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ABSTRACT

Standing -surfac.e waves in an inviscid incompressible fluid of finite
dept’ﬂ are consideredl, taking into. account the effect of capillary fox;ces.' |
Perturbation solutions for the surface prbfile, velocity potential, frequency’
of oscillation, and pressure a..re ’f_c‘)unvd to third ordér in the amplitude of the
waves.b A graph is given showing-‘ the regions in which the frequency of os-
cillation increases l\';vith amplitude and those in which it decreases with am-
plitude. These regions are defined a.s a function of the depth of the fluid
and a parameter called the relative capillarity. A graph is also giyen .sho_w-

ing the surface profile of a wave. -
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STANDING CAPILLARY-GRAVITY WAVES OF FINITE AMPLITUDE

-Paul Concus '

Lawrence Radiation Laboratory.
'University of California

Berkeley, California

May 1962

1. Introduction -

The éroblem of standing ‘gravity waves of ﬁnité amplit.ude oﬁ the surface
of a flﬁid of uniform finite depth has been solved to t_hi:c_'d order by Tadjbakh;h
-and Keller (1960). (Théy are hereaffer referred to a.s T & K.‘) The present
paper applies theirv.rnethod to sol’ve"theb more génerai problem, Which.in-
cludes capillary as Weil as gravitational forces. For long wavelengths under
normé.l terrestrial cohditions, capillary forces are generally ﬁegligible'in
comparison W1th gravitational forces. However, for short wavelengths or' in’
an environment in which the accel:eration} field is less than the gravitational
field of the earth at its surface, the capillary fqrces may no longer be negli-
a.;"gible. The fluids considered here may have any surface tension and may be
in an acceleration field of any magnitudé that acts vertically downward, the
only restriction being thaf the surface tension and a:cceleré.tidn field ai‘é not
both zero, although one of them may be z’ero if the other is not.

An attempt is made to follow the notation of T & K so that their results
can be easily compared with the ones presented here.  Because of the ‘inltrov- A
' duction.of surface tension and an ac'c.eleration field ofvarbitrary magnitude, a
slightly different definition of son_d__ez of the non&imensional variabies is re-

quired- However, in the absencé' of éapilla_.ry forces and under normal
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‘terrestrial conditiohs, the variabl‘es' réduce to the'mirs. Some of the details

of th.eir formulation are duplicated i’lefe for completeness. Of lpaxjticular in-
' terest is lthe effect‘Whil_ch introduction of capillary fo.rc,es has on the critical
depth found by T & K, at léss thah which the frequén'cy of a wave increases
.With,a.mplitude and at greater' than v;/hich the frequency decreases with ampli-

tude.

2. Fdrmulation

The ti_me—pefiodic,irrotationai, two-dimensional motion of an inviscid
'incompressible fluid boﬁnded below by a rigid horizontal plane and above by a
free sﬁrfa;ce is considéred. A uniform acceleration field of ai'bitrary strength
acts vertically downward on the fluid, and surface tension effects are included.
The motion is taken to be periodic in fhe horizontal direction and symmetric
aboﬁt the vertical plane x = 0, sé that only vthe fluid between that plane and a
parallel plane 'on;a—half wavelength from it need beb_ considered. Let \ de_not‘e
the wavelength; k' = 2m/\ the wave number; k™ 1h. the mean depth of the liquid;
k™ 1x and k- ly thé diétances alvong‘ the horizontal and vertical. axes, respec- |
tively; g the magnitude of the downward-acting uniform acceleration field,
where g is the accelera’cidﬁ due to gravity and x« may be any nonnegative
'ﬁumber; and vy = (Tkz/pg, ‘a dimensionless parameter proportional to Laplace's
capillary constant, where ¢ is the su_rfa.ce tension of the liquid-vapor inter-
face and p is the density of the l.iquid. Let 6 = y/(K + y) be a parameter
.called the relativé cap'illbarity; ivtjszvalue lies between zero and one. For
6 <<1, the capillary effects é.re small; whereas, for (1 - §) << l; they pre-
. dominate. Finally, let [kg(K‘ + y)]l/zw denote the angular frequency;

[kg(x + y)]fl/zw—lt the time; a the amplitude of the linearized surface wave
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_mot1on, sk n(x t) the elevation of the surface above the mean level glven

/z 3/2

by the plane y = 0, and e[g(K + v)] 1 ¢( X,y,t) the velocity potential.

