabolic reactions

catalyzed by an organism in a reaction matrix, represents a promis-

ing strategy to face this challenge (Orth et al, 2010; O’brien et al,

2013). GEMs have been previously produced for other naturally

occurring or synthetic minimal cells from the Mollicutes phyloge-

netic group (Tomita, 2001; Suthers et al, 2009; Karr et al, 2012;

Bautista et al, 2013; Wodke et al, 2013; Breuer et al, 2019) but not

for the fast-growing and non-pathogenic Mesoplasma florum (see

Appendix Table S1 for a summary of M. florum characteristics).

Using this mathematically structured knowledgebase, key
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phenotypic predictions such as gene essentiality, metabolic flux

states, and growth medium requirements can be obtained from the

genotype without the need for precise enzyme kinetic data (Orth

et al, 2010; O’brien et al, 2013).

Here, we present iJL208, the first GEM for M. florum. The 208

genes in the model account for ~ 30% of the total gene count in the

genome. We thoroughly investigated and reviewed the genome

annotation using a combination of computational approaches,

resulting in a metabolic network composed of 370 reactions. A

recent deep characterization study of M. florum (Matteau et al,

2020) was leveraged to define a species-specific biomass composi-

tion. A novel semi-defined growth medium was developed, enabling

the identification of the main energy sources that can be metabo-

lized by M. florum. Both substrate uptake and product secretion

rates were determined in this medium, allowing the definition of

constraints on the model. Flux-state and gene essentiality predic-

tions were validated against genome-wide expression and essential-

ity datasets, reaching an accuracy of ~ 78 and ~ 77%, respectively.

Finally, we took advantage of the phylogenetic proximity of

M. florum to the minimal cell Mycoplasma mycoides JCVI-syn3.0

(Hutchison et al, 2016) to assess the predictive power of GEMs for

the design of minimal genomes. We previously reported that an

alternate minimal gene set was likely for M. florum (Baby et al,

2018b), which motivated our model-driven search. Given that

whole-genome cloning and transplantation techniques were devel-

oped for M. florum (Matteau et al, 2017; Baby et al, 2018a), minimal

genome designs could be put to the test imminently. This contrasts

with other mycoplasmas for which predictions were made (Rees-

Garbutt et al, 2020) but genetic engineering techniques remain

unavailable. The experimentally validated iJL208 model was there-

fore used to formulate a minimal genome prediction that also

accounts for both transcription unit architecture and genome-wide

essentiality.

Results

Identification of protein molecular functions in M. florum

The reconstruction of a high-quality GEM for M. florum requires a

comprehensive identification of the molecular functions encoded in

its genome. We used a combination of three different computational

approaches relying on both sequence and structural homology to

review the annotation of all open reading frames (Appendix Supple-

mentary Text, Datasets EV1–EV3). Proteome comparison (Fig 1A

and B), structural homology (Fig 1C), and the probabilistic identifi-

cation of enzyme commission (EC) numbers (Fig 1D) were

combined to define a final annotation score for each of the 676

M. florum-predicted proteins (Fig 1E, Materials and Methods).

Basic, medium, and high confidence levels could be attributed to

275, 285, and 116 proteins, respectively (Fig 1F).

Genome-scale metabolic network reconstruction

Public databases were queried to identify the reactions associated

with gene annotations included in the reconstruction (Artimo et al,

2012; Kanehisa et al, 2016; King et al, 2016; Placzek et al, 2017;

Wattam et al, 2017). To ensure consistency between the identified

reactions and available knowledge on Mollicutes metabolism, an

extensive literature search was also conducted (Appendix Supple-

mentary Text). The small size of the M. florum genome allowed for

a manual curation of the putative function for every gene. The

resulting metabolic reconstruction, iJL208, contains 208 protein-

coding genes, 370 reactions, and 351 metabolites, a count similar to

other Mollicutes models (Suthers et al, 2009; Bautista et al, 2013;

Wodke et al, 2013; Breuer et al, 2019) (Fig 2, Table 1, Dataset EV4,

Codes EV1 and EV2).

Overall, 236 of the 370 reactions are gene-associated in iJL208

(Fig 2 and Dataset EV4). Of those, 156 reactions are linked to a

single gene while 80 are linked to more than one (enzyme complex

or isozymes). Of the 134 orphan reactions, 93 are pseudo-reactions

(85 extracellular exchanges, three intracellular sinks, one ATP main-

tenance, and four biomass reactions) while 41 are necessary

orphans (15 spontaneous and 26 orphan transport reactions).

Notably, about a third (84/277) of the total number of reactions (ex-

cluding pseudo-reactions) in the model are transport reactions.

iJL208 reactions were grouped into six different modules:

Energy, Amino acids, Lipids, Glycans, Nucleotides, and Vitamins &

Cofactors (Fig 2). An extensive description of the composition of

each module and the mechanistic description of all reactions

included in the model is provided in the Appendix Supplementary

Text and Dataset EV4. Each module describes a general metabolic

objective and contains between 15 (Glycans) and 76 (Nucleotides)

reactions, as well as 14 (Glycans) to 57 (Energy) genes.

The extent of missing knowledge in each module was estimated

using the number of orphan reactions required to generate a

▸Figure 1. Computational identification of molecular functions in Mesoplasma florum.

An example of the characterization process is provided with the enolase gene.
A Predicted amino acid sequence of the M. florum enolase (Mfl468).
B The PATRIC proteome comparison tool allowed the identification of orthologs in the four Mollicutes species for which a metabolic model was available, including the

reactions to which they were associated in other models as well as their gene names and/or enzyme commission (EC) numbers.
C The Structural Systems Biology software (ssbio) was used to search for known protein domains in the amino acid sequence of proteins using the Protein Data Bank

(PDB) as a reference. If any domain was detected, the I-TASSER suite was used to generate a tridimensional model of the protein, which was in turn used to obtain
an EC number prediction with COFACTOR.

D Gold standard EC number identifications (yellow bar) were found using DETECT v2, which provides the likelihood of correct annotation (top). These predictions were
compared with those from RefSeq, PATRIC, and COFACTOR (bottom).

E Sankey diagram presenting the sequential steps used to interrogate the 676 predicted coding sequences. The level of confidence specific to each approach was
determined and is represented by the red (low) to blue (high) color gradient.

F Distribution of the final annotation score for the 676 predicted M. florum protein-coding genes. Based on this score, a basic (< 3; red), medium (≥ 3 and < 7; kaki), or
high (≥ 7; green) confidence level could be attributed to each predicted protein.
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functional model. Energy, Nucleotides, and Amino acids modules

had the lowest proportion of orphan reactions (< 14%; Fig 3A) and

describe well-known aspects of the metabolism of Mollicutes.

Conversely, the Lipids and the Vitamins & Cofactors modules had

the highest percentage of orphans relative to their total number of

associated reactions (25 and 33%, respectively). While the Glycans

Figure 2. Map of the genome-scale metabolic network of Mesoplasma florum.

Circles represent metabolites, and connecting lines indicate metabolic reactions. Metabolite names are indicated in black, while reaction names and associated gene
names are in dark blue. Reaction directionality is represented by arrows. The dotted line shows the cell membrane, with transport reactions linking the intracellular
milieu with the extracellular environment. The reactions are color-coded according to the six main modules. The outer colored boxes describe the number of genes,
gene-associated reactions, and orphan reactions. An interactive Escher (King et al, 2015) version of this map is available (Code EV1).

Table 1. Number of protein-coding genes, reactions, and metabolites in Mollicutes metabolic models. The number of genes and reactions shared
with Mesoplasma florum is represented for each model.

Species Model
Genes:
Model/Total (%)

Total reactions
in model

Reactions: shared
with M. florum (%)a

Total metabolites
in model

Mycoplasma genitalium iPS189 126/507 (24.9%) 351 79/174 (45.4%) 324

Mycoplasma pneumoniae iJW145 145/691 (20.1%) 306 74/156 (47.4%) 346

Mycoplasma gallisepticum N/Ab 198/747 (26.5%) 322 83/260 (31.9%) 444

JCVI-syn3A N/Ab 155/473 (32.8%) 338 87/338 (25.7%) 304

M. florum iJL208 208/680 (30.6%) 370 — 351

aThe percentage of shared reactions applies only to the gene-associated reactions.
bNo model name was provided by the authors.
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module contains a single orphan reaction, the majority of its reac-

tions (12/15) are assumed promiscuous reactions. In proportion to

their total number of genes, these three modules also displayed a

lower gene annotation confidence level than the other three

(Fig 3B).

