
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Computational State Transfer: An Architectural Style for Decentralized Systems

Permalink
https://escholarship.org/uc/item/24j5w1rx

Author
Gorlick, Michael Martin

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/24j5w1rx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Computational State Transfer: An Architectural Style for Decentralized Systems

DISSERTATION

submitted in partial satisfaction of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Michael Martin Gorlick

Dissertation Committee:
Professor Richard N. Taylor, Chair

Associate Professor James A. Jones
Professor Crista V. Lopes

2016

Copyright © 2016 Michael Martin Gorlick

DEDICATION

To the memory of

my mother
Doreen Viola Gorlick (née Rose)
December 1927 – February 2015

and

my brother
Patrick David Gorlick

February 1953 – December 2008

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xv

INTRODUCTION 1

CHAPTER 1: Computation Exchange — From Idiom to Style 14
Thesis and Claims 15
Architecture Can Induce Security 17
Architecture Can Induce Adaptation 18
Capability Confines Risk 27
Computation Exchange: A Historical Perspective 28
Security for Computation Exchange 32
Summary 34

CHAPTER 2: COAST Roots — A Brief History of Mobile Code 35
Early History of Mobile Code (1960–1985) 35
Remote Function Evaluation (1987) 37
Remote Evaluation (1986) 38
Mobile Objects 38
Functional Mobile Code Languages (1995–2007) 41
Mobile Agents 45
Mobility Semantics (1996) 47
COAST Dictates Language Semantics and Infrastructure 49

CHAPTER 3: Computational State Transfer: The Style 50
The Threat Model of Computation Exchange 51
The Communication Model of COAST 54
The COAST Architectural Style 60
COAST Scenarios 64
A Notional COAST Infrastructure 66
Capability URLs in Detail 69
Computations and Identity 74

iii

Summary 77

CHAPTER 4: Obligations of the COAST Style 80
Obligations of the COAST Services Rule 80
Obligations of the COAST Execution Rule 84
Obligations of the COAST Messaging Rule 90
Obligations of the COAST Interpretation Rule 92
What the COAST Style Leaves Unsaid 94
Summary 96

CHAPTER 5: Motile: Reflecting the Style 99
Frameworks 99
Domain-Specific Languages (DSLs) 100
Architectural Style-Specific Languages 101
Lessons Learned 102
Motile Binding Semantics 103
Islets and Message Passing 106
Decentralized Promises 110
Spawning 113
Example: A Client Computation for Palindromes 119
Remote Evaluation 120
Summary 123

CHAPTER 6: How Mobile is Motile and Why? 127
Weakness is a Greater Good 127
Intra- versus Inter-island Messaging 132
Intra-Island Messaging 136
Is Intra-Island Messaging COAST-Compliant? 139
Summary 140

CHAPTER 7: Motile: The Details 142
Expressions 142
Derived Expressions 143
Macros 144
Standard Procedures 144
Persistent Functional Data Structures 149
Syntax 160

CHAPTER 8: Evaluation: Live Update 165
Evaluation Criteria 166
Exploiting Binding Environments for Live Update 171
CURL-based Live Update 174
More General Forms of Live Update 175
Live Update for COAST 176
Related Work 187
Summary 188

CHAPTER 9: Evaluation: Web API Design 191
Web Service Design from a COAST Perspective 191

iv

The Delicious API 193
Delicious as a COAST-Based Service 194
A Motile API for Delicious 196
Client-defined Extensions of the Motile API for Delicious 200
Performance 217
Summary 218

CHAPTER 10: Evaluation: Security 223
COAST is Authority-Safe 225
Motile/Island is Capability-Safe Hence Authority-Safe 226
Related Work 233
Summary 234

CHAPTER 11: Evaluation: Architectural Accountability 236
Approach: Capability is in Plain Sight 237
Early Experimental Evidence 239
Related Work 239
Summary 241

CHAPTER 12: Summary 243

CHAPTER 13: Future Work 247
Types for Live Computations 247
Extending Execution Engines 248
Service Discovery as a COAST Service 248
Pervasive Live Update 249
Fractalware 249
Integration with Existing Legacy Systems 249
Simplifying Motile/Island 250

References 251

v

LIST OF FIGURES

Page

Figure 1.1 Growth in public web APIs by protocol 22
Figure 1.2 Growth in number of public web APIs 23

Figure 3.1 A generic transport with multiple ingress and egress points 55
Figure 3.2 A dedicated transport between computations x and y 56
Figure 3.3 Notional sketch of a COAST infrastructure 67

Figure 5.1 A Motile predicate to test for palindromes 106
Figure 5.2 A design pattern for variants of a spawning service 115
Figure 5.3 The client implementation of spawning 116
Figure 5.4 Spawning an islet to remotely compute palindromes at a dictionary service 119
Figure 5.5 Using curl/remote* to compute palindromes at a dictionary service 121
Figure 5.6 Using curl/remote to compute palindromes at a dictionary service 122
Figure 5.7 Using curl/remote/block to compute palindromes at a dictionary service 122
Figure 5.8 Implementations of curl/remote and curl/remote/block 124

Figure 6.1 Capture bindings from an execution site binding environment 135

Figure 8.1 Repair a defective implementation of a function in a binding environment 171
Figure 8.2 Notional nanoservice loop 177
Figure 8.3 The closures spawned on island I to create nanoservice f + 181
Figure 8.4 A simple higher-order generator 185
Figure 8.5 Spawn skeleton/f+ to undertake the live update of nanoservice f 186

Figure 9.1 Sample bookmark tags 196
Figure 9.2 A few utility functions for inspecting and querying tags 196
Figure 9.3 A client-defined routine for discovering the latest bookmark 200
Figure 9.4 iterate/fold 201
Figure 9.5 iterate/filter 201
Figure 9.6 iterate/map 202
Figure 9.7 iterate/pipe 202
Figure 9.8 Determine the number of bookmarks introduced per day 203
Figure 9.9 For each day generate a list of the bookmarks introduced on that day 205
Figure 9.10 For each day generate a list of the ids of the bookmarks introduced on that day 206
Figure 9.11 For each tag namespace α determine the bookmarks that mention α 207
Figure 9.12 Find all bookmarks that reference a photo of a roller-coaster 208
Figure 9.13 Function list/find finds the first item in a list that satisfies a predicate p . 209
Figure 9.14 Client-defined helper predicates for searching and querying bookmark tags 209

vi

Figure 9.15 Search for all bookmarks that refer to a location. 210
Figure 9.16 Search for all bookmarks that refer to a location in France or Germany 211
Figure 9.17 Search the bookmarks for a photo of a roller coaster in either France or Germany 212
Figure 9.18 iterate/append 213
Figure 9.19 iterate/append is the source of bookmarks for iterate/pipe 214
Figure 9.20 iterate/compose/right extends combinators that accept a pair of generators 219
Figure 9.21 iterate/append* accepts m > 2 generators 219
Figure 9.22 Using iterate/pipe to form generators for iterate/append 219
Figure 9.23 The outputs of multiple generators can be interleaved in useful ways 220
Figure 9.24 iterate/temporal* 220
Figure 9.25 iterate/merge 221
Figure 9.26 iterate/temporal merges two streams in temporal order 221
Figure 9.27 iterate/limit enforces a limit-stop for generators 221
Figure 9.28 Remote evaluation of a search through interleaved bookmarks 222

Figure 11.1 A model financial trading system 240
Figure 11.2 A verification model for financial trading 242

vii

LIST OF TABLES

Page

Table 3.1 The four levels of the Unifying Policy Hierarchy 52

Table 9.1 The Delicious HTTP interface for searching and manipulating bookmarks 193
Table 9.2 The Delicious HTTP interface for searching and manipulating tags 194
Table 9.3 The fields of a bookmark 196

viii

ACKNOWLEDGMENTS

If it takes a village to raise a child it takes a small mob to usher a doctoral student through advancement
to candidacy and from there to final defense.

In the spring of 2004 I approached my colleague and friend Dick Taylor with an unusual request:
would he consider, given that our professional relationship stretched back to 1976 when we were both
graduate students at the University of British Columbia, taking me on as a doctoral student? I will forever
treasure his expression of shock and surprise when I popped that question. He bravely and recklessly
assented; following the customary tedium of exams, forms and fees, I officially enrolled in the doctoral
program at the University of California, Irvine on October 1, 2004 at the tender age of 53. I am deeply
indebted to Dick for his willingness to take a flyer on me when any other rational man of letters would
have dismissed me as an old fool.

It has been a challenging slog from that first day to my thesis defense more than 11 years later. There
was a running joke in the department as to which would come first, my doctorate or a Social Security
check. I’m pleased to report that those of you in the betting pool who put your money on the Social
Security check lost. Along the way I benefited greatly from the kindness and support of friends, many
of them my fellow doctoral students. My first office mate was Eric Dashofy, who made the mistake of
seriously entertaining my speculations on software architecture and then responding with articulate,
well-informed arguments and observations. I repaid his kindness, upon his defense and graduation, by
recommending him for a position at The Aerospace Corporation, my employer then, and now. His first
office at Aerospace was next door to mine. Eric has risen quickly through the Aerospace ranks; I’m not
sure that he will ever forgive me for entrapping him.

My second office mate was Justin Erenkrantz, former president of the Apache Foundation and a re-
spected figure of the open-source community. Justin became both a friend and colleague and I enjoyed
our time together immensely. We quickly discovered our common interest in internet-scale architectures
and began, almost immediately, vigorously debating the architectural future of the web. Those conver-
sations were among the most spirited and enlightening of my career. A series of intense whiteboard
discussions over the course of two or three days led us to reconsider the foundations of Representational
State Transfer (REST) and, in its place, posit Computational REST as a successor architectural style to
REST. Computational REST become the topic of Justin’s doctoral thesis and is the intellectual precursor
of my work. Without Justin’s contributions this thesis would simply not exist, and for that alone, I owe
Justin a tremendous debt.

I also owe thanks to several of Dick’s other graduate students whose spirited questions and discussions
were an ongoing, ever unfolding pleasure: Alegria Bacquero, Matias Giorgio, Kyle Strasser, and Michael
Wolfe. Each, whether they realize it or not, made material contributions to the work presented here.

Alegria Bacquero took an early formulation of Computational State Transfer (COAST) and applied
it to electronic medical records, a wholly new problem area for me. Matias Giogio and I spent many
hours discussing the fine details of, and justification for, the internal mechanisms of the COAST reference
implementation. His master’s thesis was a substantial contribution to the evaluation of the efficacy of
the architectural style. Kyle Strasser worked tirelessly on the implementation of COASTC A S T, the first
major demonstration of the style. The techniques that he developed for the replication and transfer of
video streams within COASTC A S T inspired the protocols for live update with hot backup that appear in
this thesis as an evaluation study. Michael Wolfe, in his master’s thesis, demonstrated that the COAST

style was compatible with the demands of well-known standards for entity authentication, an important
question for me at the time.

ix

Debra Brodbeck, Assistant Director of the Institute for Software Research, provided invaluable guid-
ance to a bewildering university bureaucracy and was a center of calm. Kari Nies, a staff programmer/an-
alyst at the Institute, was an early “adopter” of the COAST reference implementation and worked closely
with Alegria Bacquero and Matias Giorigio in developing the first websites devoted to COAST. To Debra
and Kari I offer heartfelt thanks; I will miss you both.

I would be remiss if I did not give thanks to the other two members of my doctoral committee, Asso-
ciate Professor James Jones and Professor Crista Lopes. Jim Jones’ interest never flagged over the years
and Crista Lopes stepped up at a critical juncture. Thanks again for the signatures; I intend to have a
set framed. In addition, Professor Gillian Hayes, the Vice Chair for Graduate Affairs of the School for
Informatics and Computer Science, staunchly defended me against powerful bureaucratic forces over
which I had no control and even less understanding. Without her efforts I would not be writing these
acknowledgments and I owe her much thanks.

Over the course of my doctoral studies I continued working at The Aerospace Corporation. My col-
leagues and supervisors there showed me far more patience and understanding than I had any right to
expect. To my succession of section and department heads: Stuart Kerr, Dr. Scott Michel, Jorge Seidel,
and Dr. David Wangerin I offer thanks for your flexibility and encouragement as I bent my work schedule
into pretzel shapes to meet the demands of my doctoral studies.

My Aerospace colleagues, Drs. Kirstie Bellman, Eric Coe, Nehal Desai, Sam Gasster, Jim Gillis, Henry
Helvajian, Dave Kunkee, Chris Landauer and Larry Miller, (you can’t toss a stone ten feet on the Aerospace
campus without hitting a Ph.D. in some discipline) frequently encouraged and advised me (often along
the lines of “just finish the damn thing”). They’ll be glad to know that I finally took them at their word.
Larry Miller deserves special thanks; he often served as a sounding board as I described the Swiss watch
intricacy of the reference implementation and was always a sympathetic ear.1

My wife, Wendy Hansen, has been a stalwart friend and partner from beginning to end. She is a
professional technical editor and if my thesis is error-free and properly punctuated it is all her doing.
Over the past year she has read and critiqued countless drafts and rewrites and at the end of it probably
knew the subject area as well as I and could have defended the thesis as my second. It was a long haul
for both of us and though I may hold the degree she deserves much of the credit. It would have been
impossible without her support and, for that, words of thanks and gratitude are frankly inadequate.

This material is based upon work supported by the National Science Foundation under Grant Num-
bers 04389962, 08202223, 09171294 and 14491595. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author and do not necessarily reflect the views of the
National Science Foundation.

1 Though it came with a price. If I hear another golf story I’ll simply go mad.
2 NSF Designing Architectures for Networked Applications: A REST-ful Approach (2004/10-2009/1).
3 NSF Collaborative Research: Recombinant Services Recasting the Web for Continuously Evolving Systems (2008/9–2012/8).
4 NSF Making and Tracing: Architecture-centric Information Integration (2009/9–2012/8).
5 NSF EAGER: Accountability Through Architecture for Decentralized Systems (2014/9–2016/8).

x

CURRICULUM VITAE

Michael Martin Gorlick

Education
Doctor of Philosophy (June 2016)

University of Callifornia, Irvine
Donald Bren School of Information and Computer Sciences
Department of Informatics
Advisor: Richard N. Taylor
Dissertation: Computational State Transfer: An Architectural Style for Decentralized Systems

Master of Science (October 1978)
University of British Columbia, Vancouver, British Columbia, Canada
Department of Computer Science
Advisor: John L. Baker
Thesis: Computation by One-Way Multihead Marker Automata

Professional Experience
2003/01 – Senior Engineering Specialist, The Aerospace Corporation, El Segundo, California
2001/05 – 2002/12 Research Investigator, Molecular Biology Institute, University of California, Los

Angeles
2000/06 – 2001/05 Chief Software Architect, Endeavors Technology, Irvine, California
1995 – 1997 Founder and Vice President, Interstitial Magic Limited, Gardena, California
1989 – 1994 Lecturer, Institute for Advanced Professional Studies, Cambridge, Massachusetts
1984/08 – 2000/05 Research Scientist, The Aerospace Corporation, El Segundo, California
1979/08 – 1984/08 Researcher & Senior Unix Systems Programmer, TRW, Redondo Beach, California
1978/10 – 1979/07 Consultant, British Columbia Telephone Company, Burnaby, British Columbia,

Canada
1971 – 1975 Research Assistant, University of British Columbia, Vancouver, British Columbia,

Canada
Publications

1. Michael M. Gorlick and Richard N. Taylor, Communication and Capability URLs in COAST-based
Decentralized Services, In REST: Advanced Research Topics and Practical Applications, C. Pautasso,
E. Wilde, and R. Alarcon, Eds. Springer, December 2013.

2. Michael M. Gorlick, Kyle Strasser and Richard N. Taylor, COAST: An Architectural Style for Decen-
tralized On-Demand Tailored Services, WICSA/ECSA 2012 Helsinki, Finland, August 2012.

3. Larry Miller, Michael M. Gorlick, David Wangerin and Christopher Landauer, What’s Coming on
Spacecraft: Next-Generation Distributed Satellite Bus Information Systems, Ground System Archi-
tecture Workshop, Los Angeles, February 2012.

4. Michael M. Gorlick, Kyle Strasser, Alegria Baquero and Richard N. Taylor, CREST: Principled Foun-
dations for Decentralized Systems, SPLASH 2011, Portland, Oregon, October 2011.

5. Larry Miller, Michael M. Gorlick, David Wangerin and Christopher Landauer, Next-Generation
Distributed Satellite Bus Information Systems, Flight Software Workshop, Johns Hopkins, October,
2011.

6. Justin Erenkrantz, Michael M. Gorlick, Girish Suryanarayana and Richard N. Taylor, From Rep-
resentations to Computations: The Evolution of Web Architectures, International Conference on
Foundations of Software Engineering, Dubronvik, Croatia, September 2007.

xi

7. Justin Erenkrantz, Michael M. Gorlick and Richard N. Taylor, Rethinking Web Services from First
Principles, International Conference on Design Science Research in Information Systems and Tech-
nology (DESRIST), Pasadena, California, May 2007.

8. Michael M. Gorlick, Justin Erenkrantz, and Richard N. Taylor, CREST: When REST Just Isn’t Enough,
ISR Connector Issue 7, Fall/Winter 2007.

9. Michael M. Gorlick et al., Flow Webs: Mechanism and Architecture for Sensor Webs, Ground Sys-
tems Architecture Workshop, Manhattan Beach, California, March 2007.

10. Michael M. Gorlick and Samuel Gasster, Future Trends in Ground Systems: Rethinking Systems
Engineering in the Light of Hyperexponential Change, Crosslink, Spring 2006.

11. Eric Dashofy, John Georgas, Justin Erenkrantz, Michael M. Gorlick and Rohit Khare, Designing in
a RESTful World, ISR Connector, Institute for Software Research, University of California, Irvine,
Spring/Summer 2005, pp. 7-8.

12. John Georgas, Michael M. Gorlick, and Richard N. Taylor, Raging Incrementalism: Harnessing
Change with Open-Source Software, Proceedings of the Workshop on Open-Source Software Engi-
neering, St. Louis, Missouri, May 2005.

13. Michael M. Gorlick and John Georgas, A Scalable Digital Video System for Launch Range Opera-
tions, Proceedings of the 2005 Ground Systems Architecture Workshop, Manhattan Beach, Califor-
nia, March 2005.

14. Michael M. Gorlick, Raging Incrementalism — System Engineering for Continuous Change, Pro-
ceedings of the 2004 Ground Systems Architecture Workshop, Manhattan Beach, California, April
2004.

15. Alissa Resch, Michael M. Gorlick, et al., Assessing the Impact of Alternative Splicing on Domain
Interactions in the Human Proteome, Journal of Proteome Research, November 2003.

16. D. Stott Parker, Michael M. Gorlick and Christopher Lee, Evolving from Bioinformatics in the Small
to Bioinformatics in the Large, OMICS, 7, 34-48, 2003.

17. Michael M. Gorlick, Geek Chic and the Future of Space Systems, Workshop on Evaluating Software
Architectural Solutions, University of California Irvine, Irvine, California, October 2000.

18. Michael M. Gorlick, Location Awareness is Where It’s At, The Workshop on Internet-Scale Tech-
nologies: Internet- Scale Namespaces, University of California Irvine, Irvine, California, August
1999.

19. E. James Whitehead Jr., Rohit Khare, Richard N. Taylor, David S. Rosenblum and Michael M. Gorlick,
Architecture, Protocols, and Trust for Info-Immersed Active Networks, Proceedings of the Intera-
gency Workshop on Smart Environments, Atlanta, Georgia, July 1999.

20. Michael M. Gorlick, Staying in Touch: Using Physical Contact as a Control and Communication
Modality, Proceedings of the Interagency Workshop on Smart Environments, Atlanta, Georgia, July
1999.

21. Peyman Oreizy, Micheal M. Gorlick, et al., An Architecture-Based Approach to Self-Adaptive Soft-
ware, IEEE Intelligent Systems, 14(3), May/June 1999.

22. Michael M. Gorlick, Nanonetworks: Shrinking the Internet Down to Size, Proceedings of the Second
International Conference on Integrated Micro/Nanotechnology for Space Applications, Pasadena,
California, April 1999.

23. Michael M. Gorlick, Software for Nanosatellites: Report of the Software Panel, Proceedings of the
Second International Conference on Integrated Micro/Nanotechnology for Space Applications,
Pasadena, California, April 1999.