- In terms of these dimensionless quantities, the equations of motion

‘are . |
Ad =0 in 0 <x <m, and -h <y <en(x,t), (1)
(1-8)7 -5 [”xx(l -.(3/2)€3nx2 + O(e?)]’ + wp, + (1/2)e‘(¢x2 + ¢Y2) = 0
. v on y = en(x,t), (2)
c{>.y =wn, teb n | o - on'y = en(x,t), (3)
—g%—=0 onx=_0;x=1r,y=—h; (4)
n, =0 on x=0,x=m, (5
§ n(x,t) dx = 0, - . . (6)
0 : o v
V¢(X:Y:t + 2“) = V¢(X>Y,t) b ’ ‘ . ‘ . (7)
0 pm 02w R ' E
g S S o(x,y,t) sint cos xdtdx dy = 0 , (8)
’-h *0 *0 :
\ (e U 2 1/2
and 5 g § o(x,y.,t) cos t cos x dt dx dy = (1/2)7“(tanh h) . (9)
-hv0 Y0 o |

-Equation (1) is the Laplace equatien' g»overnlng irrotational flow; (2) is
Bernoulli’s law for constant external pressure at the free surface ch the fluid
' _ineluding the Taylor!s series expansion of the surface tension terms to third
order about el= 0; (3) is the condition that a'particle once on the surface re-
main on the surface; (4) is the c:0nd1t1on that the normal velomty cornponent
vanish on the planes of symmetry, bl — 0 and x = w, and on the bottom r1g1d
surface, y = -h; (5) is the cond1t10n that the slope of the free surface be con-

tinuous at x = 0 and x = wif these are planes of symmetry, or that the contact
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| angle be fixed at 11/.2 during the rﬁotion if these are rigid. boundingk wa..lls; (6)
is the condition that the fnean free surface i.s y. = 0; (7') is the condition that
| the motién be periodic in time; and (8) and (9) fix the phase and amplitxide
~ of the motion. |
- The pressure p(x,y,t) is given by Bernoulli's law,
2

'ng_w‘)‘P po) = ~(1 - 8)y - cwd, ~(1/2)e%( 2 o) (10)

- where Py denotes ‘the pressure of the atmosphere above the fluid. Because |
of the surface tension effects, the pressure in the fluid just below the free
surface y = e is not‘po, but, as combining (10) with (2) shows, it is discon-

tinuous by an amount

Enery B - B = <8 [”n(l - 6/2e%n ]+ Ol )>—J on v = en {11

The problém to be solved is the detefmination of ni(x,t), &(x,y,t), .and w
satisfying equations (’1) through (9). This is done by determining fhe first three
terms in the expansion of the solution in powers of €. | |

As was noted by T & K for the problem without caplllary effects, a unlque
solution does not exist for those values of h for which the linear theory yields

’ é. fréquency that is a'.rrzvinteg'ral multiple of the fundamental frequenéy. The
same holds true for the present problem, and in order to make the solution

unique (except for the arbitrary additive constant to ¢), it must be required

1Tad_jbakhsh (1961) pointed out that it is necessary to put the amplitude con-
dition on ¢ rather than 71 so that the expansion parameter ¢ agrees with that
of Penney & Price (1952). It is algebraically more convenient to put the phase
cond1t10n on ¢ also, rather than on 1 as done by T & K.

o
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that the frequency of the nth spat1a1 harmomc[ <1 + 6 [n - 1D tanh nh:} 1/2
is not an integral multiple of the fundamental frequency (tanh h) 1/2. Thus

the condition

n[l+6(n2'— l)] tanhnh7é.2 £
tanh h J . tor

(12)

{11 |
— N
e W

[\S N}

is imposed.