As expected, about 70% (146/208) of the protein-coding genes

included in the metabolic reconstruction were orthologous to JCVI-

syn3.0, a slightly higher fraction than the number of orthologs

present in the entire genome (~ 60%, 411/680; Fig 3B and

Appendix Fig S1). The Glycans and Amino acids modules were

more conserved than the average for the entire model, while

Energy, Vitamins & Cofactors, and Nucleotides had a distribution

similar to the model. The Lipids module was the least conserved

with 52% of orthologs (Fig 3B).

Medium simplification and growth kinetics

While the genomic complexity of Mollicutes is remarkably low

(Sirand-Pugnet et al, 2007), the number of necessary medium

components to sustain their growth is rather high (Keçeli & Miles,

2002). The metabolic reconstruction reflects this reality with 84

extracellular metabolites associated with transport reactions (Fig 2

and Dataset EV4). We sought to elaborate a simplified growth

medium for M. florum which, before this study, was commonly

grown in the complex and undefined ATCC 1161 medium contain-

ing horse serum (HS), yeast extract (YE), and heart infusion broth

(see Materials and Methods).

A particular problem faced when using the ATCC 1161 medium

was apparent growth when no sucrose was added (Fig 4A, top),

which prevented the assessment of M. florum’s metabolic capabili-

ties when supplemented with different carbohydrates. To circum-

vent this issue, the concentrations of HS and YE were lowered by

adding a completely defined rich medium base to the mixture

(CMRL-1066). This allowed a 64-fold reduction in the concentra-

tions of HS (to 0.313%) and YE (to 0.02%) required for significant

growth (Appendix Fig S3), as well as the complete removal of heart

infusion broth. This CMRL-1066-based semi-defined medium,

referred to as CSY, allows visible growth only when sucrose is

added (Fig 4A, bottom).

We observed that reducing the concentration of HS and YE

impacted the doubling time of M. florum (Fig 4B), suggesting that

nutrients contained in these undefined components are rate-limiting

in M. florum. When varying the initial sucrose concentrations in

CSY medium, the total biomass produced followed an asymptotic

behavior (Fig 4C), with a predicted maximum concentration of

5.95 x 1e8 colony-forming unit per ml (CFU/ml), corresponding to

0.013 grams of dry weight per liter (gDW/l). Given that M. florum

cell densities typically reach ~ 1e10 in ATCC 1161 medium (Matteau

et al, 2020), these observations confirmed that nutrients other than

sucrose are rate-limiting in CSY.

Nevertheless, at low sucrose concentrations, initial sucrose and

growth rate displayed a Monod-like relation (Monod, 1949), with a

maximal growth rate in CSY found at 0.44 h−1 (Fig 4D,

Appendix Figs S4 and S5A). We used this range of dependency

between the growth rate and the initial sucrose concentrations to

define substrate uptake and by-product secretion rates. The sucrose

and combined lactate/acetate variation of concentration over time

was measured by high-performance liquid chromatography (HPLC).

Substrate-specific uptake rate (sucrose) and metabolic by-product

secretion rates (lactate/acetate) were calculated using linear regres-

sion in the exponential growth phase (Materials and Methods;

Appendix Figs S5 and S6). The range of possible rates within the

exponential phase was calculated for each initial sucrose concentra-

tion (Fig 4E and F). Interestingly, a tendency toward both a maxi-

mum uptake and secretion rates (qSmax) could be observed, which

is desired for modeling purposes where the optimal conditions are

assumed. Accounting for experimental variability and the number

of data points available, the maximum sucrose uptake rate was set

at −5.26 mmol/gDW/h and the combined lactate/acetate secretion

rate at 8.69 mmol/gDW/h (see Materials and Methods).

A B

Figure 3. Characteristics of the Mesoplasma florum metabolism as revealed by the genome-scale network reconstruction.

A Distribution of gene-associated and orphan reactions in the six modules defined in iJL208.
B Distribution of genes and their associated final annotation score (see Fig 1F) in the metabolic modules. JCVI-syn3.0 orthologs are plain while the non-orthologs are

hatched.
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Conversion into a mathematical format and sensitivity analysis

The biomass objective function (BOF) is a reaction of the stoichio-

metric matrix used to simulate an organism’s growth (Feist &

Palsson, 2010). Previously reported experimental macromolecular

composition characterizing 98.8% of M. florum’s dry mass, as well

as multiple omics datasets (Matteau et al, 2020) were used as input

into the BOFdat software (Lachance et al, 2019a) to define the M. flo-

rum-specific BOF (Materials and Methods; Appendix Supplementary

Text). DNA, RNA, and protein stoichiometric coefficients were

determined by the first step of BOFdat and accounted for 76.4% of

the total cellular dry weight (Matteau et al, 2020) (Fig 5A, left).

Coenzymes and inorganic ions were next identified, finding 12

metabolites previously defined as universally essential cofactors in

prokaryotes (Xavier et al, 2017), as well as seven other metabolites

with high connectivities (Fig 5A, middle). These 19 metabolites were

considered as the soluble pool, and their stoichiometric coefficients

were determined using the remaining 1.2%M. florum biomass.

Using the Step 3 of BOFdat, the correspondence between

single-gene essentiality prediction and genome-wide transposon

A B C

D E F

Figure 4. Impact of medium composition on Mesoplasma florum growth kinetics.

A Bacterial growth assessed by color change due to medium acidification for both the undefined ATCC 1161 and semi-defined CSY media with or without sucrose,
4% and 1%, respectively. (+), inoculated wells; (−), non-inoculated control. The picture was taken after a 24-h incubation period.

B Impact of horse serum (HS) and yeast extract (YE) dilution on M. florum doubling time. The green and red dotted lines indicate HS and YE concentrations found in
ATCC 1161 medium (20% HS, 1.35% YE) and CSY medium (0.313% HS, 0.02% YE), respectively. Doubling times were measured in a CMRL-1066 base medium using
colorimetric assays. Dots and error bars indicate the mean and standard deviation calculated from three biological replicates.

C The maximal biomass concentration observed for M. florum cultures growing in CSY medium with varying initial concentrations of sucrose. Biomass was measured
using colony-forming units (CFU/ml; left axis) and converted to grams of dry weight (gDW/l; right axis). A rectangular hyperbola fit is shown (yellow), and the
dotted line represents the maximal biomass value predicted by the fit (1e8 × 5.95 CFU/ml; 0.013 gDW/l).

D Relationship between varying initial sucrose concentration and growth rate in CSY medium. Growth rates were determined by fitting a simple exponential growth
model to CFU/ml data from time-course experiments, and error bars indicate the standard deviation associated with each value. CFU/ml quantifications were
performed in technical duplicate as described in Appendix Figs S4 and S5. A rectangular hyperbola fit is shown, and the predicted maximal growth rate (0.44 h−1) is
indicated by the dotted line.

E, F Sucrose-specific uptake rate (E) and combined lactate/acetate-specific secretion rates (F) at varying initial sucrose concentrations in CSY medium. Boxplots
represent the median and interquartile range of uptake or secretion rate values calculated at different time intervals during the exponential growth phase of
M. florum cultures. Whiskers indicate minimal and maximal values. Dotted lines indicate the selected uptake (−5.26 mmol/gDW/h) and secretion rate (8.69 mmol/
gDW/h) values used for modeling. Sucrose quantifications were performed in technical duplicate, whereas lactate and acetate quantifications were performed in
single replicates. See Appendix Fig S5 for further details.
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mutagenesis data (Baby et al, 2018b) was improved by the addition

of nine metabolites, two of which were also identified in previously

published lipidomic data (Matteau et al, 2020) (Fig 5A, right;

Table 2, Appendix Fig S7, Materials and Methods). A metabolite

corresponding to the M. florum capsular polysaccharide (CPS) was

also added during Step 3. In the pathways leading to the production

of the four most frequently identified metabolites in Step 3, 10 out

of 15 genes had their essentiality prediction modified compared with

Step 2 (Fig 5B). Among these 10, a single gene (mfl061) was wrong-

fully identified as essential compared with transposon mutagenesis

data. The final iJL208 biomass composition is presented in

Appendix Table S3.

The model was then constrained using the experimental rates

defined above (Fig 4D–F). Given the complexity of the growth

medium, growth- and non-growth-associated maintenance costs

(Varma & Palsson, 1993) (GAM and NGAM, respectively) could not

be obtained directly and had to be inferred from known parameters.