24. J. V. Osborn, E. Y. Robinson, D. Hinkley, N. Ho, Michael M. Gorlick, B. Carlson, D. Gilmore, J.
Swenson, L. Gurevich, L. Berenberg, C. Chien, J. Yao, V. Panov, B. Schiffer, R. Au and N. Romanov, A

xii

PicoSAT Network and MEMS Space Platform, Proceedings of the Second International Conference
on Integrated Micro/Nanotechnology for Space Applications, Pasadena, California, April 1999.

25. Michael M. Gorlick, Electric Suspenders: A Fabric Power Bus and Data Network for Wearable Digital
Devices, Proceedings of the International Symposium on Wearable Computers, San Francisco,
California, October 1999.

26. Michael M. Gorlick, The Role of Satellite Services in Internet-Scale Event Notification, Workshop
on Internet- Scale Event Notification, University of California Irvine, Irvine, California, July 1998.

27. Samuel D. Gasster, Andrew Bustillos, David Kunkee, Michael M. Gorlick and April Gillam, Devel-
opment of a microwave radiative transfer simulation tool for the NPOESS program, The 1998 IEEE
International Geoscience and Remote Sensing Symposium, IGARSS, Seattle, Washington, July 1998,
pp. 686-688.

28. Michael M. Gorlick, Distributed Debugging on $5 a Day, Proceedings of the California Software
Symposium, University of California Irvine, Irvine, California, November 1997.

29. Michael M. Gorlick, Weaves as an Interconnection Fabric for ASIMS and Nanosatellites, Proceed-
ings of the International Conference on Integrated Micro/Nanotechnology for Space Applications,
Houston, Texas, November 1995.

30. Michael M. Gorlick and Alex Quilici, Visual Programming-in-the-Large versus Visual Programming-
in-the-Small, IEEE Symposium on Visual Languages, St. Louis, Missouri, October 1994.

31. Michael M. Gorlick and Alex Quilici, A Visual Platform for the Synthesis of Complex Systems, Pro-
ceedings of the Complex Systems Engineering Synthesis and Assessment Technology Workshop,
Beltville, Maryland, July 1994.

32. Michael M. Gorlick. Cricket: A Domain-Based Message Bus for Tool Integration, Proceedings of the
Second Irvine Software Symposium, University of California at Irvine, March 1992.

33. Michael M. Gorlick and Rami Razouk, Using Weaves for Software Construction and Analysis, Pro-
ceedings of the 13th International Conference on Software Engineering, Austin, Texas, May 1991.

34. Michael M. Gorlick, The Flight Recorder: An Architectural Aid for System Monitoring, Proceedings
of the ACM/ ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, California, May
1991.

35. Michael M. Gorlick, Carl Kesselman, Daniel Marotta and D. Stott Parker, Mockingbird: a Logical
Methodology for Testing, Journal of Logic Programming 8(2), 1990, pp. 95–119.

36. Michael M. Gorlick and Rami Razouk, A Model-Theoretic Semantics for Real-Time Interval Logic,
Proceedings of the Berkeley Workshop on Temporal and Real-Time Specification, International
Computer Science Institute, Berkeley, California, December 1990, pp. 47–61.

37. Michael M. Gorlick and Carl Kesselman, Gauge: A Workbench for the Performance Analysis of
Logic Programs, Logic Programming: Proceedings of the Fifth International Conference, Seattle,
Washington, August 1988.

38. Michael M. Gorlick and Carl Kesselman, Timing Prolog Programs Without Clocks, Proceedings of
the Fourth IEEE Symposium on Logic Programming, San Francisco, California, September 1987.

39. Harvey Abramson, Mark Fox, Michael M. Gorlick, Vince Manis and John Peck, The Pica-B Com-
puter: An Abstract Target Machine for a Single-User Environment, Proceedings of the ACM Annual
Conference, December 1978, pp. 301–309.

40. Michael M. Gorlick, Vince Manis, Tom Rushworth, Peter Van Den Bosch and Ted Venema, Texture:
A Document Processor, Proceedings of the CIPS/CSA Canadian Computer Conference, May 1976.

Technical Reports

1. Michael M. Gorlick, Justin R. Erenkrantz and Richard N. Taylor, The Infrastructure of a Computa-
tional Web, Technical Report UCI-ISR-10-3, Institute for Software Research, University of California,

xiii

Irvine, May 2010.

2. J. Erenkrantz, Michael M. Gorlick, Girish Suryanarayana, and Richard N. Taylor, Harmonizing
Architectural Dissonance in REST-based Architectures, Technical Report UCI-ISR-06-18, Institute
for Software Research, University of California, Irvine, December 2006.

3. Michael M. Gorlick, Streaming State Kinematics and Flow Engineering, Technical Report UCI-ISR-
06-03, Institute for Software Research, University of California, Irvine, March 2006.

4. Greg A. Bolcer, Michael M. Gorlick, et al., Peer-to-Peer Architectures and the Magi Open-Source
Infrastructure, Endeavors Technology, 2001.

5. David Notkin, Michael M. Gorlick and Mary Shaw, An Assessment of Software Engineering Body of
Knowledge Efforts, A Report to ACM Council, May 2000.

6. Michael M. Gorlick, Workshop Report: Software for Nanosatellites, Proceedings of the Interna-
tional Conference on Integrated Micro/Nanotechnology for Space Applications, Houston, Texas,
November 1995.

7. Michael M. Gorlick, Carl Kesselman and D. Stott Parker, Gauge: Its Philosophy and Design, TR-
0086A (2920-05)-2, The Aerospace Corporation, El Segundo, California, May 22 1989.

8. Carl Kesselman, Michael M. Gorlick and Joseph Bannister, Integrated Evaluation of Parallel Systems,
Aerospace Technical Report SD-TR-88-109, The Aerospace Corporation, El Segundo, California,
1988.

9. Michael M. Gorlick, Vince Manis, Tom Rushworth, Peter Van Den Bosch and Ted Venema, Texture
User’s Manual, Technical Manual 75-08, Department of Computer Science, University of British
Columbia, December 1975.

Patents

1. Michael M. Gorlick, Brian M. Morrow and Arthur H. Muir, Systems and Methods for Indexing Data
in a Network Environment, European Union Patent #WO03042871, May 22, 2003.

2. Michael M. Gorlick, Wearable Electronics Conductive Garment Strap and System, U.S. Patent
#6,350,129, February 26, 2002.

xiv

ABSTRACT OF THE DISSERTATION

Computational State Transfer: An Architectural Style for Decentralized Systems

By

Michael Martin Gorlick

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2016

Professor Richard N. Taylor, Chair

A decentralized system is a distributed system that operates under multiple, distinct spheres of author-

ity in which collaboration among the principals is characterized by mutual distrust. Now commonplace,

decentralized systems appear in a number of disparate domains: commerce, logistics, medicine, software

development, manufacturing, and financial trading to name but a few. These systems of systems face

two overlapping demands: security and safety to protect against errors, omissions and threats; and ease

of adaptation in response to attack, faults, regulatory requirements, or market demands.

We consider decentralized systems in the context of architectural style, a domain-specific set of rules

or constraints that confer benefits to the system in question. COmputAtional State Transfer (COAST) is

an architectural style for decentralized systems where mobile code (more specifically, the exchange of

live computations) is the principal interaction among peers. COAST exchanges rely on communication

by introduction, meaning that a peer x can communicate with a peer y only if peer x holds a Capability

URL (CURL) for y . CURLs are cryptographic structures; they are tamper-proof and cannot be guessed or

forged. Live computations received by peers via CURLs are evaluated in the context of execution sites,

flexible sandboxes that confine the functional and communication capability of visiting computations.

These four fundamentals: communication by introduction, mobile code, execution sites and CURLs,

are sufficient to protect against many common security threats including unwanted intrusion, resource

theft, or gross abuse of capability. These same four concepts also account for a considerable degree of

adaptation and flexibility. More broadly, the COAST architectural style embeds computation exchange in

the object-capability model of security; both computation exchange and object-capability contribute in

equal measure to security and adaptation.

xv

To validate the twin claims of security and adaptation for COAST we constructed a COAST-compliant

reference implementation comprising Motile, a language for mobile code exchange and execution, and

Island, a peering infrastructure for decentralized systems. We performed four studies with the Motile and

Island platform: two each directed at adaptation and security.

The first adaptation study analyzed the problem of cooperative live update of a simple server, a gold

standard for adaptive systems. Modeling an individual server as an endless service loop reading and

responding to service requests we constructed Motile/Island protocols for three forms of server update:

live update in place, live update with hot backup in a single address space, and live remote update with

hot backup in which the update is instantiated in a remote address space. This evaluation demonstrates

that COAST is capable of fail-safe cooperative live update for individual services in a decentralized system.

The second adaptation study examined the problem of evolving web service APIs, in particular client-

driven API evolution. Using a web bookmark service as a test case, we demonstrate a minimalist service

API that is extended per-client by client-developed mobile code delivered provider-side. The client code

examples illustrate that service API extension and adaptation can be shifted from a service provider to

the service clients, thereby easing the burdens on a service provider and speeding the pace of service

evolution. We conclude that COAST is well-suited for client-driven service extension and customization.

The first security study offers a proof, by case analysis, that COAST is authority-safe and that Motile is

a capability-safe language, hence authority-safe. These results place COAST and Motile/Island squarely

within the growing body of work on the security and safety of capability-safe languages and confirms that

the idioms and patterns of object-capability security are available to COAST.

In the second security study we evaluated COAST with respect to architectural accountability and

obtained outcomes that indicate COAST is well-suited for capability accounting, a system accounting

practice in which capability is the basic unit of exchange within and among systems. Our results in-

clude a communication capability analysis of a model financial transaction system, mapping points of

capability creation, exchange, and exercise to system actions, and a sample analysis of capability traces

for verifying system behavior and detecting process and security faults. This preliminary experiment

hints that capability accounting may be useful for debugging, behavioral analysis, or early warning of

threatening security events.

xvi

INTRODUCTION

Copious network bandwidth, combined with almost ubiquitous computation, permits decentralized

systems — those that span multiple distinct spheres of authority — at unprecedented low cost and large

scale. However, decentralization exacts a price. As decentralized services grow in scale and complexity,

security becomes ever more challenging, suggesting that future systems cannot be designed and con-

structed as they have in the past. To this end I consider a counterintuitive notion: mobile code can

improve the adaptation and security of decentralized systems.

The Problem

A decentralized system is a distributed system that operates under multiple, distinct spheres of au-

thority in which collaboration among the principals is characterized by mutual distrust. Decentralized

systems appear in numerous domains, including disaster response, coalition military command, com-

merce, finance, education, and research. These systems of systems face two overlapping demands: se-

curity and safety to protect against errors, omissions and threats; and ease of adaptation in response to

attack, faults, regulatory requirements, or market demands. By their very nature they offer unique and

conflicting challenges.

Many of the underlying subsystems of decentralized systems are platforms that offer service interfaces

by which other (sub)systems can invoke specific service functions. With the proliferation of platforms

it is possible for a small team of developers to quickly assemble a decentralized application that, in the

past, a single, isolated but resource-rich agency would be hard-pressed to complete and deploy. But such

decentralization exacts a price—a service-consuming agency exposes itself to risk as services come and

go, as the performance of decentralized resources fluctuates, or as service interfaces evolve.

Further, absent a single overarching authority, and since the operating environment of each agency

may vary with respect to market and customer demands, regulatory requirements, finances, and other

factors, not to mention organizational agility and rate of change, a set of interdependent organizations

may not synchronize or even roughly coordinate the evolution and deployment of their services. Thus

service adaptability is a prized goal for both service providers and service consumers. Consumers must

adapt to changes to external service interfaces and semantics while maintaining continuity of both their

internal services and the outward-facing services they may offer in turn to their downstream clients. From

1

this perspective a vibrant service economy is simultaneously a powerful enabler and a source of risk and

uncertainty.

Reliance on another requires trust, but trust is rarely unconditional. The role of an escrow agent

in a real-estate transaction is a common example of a trusted intermediary employed by two or more

mutually suspicious parties. Military coalition partners may severely limit the scope and specific content

of information they share, as do suppliers and customers in a business relationship. Elaborate social, legal,

financial, commercial, and technical structures have evolved over time to standardize, enforce, execute,

and guarantee trust relations [210]. Both decentralized services and applications, like their precursors,

have similar requirements.

Consequently, creating a well-engineered decentralized service poses multiple challenges: respon-

sibly exercising local authority while participating as a “good citizen”’ in larger applications; managing

security, safety, and privacy; and meeting the customary demands of good software engineering. These

issues become even more difficult when the services must evolve over time to reflect varying circum-

stances: clients demand modifications to existing services, another party engages in behavior that raises

trust questions, or a new party with unanticipated demands is added to the mix, to name but a few.

As decentralized services grow in scale and complexity, security becomes a predominant concern.

Attackers enjoy massive asymmetric technical advantages, including the large and vulnerable attack

surfaces of many critical systems; patchwork security; enormous and complex legacy systems ill-suited

for comprehensive protection and defense; low-cost development tools for malware; and a resource-

rich underground economy of exploits, attack tools, and botnets. While the size, complexity, and costs

of defensive security mechanisms increase rapidly, the size, complexity, and costs of malware attacks

remain both small and constant [140], suggesting that future systems must be designed and constructed

in ways dramatically different from present systems.

Here is the problem in a nutshell. We’ve long since arrived at the point at which services are decentral-

ized; rarely do web server and web browser share the same sphere of authority. Once it became common

practice for web servers to dynamically inject JavaScript for browser-side execution into the pages they

delivered to browsers, the security risks increased dramatically. Mashups accelerated these trends, while

layering web servers over existing legacy services (a natural and sound separation of presentation logic

from application logic) was the final blow to the integrity of the classic, firewalled security perimeter.

2

Simultaneously, rapidly adapting enterprise services became an express enterprise strategy, leaving us

with the confluence of two irresistible, destabilizing forces — decentralization on one hand and accel-

erated ongoing change in the architectures and construction of services on the other — while security

and safety suffered greatly as a consequence. How do we embrace both decentralization and adaptation

while maintaining a high level of security and safety?

Trends, Influences, and Insights

In this thesis I address the pressing problems of adaptive and secure decentralized services from the

perspective of architectural styles [163]. Valued system attributes — modularity, performance, encapsu-

lation, scaling, and adaptivity, to name but a few — arise from software architecture [238]. Security is

cross-cutting, intruding upon many levels simultaneously. From an architectural perspective this is the

natural consequence of the necessary and repeated application of a system or architectural constraint at

multiple levels: an architectural order and sensibility directed to the concerns of security. Here I define

and elaborate on a particular set of system principles that encompass security at many levels and in many

ways.

My approach relies on well-known and established security principles and technologies, but com-

bines or applies them in novel ways to achieve higher-order security consistent with the subject architec-

ture. Object-capability security, in the seminal work of Miller [170], provides the scaffolding by which an

architectural style can be repeatedly applied, at multiple system levels, to ensure system security. The

COAST style and the mechanisms that it introduces are fractal; the mechanisms remain the same but may

be repeatedly applied at ever finer levels of detail.

First and foremost, COAST relies on computation exchange: the exchange of live computations among

computations. The exchange of live computations can be used to implement service requests and their

responses, protocols based on active messages, asset6 exploitation, search, discovery, analysis, and reflec-

tion. By combining computation exchange with the twin mechanisms of communication confinement

and functional confinement we can introduce: highly differentiated services, fractalware, continuation

transfer, service innovation, and service customization.

Communication confinement is the mechanism and practice of modulating communications among

6Databases, sensors, actuators, instruments and the like.

3

system computations. COAST cleaves communication from computation; that is, communication is an

explicit capability and is always governed by contract. In fact, for a computation x there is no guarantee

that it will be granted the capability to communicate or, if granted, that it will ever satisfy the contract

that accompanies the capability. COAST reduces communication among all system elements to a single

mechanism — unidirectional, asynchronous, immutable messaging — and defines the capability URL

(CURL), a cryptographic structure, as the only means by which one computation may communicate

(interact) with another.

Every message sent by a computation x to a computation y must be accompanied by a CURL u

for y . A capability URL both contains and references contracts (predicates) that confine the capability

to communicate. Contracts include, but are not limited to: when a computation may communicate

(including time locks and expiration dates), rate limits on the frequency of communication or bandwidth

consumption, bounds on the total number of messages, the origin of the communication, the contents

of a message, the workload of the recipient, arbitrary predicates on the state of the recipient, and boolean

combinators. Each individual communication from x to y may be governed by a separate and distinct

CURL, each CURL with its own contracts. CURLs are revocable and can be non-delegable. Just because

computation x communicated with computation y in the past does not guarantee that it will be allowed

to communicate with y in the future.

Functional confinement dictates what a computation may do. All computations x execute within the

confines of an x -specific execution site, a sandbox that confines both resource capability (the fungible

resources granted to x such as processor cycles or memory) and functional capability, the functions that

x may execute within the execution site. The functional capability of an execution site can be customized

in numerous ways: limiting the arguments that a computation may use when calling a function, the

specific behavior of a function, when a function can be called, the rate at which a function can be called,

bounds on the total number of times a function can be called, or invocations governed by arbitrary

predicates. A specific function f may be expunged from an execution site altogether; for example, unless

the communication primitive send is present in the execution site of x , computation x can never send a

message to computation y even if x holds a CURL for y .

The combination of communication and functional confinement eliminates ambient authority, ca-

pability that a computation acquires “out of thin air” from an implicit global context. Under COAST all

4

capability is explicit and its origin can always be traced back to an explicit grant of capability, the transfer

of capability from one computation to another. This property, capability safety, is a critical security prop-

erty and is instrumental in ensuring safety and adaptability. Since COAST is architecturally recursive by

construction the same architectural and security principles apply at all levels of service (computation)

instantiation; in particular each and every COAST computation is capability-safe. Embedding compu-

tation exchange in the model of object-capability security directly addresses several security concerns.

To the extent that computation exchange can be confined by object-capability then the risks of com-

putation exchange (where confinement is a proxy for acceptable risk), are modulated and limited by

object-capability.

Communication and functional confinement lead to highly differentiated services in which the same

service provider (computation) can offer a distinct service facet to each of its service clients (themselves

computations). The individual service facets are distinguished one from the other by the CURLs that

the provider generates and distributes to service clients. Because CURLs can carry arbitrary metadata,

including snapshots of live computations (mobile code), the provider that issues the CURL u can include

parameters that differentiate the service for a particular client. Alternatively, the provider can embed a live

computation of the customized service itself in the metadata, creating a “fire and forget” CURL u in which

the provider need not retain the implementation of the service facet. To request the u -specific service

the client dispatches its request via CURL u and the provider can simply execute the implementation

that it included in the metadata of u . In general, CURL metadata can contain arbitrary values, structures,

and snapshots of live computations for the sake of one or more service facets. Here object-capability and

computation exchange contribute in equal measure to both security and adaptation.

Under COAST every computation is both service provider and service consumer simultaneously —

a service peer, in other words. Fractalware is an architecture of self-similar, recursive COAST service

peers organized as a forest of trees that expand and contract in response to the live computations that

they receive from other service peers [110]. Because every CREST computation is a service provider

in miniature the fluidity of service within a fractalware infrastructure belies the traditional notion of

middleware altogether. The notion of a layer in a peering collective is computation-centric and its fractal

structure suggests that “middleware service” is wherever one happens to find it: layers are a matter of

convenience, perspective, and scope, not static construction and restriction.

5

Continuation transfer allows a computation x to snapshot itself at a safe point in its execution and

migrate the continuation elsewhere, where it resumes execution at the point the snapshot was taken. Con-

tinuation transfer can be used to implement service migration, service replication, and service branching;

the latter when the service, post-replication, is commanded to alter its service profile or undertakes exe-

cuting a new stream of service requests. This technique can be used in collaborative service development,

service testing, and service exploration.

Service branching is closely related to live update where an executing service (computation) is mod-

ified, without service interruptions, as it executes. A variant of continuation transfer can be used to

implement live update with hot backup.7 In this scenario computation x performs a form of continuation

capture, suspends execution at the point of the snapshot, and awaits confirmation that the live update

was successful — the continuation is migrated elsewhere and restarted, but with code updates in place. If

the live update fails for any reason then computation x resumes execution exactly where it left off without

loss of service. If the live update is successful then computation x performs whatever housekeeping is

necessary for a safe shutdown and halts cleanly.