III. Solution

The zero- order equations are found by assuming that n ¢, and w have

limits no, ¢ , and w, as € tends to zero. Conditions (2) and (3) then become

0
0 o, .0 _ , ) 0
(1 - 8)n - GnXX+ wod, = 0 . ony=0, (27)
0 0 _ . _ 0
¢y _ wOT']-t,_— 0 on y = 0. (37)

Equations (1) and (4) to (9) remain unchanged in form as equations in no, &

and w,. The solution to the zero-order problem is
0 ; ‘ .
7 = sin t cos x, (13)
0 w ' : » . _
¢ = ~Ian & ©°° t cos x cesh (y +h), ‘ : (14)
2 _ '
wg = tanh h. (15)

Notice that the shape of the wave does not depend on the value of &, the rel-
ative capilla.rity,- so that the waveform obt'ained here is the same as the
waveform obtained for the linear problem in the absve‘nce of_ surface tension.
Hewever, the frequency of os.cilla..tivon is, in general, different, sin.ce the def-
inition Of thev dimensionless Wy depends upon the surface fension_e.nd'magni—'

tude of the é.cceleration field.
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The first-order equations are found by assuming that n, ¢, and w have

\

first derivatives with respect to ¢ at € = 0, where these derivatives are de-

1 .

‘noted by 11-1, ¢, and ;. Difﬁerentia‘cing (1) to (9) with respect to ¢, utilizing
d Ta o8,
a‘g‘?(x,eﬂ:t:i) = [36—1’ (n+ 57’16) -é—};]cb

in (2) and (3), and letting ¢ = 0 yields

o ] 1 11 o\2 . [.0\2 0,0 0 1

(1-8)m" -bm + wpby = - i[(q’x) * (¢y> ] S9N by - @ by omy =0 (27)

] 1 0,0 0.0 0 - , | ]

i

€

by TNy TR, T Mg tepmy - ony=0 (3)
' 0 pm 2T . !
and § S g ¢ (x,y,t) cos t cos x dt dx dy = 0. (97)
-h 0“0 _ o
 Equations (1) and (4) to (8) remain of the same form as equations in 'r]l, ¢1.,
and (;.)1 J

Substitution of (13) to (15) into (21) and (31) yields

1 1 11 2 -2 2 -2 L2 =2\
(1 - &)n" - 6nxx-!-woc{>t -§[<w0 - wo' ) + <w0 +w.0 > cos 2x - <3w0.+ wo>

cos 2t - }3w2 - w %) cos 2t cos 2x | + L sint cos x ony=0 (16)

: 0 0 ey} ' ,

and dpl - w 1']1 S sin 2t cos 2x + w, cos t cos x on y = 0. (17)
vy 0''t 2w 1 _ :

0
. ' 1
Differentiation of (16) with respect to t and substitution of N from (17) and

n}lcxt from (17), which has been differentiated twice with respect to x, yields

1

1 2.1 1/, 3 -1\ . |
- 6¢yxx +(1 - 5)<l>.y Ty = Z(3w0 twg ) sin 2t

lcostcos_x . onyA=0-‘(_18)

3| 3 -1 o
+Z[wo-(1f26)w0:]slr}2tcos 2x5+2w
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Separation of variables yields for the s’oluf;ion of (1), subject to (4),

0 . .
q)l(x,y,t) - Z An(t) cos nx cosh n(y + h).‘ L - - (19)

n=0

Substitution of (19) into (18) yields

2 1{. 3, -1} . : ‘
W AO = Z(3w0 + wg > sin 2t, | o (20)
wz coshh A, + sinhh A = 2w, cos t, ' : (21)
0 ltt 1 1 :
2 | . . _3[ 3 PR
w~ cosh 2h A +2(1 +38).sinh 2h A, == w’ - (1+ 28w sin 2t, (22)
0 : Ztt : 2 4 0 7 0 .
‘woz cosh nh A +n|:1+<n2— 1)6] sinhnh A =0 forn=23,4... . (23)
n., LT , n -