To simulate growth on CSY, the in silico minimal medium was

defined using the COBRApy toolbox (Ebrahim et al, 2013)

(Appendix Table S2) and a set of key initial parameters were

selected (Materials and Methods). A phenotypic phase plane analy-

sis (Edwards et al, 2002) was performed to identify the ATP mainte-

nance value that allowed the model to reproduce the experimentally

determined growth rate and define both GAM (Fig 5C) and NGAM

(Fig 5D) values. With these constraints, the model sensitivity to the

sucrose uptake rate was assessed, revealing three different growth

phases ending with a plateau (Fig 5E). This is similar to the experi-

mental observations that, in CSY, M. florum’s growth is not

restricted by sucrose availability alone (Fig 4). The main model

constraints identified in this study are listed in Table 3.

The metabolic reconstruction revealed the capability of M. flo-

rum to produce both lactate and acetate as fermentation products

(Fig 2). Since only their combined secretion could be measured by

HPLC (Appendix Fig S5C, Materials and Methods), individual

production rates had to be inferred. Previously reported differential

expression of key enzymes (Matteau et al, 2020), such as the lactate

dehydrogenase (LDH: Mfl596), showed an approximately 4- to 8-

fold increase in the protein expression levels compared with genes

of the pyruvate dehydrogenase complex (PDH: Mfl039, Mfl040,

Mfl041, and Mfl042). We thus used an 8:1 initial ratio (lactate:ac-

etate) for further phenotypic phase plane analysis (Materials and

Methods). For lactate production, this analysis revealed a positive

linear relationship between the predicted growth rate and lactate

secretion rate (Fig 5F). Conversely, the production of acetate was

detrimental to the predicted growth rate (Fig 5G), and its secretion

rate had to be lowered to match the experimental growth rate in

CSY. While both secretion routes generate ATP, acetate production

requires oxygen to regenerate the NAD+ pool through the NADH

oxidase (NOX2, Mfl037; Fig 2). To simultaneously ensure that

M. florum was not able to produce oxygen and that the growth rate

was not linearly dependent on oxygen uptake, the NOX2 reaction

was bounded between 0 and 5 mmol/gDW/h, resulting in an opti-

mal oxygen uptake rate intersecting a plateau (Fig 5H).

Validation of model phenotypic predictions

The development of the CSY medium enabled an experimental vali-

dation of the capability of M. florum to grow on 14 different

carbohydrates and to compare these observations with the

constrained model’s phenotypic predictions (Figs 6A and EV1 and

Appendix Supplementary Text). The growth/no-growth phenotype

was correctly predicted by iJL208 for 12 out of the 14 sugars tested.

The two remaining sugars, maltose and mannose, were used by

M. florum while the model predicted no growth. To address these

discrepancies, the alternate carbon metabolism of M. florum was

studied, seeking enzymes that would likely carry a promiscuous

activity. Particularly, the specificity of three enzymes was chal-

lenged using the FATCAT 2.0 server (Li et al, 2020) to compare the

tridimensional structures reconstructed with I-TASSER in this study

to crystallographic structures from the Protein Data Bank (PDB;

Figs 6B and EV2, and Appendix Table S4).

The similarity between maltose and trehalose suggested that the

trehalose hydrolase (Mfl499) could also hydrolyze maltose. This

hypothesis was supported by the very high structural similarity

between the reconstructed Mfl499 and a Bacillus sp. α-glucosidase
shown to have a high specificity for α-(1-4)-glucosidic linkage (Auie-

wiriyanukul et al, 2018) (Figs 6B(i) and EV2A). Similarly, the capac-

ity of M. florum to metabolize mannose could be explained by the

capability of the glucose-6-phosphate isomerase (Mfl254) to convert

mannose-6-phosphate into fructose-6-phosphate, hereby entering

glycolysis (Figs 6B(ii) and EV2B). While the promiscuity of phos-

photransferase systems (PTS) and other transporter complexes

could not be tested in silico (Materials and Methods), the addition of

both the promiscuous transport and digestion reactions was suffi-

cient to provide a growth prediction on maltose and mannose. As

reported previously, both glucose and mannose were detected in the

M. florum polysaccharide layer (Matteau et al, 2020). The presence

of a phosphomannomutase (Mfl120) in the genome annotation

suggested the conversion of mannose-6-phosphate to mannose-1-

phosphate, a necessary precursor for glycan synthesis (Bertin et al,

2015). The very high structural similarity between the reconstructed

Mfl120 and an enzyme necessary for the production of exopolysac-

charides (Regni et al, 2002) in Pseudomonas aeruginosa (Figs 6B(iii)

and EV2C) supported this hypothesis.

Genome-wide expression (Matteau et al, 2020) and transposon

mutagenesis (Baby et al, 2018b) datasets available for M. florum

were used as a reference for the validation of model flux states and

gene essentiality predictions (Thiele & Palsson, 2010). From the 208

protein-coding genes present in iJL208, 173 showed a consistent

expression between transcriptomic and proteomic datasets

(Appendix Fig S8, Materials and Methods, and Dataset EV5). Of

these genes, 135 occurrences had an expression profile in agreement

with the metabolic fluxes predicted by the model, which corre-

sponds to an accuracy of 78.03% (Fig 6C). In parallel, the original

transposon mutagenesis data were re-analyzed following the

method proposed by Hutchison and colleagues (Hutchison et al,

2016), where genes hit solely in the final 20% of their nucleotide

sequence were not considered as essential. Using this approach

resulted in the re-assignment of 79 coding genes previously consid-

ered as non-essential, for a total of 332 M. florum genes now deter-

mined as essential (Fig EV3, Dataset EV5, and Materials and

Methods). 160 single-gene essentiality predictions from iJL208 were

consistent with that revised experimental data, for an overall accu-

racy of 76.92% (Fig 6D).

Essentiality and expression comparison with model predictions

provided a context for the refinement of the model. Targeted false
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negatives, i.e., genes simultaneously expressed and essential while

no flux or essentiality was predicted in iJL208 (Fig 6C and D),

together with a single false positive was manually curated by the

addition of specific constraint(s) (Appendix Supplementary Text

and Appendix Fig S9). Among those, genes of the pentose phos-

phate pathway (PPP) were specifically investigated since they all

showed expression but carried no metabolic flux (Fig 6E). In M. flo-

rum and other Mollicutes, this pathway is incomplete because no

gene is typically attributed to the transaldolase (TALA) reaction

(Miles, 1992; Suthers et al, 2009; Wodke et al, 2013; Breuer et al,

2019). Here, the I-TASSER reconstructed structure of two 2-

deoxyribose-5-phosphate aldolases (Mfl121 and Mfl639) were

queried against the PDB to find potential matches with transaldolase

structures (Fig EV2D–F). Of the 12 transaldolases identified, the

structure from Thermotoga maritima had the most significant match

and highest similarity (Fig 6E and Appendix Table S4). While this

structural similarity points to a potential transaldolase reaction,

experimental validation will be required to confirm its presence.

Meanwhile, the TALA reaction was assigned to Mfl121 or Mfl639 in

iJL208, thereby allowing flux through the PPP, which is consistent

with expression data.

Model-driven prediction of a minimal genome

The validated iJL208 GEM was used together with experimental

gene essentiality and transcription unit architecture (Matteau et al,

2020) to infer and characterize a minimal gene set for M. florum

using the MinGenome algorithm (Wang & Maranas, 2018). To

generate this prediction, MinGenome incorporates both experimen-

tal data and model constraints into an optimization problem that

◀ Figure 5. Conversion into a mathematical format.

A The biomass objective function (BOF) was defined using the BOFdat software (Lachance et al, 2019a) and experimental data from Matteau et al (2020). The
stoichiometric coefficients for the major cellular macromolecules were generated with BOFdat Step 1 (left), the inorganic ions and coenzymes with BOFdat Step 2
(middle), and the remaining components with BOFdat Step 3 (right), which identifies the metabolites with the greatest impact on the BOF gene essentiality
prediction accuracy.

B Depiction of the metabolic context of four complete pathways supporting the output of BOFdat Step 3. Metabolite names are shown in black and reaction names
in gray. Boxes contain the predicted essentiality of the protein-coding genes associated with a given reaction following BOFdat Step 2 (S2) and Step 3 (S3), along
with the observed essentiality (Obs). N/A corresponds to orphan reactions.

C–H Sensitivity analysis of the iJL208 model to (C) growth-associated maintenance (GAM), (D) non-growth-associated maintenance (NGAM), (E) sucrose uptake rate, (F)
lactate and (G) acetate secretion rates, and (H) oxygen uptake rate. The light purple dotted line represents the corresponding rate at the predicted maximal growth
rate in CSY (0.44 h−1).

Table 3. Comparison of the main model constraints with those of other Mollicutes models. All units are given in mmol/gDW/h.