Computation exchange transforms the relationship between service provider and service consumer

by pushing service innovation and service customization out to service clients. If a service client can

dispatch a live computation to a service provider for execution in a service-specific execution site then

the client is free, within the capability strictures of the execution site, to craft the service offerings to suit

its own needs. This may simplify the design, implementation, and deployment of services provider-side;

the provider need provide only a handful of essential service primitives and stand back as clients shape

those primitives into customized services.

Service innovation may become crowdsourced, as service providers, observing how clients harness

the service primitives, add additional service primitives or expand their semantics. Fewer service prim-

itives may also reduce the lifecycle costs of service offerings; consequently, providers can introduce

additional services more frequently or offer a family of variations that reflect client-driven customiza-

tion. There are other advantages. Clients need not wait for providers to deploy bug fixes if a flaw can

be remedied by a workaround in a client-dispatched computation. Clients may also host higher-order

services atop the provider service primitives, erecting an ecology of client-formulated service platforms

7 See Chapter 8 for a full discussion of live update.

6

that feeds a virtuous cycle of service experimentation and innovation. Computation exchange has the

potential to reshape service platforms by reducing barriers to entry and expanding the scope of service

design, development, and deployment.

COAST: Introduction, Import, and Evaluation

To introduce COAST I put forward a notional decentralized system and suggest how mistrust may arise

among its principals. Using this example as an exemplar I sketch COAST, the benefits that it confers upon

decentralized systems, and briefly discuss the primary COAST mechanisms. I close with a discussion of

each of the four evaluations and briefly describe a video streaming service constructed with Motile/Island,

the reference implementation of COAST.

A decentralized system G is a distributed system, but with two distinctive characteristics: first it

operates under multiple, distinct, independent spheres of authority and second, its principals collaborate

from a posture of mutual distrust.8

The first means that not all subsystems of G answer to the same authority; for example, half of system

G may be owned and operated by Alice and the other half owned and operated by Bob. Alice and Bob are

collaborating to build and supply widgets to a third party, Carol — but each is contributing proprietary

design and technology to the fabrication of the widgets.

The second means that Alice must grant Bob access to computational elements of her automated

widget design system and Bob must grant Alice limited access to his state-of-the-art widget performance

models, but neither trusts the other. Both must ensure that their counterpart has access to only the

services (computations) that are required for their half of the joint project and nothing more. How then do

Alice and Bob cooperate with one another while safeguarding their proprietary services from unwanted

exploitation by their partner?

To answer such questions I turn to architectural style, a set of rules or constraints that confer specific

benefits on those systems whose architecture conforms to the rules and constraints. Architecture can

induce valuable system attributes such as security, adaptation, scaling, and resilience. These attributes

do not arise by accident. COmputAtional State Transfer (COAST) is an architectural style for decentralized

systems, that induces decoupling, isolation, confinement, and stateless interaction to yield systems for

8 Or equivalently, a posture of limited trust. For my purposes these two characterizations are equivalent.

7

which security and adaptation are both natural outcomes. The thesis, adaptive and secure decentralized

services are feasible under COAST, has two attendant claims:

• COAST is sufficiently expressive to implement adaptive decentralized services.

• COAST is sufficiently secure to ensure that service providers can adequately protect themselves

against erroneous or malicious visiting computations.

Four distinct but interrelated COAST mechanisms — mobile code, execution sites, communication by

introduction, and capability URLs — act in concert to guard assets, forestall sabotage, and hinder inter-

ference within decentralized systems. These four mechanisms play dual roles, simultaneously affording

both adaptation and security. In other words, under COAST adaptation and security need not be mutually

exclusive; in fact, identical mechanisms can serve both.

Of particular note, the capability URL (CURL) in COAST ensures isolation among computations in

COAST-compliant architectures. Computation x can communicate with computation y only if it has been

introduced to y beforehand — that “introduction” is a CURL for y . Unless x holds a CURL for y it is

impossible for x to directly send a message to y .9 Further, a CURL only grants unidirectional communi-

cation capability. Even though x may send messages to y using a CURL for y , absent an introduction to

x (that is, a CURL for x) computation y cannot directly send a message to x .

Communication by introduction maximizes isolation, ensuring that a computation in a decentralized

system never communicates outside of a small circle of known, legitimate computations. Communication

by introduction can guarantee that a computation never communicates at all or communicates with at

most one other computation. Guarantees of this ilk are essential for preserving the integrity, and assuring

the correctness, of decentralized systems.

To evaluate the efficacy of COAST a COAST-compliant reference implementation was developed and

deployed. It comprises Motile, a programming language whose semantics are grounded in the transmis-

sion and evaluation of mobile code, and Island, a peering infrastructure for decentralized systems and

for which the serialization, encryption, decryption, deserialization, and confinement of mobile code are

first-order concerns.

The reference implementation was used in four studies to validate the claims: two each for adaptation

9 Without a CURL for y computation x might, via a proxy z , pass a message to y but that is only because x holds a CURL for
z and z in turn holds a CURL for y . In other words, at some point in the past, x was introduced to z and z was introduced to y .

8

and security.

The first adaptation study analyzed the problem of cooperative live update of a simple server, a gold

standard for adaptive systems. Modeling an individual server as an endless service loop reading and

responding to service requests I constructed Motile/Island protocols for three forms of server update:

live update in place, live update with hot backup in a single address space, and live remote update with

hot backup in which the update is instantiated in a remote address space. This evaluation demonstrated

that COAST is capable of fail-safe cooperative live update for individual services in a decentralized system.

The second adaptation study examined the problem of evolving web service APIs, in particular client-

driven API evolution. Using a web bookmark service as a test case, I demonstrate a minimalist service

API that is extended per-client by client-developed mobile code delivered provider-side. The client code

examples illustrate that service API extension and adaptation can be shifted from a service provider to

the service clients, thereby easing the burdens on a service provider and speeding the pace of service

evolution. I conclude that COAST is well-suited for client-driven service extension and customization.

The first security study offers a proof, by case analysis, that COAST is authority-safe and that Motile is

a capability-safe language, hence authority-safe. These results place COAST and Motile/Island squarely

within the growing body of work on the security and safety of capability-safe languages and confirms that

the idioms and patterns of object-capability security are available to COAST. The two proofs rely heavily

on the semantic consequences of the COAST style rules, the implementations of Motile/Island, and their

conformance to the COAST style. Capability-safety is sufficient to implement security practices such as

revocation and multi-level security, non-delegation, and information flow control.

In the second security study I evaluated COAST with respect to architectural accountability and ob-

tained outcomes that indicate COAST is well-suited for capability accounting, a system accounting prac-

tice in which capability is the basic unit of exchange within and among systems. The results include

a review of a model financial transaction system implemented in the COAST style under Motile/Island,

a mapping of critical control points to capability actions, and a sample analysis of capability traces for

validating system behavior and detecting process and security faults.

Using Motile/Island we constructed and demonstrated a small video streaming test bed, COASTC A S T

[113], that orchestrates high-definition video streams, from camera to display, as collaborating video ser-

9

vices. A single stream may transit many computations scattered across the network: the source (real-time

HD video cameras), video encoders, midpoints (relays and publish/subscribe servers), video decoders,

and eventual sinks (user interfaces and displays), each potentially managed by a separate sphere of au-

thority. Streaming and manipulating live video is a demanding application domain; in COASTC A S T it

serves as a substitute for any high-bandwidth, soft real-time, data stream.

All of COASTC A S T is fabricated from live computations dispatched to execution sites across the net-

work that: read the raw video frames generated by cameras, distribute raw frames to intermediate con-

sumers such as encoders, downsamplers and special effects transforms, relay compressed video frames

(themselves live computations) to video decoders, and finally, display one or more live video streams.

Communications among all computations are managed by CURLs.

COASTC A S T exhibits interesting emergent properties, courtesy of the architectural style. For example,

computation exchange allows any user to share a stream with any other user on demand. Video streams

are shared by directing a local decoder d 1 to spawn a copy d 2 of itself to an execution site elsewhere in

the network, where the new decoder d 2 automatically resubscribes to the relay and publication service r

used by d 1. The CURL necessary to subscribe to r is present in the run-time state of computation d 1 and,

when d 2 is spawned, that CURL travels along with the mobile code.

Contributions

To address the intertwined challenges of security, constant and perhaps unpredictable change, the flu-

idity of service interfaces, and an ever-expanding attack surface I undertook to resolve the long-standing

tension between system adaptation and system security. COmputationAl State Transfer (COAST), an ar-

chitectural style for decentralized systems, is the centerpiece of the work. There are two principal contri-

butions: the COAST architectural style and its embodiment in a reference implementation Motile/Island.

The COAST Architectural Style

The COAST style rules define the instantiation of services, their execution, inter-service messaging

mediated by capability URLs, and the interpretation of messages. From a concise statement of the style I

explore its architectural consequences and draw a detailed system architecture comprising intercommu-

nicating address spaces where both intra- and inter-address space interactions are compliant with the

10

style. In all cases, whether the interaction is intra-authority or inter-authority, the same style rules apply.

Consequently, COAST-compliant systems enjoy defense in depth, as each and every interaction, whether

local or remote, is mediated by a small set of consistent, but flexible, security mechanisms. Developers

can adjust these mechanisms to accommodate a broad variety of security policies and varying degrees of

risk.

Four distinct but interrelated COAST mechanisms: communication by introduction, mobile code, exe-

cution sites, and capability URLs combine to guard vital assets, forestall sabotage, and hinder interference.

Each of the four plays a dual role, affording both adaptation and security. Embedding computation

exchange in an object-capability infrastructure achieves what neither can do alone — decentralized

adaptation and security in equal measure, balanced one against the other.

Motile/Island

A reference implementation for COAST has been developed and tested. Deployed in a number of

laboratory-scale experiments it comprises Motile, a single-assignment, mobile code language, and Island,

a peering infrastructure for decentralized computation exchange. While alternate implementations are

certainly possible, the style strongly influenced the language and peering infrastructure in numerous

ways, large and small. The unit of authority in the peering implementation is an island, a single, homoge-

neous memory address space that is network-addressable.

Motile at its core is an assignment-free, abstract, lambda calculus engine confined to lambda ex-

pressions, function calls, conditional expressions, and function definitions. Closures and continuations

are the reification of computations exchanged among islands. The lambda calculus engine contains

no ambient authority and all functional capability for visiting closures and continuations is defined by

the host island. Unlike many other mobile code implementations, Motile does not rely on a byte-coded

virtual machine; the core of the network exchange representation is a graph-based, high-level, assembly

language reflecting the abstract, lambda calculus engine.

Thesis Roadmap

Architecture can induce valuable system attributes such as security, adaptation, scaling, and re-

silience. These attributes do not arise by accident. An architectural style that induces decoupling, isola-

11

tion, and stateless interaction can yield systems for which security and adaptation are both natural out-

comes. The COAST architectural style is deceptively concise. Situating it in the context of prior work is an

important first step to understanding the constraints that the style levies on COAST-compliant implemen-

tations. Chapter 1 briefly presents an informal abstraction of the style rules as a preface for a statement of

the thesis and its claims. The remainder of Chapter 1 is devoted to the origin and history of computation

exchange as a modality of interaction for distributed and decentralized systems. Computation exchange

underlies the precepts of COAST and was the impetus for the development and investigation of the style.

Any realization of COAST must implement some manner of mobile code. Chapter 2 relates the history

of mobile code, which can be traced as far back as the early 1960s. Mobile code displays diverse semantics

with respect to the mobility of language constructions, exhibits broad variations in the treatment of

variable bindings, and is influenced by the choice of transport representation for its network transfer from

one host to another. The same issues play out for Motile/Island, the reference implementation of COAST

as well, and I illustrate how the choices made for Motile/island are often dictated by either the style or

other considerations, including simplicity, ease of implementation, or the strictures of decentralization.

Chapter 3 presents the complete COAST style and is devoted to a detailed discussion of the conse-

quences of the style rules. The style is deliberately underspecified to allow for a variety of implementa-

tions; the reference implementation offered here is just one of many possible implementations. However,

the transport model embraced by the reference implementation is critical and some of the benefits of

capability URLs can be traced back to the transport model chosen here. Many of the design decisions for

Motile, the mobile code language of the reference implementation, reflect the interplay of the rules of the

style.

Chapter 4 discusses the technical obligations of the COAST style rules for implementations that seek

to be COAST-compliant with an emphasis on the role of binding environments and the necessity for late

binding under COAST, the rationale for execution sites and expectations of message ordering among

COAST services. The COAST style deliberately leaves two concepts undefined: spheres of authority and

the grounds for the confinement of computation arguing that they are best left to service providers.

Chapter 5 examines Motile/Island, the reference COAST implementation, with respect to the obliga-

tions enumerated in Chapter 4. The obligations are reflected in the language binding semantics, message

passing, and the execution of visiting mobile closures. To illustrate the generality of the message passing

12

primitives I define decentralized promises, a language feature that bridges the gap between functional

programming and decentralized computation. The chapter concludes with an extended example that

illustrates two forms of decentralized computation: spawning and remote evaluation.

Chapter 6 details the mobility semantics of Motile, emphasizing the security considerations. These

considerations are reflected in the two implementations of messaging: one for transmission between

computations in separate and distinct address spaces and the other for transmission between compu-

tations that share an address space. The binding semantics of Motile and messaging interact and the

behavior differs between the two implementations. That difference can be used, without harm, to good

advantage however, there are cases when messaging within a single shared address space can lead to

unwanted transfers of functional capability. Here I show that serialization, required for inter-address

space message transfers can be applied within a single address space to contain and prevent leaks of

functional capability.

Chapter 7 is a concise reference manual for Motile, a single-assignment, Scheme-dialect that is based

on R5RS Scheme, with some R7RS extensions. In addition, Motile supports persistent, functional hash

maps and vectors; their API is detailed here as well.

Chapters 8 –11 describe four studies of the adaptation and security behavior of Motile/Island : two

each directed at adaptation and security. The first pair of studies, Chapters 8 and 9, evaluate the claim of

adaptation in two domains: cooperative live update and client-driven web API design.

The second pair of studies, Chapters 10 and 11, evaluate the claim of security from two distinct

perspectives. Chapter 10 proves that COAST is authority-safe and that Motile/Island is capability-safe.

Chapter 11 evaluates COAST with respect to architectural accountability, an aspect of system-level secu-

rity.

Finally, Chapter 12 summarizes the work as a whole while Chapter 13 considers a few unanswered

questions and offers suggestions for future work.

13

Chapter 1: Computation Exchange — From Idiom to Style

COmputAtional State Transfer (COAST) shifts decentralized systems away from the pervasive practice

of content and data exchange that dominates client/server interactions to a practice of computation ex-

change where peers routinely exchange live computations rather than static content. My motivation was

to transition web-scale systems to a new set of consistent constructive principles that encouraged adap-

tive emergent behavior [70, 110]. With the goal of computation exchange in mind, the COAST architectural

style can be informally summarized as:1

• All services are computations whose only interaction is the asynchronous messaging of mobile

code.

• All computations execute within the confines of an execution site, a flexible sandbox that confines

functional and resource capability.

• A computation x can transmit a message to a computation y only if x holds a capability URL (CURL)

for y , communication by introduction. CURLs are cryptographic structures; they cannot be forged

and are tamper-proof. Only y can create a CURL for y .

• The interpretation of a message delivered to a computation is not only receiver-dependent but also

delivery-dependent.

These four distinct but interrelated COAST mechanisms — mobile code, execution sites, communication

by introduction, and capability URLs — act in concert to guard assets, forestall sabotage, and hinder inter-

ference within decentralized systems. These four mechanisms play dual roles, simultaneously affording

both adaptation and security. In other words, adaptation and security need not be mutually exclusive, in

fact, identical mechanisms can serve both.

This chapter traces the evolution of computation exchange from an idiom to a well-defined architec-

tural style. I first specify, in Section 1.1, the thesis of this work and the twin attendant claims of security and

adaptation as linked emergent behaviors in COAST-based systems, to set the context for the arguments

that follow. Sections 1.2 and 1.3 consider how software architecture can induce security and adaptation,

1 A formal statement of the COAST architectural style is reserved for Chapter 3.

14

where I argue that mobile code is a powerful and compelling tool for adaptation. In other words, it is

plausible that an architectural style can induce security and exploit mobile code as an instrument of

adaptation.

But mobile code introduces considerable risk and the question, discussed in Section 1.4, becomes

how to confine and modulate that risk. A close examination of the literature, detailed in Section 1.5,

reveals ample precedent for computation exchange. I close in Section 1.6 with an examination of security

for computation exchange based on capability security. Capability security adequately confines mobile

code and secures decentralized systems overall. But mobile code is a touchstone for a high degree of

adaptation. In searching for an answer to the problem of security for computation exchange I happened

upon a set of mechanisms that served two masters simultaneously: security and adaptation.

1.1 Thesis and Claims

Like CREST, COAST is an architectural style consistent with the paradigm of computation exchange;

COAST, however, treats security as a primary concern. My thesis, adaptive and secure decentralized services

are feasible under COAST, rests upon two claims:

• COAST is sufficiently expressive to implement adaptive decentralized services

• COAST is sufficiently secure to ensure that service providers can adequately protect themselves

against erroneous or malicious visiting computations

Here I define adaptive as “able to alter to conform to new or altered circumstances,” expressive as “serving

to express or represent,” and secure as “comparatively free from danger; not exposed to serious damage

or attack.” The evaluation of the claims, Chapters 8–11, rests upon a few critical definitions: adequate

meaning “meeting an acceptable standard of fitness," and sufficient meaning “equal to what is required".2

The concerns are twofold: peer safety and integrity, thwarting erroneous or malicious actions un-

dertaken via computation exchange against a peer, and noninterference, preventing one computation

executing on a peer from accidentally or deliberately interfering with the execution of a co-resident com-

putation. The vulnerabilities include:

• Fungible Resources. Excessive consumption or exhaustion of fungible resources such as processor

cycles, memory, network bandwidth, and permanent or scratch storage.

2 All definitions taken from [258].

15

• Fixed Assets. Unauthorized access to, and exploitation of, fixed peer assets such as sensors (for

instance, a camera), actuators (valves in an industrial process), specialized physical processors (say,

a GPU), confidential storage devices, or sensitive information sources (a database or file).3

• Sabotage. Disruption of critical peer-specific computations that manage the fungible or fixed assets

of a peer.

• Interference. Unwanted interactions, explicit or otherwise, among computations residing on the

same peer, for example, an untrusted computation needlessly communicating with a sensitive,

trusted computation.

Many solutions are available to restrict or eliminate the excessive consumption of fungible resources;

consequently this vulnerability is not addressed here. Processor cycles can be allocated by combinations

of thread priority scheduling, explicit thread lifespans, load caps, and load balancing. Accurate memory

accounting without partitions is feasible in garbage-collected languages [262] and can prevent memory

exhaustion. User-level file systems such as FUSE [48, 100] implement tailored file systems that are access-

and resource-controlled as an unprivileged user process/daemon. Network bandwidth throttling and

traffic shaping are well-known strategies for protecting network resources. Sandboxing is also a rich,

active research topic whose results are applicable [6, 94, 144, 212]. The other three vulnerabilities — fixed

assets, sabotage, and interference — are each principal concerns of my thesis.

COAST springs from three insights:

• Architecture can induce security. From an architectural perspective, it is far better that the essential

mechanisms of security arise from the constraints of the architecture.

• Architecture can induce adaptation. Requiring service consumers to specify exactly which services

they want simplifies many interactions between the client and the service provider.

• Capability confines risk. By defining and confining what mobile code can do (functional capability)

and where, when, and with whom mobile code can communicate (communication capability) risk

can be modulated and reduced to an acceptable level.

3 Leaking confidential or sensitive information is not a concern here nor is distributed information flow control. These and
related topics are out of scope.

16

1.2 Architecture Can Induce Security

The Principle of Least Authority (POLA) [19, 208] dictates that every computation and service should

operate with the least capability necessary to the task where a capability is an unforgeable reference

whose possession confers both authority and rights to a principal [58]. If security is a direct consequence

of the capability afforded to principals, then as the capability available to principals grows so do the

risks. In other words, it is at best unwise, and at worst catastrophic, for a service to offer great power to

an erroneous, irresponsible, or hostile client. In this work I express POLA in the language of capability

security [170].

POLA is but one of several related principles for secure system design:

• Start from zero. The starting point for any service is zero capability, as omission is always fail-safe.

If a necessary capability is missing then an action may fail, but that failure, in all likelihood, will be

quickly detected. The opposite case, the exercise of a superfluous capability, may go undetected

for long periods of time. Capability should be granted to the service only if strictly necessary.