From (7) and (21), it follows that A_ must be periodic in t with period
27 forn 21, and from (12) and (23) that An = 0 forn>3. From (12)., {15}, and

(22) there results

3 [w0—26963-(1f26)w()_7:|

A, = - . <
16 cosh 2h(1—36w0 )

2

sin 2t. T ' (24)

The periodicity of A1 requires wy = 0, so that (21), (19), (8), and (91)

then yield

Finally, (20) yields

S| A o | |
AO_-R- 390+@0>§1n2t+a0tf§0, o (25)

where a

o and 530 are constants to be.determined.
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Substitution of the above results into (19), and substitution of the result-

ing expression for@)1 into (16), yields

1, 1 12 -2 | 1
'-6nxx+(1 - 8&)n =35 (wo—wo > —woa0+-8—

-2 -6
1 . wy —3w0 -
+ 3 (1 + 38) — | cos 2t cos 2x. (26)
"1-36w
. 0
The solution of (26) subject to (5) is
. 2,72 -2, -6

0 “0 0

11 2 -2 “0% ., “o
mn »— —8—(—1—_—6—)- <(.00 - (.L)O > - 1-% + 8(1+36) cos 2x + '8—'—1—36—_—4' cos 2t cos 2x%.
, R : - “0')

Equation (6) requires _

M, 3y : . .
% " 8\% "% |- | o

The solution to the first-order problem is thus

o2 2 -2 -6
1 1] %% L % -3y " " (27)
n =5 — Cos <4t | cos 2ax, \¢
g | 1735 a6 % | | |

0
1_ . L1 3\, 1 AN
) —BO+—8-(w0—w0>t—T6(3QO+wO '>.51n2t

3 [w0—26w63—(1+26)w6’{]
16 cosh 2h<1—36’w64>

@1 © 0_’ | | o ‘. V(Zg)

where B, is an arbitrary constant.

sin 2t cos 2x coéh 2(y + h), (28)

Notice that the first-order waveform depends upon the value of 5, so
that the pre.sence of capillary foréés changes the shape of the wave from that
for §=0. In either case,. ‘wl.; o, .‘however.‘ |

The second-order equations are.found'by assuming that n, ¢, and w have

"second derivatives with respect to e ate =0, where these derivatives are denoted |
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v

by»nz, ¢2? and ,. 'Differe.ntiatir;g (1) to (9) twice with respect to € and let-

ting € = 0 leaves equations (1) and (4) to (8) unchang\ed'in form as equati‘ons

in n2,4¢2, and w, - Equation (9) becomes of the same form as '(91), and new
equations’ (22) and (32) result giving the appropriate conditions on y = 0. Pro-
ceeding exactly as in the first-order case, elimination of 1']2 from (22) and -

(32) yields

- 2 2.2 R -
'6¢yxx.+ (1 - 6)¢Y T wgd =agy costcosxta ,costcos 3xt
a cos 3t cos x + ay5 COS 3t cos 3x, o - (30)

31
" where

ng+3(l+9 62)w0+3(4+66—962-2763)0363—9(1+5 6+462)w67

d. = 2w, + 1
i 2" 18 (1+36)(1-36'w(')4) ,
- . zwg+(-‘55-1‘86+117;62)wo+3(-'146+962-4563)w(')3'+3(1+56;_1262-14463)w67
Q,., = —r - .
137 18 (l+36)(1-36w04)
| | (31)
' 2, -3 =
1 (31-96)w0+(—62—246+276 )wo —3(3+46)w0
a = , . ’
31718 1—360.)—4
/ 0 .
cend 2, -3 L2y T
3 13(1a6)w0-(22+326-156 )wo +3(3+206+166 )wo
%337 16 1 |

t-30a,
S 2 2 | g . '
Solving for ¢~ and n~ exactly as before (o.11 is found to be zero, thus