Constraint

Mesoplasma
florum
(this study)

Mycoplasma genitalium
(Suthers et al, 2009;
Karr et al, 2012)

Mycoplasma
pneumoniae
(Wodke et al, 2013)

Mycoplasma
gallisepticum
(Bautista et al, 2013)

JCVI-syn3A
(Breuer et al, 2019)

GAM 17.2 9.7a 25 9.7b 46.54b

NGAM 3.1 8.4a 3.3 8.4b 3.3b

Substrate uptake rate 5.26 5a 7.37 16.53 7.4b

Acetate secretion rate 0.53 Unconstrained 6.93 N/A 6.9b

Lactate secretion rate 8.16 Unconstrained N/A 10.29 Unconstrained

aExtrapolated from other species.
bExtrapolated from other Mollicutes models.

Table 2. Comparison of the metabolites identified in BOFdat Step 3 to those included in other Mollicutes’ model biomass compositions.

Metabolite Mycoplasma genitalium Mycoplasma pneumoniae Mycoplasma gallisepticum JCVI-syn3A

Sulfur Presenta Absent Presenta Absent

Spermidine Present Absent Present Present

Cytidine Absent Present Absent Absent

Putrescine Present Absent Present Absent

Phosphatidylglycerol Absent Absent Present Present

Adenosine Absent Present Absent Absent

Methyltetrahydrofolate Present Absent Present Present

S-adenosyl-methionine Present Present Present Absent

Phosphatidyl-glycerophosphate Absent Absent Absent Absent

aSulfate was identified instead of Sulfur in these models.
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finds the largest possible deletion in the genome which, applied iter-

atively, defines the minimal gene set. Interestingly, a minimum

growth rate can be imposed as a constraint on the MinGenome

optimization problem. We investigated the impact of a range of

imposed growth rates on predicted genome reduction scenarios,

and three possible genome reduction scenarios were obtained

A

C D

E

B

Figure 6. Validation of the model’s phenotypic predictions.

A Growth phenotype observed on CSY medium supplemented with different carbohydrates (1% final concentration) compared with iJL208 predictions. Growth
observations and predictions were normalized by growth on sucrose. Discrepancies between experimental data and predictions are highlighted (red rectangle).

B The metabolic network reconstruction allowed the identification of potential candidates carrying promiscuous reactions (pink) responsible for maltose and mannose
catabolism. 3D structures of candidates (Mfl499, Mfl120, and Mfl254; red) are superimposed to available structures in the Protein Data Bank (light blue) for which the
suspected enzymatic activity is annotated. FATCAT P-values are shown.

C The 173 genes where the transcriptomic and proteomic expression data (Exp) are consistent (see Appendix Fig S8) are compared with flux state predictions generated
by parsimonious flux-balance analysis (Flux). True positives (TP) and true negatives (TN) correspond to genes where both predictions and observations are consistent,
while false positives (FP) and false negatives (TN) where they are inconsistent. Genes considered expressed or with an active flux are represented in dark blue, and
silent in light blue.

D Revised gene essentiality data (see Fig EV3) compared with essentiality predictions from iJL208. Essential and non-essential protein-coding genes are represented in
green and red, respectively. TP, TN, FP, and TN are as in (C).

E The pentose phosphate pathway (PPP) of Mesoplasma florum along with ribose import. The transaldolase (TALA) reaction (pink) was missing in the network.
Structural similarity between two 2-deoxyribose-phosphate aldolases (Mfl121, red in left box; Mfl639, red in right box) to a known transaldolase from the PDB (light
blue) served as basis for the addition of this gene-associated reaction in the model. The observed essentiality (Ess.) and expression (Exp.) of genes (see panels (C) and
(D)) associated with each reaction of the PPP are indicated by green (essential or expressed) or red (non-essential or non-expressed) colored squares.
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(Appendix Supplementary Text, Dataset EV6, and Appendix Fig

S10). The smallest genome size (562 kbp) was identified at the

lowest imposed growth rate, corresponding to 563 retained and 152

deleted genes (535 and 145 protein-coding genes, respectively; Fig 7

A). The resulting genome designs were compared with the gene

content of JCVI-syn3.0 (Hutchison et al, 2016), which has a high

proportion of orthologs in M. florum (Appendix Fig S1) and

provides a compelling validation framework for a minimal genome.

Interestingly, lowering the growth rate constraint increased the simi-

larity of the predicted minimal gene set to JCVI-syn3.0 (Dataset EV6

and Appendix Fig S10).

The smallest predicted M. florum genome was further analyzed

by comparing its 535 retained and 145 deleted protein-coding genes

to both JCVI-syn3.0 and its parent strain JCVI-syn1.0 (Gibson et al,

2010). Of the 145 proteins deleted in this scenario, 37 are present in

JCVI-syn3.0, while 32 are JCVI-syn1.0 proteins that were also

deleted in the process of generating JCVI-syn3.0 (Fig 7B). In total,

108 (74%) of these proteins were not in JCVI-syn3.0 (Fig 7B). Also,

the number of JCVI-syn3.0 proteins with no ortholog in M. florum

(58) was similar to the number of JCVI-syn1.0 proteins deleted to

generate JCVI-syn3.0 and the number of proteins shared with M. flo-

rum (63).

We further investigated the functional categories of the deleted

proteins and combined this information with the reported protein

expression level, revealing that eight key cellular functions were

simply never hit by any deletions: ATP synthase, Translation

factors, RNA polymerase, Protein export, Cofactor biosynthesis,

Sulfur relay system, Lipid metabolism, and the PPP metabolism

(Figs 7C and EV4A, and Dataset EV6). The Ribosome category was

nearly untouched except for the highly expressed ribosomal protein

L31 (rpmE, Mfl648). While functionally important, this protein was

categorized as non-essential in our dataset (Dataset EV5). In E. coli,

it was also shown that the deletion of both this protein and its

paralog would yield a viable cell, albeit one with significant growth

defects (Lilleorg et al, 2017). Like in M. florum, this protein was hit

by transposons in JCVI-syn1.0 and caused only minor growth disad-

vantages (Hutchison et al, 2016). However, the rpmE gene was

retained in JCVI-syn3.0, likely to increase the robustness of the cell.

The key features retained in the proposed minimal gene set were

similarly detailed by mapping their functions to KEGG categories

and their homology to JCVI-syn3.0 or JCVI-syn1.0 (Figs 7D and

EV4B, Dataset EV6, and Appendix Supplementary Text). The 535

proteins retained in the minimal gene set were similarly distributed

between the three most represented functional categories. Of the

191 proteins that did not map to a KEGG category, the majority

(106) were specific to M. florum (Fig EV4B). Three of the 12 sub-

categories contained in the Metabolism category (ATP synthase,

Amino acid metabolism, and Secretion system) were exclusively

composed of proteins having orthologs in JCVI-syn3.0 (Fig 7D and

Dataset EV6). While all glycolysis enzymes were retained and

common with JCVI-syn3.0, enzymes responsible for the assimilation

of sucrose in the three sub-categories where they were found

(Transport, PTS, and Glycolysis and carbohydrate metabolism) had

no orthologs in JCVI-syn3.0, meaning that energy sources are inter-

changeable in Mollicutes’ minimal genomes.

We also observed the absence of the E1 component of the PDH

complex in JCVI-syn3.0 (Hutchison et al, 2016). The conservation of

these proteins in our minimal genome prediction relies on the forced

secretion of acetate in iJL208 (Fig 5), which best represented the

experimental setting. Consistent with our observation that varying

the imposed growth rate generated three different genome reduction

scenarios, this reveals that alternate minimal genome designs may

be obtained by varying the constraints imposed on the input GEM.

Finally, the retained proteins in the genetic information process-

ing category are regrouped in 13 sub-categories and the vast major-

ity have orthologs in JCVI-syn3.0 (174/195; Figs 7D and EV4B, and

Dataset EV6). The fewest number of JCVI-syn3.0 orthologs was

found in the DNA repair sub-category. The conserved proteins in

our prediction entailed recombination proteins, glycosylases, and

the DNA polymerase IV. In all cases, a single occurrence was still

available in JCVI-syn3.0, meaning that these genome integrity func-

tions should remain in a minimal gene set. Transcription factors

involved in the assimilation of fructose were also conserved in our

prediction while being absent from JCVI-syn3.0, which is consistent

with the observations made for the metabolism that revealed energy

sources could be swapped in minimal genomes.

Discussion

Computer-aided design is crucial for the development of synthetic

biology on a large scale. In genome-writing projects (Ostrov et al,

2019), the predictive power of GEMs could be leveraged to reduce

the overall design and engineering efforts required to produce a

viable strain. Still, the applicability of computational models for

genome design is tightly linked to the level of knowledge available

for the organism of interest.