• Divide capability. Dividing capability among several distinct services may significantly improve

security and safety by simplifying individual service interfaces but at the expense of increasing

the number of interactions among those services. This design precept is closely related to the

“fail-fast” philosophy of Erlang [7] and sees application in the design and implementation of “crash-

only” software [29]. Further, fine-grain, highly-specific capability leads naturally to fine-grain,

highly-specific permissions. The decomposition and selective recombination of capability can be

a powerful security tool [170].

• Exclude ambient capability. All capability must be explicitly granted. It must be possible to trace

a grant of capability back to its source either by analysis or by monitoring. Static analysis of the

allocation of capability demonstrates that the software is safe by design while runtime monitoring

ensures that it’s behavior is safe. Rejecting ambient capability is a corollary of the principle of the

explicit allocation of capability.

• Embrace firewalls. POLA tends to minimize potential interactions among computations, thereby

reducing the odds of unintentional, unwanted, or unwarranted exploitation of capability (the Con-

fused Deputy [122] is a classic example). If an architecture permits firewalls (barriers to the transfer

of capability) then POLA provides rationale for their emplacement and design.

17

• Defend in depth. Where possible, deploy multiple, overlapping defensive mechanisms to defend

against vulnerabilities. For example, live tracing and auditing of the exercise and transfer of capa-

bility may provide early warning of behavior that could lead to a breach in system security. POLA,

which requires the explicit identification and characterization of capability, lends itself to a variety

of in-band and out-of-band mechanisms that can reduce the severity of breaches or mitigate their

consequences.

Security arising from architectural style has ample precedent in the work on capability-based operat-

ing systems KeyKOS [24] and EROS [213], modern microkernels such as seL4 [146] and Singularity [130],

and capability languages such as E [170] and Caja [171]. At many levels an architecture:

• Enumerates the origins, kinds, and consequences of the available capability.

• Offers a rationale and mechanisms for minimizing capability.

• Dictates significant interactions, including both the exercise of capability and its migration.

In this way an architectural style makes plain the mechanisms of creating and transmitting capability.

Even better, if those mechanisms are made integral to the architectural style, and enforced by design and

analysis tools [53], developers may be prevented from committing common security errors (just as type

systems in programming languages forestall a common class of errors). Lacking such, developers often

fall back upon ad hoc, ill-fitting substitutes subject to subtle, but dangerous, security flaws [16]. From an

architectural perspective, it is far better that the essential mechanisms of security be built in—impossible

for an application developer to circumvent—with the architectural style itself encouraging development

of additional, higher-level or domain-specific security measures. In other words, an architectural style

for services should, by its construction and constraints, encourage the development and deployment of

security services, themselves services.

1.3 Architecture Can Induce Adaptation

Message bus architectures, exemplified by Field [202] and C2 [237], introduced message-passing and

message buses as mechanisms for software adaptation. Early work by Gorlick and Razouk [112] demon-

strated Weaves, an architectural style grounded in data flow, for dynamic adaptation. Later work by Oreizy

and colleagues [182, 183, 239] laid the foundations for architecture as the centerpiece of run-time adapta-

tion. However, the broadly accepted architectures for SOAs, be they based on remote procedure call (RPC),

18

remote method invocation (RMI) or REpresentational State Transfer (REST), offer scant architectural

support for dynamic adaptation when viewed through the lenses of BASE [239] or a connector-centric

taxonomy ([238], Chapter 5).

1.3.1 In Search of an Adaptive Architecture

For an answer I turn to a different architectural paradigm where service consumers program service

providers to obtain the services they desire: remote evaluation, a contribution of Stamos [227, 228], in

which clients dispatch mobile code [99] programs to servers for server-side execution. Remote evaluation

introduces a division of labor between service providers and service consumers where providers create

fine-grained and sufficiently general interfaces for their services and assets, and consumers orchestrate

those fine-grained interfaces with mobile code to produce exactly the services they require. Remote

evaluation:4

• Amortizes the cost of network transmissions by reducing the frequency and volume of network

communications in comparison to other service architectures; an important consideration for

mobile devices with limited power reserves.5

• Encourages a broad spectrum of functional partitions between client and server as the client can

vary the operations executed server-side versus the operations executed client-side subject only to

the functions exposed by the service. For example, a client may reserve some operations for itself

in order to preserve confidentiality. Alternatively, a client executing on a low-power processor may

conserve power and improve performance by offloading a larger percentage of the computation

service-side.

• Executes many service functions in a single request, allowing clients to distribute and parallelize

computations in a client- and application-specific manner, while other techniques execute just

one service function per request.

• Generalizes remote procedure call, remote method invocation, and request/response. The remote

evaluation of a single function call is semantically equivalent to RPC/RMI and can easily emulate

the request/response pattern common to client/server architectures.

4Adapted from [228], pages 21–23.
5 On average I expect the frequency and volume of mobile code transfers to be less than than the comparable frequency and

volume of network transfers required for other service architectures.

19

• Offers a broad degree of service customization as client requests can contain embedded utility

functions to be invoked service-side by the client-defined program.

• Admits of higher-order services since remote evaluation permits closures as arguments to service

functions, a powerful technique long appreciated by functional programmers for dynamic cus-

tomization.

• Frees the service provider of the burden of defining a generic “one size fits all” service interface. In-

stead the provider defines a fine-grained interface whose primitive operations clients can compose

to suit their needs.

• Allows the service provider to define a differentiated service — a variety of interfaces to the same

service, some more general or capable than others.

• Fits loosely-coupled distributed and decentralized computation, particularly when shared data is

immutable.

1.3.2 The Drawbacks of Remote Evaluation

However, despite its appeal, remote evaluation (REV) is not without drawbacks. In his thesis (see [228],

Section 7.4, pages 124–125) Stamos points out that REV incurs both compile-time and run-time overhead

above and beyond that of RPC, where the total cost of the more general mechanisms of mobile code may

be higher than the execution of a comparable sequence of remote procedure calls. REV exacerbates the

challenges presented by RPC such as protection, adequate service resources, and load balancing — inter-

request isolation is far easier for RPC than it is for REV (a reasonable claim) and, as service routines for

RPC calls are implemented by trusted developers, the threats of non-terminating RPC requests, excessive

resource consumption, or attack are much diminished (a claim disproved by modern experience). Last,

but certainly not least, REV service developers must be wary of each REV request. It may execute for

far longer than is customary (or may never terminate at all) and mobile code bugs or malicious clients

can interfere with the remote evaluations of other clients. Protection mechanisms common to operating

systems such as “separate address spaces, authorization checks, resource accounting, and preemptive

scheduling” may prove necessary.

20

1.3.3 Is Remote Evaluation a Viable Alternative?

There is another drawback that Stamos failed to mention. REV pushes service development onto the

service consumer and consumers may be unwilling to shoulder or incapable of meeting that obligation.

The utility of REV is predicated in part on the assumption of a cooperative relationship between provider

and consumer: service providers offer APIs whose individual functions can be combined in useful ways

and service consumers invest the time and effort to assemble domain- and consumer-specific mobile

code programs targeted to the provider-defined APIs.

The relationship is symbiotic; without useful service APIs consumers will not construct mobile code

programs and without mobile code programs REV-based APIs are useless frippery. Is there any evidence

that service providers are willing to undertake the effort to construct domain- and service-specific APIs? In

other words, can we foresee an API economy where enterprises, governments, non-profits, communities

of interest, and individuals implement APIs for direct programmable access to their resources, systems,

and processes?

The market says yes and over the past decade three distinct classes of service APIs, public, partner and

private, have emerged. A public API exposes the data, information, and functions of a sphere of authority

to outside third parties that do not necessarily have a formal relationship (business, economic, legal,

or organizational) with the authority. For a provider, the advantages of a public API include delegated

research and development, increased traffic, reach beyond customary borders, and additional revenue

streams. A partner API facilitates communication and integration between a sphere of authority and its

partners, can include value-added services, act as a gateway to premium services, and is often regarded

as a precondition for partnership. A private API is used with the confines of a sphere of authority to

rationalize infrastructure, reduce costs, increase flexibility, or improve internal operations.

1.3.4 Public and Partner APIs

Closer inspection of public and partner APIs reveals a thriving ecosystem. As of November 2015 the

Programmable Web6 had cataloged approximately 14,300 distinct public and partner APIs for outward-

facing web services.7 The explosion of public and partner APIs (RESTful and otherwise) over the past

6www.programmableweb.com
7 The Programmable Web catalog is no doubt incomplete; the actual number of public and partner APIs is likely far higher.

21

www.programmableweb.com

Figure 1.1: Growth in public web APIs by protocol from mid-2005 to mid-2011 (taken from [151]).

decade, illustrated by Figures 1.1 and 1.2, is evidence that service providers are motivated to construct

platforms: services complemented by a programmable API.

The roles of public and partner APIs, covers a broad spectrum including, but not limited to, mobile

backends, customer and partner ecosystems, content and information distribution, transaction distribu-

tion, the API as a business, collaboration, and cross-API integration [264]. Examples include:

• Kinvey8 offers APIs for mobile backend as a service to ease the development and deployment of

applications for mobile devices. and Its service APIs include data storage and access, dentity, en-

gagement, business logic, analytics and compliance reporting, deployment, scaling, and device

customization.

• The Dropbox9 Core API supports a customer ecosystem that encourages customers to develop tai-

lored storage and synchronization solutions and integrate Dropbox services into customer-specific

mobile applications.

• Amazon Web Services10 underpins a broad partner ecosystem. A partner ecosystem layers distinct

and varied partner-specific server offerings over the core platform that extends the reach and func-

tionality of a core platform.

• The API clients of a content or information distribution platform are partners with the platform for

content syndication and delivery. The Guardian Media Group offers N0tice11, a content distribution

8www.kinvey.com
9www.dropbox.com

10https://aws.amazon.com/
11n0tice.com

22

www.kinvey.com
www.dropbox.com
https://aws.amazon.com/
n0tice.com

Figure 1.2: Growth in public web APIs from mid-2005 to late 2015. The data for Jun-05 through Oct-13
is taken from [265], slide 2. The data for Apr-14 is taken from [264], slide 9. The data for Nov 15 was taken
from the Programmable Web www.programmableweb.com in mid-November, 2015. The first period, from
Jun-05 to Mar-06, covers 8 months, the penultimate period of Oct-13 to Apr-14 covers 6 months, and
the last period, from Apr-14 to Nov-15, covers 19 months (and consequently, the rate of API growth from
Apr-14 to Nov-15 is in fact far less steep than it appears here). All other periods, from Mar-6 to Oct-13, are
7 months long.

23

www.programmableweb.com

API for sponsored citizen journalism that includes services for authentication, search, noticeboards,

and content management. Factual12 provides a location-centric information distribution API and

operates as a trading desk partner for location-based mobile advertising. Xignite13, an information

diistribution platform. supplies cloud-based, financial market data APIs that deliver real-time and

reference market data to clients and applications.14

• Transaction distribution deploys APIs for transactions on the core business model of the provider

(think Amazon, eBay, Expedia, or Target). Here the API drives additional transactions and expands

the business.

• For some enterprises the API itself is the business. Sendgrid15 promotes an API for transactional,

marketing, and triggered emails while Twilio16 implements multi-device cloud-mediated commu-

nications accessed via a public API for initiating and receiving telephone calls, VOIP exchanges,

and text messages. The Weather Underground17 API is devoted to accurate and timely weather and

forecast data and offers three tiers of service covering current conditions, hourly and multi-day

forecasts, satellite and radar imagery, severe weather alerts, tides and currents, and travel planning.

• Github18, a predominantly a collaboration API focused on the needs of software developers, in-

cludes: repository-centric actions, metadata, events, issues, statistics, and search. In contrast, the

Slack19 API provides team collaboration via messaging and event notification.

• The Slack API also encourages cross-API integration across services in which Slack users engage

other services via text-based robots that respond to commands and issue notifications in a conver-

sational manner [162].

1.3.5 Private APIs

The number of private APIs is unknown but we can safely assume that their number and variety

exceeds that of the public and partner APIs by a wide margin. A private API, as an expression of internal

innovation and adaptation, reflects the efforts of a sphere of authority to improve its agility and internal

12www.factual.com
13www.xignite.com
14 For a perspective on Xignite, its fellow upstarts, and Bloomberg Financial, the 800-pound gorilla in the world of real-time

financial data, see [244].
15www.sendgrid.com
16www.twilio.com
17www.wunderground.com
18www.github.com
19www.slack.com

24

www.factual.com
www.xignite.com
www.sendgrid.com
www.twilio.com
www.wunderground.com
www.github.com
www.slack.com

efficiency. Best known, thanks to Stephen Yegge [269], is Amazon’s campaign to rationalize its internal

infrastructure with private APIs. Yegge relates that in the early 2000s Jeff Bezos, the founder, Chairman

and CEO of Amazon.com, issued a mandate to his development teams:

All teams will henceforth expose their data and functionality through service interfaces.

Teams must communicate with each other through these interfaces.

There will be no other form of inter-process communication allowed: no direct linking,

no direct reads of another team’s data store, no shared-memory model, no back-doors what-

soever. The only communication allowed is via service interface calls over the network.

It doesn’t matter what technology they use.

All service interfaces, without exception, must be designed from the ground up to be

externalizable. That is to say, the team must plan and design to be able to expose the interface

to developers in the outside world. No exceptions.

The mandate closed with: Anyone who doesn’t do this will be fired.

Over the span of a few years Amazon transformed its internal operations into a services architecture

and along the way learned several important lessons, two of which are relevant to the arguments against

REV (again from [269]):

. . . every single one of your peer teams suddenly becomes a potential DOS attacker. Nobody

can make any real forward progress until very serious quotas and throttling are put in place

in every single service.

. . . Organizing into services taught teams not to trust each other in most of the same ways

they’re not supposed to trust external developers.

I draw several observations from the Amazon experience. First, service APIs are essential at scale irrespec-

tive of their position (public, partner, or private) with respect to the boundary of the sphere of authority.

Second, every service API no matter the technology or protocol (RPC, RMI, REV, REST, and so on), presents

significant security and performance risks to the service provider. In this respect the argument of Stamos

that REV is more dangerous than RPC is wrong and while the risks may differ somewhat in degree or kind

arguing that REV is inherently more unsafe or open to attack does not comport with modern experience

25

for large-scale services.20 Finally, there is a place for remote evaluation across the API spectrum (public,

partner, or private) provided that REV is at least as expressive as the other contenders (RPC, RMI, SOAP,

and REST) and that the risks REV presents can be beaten down to a level comparable to, or better than,

those presented by REST.

1.3.6 Revisiting the Drawbacks of Remote Evaluation

Stamos published his doctoral thesis [228] in January, 1986 more than five years before the first public

announcement of Boerner-Lee’s “World Wide Web” in August, 199121, almost 15 years before Fielding’s

exposition of REST [83], and 20 years before the rise of the programmable web. We, unlike Stamos, have

the benefit of a large body of accumulated experience with distributed request/response protocols (HTTP

1.1 and RPC among others) whose degrees of demand and scale22 would have been unthinkable in the

mid-1980s.

From our vantage point the objections to REV can be laid, with equal vigor, against RESTful interac-

tions [70]. For an HTTP server the fungible resources needed to satisfy HTTP requests can vary markedly

from one request to another and the strict ordering of HTTP requests and their responses can introduce

unwanted latency when a client issues multiple related requests over a short span of time. The ascent

of mashups and its follow-on, the web as service infrastructure [70], brings us web clients (service con-

sumers) that issue many requests in quick sequence against multiple elements of a RESTful API. The

experience of Amazon demonstrates that even a private service API based on REST or RPC is subject to

resource exhaustion, excessive load, accidental misuse, or erroneous invocations. In this light it is hard to

argue that a sequence of RESTful request/response pairs consumes fewer resources, exhibits less latency

or jitter, or is less subject to misuse and error than the comparable REV program.

Websockets [81], with its bidirectional asynchronous communications and out-of-order responses,

addresses these shortcomings, and in this respect moves web clients and servers away from REST and

closer to RPC semantics. Meanwhile, RPC has been repudiated by its most ardent supporters [252–254],

SOAP has been largely abandoned by developers, and REST-based APIs now dominate the programmable

20 Frankly, anyone who thinks that a RESTful API guarantees safety and security is gravely misinformed [230].
21 See https://groups.google.com/forum/#!msg/alt.hypertext/eCTkkOoWTAY/urNMgHnS2gYJ for the message that Tim

Boerner-Lee posted to alt.hypertext.
22 Xignite, a provider of real-time, financial market data, served more than 50 × 109 API requests in July 2015. Xig-

nite Records 50 Billion Financial Data API Calls per Month, Press Release, November 3, 2015, http://finovate.com/
xignite-surpasses-50-billion-api-calls-in-a-single-month/

26

https://groups.google.com/forum/#!msg/alt.hypertext/eCTkkOoWTAY/urNMgHnS2gYJ
http://finovate.com/xignite-surpasses-50-billion-api-calls-in-a-single-month/
http://finovate.com/xignite-surpasses-50-billion-api-calls-in-a-single-month/

web.23 However, RESTful APIs are no safer than the alternative and the performance of HTTP 1.1 is an

ongoing concern24. Despite the shortcomings of REST, SOAP, RPC and RMI service consumers are more

than willing to program against a service API; the API economy is thriving, the APIs evolve and adapt in

response to market forces, service consumers harness these APIs to suit their own needs and goals, and

service providers are learning that all APIs must be hardened irrespective of their location (public, partner,

or internal), architectural style, or underlying technology (request/response, RPC, RMI, or others).

At first glance, mobile code as an architectural alternative to RMI, RPC or REST is patently unsafe,

exacting a high price for service adaptivity. The dangers include waste of fungible resources (processor

cycles, memory, storage, or network bandwidth), denial of service via resource exhaustion, service hijack-

ing for attacks elsewhere, accidental or deliberate misuse of service functions, or direct attacks against

the service itself. However, nearly a quarter century after the public debut of the web, we know that

these dangers exist no matter what architectural style we adopt and that the risks vary only in degree, but

not in kind, from one style to another. Nonetheless, the benefits of shifting service computation from

service consumer to service provider are too persuasive to ignore. If a service provider can tamp down the

risks to a tolerable level then a generalization of remote evaluation, one for which security and safety are

first-order concerns, can be a feasible alternative for the implementation, deployment, and exploitation

of decentralized services.

1.4 Capability Confines Risk

If mobile code is the answer to client-driven service adaptation, how can architecture sufficiently

confine visiting mobile code to forestall the risks to services? From the perspective of mobile code there

are two distinct forms of capability: functional and communication. Functional capability defines and

confines what mobile code can do; that is, the actions it may take and the outcomes of those actions. For

example, assume that visiting mobile code f is executing within the confines of service s . If no function

to modify the data base d of s is available to f then it is impossible for f to directly change d . In other

words, f lacks the functional capability to change d . Communication capability defines and confines

where, when, how, and with whom mobile code can communicate. If f cannot communicate with any

23 As of late November 2015 the Programmable Web catalog (www.progammable.web) contained 14,315 APIs of which 65%
(8,911) are REST-based and 17% (2,432) are SOAP-based.

24 QUIC (Quick UDP Internet Connection) (see https://www.chromium.org/quic), an experimental protocol for reducing
web latency over that of TCP, is but one of many efforts to address that concern.

27

www.progammable.web
https://www.chromium.org/quic

other computation g that itself may have access to functions to modify data base d (either directly or by

way of a proxy), then f can not modify d by proxy. In other words, f lacks the communication capability

to affect the contents of d .

Here capability security confines risk and minimizes the destructive consequences of erroneous or

malicious mobile code—functional and communication capability are independent variables adjusted

as needed to maintain an acceptable level of risk and confine the repercussions of abuse. An architec-

tural style for which functional and communication capability are principal concerns must identify the

sources of functional and communication capability and the means by which capability of both forms is

propagated while giving services free rein to offer exactly the capability they deem appropriate.25

1.5 Computation Exchange: A Historical Perspective

REST [85, 86], the architectural theory underlying the web, explains much of the web’s success, in-

cluding its explosive growth and capacity to scale. The web’s adaptivity and plasticity amply demonstrate

the efficacy of stateless data and content exchange. Remote evaluation hints at an alternative to REST

where the stateless exchange of mobile code augments or supplants data and content exchange. For

example, the strict synchronous request/response exchanges of HTTP/1.1 [84] are now augmented by

WebSocket [81] for two-way communication with servers that does not rely on opening multiple HTTP

connections. And rare is the web page that does not contain server-generated JavaScript (essentially

source-level mobile code) for the display and management of dynamic content.26

Erenkrantz, Gorlick, Suryanarayana, and Taylor [70] (hereafter Erenkrantz et al.) analyzed the evolu-

tion of web protocols from the perspective of network continuations in client/server interactions where

each continuation encapsulates the “rest of the interaction;” that is, those computations left to perform

before the interaction cycle is complete. Three earlier papers were particularly instructive here: Queinnec

[197], Matthews et al. [160], and Shieh, Meyers, and Sirer [214].