determining wz) yields the solution to the second-order problem as
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2 . - | : . :
n- = b11 sin t »cos x + b13 sin t cos 3x + b31 sin 3t cos x + b33 §1n 3t cos 3x,
(32)
4)2 = 52 + 513 cos t cos 3x cosh 3(y + h) + 631 cos 3t cos x cosh (y + h)
+ [333 cos 3t cos 3x cosh 3.(y +h),  (33) .
| -200-301498%) g - 3(4+66-967-276%) ) +9(1455+ 45 )] T ‘ _
wz = 3—2- _4 — » (34)
(1+36)(1—36w0 ) . .
‘where BZ is an arbitrary constant, and
o Zwé-(5+126-276?)+3(2+106-362-2763)w64+3(1+56)w68 e
- b = — - 3
32 (1+36) (1-3607 ")
o, Zug+(1:186—2762)mg—3(5+246+1862-2763)
b, =
13 -~ 128 =z Z
v (1+38) (1-360; ") [1438(w5+3) ]
(35)
| '3(9+356+3962+8163)w64+9(1+56+462)w68
PN e Tz T ’
l (1+38){1-36w, )[1+;6(w0+3)] -
B . ';5+36+9(2-52)w64+3(1-46)w68
b, . = e ’ ,
31 - 128 P S
L | 0
— ‘ . > _ A . _ _
5 1-6+3(-1-6+6‘)w04+(3+46+962)w08—3(3%46)w0'12‘
b, = ' -9 ~ ,
33~ 128 : Z 7 -
L e3sy [ 1-8(1+305 %) ]
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oy | | S
143wy 2m8+(-5.-186+1176’7f)w_1+3(-146+962-v456

.513 = 128 cosh 3h

-5 ‘

3)‘*’0

'(l+36)(1 350, [1+36(w +3) ]

B 3(1+56—1262-14463)w69

\\\ _— . . K 4
- | (1436)(1- 38wy )[1+36(w0+3)]
: . (36)

. (31-968)w +( 62-2464276 ) wg —3(3+46)w(—)9
P31 * " T38 cosh _ g
, 1-36w
1+3w§ 13(-1+6)w65+(22+32-6-1562)0)69-3(A3+205+1662)w613'

Bas = :
33 128 cosh 3h -4. T -4
S (1-380™ [1-6(1+305% ]

Notice that the second-order waveform and second-order frequency
-both depend upon the value of §, so that the presence of capillary forces

changes them from their values for & =

4.  Conclusion

| The final solution to the problem is found by substituting th.‘.e‘results
for the zero-,first-and second-order problems as given by (13) to 1('15), (27)

to (29), and (32) to (34) into

en=en0(xt>+en<xt)+len(xt)+o< Y, 6
e = 0¥y, 0) + 2o ey + 2ol y 0 r ot 8
and W=y + —%— E?‘wz + 0(53) ‘ : ‘ o (39)

The pi"es sure may then be found by substituting the appropriate derivatives

of ¢ as calculated from (38) into (10).

f

3
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Qf significant interest is th_e variation of the frequency of oscillation
vvith-amplbi"cude as givg_h by (39). The difference between the frequer.lcy of
osciliation w and the fundamental fr'equ'ency .wo is given to the desired |
oraer of approximation by the term

2

w, may be either positive or negative depending upon the values of wq and

lezwz. - Examination of (34) shows that.

6. These quantities both lie between zero and one, ©g being determined by
the mean depth of the liquid from ‘(115‘). ‘As h increases from zero fo infin-
ity, Wy increases from zero to one. |

.The regions of positive and negative w,y
lefﬁ of the curve labeled I and to the right of the‘curx‘re labeled II wzlis neg-

are shown in Fig. 1. To the

ative, and between the curves it is positive. Curve III is explained later.

e

Curve I bcorresponds to a sign change in the numerator of (34), so that for

values of 6 and h lying on this curve w, is zero. The intersectioi‘i"’of this

2

curve with the h axis at h = 1.06 corresponds to the critical depth h found
by T & K for 6= 0.
Curve II corresponds to the sign change of the term (1—36@0_4) in the

denominator of (34). For values of 6 and h lying on this curve , th'e denom-

inatotr in the expression for w,

tion for the second harmonic. Curve II, however, is the curve represented

is zero, which represents a resonance condi-

‘by (12) for n=j=2, so that points on it are excluded by the uniqueness condi-
tion. For points near the curve, the cc;efficient of the second ha.r:rionic in
the solutions for m and ‘cp can still become very large.