In M. florum, the level of knowledge was examined by cross-

validating the identification of molecular functions from different

computational methods, establishing a confidence hierarchy for

protein annotation (Fig 1, Datasets EV1–EV3). Using predicted

protein functions, we reconstructed the metabolic network of M. flo-

rum and produced the first GEM for this near-minimal organism

(Codes EV1 and EV2). Overall, iJL208 shares many similarities to

previously reconstructed Mollicutes models (Table 1), including the

requirement of a rich medium as a key feature to support the cell’s

growth, typically associated with a scavenger lifestyle (Arraes et al,

2007; Fisunov et al, 2016). This metabolic regime is mainly charac-

terized by the abundance of transport reactions (84), the absence of

a respiratory system, and the fact that biosynthesis occurs mostly

through salvage pathways (Fig 2 and Dataset EV4). These elements

are closely linked, with glycolysis providing a low ATP yield that is

nonetheless sufficient to fuel the import of nutrients from the

medium via various PTS. M. florum then assembles premade molec-

ular building blocks, which considerably lowers the energetic cost

of building cellular biomass.

Combining this information with the six modules proposed in the

metabolic reconstruction (Fig 2) revealed that the Lipids, Glycans,

and the Vitamins & Cofactors modules had fewer genes identified

with scarcer reliable information (Fig 3). It is possible that enzymes

used by Mollicutes to integrate lipids in their membranes and

assemble glycans into CPS are not very similar to more thoroughly

studied proteins in model organisms. Corollary to this hypothesis is

the lost ability to synthesize a cell wall, a landmark of Mollicutes

evolution (Sirand-Pugnet et al, 2007). Therefore, lipid and glycan

syntheses are probably performed by currently un-annotated but
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Figure 7. Model-driven prediction of a minimal genome for Mesoplasma florum.

A Iterative deletions using the MinGenome algorithm. Faded circles represent genome size and bright triangles the number of deleted coding and non-coding genes.
Low, intermediate, and optimal growth rate constraints correspond to 60, 90, and 100% of the M. florum growth rate measured in CSY (0.44 h−1).

B Venn diagram showing the protein-coding genes shared between M. florum (red circle), JCVI-syn3.0 (green circle), and its parent JCVI-syn1.0 (blue circle). The different
shades of gray represent the proteins targeted for deletions in the low growth rate constraint presented in (A).

C Voronoi diagram showing the functional distribution of 145 proteins targeted for deletions present in JCVI-syn3.0 (black), M. florum only (dark gray), and JCVI-syn1.0
but not JCVI-syn3.0 (light gray). The shapes are sized according to transcriptomic data, and the KEGG categories are represented by bright colors. The single protein
associated with environment information processing is represented in black on the top part of the diagram between the genetic information processing and
metabolism categories.

D Voronoi diagram showing the functional distribution of the retained proteins in the predicted reduced genome. Shape colors are as in (B), and purple represents
proteins shared with JCVI-syn3A but absent in JCVI-syn3.0. Section borders are colored according to KEGG categories depicted in (C).
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likely essential enzymes. Additional work will be needed to describe

the exact lipid and glycan compositions and the genes involved in

their processing.

The need for additional knowledge was also highlighted in our

minimal genome prediction (Fig 7 and Dataset EV6). While the

majority of the genes targeted for deletion were not mapped to

KEGG functional categories, a significant proportion (~ 36%) of the

retained proteins were of unknown function (Figs 7C and D, and

EV4B). This fraction is very similar to its counterpart in JCVI-syn3.0

where it was initially reported that 149 genes out of the 473 were

uncharacterized (~ 32%) (Hutchison et al, 2016).

Among the key features entirely retained in the minimal genome

scenario were the cofactor biosynthesis-related proteins (Fig 7C and

D), which is consistent with the fact that BOFdat Step 2 enforced the

addition of all vitamins and cofactors essential to sustain prokary-

otic life (Xavier et al, 2017; Lachance et al, 2019a). Whether or not

all these cofactors are effectively necessary to support M. florum’s

growth could be addressed upon the definition of a completely

defined medium. Given that the Vitamin & Cofactors module

contained a higher fraction of proteins with a lower confidence level

(Fig 3), such a study could provide highly valuable information for

the complete understanding of M. florum molecular functions.

BOFdat Step 3 was used to find metabolites that contribute to

increasing iJL208 gene essentiality prediction when added to the

BOF (Fig 5 and Appendix Fig S7). While this approach was not

applied to other Mollicutes models, all but one metabolite identified

in this step were found in these models’ BOF (Table 2). Taken

together, these comparisons support the proposed BOF composition

for M. florum (Appendix Table S3).

The CSY semi-defined medium allowed the assessment of M. flo-

rum growth on various energy sources and identified discrepancies

between observations and model predictions (Figs 6 and EV1).

Comparing selected 3D protein structures reconstructed with I-

TASSER to the PDB using FATCAT 2.0 revealed similarities with

proteins of known promiscuity (Fig EV2). While this approach does

not constitute a direct validation of enzyme promiscuity, it does

provide contextual hypotheses for reducing the search space for

eventual biochemical characterizations. Yet our study was not the

first to use such ad hoc reconstruction of 3D structures for genome-

wide identification of protein functions (Yang & Tsui, 2018; Antczak

et al, 2019; Yang et al, 2019). We foresee that faced with the great

challenge of identifying numerous molecular functions required for

synthetic biology, combining the increasing reliability of structure

prediction algorithms (AlQuraishi, 2019; Senior et al, 2019; preprint:

Billings et al, 2019) to the predictive power of GEMs is likely to play

an important role in organism design in the coming years.

Mesoplasma florum-specific uptake and secretion rates were

defined in CSY medium (Fig 4 and Appendix Figs S5 and S6), a

measurement performed for only two of the four modeled Molli-

cutes acknowledged in our study (Bautista et al, 2013; Wodke et al,

2013). While the calculated substrate uptake rate was slightly lower

than both values recorded in other Mollicutes, the combined lactate

and acetate secretion rate was within the previously measured

values (Table 3). In our datasets, the expression of both the LDH

(Mfl596) and the PDH (Mfl039-Mfl042) complex-forming genes was

observed (Dataset EV5), which led to the hypothesis that both

fermentation products would be secreted in M. florum. The initial

lactate/acetate secretion rate ratio (8:1) chosen based on the

expression data was exacerbated following sensitivity analysis

(~ 15:1). This shift in ratios can be explained by the upper flux limit

applied to the NADH oxidase reaction, which utilizes oxygen to

recycle NADH cofactor produced when generating acetate, whose

addition was necessary to ensure a non-linear relationship between

oxygen uptake and growth rate (Fig 5H). This shift also reflected the

difference in LDH and PDH expression levels as well as the stoichio-

metric disparity of the two active protein complexes (Mattevi et al,

1992; Wigley et al, 1992). Our genome reduction scenario conserved

the E1 component of the PDH whereas it was absent in JCVI-syn3.0

(Dataset EV6). Hence, the individual and unequivocal quantification

of M. florum lactate and acetate secretion rates could reveal the

conditions under which this pathway is essential, hereby shedding

light on alternate genome reduction paths.

In M. florum, the high proportion of JCVI-syn3.0 orthologs

provided an interesting validation for the GEM-driven prediction

of a minimal gene set featured in our study (Fig 7). The rational

design of minimal genomes using the Mycoplasma genitalium

whole-cell model reported minimal genes sets considerably lower

than the 473 genes contained in JCVI-syn3.0 (360 and 380) (Rees-

Garbutt et al, 2020). While removing individual genes from JCVI-

syn3.0 is still possible, combining multiple gene deletions often

resulted in greatly reduced growth rates (Breuer et al, 2019; Pelle-

tier et al, 2021). Hence, predictions containing fewer genes than

this organism are not likely to be viable. Our reduction scenario

contained 90 more genes than JCVI-syn3.0 (563 vs 473), which

could be attributed to genuine biological differences between the

two organisms or inaccurate predictions given the remaining

uncertainties in iJL208 and the resolution in the transposon muta-

genesis dataset used by the MinGenome algorithm (Wang &

Maranas, 2018).