Queinnec demonstrated that server-side continuations are an elegant mechanism with which to cap-

ture and transparently restart the state of ongoing evolving web interactions. He portrayed server/client

25 There is a third form of capability that we address only tangentially, namely resource capability, which defines and confines
fungible resources, such as memory, processor cycles, network bandwidth, and file space. While resource confinement is vital
when considering mobile code this work is limited to functional and communication capability. There is a substantial body of
literature devoted to resource sandboxing. I do not consider it further in this exposition.

26 Ajax [101] and mashups [164] are excellent examples of these practices.

28

interactions as a form of “web computation” (represented by a program evaluated by the server) where

continuations are employed to suspend and resume stateful page tours or service-oriented sessions that

are client-parameterized but generated and executed server-side.

Matthews et al. presented a set of automated transformations based on continuation-passing style,

lambda lifting, and defunctionalization that serialize the server-side continuation and embed it in a web

page returned to the client. When the client responds to the web page the (serialized) continuation is

returned to the server where it is “reconstituted,” with the server resuming execution of the continuation.

This example of continuation exchange (from server to client and back again) preserves context-free

interaction (that is, the stateless interaction of REST [86]) between client and server and allows the server

to scale by remaining largely stateless. In addition, service replication and restart are mostly transparent.

Server replicas can easily respond to any request from any client at any point in the interaction cycle,

while server restart is seamless since clients now supply the server with exactly the computational state it

needs to resume the interaction.

Continuations can also be applied to the transport protocols underlying server/client interactions.

The TCP protocol requires that connection state be maintained at both endpoints of the connection.

Shieh et al. introduced a TCP-like alternative, called Trickles, in which all per-connection state is held on

a single endpoint (the client), thus allowing the opposite endpoint (the server) to operate without any

server-resident per-connection state. The Trickles protocol stack encapsulates and pushes initial server-

side connection state to the client. Thereafter the client presents this state to the server in subsequent

packets to reconstitute the server-side state and receives server packets and an updated connection state

in return. This cycle continues until either the server or the client terminates the connection. With Trickles

server reboots, connection redirection and failover execute transparently, easing the implementation and

administration of large-scale, reliable services.

In each of these three works evaluation of a continuation “restarts” a prior interaction (computation)

exactly at the point at which it left off. While under Queinnec those continuations never left the web

server, Matthew et al. took it one step further. Their continuations were transferred across the network

to the web client in response to a request and then back again to the server in a subsequent request,

an ongoing exchange of continuations as the client/server interaction evolved. Shieh et al. proved that

continuations could appear well below the application layer in an underlying transport protocol and, like

29

a web exchange of continuations, offer comparable benefits at the protocol layer.

To Erenkrantz et al. network continuations were a tantalizing hint of a more general form of inter-

action. In particular, continuations are a well-known control mechanism in programming language

semantics: many languages, including Scheme, Smalltalk, and Standard ML implement continuations.27

Functional programming is also a source of early implementations of mobile code systems. Halls’ Tubes

[121] explored the role of “higher-order state saving” (that is, continuations) in distributed systems. Using

Scheme as the base language for mobile code, Tubes provides a small set of primitive operations for

transmitting, receiving, and executing mobile code at Tubes sites. Tubes automatically rewrites Scheme

programs in continuation-passing style to produce an implementation-independent representation of

continuations acceptable to any Scheme interpreter or compiler. Halls demonstrated the utility of contin-

uations in implementing mobile distributed objects, stateless servers, active web content, event-driven

location awareness, and location-aware multimedia.28

MAST [255] is also a Scheme variant for distributed programming that introduced first-class dis-

tributed binding environments and distributed continuations (in the spirit of Tubes) accompanied by

a security model. MAST also provided primitives for code mobility and granted developers fine-grain

network control by supplying potent control and execution primitives.

Both Tubes and MAST achieve “computation mobility,” the movement of “live code” from one network

host to another. Other language bases are also feasible. Tarau and Dahl [234] achieved the same for the

logic programming language BinProlog, again employing serialized continuations that are transferred

from one host to another and then reconstituted.

In each case the mobile code implementation relied on the transfer of serialized continuations from

one network host to another. We have multiple examples, at multiple levels (protocol, application and

system) in which the network exchange of continuations conferred additional benefits. As Shieh et al.

point out in a later paper on Trickles [215]:

The flexibility, performance, and security of networked systems depend in large part on the

placement and management of system state, including both the kernel-level and application-

27 It comes as no surprise that the work of Queinnec [197] and Matthews et al. [160] were widely known throughout the
functional programming community.

28 Matthews et al. [160]were apparently unaware of Halls earlier implementation of stateless web servers based on continua-
tions.

30

level state used to provide a service. A critical issue in the design of networked systems is where

to locate, how to encode, and when to update system state.

REST [86] and its instantiation, the World Wide Web, is a premier example of the critical system-wide

consequences of the placement and exchange of state.

With these examples in mind Erenkrantz et al. offered a generalization of network continuations:

computation exchange (the computational analogue of content exchange) as the bilateral exchange of

computations among decentralized peers. In this regime content delivery is a by-product of the evalua-

tion of computations exchanged among peers. Computation exchange exploits existing core organiza-

tional functions, processes, and assets to create higher-level customized services, but imposes significant

security obligations.

Computation exchange subsumes several well-known styles for distributed computing, including re-

mote procedure call [18, 177], remote evaluation [227, 228], REST [86], and service-oriented architectures

[72]. From the perspective of computation exchange remote procedure call is an exchange containing

a single function call, remote evaluation is an exchange containing an entire function body, REST is an

exchange of a small set (GET, PUT, POST, DELETE, and so on) of single function calls accompanied by call-

specific arguments and metadata, and service-oriented architectures are higher-order compositions of

remote evaluation.

Taking a cue from functional programming, computations are defined as closures, continuations, and

binding environments [67]. Peers evaluate (execute) the computations they receive as messages from

other peers—data and content are side effects of the evaluation of computations. Computation exchange

generalizes remote evaluation; it broadens the domain of exchanges and eliminates the distinctions

between clients and servers. It also clarifies the meaning of “service oriented architecture” where service

providers offer execution sites for the evaluation of visiting computations and return the outcome of an

evaluation as the response of an exchange.

Computation exchange was expressed as an architectural style, Computational REST (CREST) [69–71]

and demonstrated in two decentralized applications: Feed Reader [69, 110, 236], for collaboratively view-

ing, filtering and sharing RSS feeds29 and Firewatch [111], a system for wildfire detection and response.

29 A video of the Feed Reader in action is available at http://www.youtube.com/watch?v=0DYU1ffdTcg.

31

http://www.youtube.com/watch?v=0DYU1ffdTcg.

So why is computation exchange interesting? After all we’ve had mobile code broadly available in

the form of Java applets and JavaScript embedded in server-generated web pages since late 1995, almost

two decades ago.30 But look at the landscape from an architectural perspective. From early 1996 on

every web browser was also, courtesy of Java applets and JavaScript, a computing platform that servers

(hence services) could exploit on demand. Since its introduction JavaScript has become the fundamental

technical enabler for delivering sophisticated services and applications (software as a service) to web

browsers. The relationship is asymmetric as clients (browsers in this case) are still unable to transfer

mobile code to servers for execution server-side but nonetheless this asymmetry generated a Cambrian-

like explosion of system and software innovation. What would emerge if the relationship between server

and client were fully symmetric—restated as the exchange of computations among peers? I argue that

symmetric mobile code (or more generally mobile live computations) executed on both sides of a peering

relationship is as radical and significant an advance as the adoption of mobile code executed client-side.

1.6 Security for Computation Exchange

COmputAtional State Transfer (COAST), the topic of this thesis, revisits computation exchange from

the perspective of security [113, 114]. As noted in [110], CREST does not address security; while Erenkrantz

[69] clearly demonstrated that CREST was possible and allowed for novel system structures and modes of

interaction, it was never claimed that CREST-based systems were safe or secure.

Computation exchange between peers presents significant vulnerabilities, including waste of fungi-

ble resources (processor cycles, memory, storage, or network bandwidth), resource theft and exhaustion,

interference among computations, service hijacking for attacks elsewhere, accidental or deliberate mis-

use of service functions, destruction of valuable assets (for example, databases, sensors, or actuators),

noncompliance with service policy, and violations of peering agreements among multiple peers. A com-

putation accepted from a trusted source may be erroneous or misapply a service function due to honest

misunderstanding or ambiguity. Even a correct computation may expose previously unknown bugs in

critical functions, leading to an inadvertent loss of service or serving as the starting point for a targeted

exploit.

30 Netscape Communications Corporation, Netscape and Sun Announce JavaScript, the Open, Cross-platform Object Scripting
Language for Enterprise Networks and the Internet, PR Newswire, December 4, 1995.
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html

32

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html

A vulnerability is far more than a specific threat or attack tactic; it represents an entire class of com-

putational hazards. Further, the complete elimination of a vulnerability is often impossible, as there

are many reasonable circumstances in which a peer must balance the risks and rewards of engaging in

computation exchange. The safest posture for a peer is to never execute a visiting computation and, as we

well know by example and practice in the modern web [230], even that posture is no guarantee of safety.

The security goal here is peer integrity, in the senses of survival, internal consistency, lack of corrup-

tion, and bounded behaviors. Every visiting computation that the peer executes is a latent crippling or

lethal intrusion. A robust peer aims at maintaining essential services at an acceptable level in the pres-

ence of hostile system compromise, the hallmark of an intrusion tolerant system [93]. Protecting peers

against specific narrow threats is a fool’s chase; an arms race against a talented, resource-rich, and tireless

enemy.

For decentralized systems authentication, secrecy, and integrity are necessary but insufficient for

asset protection as there is no common defendable security perimeter when function is integrated across

the multiple, separate trust domains [270]. Here an attack on one authority threatens all. At best a breach

may lead to failures in other trust domains. At worst a breached authority may undertake an “insider”

attack against its confederates. With this in mind decentralization demands that security be everywhere

always. Applications that cross authority boundaries inherently bring security risks; adaptations in such

contexts only increase the peril, hinting that security should be a core architectural element.

Here I take a systems perspective of security. Losses are inevitable; the best that we can do is fore-

stall untoward exploitation and minimize the consequences. Yes, a service may be abused and service

providers should do what they can to raise obstacles to abuse, but the price paid for a useful service may

include tolerating some level of misuse.31 Strategic protection against a vulnerability requires that we

weigh the benefits and consequences of exposure. In this light, the security goal for COAST is adequate

protection against the vulnerabilities presented by visiting computations. To this end I focus on general,

fundamental mechanisms that can be combined in different ways to protect a peer against broad classes

of vulnerabilities.

31 For example, credit card providers accept some degree of fraud as simply the cost of doing business. Reducing the extent
and frequency of that fraud is important but no one, including the credit card providers, imagines that the rate of fraud will ever
drop to zero.

33

1.7 Summary

The transformation of computation exchange from an idiom to a concrete, practical style rests upon

the ability of architecture to imbue conforming systems with predictable and desirable characteristics.

Mobile code is a must for computation exchange; therefore, safely confining visiting mobile code is

a first-order concern for systems that embrace computation exchange. Confinement can reduce risk

to acceptable levels and in so doing allows that same mobile code to be exploited for both security

and adaptation. The evaluation, Chapters 8–11, demonstrates that the four mechanisms of COAST —

mobile code, execution sites, communication by introduction, and capability URLs — can be employed

by developers in many different ways to serve two distinct goals simultaneously: security and adaptation.

Chapter 2, immediately following, traces the long and rich history of mobile code while Chapter 3

provides a formal definition of COAST and articulates the consequences of the style rules. The semantics

of Motile/Island, related in Chapter 4, further illustrate how language and infrastructure are shaped to

conform to the style.

34

Chapter 2: COASTRoots—ABrief History ofMobile Code

Computation exchange insists on the transfer of live computations: state plus code — a snapshot

of the (partial) execution state of a computation. Mobile code under COAST must comply with this

requirement. There are three related, well-known representations of state plus code: objects, closures,

and continuations.1 A snapshot of a live computation will, of necessity, be a directed (possibly cyclic)

graph of objects, closures, or continuations. Objects can embed other objects, closures can embed other

closures and continuations, and continuations can embed other continuations and closures; there are

no other alternatives.

For these reasons, with the exception of the early examples of mobile code, Section 2.1 1960–1985),

this discussion is confined to those languages and systems for which live computations are the unit of

network transfer. Excluded from consideration are remote procedure call (RPC), remote method invo-

cation (RMI), the network transfer of source code as mobile code, or any mobile code systems whose

arguments are limited to primitive values (numbers, strings, and so on).2

2.1 Early History of Mobile Code (1960–1985)

Mobile code has appeared in many guises, even predating the appearance of networks. For example,

during the 1960s IBM introduced the concept of remote job entry [23]where remote minicomputers dis-

patched batch programs to mainframes for execution and received files in response for post-processing

(typically printing). Here mobile codes (batch job submissions) were transported from less capable, dis-

tributed minicomputers to large centralized mainframes. While not mobile code as we think of it today, it

is the first example of an executable representation transferred from one machine to another specifically

for the purpose of remote execution.

1 Objects, closures, and continuations differ in their formulation of “state plus code.” Objects come in roughly two flavors,
those that include state and code in each instance (such as a prototype-based language) or object instances that contain state
and a reference to a code-bearing object class. On the other hand, a closure’s lexical scope bindings are its mechanism of state
transfer. Continuations, unlike a generic object or closure, capture the “rest of the computation,” that is, both the state of the
computation at the point of capture and the code that will carry the computation forward from that point. Continuation state
appears in its stack frames, registers, and in the transitive closure of references from stack frames and registers into the heap.

2 Consequently, the inclusion of source code JavaScript in dynamic web pages is ignored as is remote batch invocation [45],
where the only arguments permitted are primitive values.

35

Proposals for the inclusion of mobile code were almost simultaneous with the invention of packet-

switched networking. Long before a working network was available to the first four test sites of the

ARPANet mobile code concepts were discussed during the early meetings (late 1968 through early 1969)

of the ARPA Network Working Group (NWG), the progenitor of the Internet Engineering Task Force3 [1].

One of the first Request For Comments of the NWG, RFC 5 issued in June 1969 [207], defined the Decode-

Encode Language (DEL), a scripting language for managing input/output devices such as keyboards,

mice, joysticks, consoles, and graphic displays. DEL included provisions for a machine-independent

representation suitable for network transmission and host-specific interpreters. Shortly thereafter, Michel

Elie, inspired by DEL, elaborated the exchange format and its interpretation as the Network Interchange

Language in RFC 51 [68].

In the late 1970s, NODAL [28, 223] scripts, an interpreted language for real-time data processing,

were transmitted among networks of minicomputers at CERN (the European Organization for Nuclear

Research, Geneva, Switzerland), for remote real-time data collection and processing during experiments.

Mobile code was employed in Softnet, a packet radio network developed at Linkoping University in

Sweden from 1980–1985 [272–274]. Each Softnet link layer packet contained an individual Forth pro-

gram [271]whose execution at the Softnet nodes defined and managed network services at many levels

including packet routing, datagrams, multihop virtual circuits, file transfers, and mailboxes.

In 1982 Wall observed [256]

network algorithms . . . can often be stated more clearly from the viewpoint of an active mes-

sage, a process that intentionally moves from node to node . . .

a harbinger of both active packets [218], network packets whose headers contain a program that is exe-

cuted at each transited node, and mobile agents, programs that travel from host to host in pursuit of a

computational goal or task.

In the same time period (approximately 1982) source-level mobile code appeared in another domain,

laser printing, as the language Interpress, a page description language developed at the Xerox Palo Alto

Research Center (PARC) for driving laser printers that took many of its features from Forth and an earlier

PARC graphics description langage JAM [201, 224]. PostScript [2], a descendant of Interpress, was intro-

3http://www.ietf.org

36

duced by Adobe Systems in 1984 and adopted by Apple in March 1985 for the Apple LaserWriter, the first

commercial printer to ship with an embedded PostScript interpreter. Here the execution of the mobile

code (PostScript source) by the printer generates a printed page—the representation of the computation.

In other words, from the perspective of a Postscript-capable printer, content is literally a side-effect of

computation.

2.2 Remote Function Evaluation (1987)

The first application of bidirectional mobile code, symmetric mobile code exchanges between client

and server, appears in the work of Falcone [76]where a LISP-like Network Command Language (NCL) is

the expressive medium for distributed heterogeneous services. Implemented in 1984, NCL relies upon

remote function evaluation (RFE). Like remote procedure call (RPC) [18, 177], RFE presents a single

function call (f a 1 . . . a m) to a server for evaluation. However, unlike RPC where each argument a 1 is

a mere data value such as an integer or a record structure, each argument a i of a RFE invocation may

recursively be a RFE.4

Functional nesting permits a single RFE f (a 1, . . . , a m) to perform arbitrary computation since pure

functional composition (with appropriate primitives) can express sequences, conditionals and loops—

the necessary control structures of programming languages.5 Further, the return value of an RFE is a

list (s e0 . . . en−1), n ≥ 0 comprising a status s and zero or more RFE expressions e i , Thus the mobile

code exchanges are symmetric since the client must evaluate RFE expressions e0, . . . , en−1 to obtain the

individual return values.

While RFE allows a client to ship arbitrary code to a server for execution, including definitions of

subfunctions, the client program must ensure that any nonprimitive functions not available server-side

are included in the shipment. Thus an RFE may fail if it invokes a function g for which there is neither

a definition server-side nor an included implementation. Finally, in presenting RFE, Falcone explicitly

articulates one of the principal advantages of mobile code, namely the opportunity for the client to com-

bine services (functions) in manners not anticipated by the service providers, noting the concomittant

increase in service flexibility and decrease in server complexity, to my knowledge, its first mention in the

open literature.

4 One can reformulate an RFE as a restricted form of closure and so, given its compound construction, it (barely) skates past
the restrictions for review.

5 Sequences, conditionals, and loops are also sufficient control structures in the sense of a Turing-complete language.

37

2.3 Remote Evaluation (1986)

In 1986 Stamos offered an alternative to RPC and RFE, remote evaluation (REV), for compiled lan-

guages [226–228] dealing with the challenges presented by compilation and seamless integration with

the host language CLU [155]. REV, like RFE, executes a single procedure call, supplied by a client, at a

specified server, written

at s eval p (a 0, . . . , a n−1)

where s is an expression denoting a server, p a denotation for a procedure, and each a i a procedure

argument expression. However, unlike RFE, the compiler, relying on service declarations that describe

the types and procedures available at a server, ensures that the request it generates for the execution

of p (a 0, . . . , a n−1) at server s includes all of the code and types required to execute the call server-side.

Hence, unlike RPC, REV permits arbitrary programming language expressions as arguments and, unlike

RFE, ships as much code as necessary to execute the call, including user-defined types and user-defined

procedures q on which p explicitly or implicitly depends. Finally, unlike RFE, REV is asymmetric as code

moves solely from client to server and not back again as it does in RFE.

However, REV implemented, for the first time, nested mobility, wherein a relocated (mobile) proce-

dure may itself contain one or more REV requests. This feature improves modularity since a user may

relocate (remotely evaluate) a procedure p without concern for the REV requests embedded within p . Not-

ing that it is trivial to emulate RPC using REV, Stamos [227] offers an eloquent discussion of the advantages

of REV over RPC, including reduced communication overhead among hosts, fine grain service interfaces

better suited to the evolving (and perhaps unexpected) needs of clients, ease of application-specific de-

composition into local and remote execution, and the decoupling of the evolution and refinement of

service interfaces from applications.