Curve III correéponds to the sign change of the term [1 - 8(1 + 3@0_4)]
in thev denominator _cﬁ b33 |

in (35) and 633 in (36), and represents a resonance
. conditioh for the third harmonic. This curve is given by (12) for n=j=3;
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»

hencef‘, points on it are excluded, but for points near it the solutions for n
ana ¢ contain large amounts of the third harmonic.

If the solution were ca;rried out to higher order in ¢, one would find
additional resonance curves for the other harmonics and these curves would
correspond to (12) for certain pairs of values of n and j. Points on.these |
curves.w'ould thus be excluded, but for points near the curves, the amount of
the correspohding harmonic present in n and ¢ wouid be large. These res-
onance curves all lie to the left of II, the higher the harmonic the closer the
curve lies to the h axis.

It should be understood, then, that equations (37), (38), and (39) form
~a solution to the pfoblem in the sense that as ¢ approaches zero, the behav-
ior is as given. One does not imply, héwever, that for a given ¢ the low-
order te‘rms presented in (37), (38)f and (39) are élways larger than the addi-
tional terms one would obtain by carrying thé solution out to higher orders in
€. Also, ﬂone could no;c use the solution for points too close to curves Il and
III,; since too large a second or thii‘d harmohic'would violate some of the im-
plicit c0nditi§ns of the pfoblerﬁ such as the requirement that the lower boﬁnd-
ing surface never be exposed or the requirement that the fr‘equency of oscil-
lation be p'osifive. |

In Fig. 2, the profile of one-half wavelength of the surface is shown as
calculated from (37) at the times t = (n + —;—)n, which-cbri'es’pond to,time_é |
‘when the velocity throughout the fluid is.zero. These are the times wﬂen,
for a given x, the surface is at ei‘ther its highest or lowest position. The
soli_d portidn i;; for n odd and the dotted portion for n. even, the surface os-
cillating between the two. Thé cufves are calculated for e = 0.05, h = 0.25,
and & = 0.04. Figure 1 shows that h = 0.25, & = 0.04 is about the same dis-

tance from resonance curves 1I and IIl as is h = 0.25, & = 0, so that the
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higiler—order terms should bé of about the same magnitude in each case, but
generally different in sign. The curves for h?: 0.25 and 6 = 0 are gi\.fen in
Fig. 1 of T & K and comparison with their curves shows thié to be so. The
surface profilé for values of h and 6§ farther away frém curves II or III
would contain less of the second and third harmonics and be composed pri-
imaril‘y of the fundamental curve no predicted by the linear theory.
Some of the effects discussed here should not be ;'ckut;;)”c-lifvfiCult to observe

in the laboratory. For exafnple, a fluid depth h = 0.25 corresponds approxi- o
rhately to ‘6 = 0.02 on curves II and III in‘ Fig. 1. Under normal terrestrial
cbnditions, a value of 6 = 0.02 is equivalent to a wavelength of about 10 cm
in water. - To achieve larger values of 6 for reasonable wavelengths, however,
one would have fo experiment in a significantly reduced gravitational field.

- This work was carried out in part under Air Force Contract No.
AF04(647)-788 and in pa‘rt‘ under the auspices of the U. S. Atomic Energy |

Commission.
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FIGURE CAPTIONS

Fig. 1. The location of the zeros and poles of w, and the poles of

1 1 2
n,9 , N

2 .
, and ¢2. wé is zero along I; W, 5 'r]l, ¢1, 'qz, and 4)2' have

poles along II; -nz and 4)2 have polAes along III. |
Fig. 2. Standing-wave profile att = (n + —é—)w for ¢ = 0.05, h = 0.25,

6= 0..04. Solid curveis for n even a.nd broken curve for n odd.
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