Comparing our genome reduction scenario to JCVI-syn3.0

revealed the possibility that minimal genomes could use alternate

carbohydrates to fuel their cellular needs. We also found that vary-

ing the growth rate constraint resulted in a reduced genome more

similar to JCVI-syn3.0 (Appendix Fig S10). A growth rate set to 60%

of optimal was also notably similar to the growth rate ratio between

JCVI-syn3.0 and the more robust JCVI-syn3A (~ 50%) (Breuer et al,

2019). The absence of the E1 complex from JCVI-syn3.0 but its pres-

ence in our minimal gene set suggests that varying the constraints

imposed on the input GEM could result in different genome reduc-

tion scenarios (Dataset EV6). Some proteins from the genetic infor-

mation processing category differed from JCVI-syn3.0. The impact

of these different chaperones, peptidases, ribosome methylases, and

ribosome composition (i.e., rpmE) could be assessed by generating

a model that includes the expression machinery (ME-model) (Liu

et al, 2014; Lloyd et al, 2018).

In conclusion, iJL208 was built on a revised annotation

obtained from several computational approaches. Since missing or

incomplete information can lead to false or inaccurate predictions,

we performed different experiments to validate and increase the

overall quality of the model. iJL208 will provide a framework to

generate hypotheses, guide future experiments, and reach an

exquisite understanding of cellular mechanisms in M. florum.

With recent advances enabling complex genome manipulation in

M. florum (Matteau et al, 2017; Baby et al, 2018a), iJL208 will

also contribute to whole-genome engineering studies in this

emerging model organism.
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Materials and Methods

Bacterial strains and data sources

All experiments described in this study were performed using

M. florum strain L1 (ATCC 33453). The complete genome

sequence of this strain is available in GenBank under RefSeq

accession number NC_006055.1. Genome annotations were either

based on RefSeq (NC_006055.1), PATRIC (Genome ID: 265311.5),

or both depending on specific analysis context and needs. The

transposon mutagenesis dataset was taken from Baby et al

(2018b). M. florum biomass composition, gene expression data-

sets, and lipidomic profile were taken from Matteau and collea-

gues (Matteau et al, 2020). Original transcriptomic and proteomic

data are accessible through the Gene Expression Omnibus (GEO)

under Series accession number GSE152985 and via the PRIDE

partner repository with the dataset identifier PXD019922 and

10.6019/PXD019922, respectively.

Proteome comparison

The proteome comparison tool from PATRIC (Wattam et al, 2017)

(https://www.patricbrc.org) was used to identify orthologous

proteins between M. florum L1 (Genome ID: 265311.5) and the

following strains: Mycoplasma gallisepticum str. F; Genome ID:

708616.3, M. pneumoniae M129; Genome ID: 272634.6, M. genital-

ium G37; Genome ID: 243273.27, and M. mycoides JCVI-syn3.0;

Genome ID: 2102.8. The parameters to identify orthologous proteins

were the following: minimum positives of 0.2, minimum sequence

coverage of 0.3, a minimum identity of 0.1, and a maximum E-value

of 1e5. In the case of pairwise proteome comparisons, both unidirec-

tional and bidirectional best hits are used to define orthologous

genes. Gene names were considered similar if they shared the same

initial three characters in at least two species.

Homology modeling

3D protein structures were reconstructed for M. florum L1 coding

sequences from RefSeq using the I-TASSER Suite 5.1 (Roy et al,

2010; Yang et al, 2015). To provide relevant homology for func-

tional predictions, a pre-screening step was applied. This step used

the Structural Systems Biology software (ssbio) (Mih et al, 2018) to

compare the sequence of each M. florum protein to the PDB of crys-

tallized structures (Berman et al, 2000) (www.rcsb.org). HMMER

was then used to determine structural domain coverage in the PDB

and identified an initial set of 459 proteins with a match to known

domains. The following parameters were applied to filter this initial

set to determine proteins that were likely to provide reliable struc-

tures from homology modeling: E-value < 1e-4, domain sequence

identity > 10%, and domain sequence similarity > 30%. The trans-

membrane proteins (20) were also discarded given the limited capa-

bility of I-TASSER to produce a relevant model for such proteins

(Koehler Leman et al, 2015). All in all, a 3D structure was recon-

structed for a total of 386 M. florum proteins (Dataset EV2). The

quality of reconstructed structures is given by the significance of

threading template alignments and convergence parameters of the

structure assembly simulations (C-score) and the similarity between

the template and modeled structure (TM-score). The 361 structures

with a “C-score” higher than −1.5 and a “TM-score” higher than 0.5

were defined reliable (see Appendix Fig S2).

The FATCAT 2.0 (Li et al, 2020) software was used to find simi-

lar enzymes to selected structures reconstructed by I-TASSER. Struc-

tures were compared against the PDB (90% non-redundant set)

using the Database search tool with the flexible FATCAT alignment

parameter. Alignments with a P-value < 0.05 were considered as

significant hits.

Identification of enzyme commission numbers

Enzyme commission numbers were retrieved from the M. florum L1

RefSeq genome annotation (NC_006055.1) using the DETECT v2 (Nur-

simulu et al, 2018) software and from the reliable protein structures

reconstructed by I-TASSER using COFACTOR (Zhang et al, 2017).

Identifications above the default probability threshold from DETECT

v2 (90%) were considered as the gold standard. For cross-validation,

EC numbers were considered similar if the first three digits were iden-

tical in at least two identification methods, i.e., using COFACTOR,

DETECT v2, or from the RefSeq and PATRIC annotations.

Confidence level and final annotation score

A scoring system was established to integrate all information gath-

ered through the computational identification of molecular functions

in M. florum. For each method, the following score was attributed

based on the level of precision that could be attributed to each gene,

as presented in Fig 1E: Proteome comparison, Identical = 3, Simi-

lar = 2, Different = 1, No gene name or unique = 0; Structural

homology, Reliable structure = 3, No reliable structure = 0; EC

numbers, Identical EC = 3, Similar EC = 2, Different EC = 1, One

method or no EC = 0. The cumulative score attributed to each

predicted protein was defined as the final annotation score. Based

on this score, a basic (< 3), medium (≥ 3 and < 7), or high (≥ 7)

confidence level was attributed.

Reconstruction of the metabolic network

The draft M. florum metabolic model was reconstructed using the

SimPheny platform (Genomatica, Inc.) to ensure reaction confor-

mity with a standard database and quality control. The reactions

issued from the scaffold generated through the comparative

approach were added first. Both RefSeq and PATRIC annotations,

along with the identified EC numbers found with DETECT v2 and

COFACTOR, were screened manually to identify metabolic candi-

dates. Metabolic reactions associated with these genes were deter-

mined based on the information available in public databases

(Kanehisa & Goto, 2000; Artimo et al, 2012; Kanehisa et al, 2016,

2017; Placzek et al, 2017). When multiple reactions were possible,

preference was given to the terms matching the most detailed

genome annotation. Reaction and metabolite names used in the

model followed the modeling specific nomenclature of the BiGG

database (King et al, 2016). The initial SimPheny model was

imported in COBRApy (Ebrahim et al, 2013) for further manipula-

tions (i.e., addition of species-specific reactions and metabolites,

definition of the BOF, flux-balance analysis, etc.). The subsystems

from the E. coli iML1515 model were assigned to reactions in iJL208

when their identifiers had a perfect match with an iML1515
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reaction. The subsystems were then grouped together to form the

six modules. Reactions that did not match an identifier in the

iML1515 model were manually assigned.

Flux-balance analysis

Flux-balance analysis (FBA) is a mathematical approach to simulate

cellular phenotype (Orth et al, 2010). The metabolic network is repre-

sented as a stoichiometric matrix (S) where every row or column

represents a unique metabolite or reaction, respectively. The stoi-

chiometry of each metabolite in a reaction is given as a coefficient in

the matrix. If we assume a vector of metabolic fluxes v, the variation

of metabolite concentration over time becomes the following:

dX

dt
¼ S �v (1)

where X is the vector of metabolites in the network. FBA assumes

that the metabolic network will reach a steady state. In this case,

the concentration of metabolites over time should be in equilib-

rium where the inputs are equal to the outputs so that:

0¼ S �v (2)

Defining a physiologically meaningful objective (Z) allows the

formulate an optimization problem on which constraints apply:

maximizeZ,

0¼ S �v
ai<vi<bi

(3)

where a and b are the flux bounds on every reaction. This mathe-

matical formulation can be solved using linear programming and

allows finding the optimal solution of a given metabolic network at

steady state.