2.4 Mobile Objects

Object mobility combines code mobility with state mobility as an object instance comprises both

the instance-specific object state along with the code (methods) for manipulating that state—suggesting

that object mobility is more challenging to implement than mobile code alone. Object-specific issues

arise immediately, for example, given a class-based object system, transporting the code of the class

definition C along with its instance state may be grossly inefficient if multiple distinct instances of class C

38

are repeatedly exchanged among hosts. The semantics of the object system itself may present significant

obstacles, for example, the method definitions of object systems based on generic procedures (such as

the Common Lisp Object System [55]) may be scattered throughout an application6, making it difficult

to locate the method definitions of a specific class.7

2.4.1 Emerald (1988)

The complex semantics of objects favor language-specific solutions to object mobility. One of the

earliest implementations of object mobility, Emerald, was reported by Jul et al. [137] in 1988. Unlike

other object-oriented languages of the time, such as Smalltalk, Emerald has no class/instance hierarchy

(today we would call Emerald a classless or prototype-based langauge). Instead each object instance

contains the instance-specific state and a reference to an immutable code blob, hence many instances

may safely share the same code blob. Each code blob (itself an object in the Emerald language), like all

other Emerald objects is assigned a global unique identifier. When an object o is moved from one location

to another only the object instance state is moved including the global unique identifier of its code blob.

Upon arrival of an instance the Emerald language kernel determines whether or not a local copy of the

relevant code blob of o is resident. If so, then the kernel transparently relinks the state of o with the local

copy. If not, the kernel locates and transfers a copy (using an algorithm detailed in [137]). Emerald was

designed assuming a comparatively small number (at most hundreds) of homogeneous hosts (Digital

Equipment Corporation VAXes in the first implementation) interconnected by a local area network and

the techniques Emerald employed neither scaled to larger numbers nor applied to heterogeneous hosts

[137]. However, Emerald is a landmark system—the very first to implement unrestricted object and thread

mobility—and a breathtaking combination of functionality and performance.

Though the main line of Emerald development at the University of Washington came to a close in the

late 1980s [22], significant extensions were demonstrated at the University of Copenhagen in the 1990s:

unrestricted object and thread mobility among heterogeneous hosts (including the Sun 3, based on the

Motorola 68000 processor, and the Sun SPARC) using a common intermediate bytecode virtual machine

as the bridge between disparate processor architectures [229] and extending the reach of Emerald to wide

area networks [188].

6 One of the claimed advantages of generics since methods may be defined incrementally where and as needed.
7 An object mobility implementation dealing with generics may have to transport method definitions “on demand” whenever

remote evaluations invoke methods whose definitions were not included with the original transfer of the instance.

39

2.4.2 Obliq (1993)

A notable successor to Emerald was Obliq [30, 31], a prototype-based (in the style of Self [249]),

lexically-scoped, interpreted language modeled after Modula-3 supporting distributed object-oriented

computation and the network transfer of computations:

• Objects are local to a site and never transmitted to another site automatically

• Every object is transparently a network object, the subject of a network reference or the target of a

remote method

• Closures, on the other hand, can be freely transmitted from one site to another but their lexically-

scoped free variables retain their bindings to the originating site of the closure

The language primitives allowed programmers to implement full object mobility in less than 10 lines of

code and its distributed semantics permits compute servers (remote execution engines), remote agents,

agent migration, object migration, safe execution, application partitioning, application servers, and

application migration [32]. Developed at the Digital Equipment Corporation Systems Research Center

(Palo Alto, California), Obliq was available by summer of 1993.

2.4.3 Class-Based Languages (1987–1994)

Object-oriented mobile code for a class-based language is far more challenging to implement than

for a prototype-based language such as Emerald or Obliq.

Smalltalk (1987–1990)

An early attempt to implement object mobility is the work of Bennett [13, 14] in 1987 for Smalltalk.

However, Bennett only implements state mobility and assumes that the correct class definition is avail-

able in the image of the destination Smalltalk environment. To this end two primitives are provided,

move and copy, where the former transfers the state of an object instance to a remote destination and

deletes the instance at the origin and the latter replicates the instance at the destination while leaving

the instance at the origin intact. Nonetheless, state mobility requires the marshalling (serialization)

and unmarshalling (deserialization) of arbitrarily complex (and perhaps self-referencing) data structures.

Here, Bennett relied on the earlier work of Vegdahl [251]whose techniques for transfering data structures

among Smalltalk images addressed many, but by no means all, of the the technical obstacles.

40

COOL (1990)

The Chorus Object-Oriented Layer [120], implemented full object mobility in 1990, but did so at

the operating system level with distributed shared memory, a mechanism that is patently infeasible

for internet-scale code migration. In 1992 Davies, Blair and Mariani [54] report on object migration

in the ANSAware distributed systems toolkit where objects are migrated, code included, at the level of

granularity of a capsule containing one or more objects. However in a typical implementation, say for

Unix, a capsule is equivalent to a process.

Telescript (1994)

The earliest example (circa 1994–1995) of full object mobility for a class-based language is Telescript

[243], which permitted a Telescript agent to include application-specific classes in its continuation (the

unit of Telescript code migration).

2.5 Functional Mobile Code Languages (1995–2007)

While many mobile code and agent languages are object-oriented, there are a number of experi-

mental, functional mobile-code languages. This body of work, whose earliest examples date from the

mid-1990s, emphasizes the transfer of closures and continuations among distributed hosts and exploits

higher-order functional constructions to implement powerful distributed infrastructure.

2.5.1 Kali Scheme (1995)

Kali Scheme [34, 35] is a distributed Scheme dialect whose efficient network transmission of higher-

order functional objects (closures and continuations) made it the first mobile code Scheme dialect

(circa 1995). Closures and continuations are integrated into a message-based framework that allows

any Scheme object to be sent and received in a message. Threads, the unit of Kali concurrency, are im-

plemented in terms of continuations and thread migration from one address space to another amounts

to continuation migration and restart. To reduce the latency of continuation transmission, continuation

frames were faulted lazily on demand between address spaces, thereby reducing the bandwidth require-

ments for migration. Interthread communication within an address space relies on shared memory,

locks, and higher-level abstractions constructed atop these primitives; communication between address

spaces relies on message-passing. Kali Scheme compiles into a processor-independent bytecode virtual

41

machine striking a balance between an efficient native code compiler and a pure interpreter. The system

also offers a variety of reflective primitives that give developers control over thread scheduling, messaging,

access to system-wide global variables for the construction of higher-level concurrency, communication,

and state sharing. As the authors themselves note, fault tolerance and security are two important issues

left unaddressed by Kali Scheme.

2.5.2 Dreme (1995)

Dreme [98], like Kali Scheme, is a distributed Scheme dialect where all first-class language objects

are mobile, including closures and continuations. Among the claimed benefits are: on-demand delivery

of new software components, flexible use of network resources, fine-grained load balancing, and signif-

icantly greater security control, pointing out that while mobility allows better exploitation of resources

selective immobility can protect resources from access by an untrusted agency and allow protected infor-

mation to move to a trusted agency without changing the application. The fundamental insight of Dreme,

that servers are closures—preexisting functions that supply an interface to encapsulated information—

resembles in spirit the binding environments of COAST execution sites.8 Each Dreme object is either

mutable/immutable and mobile/immobile but mobile objects may be “pinned” by command to a par-

ticular address space, thereby preventing their migration to other address spaces. An immobile Dreme

object is akin to an Island fixed asset, an immobile island resource that for reasons of security, access,

or use restrictions may not be moved off-island.9 Dreme language objects are compiled to processor-

independent, bytecode instructions which are interpreted.

2.5.3 Tube (1997)

David Halls’ Tube [121] is another distributed Scheme dialect whose goal is the transparent migra-

tion of stateful ongoing computations Capturing computations as closures and continuations, both of

which combine snapshots of computational state with code, Halls demonstrates implementations of

distributed objects, stateless servers, and session mobility where computations migrate to follow a user

as she changes locations among a network of computers. Tube compiles Scheme programs into an

intermediate form expressed in continuation passing style (CPS) (see [97], Chapters 5 and 6) for which

continuation capture is trivial. For the purposes of network transmission (or checkpointing computations

8 See Section 3.3.2 for an introduction to binding environments and execution sites.
9 See Section 3.5 for a brief introduction to “islands.”

42

as files) the CPS intermediate form is serialized into a structure-preserving byte sequence that can be

converted back in memory into the original CPS representation. The CPS intermediate form is executed

by an interpreter, itself written in Scheme. For those Scheme implementations that compile Scheme

programs into native code10 the additional layer of overhead introduced by the Tube interpreter can be

compiled away.

2.5.4 MAST (2002)

MAST [255] is a Scheme dialect targeted toward network, distributed, and peer-to-peer program-

ming.11 MAST introduces distributed binding environments (that is, binding environments that are re-

motely accessible) and distributed continuation as first-class language constructions and, unlike many

other languages, introduces a security model directed toward mobile code. Binding environments with

multiple inheritance are first-class and map symbols (names) to MAST values using depth-first, left-to-

right name resolution. Binding environments can be exported to local network access points, becoming

execution contexts for visiting mobile code. In addition, function definitions support scoping operators

that control where a symbol is evaluated and bound, in local scope or in the dynamic context of a binding

environment. Remote evaluation in MAST is blocking, but a closure may be executed asynchronously

and its return value bound to a promise on which a thread may wait (with an optional timeout). The

MAST security model is designed to protect against three broad threats:

1. Attacks against the language interpreter

2. Attacks that exploit a computational environment (a binding environment exported by a MAST

host)

3. Man-in-the-middle attacks against two communicating MAST hosts

Several distinct security mechanisms are defined:

• An access controller may be attached to a remote binding environment to filter incoming visiting

code based on source address or other criteria

• A decoder may be attached to a remote binding environment that can be used to verify the mobile

code, authenticate code signatures, and attach code credentials to visiting code

10 For example, Bigloo (http://www-sop.inria.fr/indes/fp/Bigloo/) or Gambit (http://gambitscheme.org/).
11 I’m not certain that MAST was ever implemented. To my knowledge no implementation was ever made available.

43

• An encoder may be attached to any remote binding-environment reference by a client to encrypt

mobile code payloads, attach credentials, or provide application-specific attestations

• Isolation of binding environments and environmental sandboxing

2.5.5 Termite Scheme (2006)

Termite Scheme [103] is a distributed, mobile-code language whose message-based concurrency

model is inspired by Erlang [7]. Termite implements both closure and continuation transfer—the base

mechanism by which actor-like computations are spawned on remote nodes. Termite actors are ex-

tremely lightweight; a single Termite node can easily support tens to hundreds of thousands of individual

actors. Actors communicate by exchanging messages and each actor is assigned an actor-specific mailbox

in which incoming messages are deposited in arrival order. A message may be any first-class serializable

value (number, string, character . . .) or any compound structure such as a list, record, closure or con-

tinuation containing serlializable values. Messages are immutable and any shared structure within a

message is preserved on message delivery. However, shared structure is not preserved across successive

messages—in this case the structure is replicated.

Unlike other languages, not all data types are serializable (for example I/O ports), hence not mobile,

and closures or continuations containing such data types can not be transmitted from one Termite node

to another. Like Erlang, Termite exceptions can be propagated from node to node, which simplifies

the implementation of “nanny” actors whose sole responsibility is to monitor the health and progress

of remote computations. Implemented in Gambit Scheme12 it relies on the (undocumented) Gambit

bytecode virtual machine for mobile code serialization and transfer. The network transfer representation

is also undocumented. Termite does not address mobile code security or safety and assumes that all

Termite nodes are trustworthy.

2.5.6 Mobit (2007)

Mobit [192] is a portable implementation of Termite. Termite is intimately connected to the imple-

mentation of Gambit Scheme as its serialization format (both data and code) depends on the undocu-

mented serialization primitives and bytescode engine of Gambit. Mobit is a portable implementation

of Termite Scheme that translates Scheme source code into a specialized, continuation-passing style

12 http://gambitscheme.org/wiki/index.php/Main_Page

44

http://gambitscheme.org/wiki/index.php/Main_Page

Scheme interpreter. The translator, a closure compiler [78], is implemented as a set of nonhygienic macros

that are executed by the underlying Scheme host. Each compiled Scheme closure “knows” how to de-

compile itself into a Scheme-independent list-based directed graph and the Mobit Scheme-independent

serializer converts that graph into a flat, Scheme-independent representation. Mobit nodes deserialize

incoming messages containing Mobit mobile code, primitive values, and Scheme compound structures,

reconstructing the directed graph, and (re)compile the graph into the native closures of the Scheme host

of the node. Essentially Mobit is a Scheme-in-Scheme interpreter designed expressly to support mobile

code.

2.5.7 Other Functional Languages

Other statically-typed functional languages besides Scheme have also been used as the starting point

for mobile code languages, notably Haskell [131] and OCaml [152].

JoCaml (1999)

JoCaml [44] combines primitives of the join calculus [96]with OCaml and extends OCaml with concur-

rency, message passing, and message-based synchronization. JoCaml is intended for agent programming

and relies on the join calculus, a process calculus for distributed programming, as its network abstraction.

Haskell (2005)

mHaskell [65] is a mobile code dialect of Haskell based on the π-calculus, emphasizing closure trans-

fer and higher-order combinators for distributed programming.

Summary

mHaskell and JoCaml are notable for their demonstrations of static typing in mobile code systems

(a comparative evaluation of the two languages can be found in [82]) but neither have a security model,

access control mechanisms, or address decentralized safety or security for mobile code.

2.6 Mobile Agents

Agents draw from both distributed systems and programming languages. As recalled by Alan Kay

[141], agents, as a concept,

45

. . . originated with John McCarthy in the mid-1950s and the term was coined by Oliver G.

Selfridge a few years later, when they were both at the Massachusetts Institute of Technology.

Mobility as a fundamental defining characteristic of agents was introduced in the early 1990s by Tele-

script [260, 261], an interpreted object-oriented language designed expressly for remote programming

(RP), where continuations execute in remote environments and migrate from host to host as goals and

immediate needs dictate.13 White [260] observed that RP offered two distinct advantages, one tactical

and the other strategic. As a tactic, RP reduces network demand in comparison to RPC by favoring com-

putation at the server over repeated RPC requests between client and server. As a strategy, RP promoted

client-directed customization since clients were no longer beholden to service providers to offer exactly

the large-grain service (RPC entry point) a client might require rather, the particular services demanded

by a client are dynamically installed by the client in the form of an agent.

2.6.1 Telescript (1994)

Telescript [242, 243]was an early (circa 1994) object-oriented, mobile agent system for which security

was a concern [235]. Mobile Telescript agents were executed by a host-independent virtual machine

within places, virtual locations devoted to a particular service: for example, a ticket purchase or catalog

search. Mobile agents and places were tagged with a designation of authority (the originating organiza-

tion). Agents were granted permits by the managing authority of the place, which confined the capabilities

granted to an agent and set resource caps. From our perspective Telescript is an early mobile-code-based,

decentralized service architecture.

2.6.2 Agent Tcl (1997)

Another language, Agent Tcl [116, 149] (now D’Agents), had four principal goals: ease of agent mi-

gration, transparent communication among agents, support for multiple agent languages, and effective

security. Agent Tcl implements “whole” agent mobility, where the unit of code mobility is the entire binary

image of the agent. Unlike many other agent systems agent identity is not preserved across jumps. Agent

Tcl employs public/private key cryptography for authenticating binary images as they jump from server

to server while Safe Tcl [187] confines the executing Tcl agents; a set of trusted scripts provide limited

access (based on access control lists) to unsafe functionality.

13 A draft of the landmark 1994 Telescript white paper was circulating among Silicon Valley startups in 1993. I recall reading
it while working as an independent consultant in Silicon Valley during that time.

46

2.6.3 Other Work (1998–2013)

More recent work includes the Foundation for Intelligent Physical Agents [95], AgentScope [179],

AgentOS [37], SeMoA [205], JADE [11, 12], and Ajanta, a Java-based system for mobile agent programming

[138, 139, 248]. Like SeMoA, Ajanta addresses protecting hosts from hostile agents and protecting agents

from malevolent hosts. Each Ajanta agent performs actions on behalf of some principal, an entity that

has a unique identity in the system. Each agent travels with credentials including its owner, home site,

code base (for loading agent-specific classes), and restrictions on its access rights. Signed credentials

are used for access control by the Ajanta agent servers that provide confined environments for executing

visiting agents and allow the host to regulate access to vital host resources. Agents migrate from host

to host on demand using an encrypted TCP connection with standard Java object serialization. Agent

server resources are never directly revealed to the agents; instead a unique proxy instance is allocated

for each resource an agent requests (modulo access restrictions). In effect, the proxy acts as a capability

for the resource, an example of the object-capability model of E [170]. Finally, Ajanta agents can protect

themselves against some forms of tampering by malicious agent servers.

Additional work focuses on agent-based adaptation [259] and decentralized, agent self-adaptation

[148], but neither addresses the relevant security concerns.

2.7 Mobility Semantics (1996)

In 1996 Cugola, Ghezzi, Picco and Vigna [50], recognizing mobility as a powerful enabling mechanism

for constructing internet-scale distributed applications, undertook a survey of the concepts of code and

state mobility in eight “mobile code languages” (MCLs) of the day: Java, Telescript, Obliq, Agent Tcl,

TACOMA, M0, Tycoon, and Facile. Their survey criteria included scoping and name resolution, dynamic

linking, state distribution, migration strength, and replication/sharing. I discuss each briefly below.

2.7.1 Scoping and Name Resolution

The (re)interpretation and binding of names appearing in mobile code is critical, as those names may

refer to values left behind at the site of origin. Name resolution may be automatic or the environment

may supply hooks allowing developers to define application-specific resolution procedures.

47

2.7.2 Dynamic Linking

When mobile code m arrives at a destination it may require access to code modules or packages

that are available at the destination but not yet loaded into the execution image of the “virtual machine”

executing m . In this case the requisite modules must be incorporated on-the-fly and their entry points

linked to the invocation sites buried within m . In addition, in an effort to conserve network bandwidth,

the mobile code m may leave supporting codes behind relying on code-on-demand downloads from

other sites (which may or may not include the origin of m) to fetch the code as execution proceeds.

2.7.3 State Distribution

The degree and manner in which mobile codes may also include state and non-code resources in

their transport varies among mobile code languages—affecting expressiveness, ease of use, distribution,

and security.

2.7.4 Migration Strength

Two distinct forms of mobility are identified, strong and weak. Strong mobility combines both state

and code transfer while weak mobility is restricted to code transfer alone (including free variables cap-

tured in lexical scope). From a functional perspective continuation transfer is strong mobility while

closure transfer is weak mobility.

2.7.5 Replication, Sharing, and Interdiction

Non-code resources may be replicated, shared, or interdicted.14 For example, the value v of a binding

α/v within a closure λ at an origin site x may be an input stream. When λ transits to a destination y the

binding α/v may be:

• Replicated at the destination in which case v may be either retained or deleted at the origin x . In

either case αwill be rebound to a comparable input stream at the destination; however, the original

input stream may or may not be retained at the origin.

• Shared between origin and destination, in which case α remains bound to the input stream of the

origin x .

14 Cugola, Ghezzi, Picco and Vigna [50] omit interdiction as a resource management strategy, presumably as it was not
employed by any language included in their survey; however, a more recent example, Termite [103], does exactly this for
particular data types.

48

• Interdicted, where α is rebound to an innocuous constant such as nil or void at the destination y

and v is left unchanged at the origin x .

2.8 COAST Dictates Language Semantics and Infrastructure

Almost without exception prior work on mobile code is language-centric and, to the extent that soft-

ware architecture plays a role, it is at best, implicit. That said, the prior work is innovative and compelling,

and the examples presented by these works give credence to the claim that mobile code is a powerful tool

for adaptation. Unlike many other mobile code systems, computation exchange, the COAST style, and the

security goals dictate many of the choices for Motile the language, and Island the peering infrastructure.

Computation exchange, from this point forward, is restricted to the exchange and evaluation of

closures and continuations, among peers. The COAST style embeds the exchange of closures and con-

tinuations within an object-capability model that strictly confines the functional and communication

capability of executing closures and continuations. As I demonstrate the COAST style spans both inter-

and intra-peer executions, that is, each peer, in isolation, is itself implemented as a COAST-compliant

system in miniature. The interplay among computation exchange, functional capability, and communi-

cation capability can be manipulated for the sake of both adaptation and security. The mechanisms that

ensure safe interactions among peers are exactly the mechanisms that ensure safe interactions within

peers.

The topics of Chapter 3, presents a formal statement of the style (Section 3.3), and treats topics that

go unmentioned in many (though certainly not all) language-centric investigations including: a security-

centric perspective that includes a threat model (Section 3.1; a communication model for communication

by introduction, Section 3.2; capability URLs, Sections 3.2.4 and 3.6; and the requirements for a notional

peering infrastructure, Section 3.5.

Chapter 4 carries this one step further, analyzing the degree to which Motile is COAST-compliant.

COAST the style, impinges on Motile, in numerous ways, large and small, and security concerns dictate

specific language features. In particular, COAST security dictates the choices for scoping and name res-

olution, dynamic linking, state distribution, migration strength, replication/sharing, and interdiction —

the principal distinguishing language characteristics identified by Cugola, Ghezzi, Picco and Vigna [50].

In these respects my work as a whole reflects a notable architecture- and security-centric perspective.

49

Chapter 3: Computational State Transfer: The Style

Unlike many architectural styles COAST is deeply security-centric, as befits a style dedicated to the

safe exchange and execution of live decentralized computations. Since service adaptability and integrity

are principal concerns the style mandates architectural elements that provide functional, and commu-

nication security. In exchange for the complexity imposed by these security mechanisms, COAST allows

the construction of on-demand tailored services and enables a wide range of dynamic adaptations in

decentralized services.

To adequately present and explain the COAST style I must, by necessity, introduce terminology and

concepts critical to understanding security policy for computation exchange, and hence COAST. Sec-

tion 3.1 discusses the threat model of computation exchange identifies four distinct layers of security

policy — oracle, feasible, configured, and actual — as put forth in Carlson’s layered security model, The

Unifying Policy Hierarchical Model [33].

Section 3.2 describes the communication model underlying the capability URLs of COAST and relates

how security policy for communication among computations seeks to prevent, delay, or minimize the

damage of insider attacks by modulating the communication behaviors of computations. This section

presents an overview of:

• The underlying abstractions of COAST communication: ingress points, transports, and egress

points;

• The trajectory of communication, the path that a message follows as it is transmitted from one

computation to another;

• Capability URLs (CURLs), the only capablity that grants a computation to transmit a message to

another computation; and

• Gates, contracts by predicate to regulate inter-computation communication.

Section 3.3 presents a formal statement of the COAST style and defines the style in terms of services,

execution sites, messaging, and message interpretation.

50

Section 3.4 relates a few informal scenarios to illustrate how COAST puts the four elements discussed in

Section 3.3 (services, execution sites, messaging, and message interpretation) to work to provide security

and adaptation. These scenarios rely on the communication model of COAST (Section 3.2) and the

notional COAST infrastructure presented in Section 3.5.

Sections 3.6 and 3.7 provide additional details on CURLs, gates and computations — subjects that

were briefly introduced earlier in Section 3.2. Section 3.8 summarizes the salient points made in this

chapter.

3.1 The Threat Model of Computation Exchange

Computation exchange presents a distinctive security challenge; since peers exchange and evaluate

computations, nearly every interaction amounts to an insider threat. Nor is there any hope of escape. A

peer denying execution access to visiting computations constitutes denial of service. A peer that broadly

refuses the computations of other peers may find itself shunned when it exports its computations for

evaluation elsewhere. Local computations (those that originate on the peer) are operationally indistin-

guishable from visiting computations. Absent knowledge of a point of origin the only differences among

computations lie in the capabilities granted to each by the hosting peer. Consequently, “insiderness” is

not a binary measure, local or non-local, but a nuanced assessment of threat and risk [20].

Carlson’s layered security model, the Unifying Policy Hierarchy [33], identifies four distinct layers

of security policy: oracle, feasible, configured, and actual. Each layer is a (perhaps partial) decision

procedure over the space

〈s ,o, a , e 〉 ∈ S(ubjects)×O(bjects)×A(ctions)×E(xternals)

where (in the world of computation exchange) a subject is a computation, an object is a resource of

interest (sensor, data object, message, or computation, to name but a few of the possibilities), an action

names the act to be undertaken on the object by the subject, and external represents externalities such

as intent, law, regulation, or standard practices.

Oracle policy, the topmost layer, is a non-deterministic (and likely non-computable) total oracle over

S×O ×A × E and for any 〈s ,o, a , e 〉 returns either true or false. This layer is the ideal security policy for

51

Table 3.1: The four levels of Carlson’s Unifying Policy Hierarchy (adapted from [21] Table 1).

Level Domain Description
Oracle Policy S×O ×A ×E Idealized authorizations accounting

for externalities.
Feasible Policy A subset of S ×O ×A restricted

to system-definable entities
Authorizations in practice taking into
account system constraints.

Configured Policy A subset of S ×O ×A restricted
to system-defined entities

Authorizations consistent with the sys-
tem configuration.

Actual Policy A subset of S ×O ×A restricted
to system-defined entities

A system implementation including
any flaws or vulnerabilities.

the system and is capable of capturing external intangibles such as intent or nuanced legal concepts such

as “the preponderance of the evidence.” The remaining three lower layers ignore externalities and are

restricted to the domain S×O ×A.1 The next layer is feasible policy, a decision procedure over a subset

of the domain of the oracle that is feasible to compute with regard to the system of interest. This partial

decision procedure represents the outer limit of effective security policy given known characteristics of

the system (such as architectural style, algorithms, principal data structures, programming languages,

and implementation). In systems of any complexity the domain of the feasible policy is a proper subset

of the domain of the ideal policy. There can be many distinct feasible policies consistent with a given

ideal policy. The configured policy is the instantiation of the feasible policy on a particular system with

a specific configuration (for example, by convention all “sensitive” files have a file name whose prefix is

SENSITIVE_). The configured policy reflects the details of mapping the feasible policy onto a known sys-

tem. Multiple configured policies, each configuration reflecting the idiosyncrasies of a particular system,

can be consistent with a single feasible policy. Finally, the actual policy is the working implementation of

the configured policy on the live system. Table 3.1 summarizes the layers and their restrictions.

Bishop et al. [20] define an insider threat as any gap or inconsistency between any two layers of a

system’s Unifying Policy Hierarchy. For example, an oracle policy may state that an employee has access

to a sensitive database only if the employee is a manager and access is exercised on behalf of company

clients. Alice, a manager, can mount an insider attack and exfiltrate valuable data since the lower level

policies can not detect a critical externality—the rationale or motivation for Alice’s access. In all but the

simplest systems the feasible policy captures only a subset of the decisions of the oracle and, for many

1 Here, equivalently S×O ×A ×⊥

52

e ∈ E , may grant access

feasible(s ,o, a) = true

when

oracle(s ,o, a , e) = false

dictates otherwise.

Crampton and Huth [49] observe that identity alone is insufficient for trust decisions and advocate

for a dynamic (re)evaluation of trust so that

. . . privileges for which users are authorized can be modified automatically (i.e. without

human intervention) when those users are revealed, or suspected, to be untrustworthy.2

As a step towards this goal Crampton and Huth propose strengthening the definitions of feasible, con-

figured, and actual policy shown in Table 3.1. Let an access request be a tuple 〈s ,o, a , c 〉 ∈S×O ×A ×C

where C represents the set of feasible externalities (context); for example, the time of day, the commu-

nication history of a computation, or the the recent behaviors of computations originating from peer

p that executed on other peers q . Feasible, configured, and actual policy now compute over subsets of

S ×O ×A ×C . Given X ⊆ S ×O ×A ×C , p+X denotes a policy that authorizes all requests in X , while its

dual p−X authorizes a request if and only if it is not in X . We define a request predicate as any total boolean

function whose domain is such an X . A context predicate is any total boolean function whose domain is

Y ⊆C . Extending the Unified Policy Hierarchy opens the door to:

• Richer forms of policy decisions that go well beyond the classic “grant” or “deny” to identify, articu-

late, accommodate, and propagate: inconsistencies, gaps between policy levels, error conditions,

and assessments of trustworthiness or risk

• Explicit construction of request and context predicates as piece parts for actual policy.

• Policy meta-interpretation to extract and analyze subsets of permissible requests, identify inter-

policy conflicts, or gaps within a policy.

• Policy combinators for constructing a policy from generic and application-specific subpolicies.

Computation exchange places insider attacks front and center as a principal risk that is impossible

2 [49], Section 4, page 186.

53

to ignore. Moreover, gaps between the levels of the Crampton and Huth version of the Unifying Policy

Hierarchy are also inevitable for any realistic system of even modest complexity. For the gaps between

the oracle policy and the feasible policy the best that we can do is to expand the domain of the feasible

policy (S×O ×A ×C) to include necessary and sufficient context C ⊆ E that approximates (again where

feasible) otherwise incomputable externalities E . Many of the gaps between an oracle policy and the

designated feasible policy must be addressed by nontechnical means such as laws, regulations, customs,

social norms or organizational policy, and societal remedies such as fines, restitution, incarceration, legal

restraints, audits, social restrictions, or boycott. However, improving the expressiveness, efficiency, and

breadth of the three lower layers of the unified policy (feasible, configured and actual) is a practicable

goal.

Here I apply security policy to regulate communications among computations and prevent, delay, or

minimize the damage of insider attack by modulating the communication behaviors of computations. At

the level of configured and actual policy the domain S×O ×A ×C comprises:

• S, a set of (decentralized) computations

• O, a set of communication capabilities for sending and receiving messages

• A, the two functions send and receive

• C , implementation- and application-dependent contextual state.

Following the lead of Peyton-Jones and Eber [191] I introduce a stateful, embedded, domain-specific,

functional language for expressing security policy predicates and low-level policy monitoring over the

communication behavior of decentralized computations. To the extent that C , contextual state, can be

introduced into a system3 that state can be exploited by the domian-specific policy language. While far

from a complete solution it points the way toward a declarative, functional policy language that spans all

three lower levels of the unified policy called out by Crampton and Huth.

3.2 The Communication Model of COAST

COAST computations, each an individual thread of control, communicate by transmitting and receiv-

ing messages. COAST computations:

3 Obviously questions of performance may dictate the exclusion of otherwise useful or informative contextual state.

54

• Partition message transmission, reception, and transport. The right to transmit a message is distinct

and separate from the right to receive a message. In many models, for example the π-calculus

[172], possession of a channel conveys the rights for bidirectional communication—message reads

and writes are permitted on either end of the channel. COAST channels are unidirectional with

distinguished endpoints, one reserved for transmitting messages and the other reserved for receiv-

ing messages (much as a Unix pipe has a read end and a write end), but mere possession of a

channel does not grant either the right to transmit or receive. Each of those two rights is conveyed

independently by a separate abstraction. The semantics of message transport are independent of

transmission or reception and can vary from channel to channel, say a queue in one case and a

sliding window in another.

• Communicate by introduction. A computation x can transmit a message directly to computation

y only if x was introduced to y . A computation x acquires an introduction in exactly three ways:

it was granted at birth, received in a message from another computation (itself introduced to x at

some point in the past), or returned as the result of a function call.

• Communicate asynchronously. Message transmission and message reception are asynchronous

(non-blocking) operations.

• Differentiate communication. Communication by introduction is necessary but insufficient protec-

tion. Consequently the introductions acquired by a computation over its lifespan may be differen-

tiated in time, space, and context to restrict when and under what circumstances it can transmit a

message to its acquaintances.

3.2.1 The Underlying Abstractions of COAST Communication

A transport t is an unidirectional channel and is the only means by which messages pass from one

computation to another [112]. A transport t may have zero or more ingress points t •1, . . . , t •m and zero

or more egress points t .1, . . . , t .n as shown in Figure 3.1.4 Possession by a computation of a transport

transportingress egress

Figure 3.1: A generic transport with multiple ingress and egress points.

4 As a matter of notation t • denotes any ingress point t •i and t . denotes any egress point t .j .

55

ingress point t •i conveys the capability to transmit a message via transport t . Conversely, possession of

a transport egress point t .j by a computation conveys the capability to receive a message via transport

t .5 The ingress and egress points of a transport separate the capability to transmit a message from the

capability to receive a message. Since ingress and egress points are transport-specific (each ingress or

egress point refers to exactly one transport) a pair< t •, t . > defines a specific partition of communication.

Ingress and egress points can be shared among computations; multiple computations can simul-

taneously transmit and receive messages via the same transport t . The semantics of transmission and

reception are transport-, ingress-, and egress-specific; however, a common model is a simple queue in

which messages are enqueued and extracted in transmission order. In Figure 3.2 x and y are two distinct

computations sharing a transport t for which there exists exactly one ingress point and one egress point.

As long as neither x nor y share the their respective ingress and egress point t is a private and secure

channel from x to y (an application of the object-capability security of Miller [170]).

transport
ingress

x y
egress

Figure 3.2: A dedicated transport between computations x and y .

COAST strives to be practical, in the sense that efficient and effective implementations are feasible.

To this end I distinguish between computations that share a memory address space and those that do

not. There are a variety of effective shared memory architectures, for example, multiple processes in a

shared-memory multiprocessor, preemptively scheduled (at the operating system level) threads within a

single operating system process, or green threads animated by one or more process-level threads. Shared

memory reduces message passing to reference passing and with sufficient care and attention to blocking

operations, such as input/output, green threads can be preemptively scheduled.

3.2.2 Gates

In a single address space computations can share the ingress and egress points of transports; this

allows the communication topology within the address space to change over time.6 Ingress and egress

5 The orientation of ingress and egress are relative to the transport t . An ingress point t • conveys the capability to insert a
message into transport t (transmission) while an egress point t . conveys the capability to extract a message from transport t
(reception). In other words, an ingress point is where messages enter a transport and an egress point is where messages exit a
transport.

6 For security reasons transports are often closely held in trusted computations and are not generally shared or transferred
among computations. In contrast, the ingress and egress points of those transports are frequently shared or transferred among

56

points can carry constraints, called gates, that regulate communication. Distinct ingress (egress) points

for a given transport t may enforce complex temporal, state, and performance constraints including use

counts, rate limits, congestion or load-based throttling, time locks, restrictions in message structure and

contents, restrictions based on trust or roles, and expiration dates, to name but a few of the possibilities.

Shared ingress (egress) points can implement a common policy across multiple computations in an

address space; for example, enforcing workload-dependent access to a transport or restricting access to

a select few computations.

In shared memory ingress points implement communication by introduction. Let y be a computation

holding the egress point t . of a pair < t •, t . >. If computation x acquires t • (at birth, via a message, or

as the return value of a function call) then x has effectively been introduced to y . Absent possession

of some t • it is impossible for x to directly communicate with y . If there exist multiple egress points

t .1, . . . , t .n held by multiple computations y1, . . . , ys then the acquisition of t • by x introduces x simul-

taneously to each computation yi . For example, the y1, . . . , ys may be a pool of identical computations

(services) sharing a common work queue for which x is but one of many clients. Conversely, given pair

< t •, t . > if a computation y acquires a t . then any computation x holding a t • is now an acquaintance

of y . The ordering of the acquisition of ingress and egress points by computations is immaterial to intro-

duction. A computation may acquire over its lifespan many ingress and egress points for many distinct

transports and a computation may simultaneously be an acquaintance of, and acquainted with, many

other computations.

The shared ingress points of a transport t can implement a common admission policy across multiple

computations, for example granting access to a service only if the workload falls below a set level or

coordinating multiple computations; computation y is allowed to transmit a message to computation

z only if computation x has not transmitted a message to z within the last minute. Similarly, shared

egress points can implement a common extraction policy across multiple computations, for example,

regulating the rate, for a group of computations, at which messages may be extracted from a transport or

guaranteeing that only the members of a distinguished set of computations can extract messages via a

particular egress point.

computations.

57

3.2.3 The Trajectory of Communication

A transmission trajectory is the path

t • −→ t −→ t .

that a message m follows as it transits through an ingress point t •, into a transport t and exits via egress

point t .. Given a transport t , ingress points t •1, . . . , t •m , and of egress pointst .1, . . . , t .n we have m ×n

distinct transmission trajectories

t •i −→ t −→ t .j where 1≤ i ≤m , 1≤ j ≤ n

The delivery of a message m is t •, t , and t . dependent since the constraints of t • and t . are evaluated

before m is injected into (or extracted from) transport t and the semantics of t can vary independently

of its ingress and egress points. A CURL u defines two of the three elements of a trajectory, the ingress

point t • and indirectly, the transport t . Any computation holding two CURLs u and v can, at a minimum,

distinguish whether or not u and v both denote the same ingress point.

The interpretation of a message received by a computation may be egress point- and computation-

dependent even if the full trajectory of the message is unknown to the computation. For example, a

computation may expect data from sensor a via t .a and data from sensor b via t .b . In summary, there

are several avenues by which a computation may discover a portion of the trajectory of a message and

that knowledge can be exploited by the computation to refine or differentiate its response.

3.2.4 Capability URLs

At this point we have ingress points t • as the capability for message transmission within a single

address space. However, in a decentralized world collaborating computations may be scattered across

many distinct and separate address spaces on many hosts. How can two computations x and y , each

residing in a different address space, communicate when neither has direct access to the ingress points

in the address space of the other? To span the gap between address spaces I employ the Capability

URL (CURL) and, at the same time, eliminate the distinction between intra- and inter-address space

communications.

Each CURL u denotes an address space A and an ingress point t • in that address space. CURLs grant

58

the capability to transmit messages both within and between address spaces. Computation x in address

space A can transmit a message to computation y in address space B (where A might be B) only if x

holds a CURL u that denotes address space B and an ingress point t • of a transport t for which y holds

an egress point t .. Holding a CURL u is necessary but not sufficient for message delivery to y :

• The policy of the ingress point t • denoted by u may, at the time of transmission, block insertion of

the message into transport t

• The policy of the egress point t . held by y may, at the time of reception, block extraction of the

message from transport t

• There may be be multiple egress points t .1, . . . , t .n for transport t in address space B and con-

sequently, there is no guarantee that computation y , holding t .i , will be the computation that

receives (extracts from transport t) the message sent by x

As CURLs can be exchanged in messages between computations within a single address space or be-

tween remote computations in distinct address spaces the communication topology of both co-resident

and remote computations can change over time. CURLs unify communications irrespective of the rel-

ative locations of the transmitting computation and the ingress point t • referenced by the CURL. This

serves two purposes:

• It pushes transports and their ingress and egress points into a lower layer of the communications

stack while preserving their fine-grain division of communication capability. Separating and hiding

critical details of communication capability improves system integrity

• In combination with critical features of Motile, the mobile code language, it largely erases the

distinction between intra- and inter-address space communication. Unifying local and remote

communications simplifies the programming model, reduces or eliminates several possible sources

of errors, and eases experimentation and development

Since Motile is a single-assignment language with persistent functional data structures [180] and all

data is read-only a computation may largely ignore the distinction between co-resident computations

(those sharing the same address space as itself) and remote computations (those residing in a different

address space). Data can be safely shared among computations irrespective of location.7 This eliminates

7 Obviously communicating with a co-resident computation is far less expensive than communicating with a remote com-
putation. The subtle semantic differences between co-resident and remote communication are discussed in detail in Chapters
4 and 7.

59

many forms of data races and simplifies interactions among computations. Finally, developers can

begin with an application whose computations are entirely co-resident and gradually, over time, move

computations to other address spaces to improve robustness, enhance security, increase isolation, or

leverage specialization.8

Transports, ingress points, and egress points cleave computation from communication. CURLs re-

inforce that separation by masking the distinction between co-resident computations and remote com-

putations. Consequently, services can be implemented “under the hood” as a closely knit collection of

specialized co-resident and remote computations and present themselves, via CURLs, as a single “virtual”

computation, irrespective of the location of the client computation, be it co-resident or remote.9 The com-

munication model of COAST was inspired in part by Weaves [112], an architectural style that supports

run-time software adaptation [183, 184], and whose queues, read ports, and write ports anticipated the

capability semantics of transports, ingress points, and egress points. The “blind communication” policy

of Weaves, where active computations (tool fragments in Weaves parlance) are ignorant of the sources of

their inputs or the destinations of their outputs, is an early example of a strict separation of computation

from communication and was a crucial element of the dynamic adaptation of Weaves.

3.3 The COAST Architectural Style

For any mobile code system there are two fundamental issues: communication and confinement;

that is, how independent units of mobile code contact one another and exchange information and how

their executions are confined to prevent damage to their hosts or other computations. COAST Services

specifies the form and content of communications: asynchronous messaging of mobile code comprising

primitive values, closures, continuations, and binding environments and implicitly the meaning of ser-

vice: computation-specific interpretation of mobile closures, continuations, and binding environments.

Execution defines execution sites as a basic mechanism for functional and resource confinement. Mes-

saging regulates how communication capability is allocated among computations. In particular, there is

no ambient communication capability; without CURLs a computation is mute and without egress points

a computation is deaf. Finally, Interpretation specifies that message interpretation is not only receiver-

dependent but also delivery-dependent; both the CURL denoting the ingress point of the message and

8 Like advantages accrue to Erlang [7], a single-assignment language for distributed systems.
9 This mirrors the behavior of web servers whose services, organized as collaborating helper threads, process requests from

distant browsers [10].