Biomass objective function

The M. florum BOF was defined using the BOFdat software

(Lachance et al, 2019a) and leveraging the previously reported

biomass composition of the cell and available omics datasets (tran-

scriptomic, proteomic, and lipidomic) (Matteau et al, 2020). The

first and second steps of BOFdat were used to determine the precise

stoichiometric coefficients of the major cellular macromolecules as

well as inorganic ions and coenzymes, respectively. The third step

of BOFdat was used to identify metabolites most improving the

essentiality prediction accuracy of the model. Revised gene essen-

tiality data previously published for M. florum were used in that

context (see identification of essential genes section of the Materials

and Methods). 50 evolutions were performed for 200 generations

each. The Matthews correlation coefficient (MCC) was used to score

the biomass compositions. MCC can be calculated using the follow-

ing confusion matrix:

MCC¼ TP �TNð Þ� FP �FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp (4)

The biomass compositions (individuals) with the highest were

saved into a “Hall of Fame’’ for each evolution. The frequency of

apparition of metabolites within the individuals saved in the Hall of

Fame was determined, and the ones appearing most frequently were

added as part of the BOFdat Step 3. From the nine metabolites iden-

tified, seven were considered part of the metabolite pool category

(molecular weight fraction [MWF] = 1.2%). The stoichiometric

coefficients of every metabolite in this category were re-computed

using the BOFdat with this MWF and assuming that each metabolite

is represented equally. Two metabolites belonged to the lipids cate-

gory, so the same procedure was employed but using the lipids

MWF (18.3%). Finally, the metabolite representing the M. florum

CPS was added and its stoichiometric coefficient determined using

the carbohydrates MWF (4.1%).

Development of a semi-defined growth medium

An exponential growth phase M. florum preculture grown at 34°C in

ATCC 1161 medium (1.75% (w/v) heart infusion broth, 4% (w/v)

sucrose, 20% (v/v) HS, 1.35% (w/v) YE, 0.004% (w/v) phenol red,

200 U/ml penicillin G) (Matteau et al, 2017) was centrifuged for one

min at 21,000 g and washed twice with PBS 1X. Washed cells were

inoculated at an initial concentration of ~ 1e5 CFU/ml into three dif-

ferent medium bases containing decreasing concentrations of HS

and YE (from 20% HS/1.35% YE to 0.01% HS/ 0.0006% YE) and

either 1.75% (w/v) heart infusion broth (ATCC 1161 base), PBS 1X

(PBS base), or CMRL-1066 chemically defined medium (C5900-02A,

US Biological; CMRL-1066 base), all supplemented with 0.004% (w/

v) phenol red and 200 U/ml penicillin G. Medium bases were

adjusted to a pH of ~ 7.5 and transferred into a 96-well microplate

for growth assays. Half of wells were also supplemented with

sucrose at a final concentration of 4% (w/v) for the ATCC 1161 base

and 1% (w/v) for PBS and CMRL-1066 medium bases. The inocu-

lated microplate was incubated with shaking at 34°C in a Multiskan

GO microplate reader (Thermo Scientific), and the optical density at

560 nm (OD560 nm) was measured every 10 min for 24 h. Changes

in the absorbance of phenol red at 560 nm caused by the metabolic

activity of M. florum (medium acidification) were previously shown

to correlate with the number of CFU/ml (Matteau et al, 2015, 2020).

Color fold change was then evaluated by comparing the minimal

OD560 nm value observed over the entire incubation period to a non-

inoculated control of identical medium composition. The color fold

change observed for sucrose-containing wells was then compared to

wells not supplemented with sucrose, resulting in a normalized

growth index for each tested medium base. The medium composi-

tion showing the highest normalized growth index for the lowest

concentrations of HS and YE (CMRL-1066 base supplemented with

0.313% HS and 0.02% YE, Appendix Fig S3), referred to as CSY,

was selected for the evaluation of growth sustaining carbohydrates.

All conditions were tested in technical triplicate.

Experimental evaluation of M. florum growth on different
carbohydrates

A 96-well microplate was filled with CSY supplemented with either

one of the following carbohydrates, at a final concentration of 1%

(w/v): sucrose, trehalose, fructose, glucose, maltose, mannose,

glycerol, sorbitol, lactose, galactose, ribose, arabinose, N-

acetylglucosamine, and glycerol-3-phosphate. A no-sugar control

was also performed. Half of wells were inoculated at an initial
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concentration of ~ 1e5 CFU/ml with an M. florum preculture

prepared and washed as described in the previous section. The

microplate was incubated at 34°C without shaking for 24 h. The

OD560 nm at 24 h was measured using a Multiskan GO microplate

reader (Thermo Scientific) and compared between inoculated and

non-inoculated conditions, resulting in a growth index for each

carbohydrate tested. All conditions were tested in technical tripli-

cate. For comparison with the model’s predictions, the growth index

measured for each carbohydrate was finally normalized to growth

on sucrose.

In silico prediction of carbohydrate utilization

The formulated model with defined biomass composition and

constraints was used for the prediction of carbohydrate utilization.

An exchange reaction, the model equivalent of the medium compo-

sition was added for each carbohydrate tested experimentally. When

tested, a lower bound of −10 was applied to the exchange reaction

and the model was optimized for biomass production. The predicted

growth rates for each carbohydrate were saved and normalized over

sucrose to facilitate comparison with experimental results.

Measurement of M. florum doubling time and growth
rate calculation

The doubling time of isolated transposon insertion mutants as well

as M. florum growing in CMRL-1066 base medium with variable HS

and YE concentrations was measured using colorimetric assays as

described previously (Matteau et al, 2020). Cultures were performed

in technical duplicate and incubated at 34°C with shaking. Growth

data of insertion mutants are available in Dataset EV5. For M. flo-

rum growing in CSY medium (0.313% HS and 0.02% YE) with vari-

able initial concentration of sucrose, the doubling time was

measured according to CFU counts of time-course experiments.

Briefly, a simple exponential growth model was fit to the mean CFU

counts measured over time for each initial sucrose concentration

(equation (5)):

At ¼A0e
rt (5)

where A0 is the initial number of bacteria and r is the growth rate.

In simple exponential growth, the relation between growth rate (r)

and doubling time (d) is given by:

d¼ ln 2ð Þ
r

(6)

Quantification of sucrose uptake rate and fermentation product
secretion rate

An exponential growth phase M. florum preculture grown at 34°C in

ATCC 1161 medium was centrifuged for one min at 21,000 g and

washed twice with PBS 1X. Washed cells were inoculated at an

initial concentration of ~ 1e5 CFU/ml into different CSY media

containing variable concentrations of sucrose. Inoculated media

were adjusted to a pH of ~ 7.5 and transferred into a 96-well micro-

plate for growth experiments. Cultures were incubated with shaking

at 34°C in a Multiskan GO microplate reader (Thermo Scientific),

and growth was followed by measuring CFU counts every ~ 90–
120 min until late exponential phase. CFU were evaluated by spot-

ting serial dilutions of the cultures on ATCC 1161 solid medium and

counting colonies after an incubation of 24–48 h at 34°C. For model-

ing purposes, CFU/ml were converted to gDW/l (biomass) accord-

ing to the previously determined M. florum dry weight (Matteau

et al, 2020). In addition to CFU/ml measurements, sucrose and

fermentation products (lactate and acetate) were also quantified

throughout the entire experiments by HPLC. For this task, cultures

were filtered through 0.2-μM PES filters and frozen at −80°C until

quantification. HPLC analysis was performed by the Laboratoire des

Technologies de la Biomasse at the Universit�e de Sherbrooke. A

Dionex CarboPac SA10–4 μM column was used for sucrose quan-

tification, while a Dionex IonPac AS11-HC-4µm IC column was used

for lactate and acetate quantification. The injection volume was set

to 5 μl, and both the electrochemical detector and columns were

operated at a temperature of 30°C. Mobile phase was composed of

aqueous KOH solution, and the elution gradient mode was set as

follows: sucrose, 1 mM for 12 min, 10 mM for 5 min, and 1 mM for

10 min; acetate and lactate, 1 mM for 5 min, 15 mM for 9 min, and

30 mM for 11 min. The flow rate was maintained at 1.25 ml/min

for sucrose and 1.5 ml/min for lactate and acetate. For sucrose

quantification, the stability of the signal was ensured by a 200 mM

KOH post-injection using a Dionex GP 50 gradient pump set to

0.25 ml/min. Quantifications were performed by external calibra-

tion using 99.95% sucrose (Acros), 98% anhydrous L-lactic acid

(Alfa Aesar), and 99.7% acetic acid (Fluka). Since lactate and

acetate peaks were indiscernible, corresponding peak areas were

combined, resulting in a combined lactate/acetate estimate. Follow-

ing quantification, substrate-specific (sucrose) uptake rate and

fermentation product-specific (lactate/acetate) secretion rates were

calculated according to the following equation:

qS¼ΔS � r
Xt2

(7)

where qS is the substrate (or product)-specific rate, ΔS is the varia-

tion of substrate concentration over time and Xt2 is the biomass

concentration at the end of the time interval (Sauer et al, 1999). To

calculate qS, simple exponential fits were applied to the mean of

biomass, sucrose, and lactate/acetate concentration data points

(Appendix Fig S5). A linear regression in exponential phase (14–
16 h) was then applied to these fits (Appendix Fig S6), and ΔS and

Xt2 were calculated for each 1-h time interval using the parameters

of these regressions. Growth rates (r) were obtained from the expo-

nential fits applied to biomass data of each condition (equa-

tion (5)). The maximum substrate and product-specific rates are

expected to reach a plateau as the initial concentration of substrate

increases. We estimated that this plateau would be reached at the

two highest initial sucrose concentrations tested in this study (0.05

and 0.1%). For modeling purposes, substrate- and product-specific

rates were therefore determined by computing the average of the

possible rates obtained for these two initial sucrose concentrations.

Sensitivity analysis

The model sensitivity to maintenance costs as well as uptake and

secretion rates was assessed by setting initial parameters and further
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varying each of them individually. The initial parameters used were

as follows: GAM: −5 mmol/gDW/h, NGAM: 3 mmol/gDW/h,

sucrose uptake rate: −5.26 mmol/gDW/h, lactate secretion rate:

−7.65 mmol/gDW/h, acetate secretion rate: −0.96 mmol/gDW/h,

and oxygen uptake rate: −10 mmol/gDW/h. The initial sucrose

uptake rate used is the rate defined experimentally in CSY medium.

The sum of the initial lactate and acetate secretion rates is equal to

the combined secretion rate measured experimentally at

−8.69 mmol/gDW/h. The choice was made to favor lactate over

acetate secretion since its path to secretion in the metabolic network

is simpler. The initial oxygen uptake rate represents half the rate

reported for E. coli growing in minimal medium batch cultures

(Andersen & von Meyenburg, 1980).

Maintenance costs represent the amount of energy necessary to

support the cell aside from the production of biomass components

from the metabolic network. While GAM is the ATP hydrolysis reac-

tion within the BOF, the NGAM is represented by the ATP mainte-

nance reaction which also consumes ATP but is independent of

biomass production. These rates were defined first as they are most

impactful for growth rate prediction (Lachance et al, 2019a). Using

the initial parameters, the GAM was determined by varying the ATP

maintenance in the BOF from 0 to 50 mmol/gDW/h and predicting

the growth rate with standard FBA optimization for each GAM

value. The theoretical GAM value was identified by matching the

experimental growth rate in CSY (0.44 h−1). Similarly, the NGAM

was identified by varying its value from 0 to 30 mmol/gDW/h, fix-

ing the theoretical GAM and keeping the initial uptake and secretion

rates. This allowed the identification of the NGAM value at which

the predicted growth rate fits its experimental counterpart.

The model sensitivity to uptake and secretion rates was then

evaluated using the fixed theoretical maintenance costs. Using the

initial oxygen uptake as well as lactate and acetate secretion rates,

the sucrose uptake rate was varied between 3 and 15 mmol/gDW/

h, which encompasses the experimentally measured uptake rate of

5.26 mmol/gDW/h (absolute value). Sensitivity to lactate and

acetate production was evaluated on specific ranges (0–40, 0–
15 mmol/gDW/h, respectively) with the determined sucrose uptake

rate and initial oxygen uptake rate. The lactate secretion rate was

determined as the minimum rate matching the experimental growth

rate in CSY (0.44 h−1). This value was found at 8.16 mmol/gDW/h.

The acetate secretion rate was defined as the difference between the

average experimentally determined value of 8.69 mmol/gDW/h for

both products and the theoretical lactate secretion rate, correspond-

ing to 0.53 mmol/gDW/h. Finally, the impact of oxygen uptake rate

was assessed using all constraints and rates previously determined.

The oxygen uptake rate varied between 0 and 30 mmol/gDW/h.

The final uptake rate (4.81 mmol/gDW/h) was chosen to match the

experimental growth rate value in CSY (0.44 h−1).

Identification of expressed genes

Transcriptomic and proteomic expression datasets were available

for M. florum (Matteau et al, 2020). To determine the set of

expressed genes, the reported number of protein molecules per cell

and fragments per kilobase per million of mapped reads (FPKM)

associated with each gene was compared with each other. An

expression threshold spanning the entire range of measured values

was iteratively applied to each dataset resulting in a list of expressed

and unexpressed genes. The resulting binary vectors were compared

using the MCC by setting the transcriptomic data as a reference and

generating a distinct MCC value per pair of thresholds. A correlation

score (Si,j) was obtained by multiplying the MCC score for each

threshold pair (Mi,j) by the number of genes expressed at these same

thresholds (Xi,j):

Si,j ¼Xi,j �Mi,j (8)

This score accounts for the correlation between each dataset

while maximizing the number of expressed genes. The thresholds

providing the optimal score were used for this study and were found

at 23 proteins per cell (proteomics) and 168 FPKM (transcrip-

tomics).

Identification of essential genes

Previously published experimental essentiality data (Baby et al,

2018b) generated by transposon mutagenesis were re-analyzed in

this study. The doubling time measured for individual mutants

(Dataset EV5) was used along with the relative position of the inser-

tion site within the interrupted gene to re-evaluate gene essentiality

(Fig EV3). The growth data was filtered to include only mutants for

which the standard deviation of doubling time between replicates

was within 30% of the average doubling time measured. Mutants

for which a reliable doubling time could be obtained were defined

as non-viable if their measured doubling time exceeded the sum of

the median and median absolute deviation. For insertions not

impairing the growth of M. florum, interrupted genes were consid-

ered essential only if the transposons were strictly restricted to the

terminal region of genes, defined as the last 20% of the gene length.

Both Hutchison and colleagues (Hutchison et al, 2016) and Breuer

and colleagues (Breuer et al, 2019) used the location of transposon

insertion to nuance their essentiality observations.

Prediction of metabolic flux state

The flux state through the metabolic network was obtained by opti-

mizing the production of biomass using parsimonious flux-balance

analysis (pFBA), a version of FBA that allows the generation of a

unique flux state prediction through minimization of enzyme usage

(Lewis et al, 2010). This method is best suited for the comparison of

predicted fluxes to gene expression (Machado & Herrg�ard, 2014). A

reaction flux was defined as active when the predicted value

exceeded the numerical error (1e8) and the flux was attributed to

every gene that could catalyze the reaction via the gene-reaction

rule. The objective was set to the BOF from BOFdat Step 3 and the

in silico medium (Appendix Table S2) set with sucrose as the main

energy source.

Model-driven prediction of a minimal gene set and identification
of functional features

The MinGenome algorithm (Wang & Maranas, 2018) was used to

sequentially identify the longest possible deletions in the M. florum

genome. The transcription units (relationship between gene and

promoter locations) were obtained from the integrative characteriza-

tion of M. florum (Matteau et al, 2020). The iJL208 model along
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with the experimentally determined essential genes revised in this

study was also used as input. The algorithm extracts constraints

from these inputs and writes a bi-level linear program where the

lower level optimizes the production of biomass and the higher level

maximizes the DNA length (bp) of the deletion to be performed. To

identify the minimal gene set for M. florum, the optimization was

performed iteratively 100 times. Deleted genes and promoters were

encompassed between a deletion start and end site.

The M. florum proteome was compared to that of JCVI-syn1.0

(FASTA file reconstructed from DataSetS1 available in Hutchison

et al (2016)) and JCVI-syn3.0 (Genome ID: 2102.8) using the

PATRIC proteome comparison. Since multiple comparisons were

executed, only bidirectional best hits were used to define homolo-

gous genes. Mapping of M. florum genes to KEGG functional cate-

gories (Kanehisa et al, 2004) was performed as described previously

(Matteau et al, 2020), where the automated attributions were manu-

ally curated to fit the context of M. florum. The composition of the

cell was depicted using the proteomap software (Liebermeister et al,

2014), and the protein abundance was obtained from available tran-

scriptomic data (Matteau et al, 2020).

Data availability

The final version of iJL208 was processed through the Memote soft-

ware (Lieven et al, 2020) to ensure compliance with the current

standards for metabolic modeling. This report, the final iJL208 along

with all code necessary to generate the results presented in this

study is available on GitHub (https://github.com/jclachance/

iJL208). The final iJL208 model is also available in JSON format as

Code EV2. An interactive map of the entire reconstructed M. florum

metabolic network was built using Escher (King et al, 2015) and is

provided as Code EV1. The central metabolism map of the E. coli

iJO1366 model was used as an initial template on which the iJL208

model was mapped. The map was manually expanded using the

reactions available in the model.

Expanded View for this article is available online.
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