60

the consequent transmission trajectory of a message can influence the interpretation.

The COAST style states:

• Services: All services are computations whose only interactions are the asynchronous messaging

of primitive values, closures 10, continuations 11, and binding environments 12.

• Execution: All computations execute within the confines of some execution site 〈E , B〉where E is

an execution engine and B a binding environment.

• Messaging: Computation x can transmit a message to a computation y only if there exists 〈t •, t .〉

such that x holds a CURL u denoting t • and y holds t ..

• Interpretation: The interpretation of a message delivered to computation y via CURL u is y- and

u -dependent.

3.3.1 Services

The definition of service varies from one architectural style to another:

• COAST emphasizes the exchange of closures, continuations, and binding environments, each state-

ful representations of live computations, and the CURL-dependent interpretation of that state by

the recipient—a service interprets computational state on behalf of another agency [113]. There

is no distinction between service provider and service client, as the behavior of both is essentially

identical.

• REST emphasizes the transfer of representational state; that is, the state of a resource named by an

URL for which a server produces a specific representation when requested by a client [86]. More

generally, a RESTful service interprets a small number of methods in a manner that is both URL-

dependent and context-free [70].

• CREST, the predecessor of COAST, identifies computations, named by URLs, as the fundamen-

tal network resource. Resource representations include primitive values, closures, continuations,

and binding environments plus optional metadata. Computations, named by URLS and hosted

by service providers, are interpreters for the closures, continuations, and binding environments

dispatched by service clients (who themselves may be service providers). Like CREST, a COAST

10Functions plus their lexical-scope bindings.
11Snapshots of execution state [79].
12Maps of name/value pairs [133].

61

service interprets computational state on behalf of another agency; however, the interpretive mech-

anisms and naming structures (URLs and CURLs respectively) differ significantly in both form and

meaning [69, 71]

• The SOA definition of service is far more muddled [71, 72]. The most charitable concrete interpre-

tation possible is that a SOA exchange amounts to the remote evaluation by the provider of a single

function call issued by a client

Unlike other distributed architectural styles such as REST or SOA, higher-order service composition (ser-

vices composed from services) and service combinators (functions whose arguments may themselves be

services) arise in COAST naturally from computation exchange and the symmetry of providers and clients.

This flexibility expands the range of behaviors available to both sides of the exchange.

3.3.2 Execution

Over its lifespan each COAST computation is confined to an execution site 〈E , B〉. The execution en-

gine E may vary from one execution site (and computation) to another: for example, a Scheme interpreter

or a JavaScript just-in-time compiler. The execution engine defines the execution semantics of the com-

putation and the machine-specific limits (such as resource caps) imposed upon the computation. The

binding environment B contains all of the functions and global variables available to the computation at

that execution site. Names unresolved within the lexical scope of a closure f (that is, the free variables of

f) are resolved, at time of reference, within the binding environment B . If B fails to resolve the name the

computation is terminated.

Both the execution engine and binding environment of an execution site 〈E , B〉may vary indepen-

dently and multiple sites may be offered within a single address space. E may enforce site-specific seman-

tics: for example, limits on the consumption of resources such as processor cycles, memory, storage, or

network bandwidth; rate-throttling of the same; logging; or adaptations for debugging. The contents of

B may reflect both domain-specific semantics (for example, B contains functions for image processing)

and limits on functional capability (B contains functions for access to a subset of the tables of a relational

database).

62

3.3.3 Messaging

CURLs convey the ability to communicate between computations.13 A CURL u issued by a computa-

tion x is an unguessable, unforgeable, tamper-proof reference to an ingress point t • held by x ; it contains

cryptographic material identifying t • and is signed by x ’s execution host. A CURL u referencing t •may be

held by one or more other computations y . CURL u is a capability that designates the network address of

t •, contains arbitrary x -specific metadata (including closures), and grants to any computation y holding

u the right to transmit values to t •. When y transmits a value v via CURL u the pair 〈u , v 〉 is injected into

t via t •. The CURL u specifies which execution site 〈E , B〉 is to be used for the interpretation of value v .

Binding environment B strictly confines the functional capability granted to the mobile code contained

in the incoming message 〈u , v 〉. Informally we say that u is a CURL for computation x i , 1 ≤ i ≤ n if x i

holds the ingress point t • denoted by u . If multiple computations x1, . . . ,xn hold the ingress point t •

there is no guarantee that any x i will receive a value transmitted via u , much less a specific x i .

For both security and safety a computation x wields the CURLs it issues to constrain its interactions

with other computations and to bound the services it offers. A computation y , holding a CURL for x , can

send arbitrary closures to x in the expectation that x will evaluate those closures in the context of some

x -specific execution site 〈E , B〉. At the very least x must, if it can, avoid communicating with malicious

or untrusted computations and defensively minimize the functional capability that it exposes to visiting

closures. A computation can accumulate communication capability in the form of additional CURLs. For

any computation, CURLs conveying additional communication capability are contained in the closure

defining the computation, returned as values by functions, or embedded in messages.

3.3.4 Interpretation

How must services (computations) interpret the messages that they receive? The answer is simple:

anyway they like. The interpretation of a message depends upon the predilections of the computation

to which the message is delivered and the specifics of the CURL by which that message is delivered.

Anything less liberal runs the risk of needlessly stifling service diversity and innovation. This does not

preclude conventions and practices arising with regard to CURLs or the behaviors of computations but

those matters are well outside the scope of the style.

13 Or more specifically, the capability to inject a message into a transport via a specific ingress point.

63

3.4 COAST Scenarios

The following brief examples suggest the breadth of the COAST style. The examples are given in the

body font of the thesis while commentary on these examples is given in an italic font.

Alice operates a COAST-based image processing service. Her clients dispatch computations to her

service for processing, enhancing, and analyzing commercial, industrial, and scientific imagery. The

execution sites in her server farms are managed by her own COAST computations that generate and

distribute service-specific CURLs denoting processing varying across a spectrum of performance and

functionality.

Execution sites and CURLs are the two principal mechanisms by which COAST defines highly differen-

tial services whose exact characteristics may depend upon time, place, context, and prior history. In essence

Alice offers platforms as a service and her clients deploy their applications on the platforms (the execution

sites) that best suit their needs. CURLs can be client-specific and have a human-readable textual represen-

tation (among others) and can be circulated out of band in email, embedded in web pages, or represented

as QR codes.

Bob, whose machine shop fabricates custom aviation and motorcycle racing components, is one of

Alice’s clients. His COAST-based automated visual inspection system dispatches quality-control compu-

tations containing high-resolution digital photographs of components to Alice’s execution sites for final

inspection. Alice’s proprietary algorithms combined with Bob’s customized closures for component- and

use-specific analysis help Bob maintain a high level of quality.

The typical binding environment of a Motile execution site contains hundreds of functions for con-

structing and manipulating primitive values (numbers, bytes, characters, strings, symbols, and booleans)

and data structures (lists, vectors, queues, hash maps, and binding environments, among others) as well as

domain-specific APIs. 14

Using CURLs generated by Alice, Bob transmits Motile closures to her services (computations) for remote

evaluation. Bob’s images can be embedded as lexical scope bindings in his closures; or the closures can reach

back, fetching the images from a data store within Bob’s sphere of authority. Reach-back can be tuned for

Bob’s patterns of use; for example, read-ahead to minimize latency or application-specific compression, as

14 The BASELINE Motile binding environment contains a substantial fraction of the functionality found in R5RS Scheme [143].
Execution sites frequently use the BASELINE environment as a starting point for their own site-specific binding environment.

64

the temporary “image server” is spun up by closures that Bob’s computations have dispatched back to the

data store.

Carol, another of Alice’s clients, analyzes medical imagery for physicians and medical testing labs. The

sheer volume of the imagery, along with strict medical privacy regulations, prevent Carol from shipping

her closures, binding environments, and imagery to an outside processor (as Bob does for his custom

aviation and racing components), so Carol has licensed an image processing library from Alice that has

been integrated into the execution sites of her own in-house COAST-based services.

Application- and domain-specific libraries written in C or Racket can be integrated into Motile binding

environments. Higher-level libraries that contain only Motile functions can be transmitted as binding

environments from one agency to another to deliver software as a service. 15

Carol obtains analytical tools for her imagery from Dave, whose biotechnology company deploys

computations for narrowly targeted tissue analyses to COAST sites. Carol dispatches service requests (as

computations) to Dave’s COAST services. Each of her requests prompts Dave’s computations to generate

a custom analysis (as a closure or continuation) optimized to meet her request-specific needs and con-

straints. Included in each of Carol’s requests is a non-delegable, “single-use” CURL referencing an ingress

point that acts as a firewall between Dave and Carol’s execution sites that analyze the imagery.

Motile is a functional language for which closures are first-class objects. Closures can be passed as

arguments to functions or returned as values. Using closures to generate closures is a common functional

form of software as a service. Carol reduces the computing load on her own COAST sites by relying on Dave

to generate custom analytics (as closures) on demand.

A non-delegable CURL can be used only by a specific set of clients (just Dave in this case). A single-use

CURL can transmit at most one message; thereafter it is useless. By limiting Dave’s ability to communicate

Carol reduces her exposure to malware that may infest Dave’s execution sites.

Dave deploys his customized analysis to Carol’s site via Carol’s CURL. As Dave’s analysis executes on

Carol’s COAST infrastructure her execution site prevents Dave’s computation from accessing any other

confidential imagery or communicating with any computations besides her own. Her COAST-based

monitoring and auditing infrastructure tracks the execution of Dave’s analysis from beginning to end,

15 Racket (http://www.racket-lang.org) is a popular Scheme dialect.

65

ensuring that it does not violate patient privacy regulations.

Both the execution engine and binding environment of an execution site can be customized to include

site-specific logging, tracing, or software reference monitors [73]. Carol also ensures that the binding en-

vironment she uses when executing the software that Dave generates contains the baseline environment

(which is guaranteed to be safe) plus only the domain-specific libraries that Dave’s software requires and

nothing more. She can even inspect Dave’s mobile code to determine, prior to execution, exactly which

functions Dave expects to be available in the binding environment. If Carol finds anything suspicious or

out of the ordinary she can refuse to execute the mobile code and immediately revoke any CURLs of hers

that Dave holds. If Dave is required by contract to sign any mobile code that he transmits to Carol then

Dave’s mobile code is non-repudiable and Carol can demonstrate to Dave that, barring a bug in Dave’s

application-specific software generators, his COAST infrastructure may have been attacked by malicious

mobile code.

The non-delegable, single-use CURL prevents Dave from sharing the CURL with any other COAST

site (non-delegation)16, and, as it can never be used more than once, neither Dave nor any attacker that

infiltrates Dave’s infrastructure can ever send more than a single computation to Carol’s privacy-sensitive

infrastructure. In general, Carol can monitor Dave’s computations executing on her infrastructure or

her own computations executing elsewhere using automated “report-back” CURLs, selectively wrapped

closures, monitoring functions provided at the service execution site, publish/subscribe events originated

by a service provider, or third-party monitoring.

In Motile it is trivial to implement a CURL that reports on its own use, so Carol can detect if any agency

other than Dave used her CURL to transmit a message. In this manner she can discover if a CURL intended

for Dave alone has left his control and is now in the hands of a third party.

3.5 A Notional COAST Infrastructure

The scenarios of Section 3.4 rely heavily on the communication model of COAST (Section 3.2) and a

notional COAST infrastructure shown in Figure 3.3.

COAST computations are sequestered within one or more network-accessible address spaces, here A1,

A2, and A3. There are six computations, x1, . . . ,x6. Four of those computations x1, . . . ,x4 are co-resident

16 More precisely, the CURL can be shared (transmitted by Dave to another authority) but no other authority but Dave can
exercise the communication capability granted by the CURL.

66

Binding
Environ

3

Trusted Code Base

Execution
Engine 1

Binding
Environ

1

Binding
Environ

2
Execution
Engine 2

x5
u1 u2 x6

x1 x2 x3 x4

A1

u3

Transport

Ingress point

Egress point

CURL

Computation

Address space

A2
A3

Figure 3.3: Notional sketch of a COAST infrastructure.

in a single address space A1. The other two computations, x5 and x6, reside in address spaces A2 and A3

respectively.

The diagram of address space A1 details its internal structure. A computation x i within an address

space is isolated from its co-resident computations and the only means of interaction, either within an

address space or between address spaces, is message passing. Each x i executes within the confines of

an execution site comprising an execution engine and a binding environment. Computations within an

address space may have an execution site, execution engine, or binding environment in common. For

example, x1 shares an execution engine with x2 and x3, while x2 and x3 share an execution site. Sharing

reduces overhead but must not compromise isolation. The execution site of computation x4 contains a

different execution engine and binding environment from the execution sites of x1,x2, and x3.

The trusted code base underlying the execution sites of an address space manages the fungible re-

sources of the address space including memory, processor cycles, storage, and network bandwidth. It

also enforces the security policy of the address space by regulating the construction and allocation of:

67

• Encrypted network connections to address spaces elsewhere in the network

• Execution engines and binding environments to execution sites

• Execution sites to visiting computations

• Ingress points to CURLs

• Egress points to computations

and is responsible for routing message traffic to and from the address space.

Computation x5 in address space A2 holds two CURLs, u 1 and u 2, both denoting ingress points within

address space A1. Computation x1 within A1 holds an egress point whose transport is the transport of

the ingress point of CURL u 1. Consequently, computation x5 in A2 meets the necessary condition of the

COAST style rule CS3 for transmitting a message to x1 in A1: there exists 〈t •, t .〉 in A1 such that x5 holds a

CURL u 1 denoting t • and computation x1, residing in A1, holds t .. Holding a CURL u does not guarantee

message delivery; it is necessary but not sufficient, as delivery may depend upon complex conditions

within the address space in which the ingress point t • appears, or, in the general case, on conditions in

multiple address spaces. Likewise, computations x5 (via CURL u 2) and x6 (via CURL u 3) both hold the

necessary (but not sufficient) capability to message computation x3.

From here on my technical arguments will rely heavily on the specifics of the reference infrastructure

constructed for COAST, Motile the mobile code language, and Island the peering infrastructure. In the

terminology of Island an island is a network-accessible address space uniquely identified by a public

key K , one half of the pair 〈K , K −1〉. I assume the existence of a public key infrastructure (PKI) whereby

islands advertise their public identity key K and public signing verification key V .17 An extremely modest,

file-based PKI, suitable for laboratory work, is included in the distribution of Island. An authentication

infrastructure for COAST is a topic for future investigation; for example, implementing sayI [219], a system

for internet-scale authentication, as a COAST service is an intriguing possibility.

To simplify deployment and experimentation islands do not rely on fixed IP addresses; an island

periodically announces its presence on a network via UDP broadcast and other islands, detecting its

17 Given 〈σ, V 〉 the signature S for plaintext M is given by S = Signσ(M). The verification of S is given by VerifyV (S) ∈
{true, false}.

68

beacon, may (or may not) establish an encrypted TCP connection with their network neighbor.1819 The

Island implementation assumes IPv4 but can also be hosted on IPv6 or some mix of the two.

Obviously the COAST communication model and the style are deliberately underspecified; both Motile

and Island are just examples of many possible conforming implementations. That said, the devil is in the

details and the specifics of COAST capability semantics, topics addressed in Chapter 4 following. The style

impacts the implementation in many ways and at many points — some expected and some surprising.

However, these style- and threat-specific considerations are largely implementation-independent. Any

implementation must address the fine details of functional and communication capability and I speculate

that similar mechanisms must appear in every COAST-compliant implementation.

3.6 Capability URLs in Detail

Given the critical role of CURLs in COAST I present a brief tour of their essential semantics and imple-

mentation. A CURL u comprises:

• A public key K , the global, unique identifier of an island I

• A unique and persistent 128-bit Globally Unique IDentifier (GUID) [150], the CURL id

• An island-unique symbol denoting an I -resident ingress point t •, the ingress id

• A list of symbols (s1 s2 . . . sn), the path

• Two binding environments: policy and metadata. Each can contain closures, continuations, bind-

ing environments, and other CURLs. The contents (if any) of policy are set by island I . The contents

(if any) of metadata are set by the computation (residing on I) creating the CURL.

CURLs may be freely transmitted from one island to another. To ensure the integrity of “communication

by introduction” it must be effectively impossible to guess, forge, or alter a CURL; consequently, each

CURL u contains at least one u -specific cryptographic-grade random number (the CURL id) and is signed

by the issuing island’s secret signing keyσ. CURLs are a first-class, immutable capability in Motile; within

the confines of a legitimate island, it is impossible for a Motile computation to forge a CURL or alter

18 Obviously this doesn’t scale but a single network segment can support several hundred islands simultaneously. In a
laboratory setting islands can be reliably deployed, shutdown, and restarted with a minimum of fuss and bother. You should
thank me.

19 The Island implementation relies on the ZeroMQ [126] implementation of CurveCP [51] for session encryption and the
ZyRE library (https://github.com/zeromq/zyre) for the dynamic discovery of individual islands. A alternate implementation
based on MinimaLT [190] could provide public keys as island unique global identifiers, strong encryption, full IP mobility, and
seamless integration with DNS while eliminating the scaling constraints.

69

one surreptitiously. Any island J knowing the signing verification key kv of I can verify the integrity of

any CURL u claiming to be issued by I . In a distributed system cryptography is the only guarantee of

capability. Island I must ensure that any message it receives was transmitted via an unmodified I -issued

CURL u and any trustworthy island J should insist that any I CURL in its possession is properly verified.

For the sake of safety and security, islands must manage and limit access to both fungible resources

(such as memory or bandwidth) and island-specific assets (such as sensors or databases). Restricting the

lifespans of computations may help an island stave off resource exhaustion, while limiting the number

of messages that a computation may receive or the rate at which they are delivered can confine access,

improve performance, or reduce the severity of computation-specific denial of service attacks. These

forms of resource security protect against malicious visiting computations intent on resource attacks or

exploiting the island as a platform for attacks directed elsewhere.

3.6.1 Gates

An island’s ingress points play a critical defensive role. Attached to each ingress point t • is a t •-

specific gate, a functional contract whose conditions must hold before a message m can transit across

the ingress point into the underlying transport t . If, at the time of delivery, m passes the gate then m

immediately transits into t ; if m fails to pass the gate, it is discarded.

A gate is either a primitive gate or a gate that is the result of a gate combinator. Informally, a gate g

comprises two closures, p and a (predicate and action respectively) both closed over the same lexical

scope, and whose single argument is the message m transiting the ingress point. The predicate p is

always a pure predicate (no imperative side-effects). Actions a come in two flavors: (1) a no-op (lambda

(m) #t) in which case the gate is stateless, and, (2) actions that have imperative side effects, in which

case the gate is stateful. If the gate predicate (p m) is true then the gate’s action (a m) is called and the

message m transits the ingress point into the underlying transport t . If the gate predicate (p m) is false

then message is discarded and no further action is taken. Primitive gates and gate combinators (in effect

a small, embedded domain-specific-language) are defined by trusted Island code.20

20 The gate primitives and combinators are also available to Motile programs via the binding environments of execution sites.

70

Primitive Gates

Two simple primitive gates illustrate the distinction between stateless and stateful gates. A whitelist

gate is a stateless primitive gate that confines transit to those islands for whose public key K , K ∈

{K1, K2, . . . , Kn} holds. The predicate (p m) of a whitelist gate extracts the public id K of the transmitting

island from message m and tests for its membership in the gate-specific whitelist. The action a of a

whitelist gate is always a no-op. A uses gate is a stateful primitive gate whose predicate (p m) returns

true if the current use count is positive and false otherwise. The action (a m) of a uses gate decrements

the use count by 1. Two other trivial and stateless primitive gates deserve mention: the always gate whose

predicate always returns true and the never gate whose predicate always returns false.

There are three primitive, stateless temporal gates: before, after, and during. Let α denote the current

time in epoch milliseconds and t a timestamp for some date and time; then:

• (gate/before t) returns a gate where (p m) is true if and only if α< t

• (gate/after t) returns a gate where (p m) is true if and only if α> t

• (gate/during t1 t2) returns a gate where (p m) is true if and only if t1 ≤α≤ t2

For all three gates action a is a no-op since each gate is stateless.21

The uses and rate gates are examples of primitive stateful gates. A uses gate limits the total number of

inbound messages delivered via a particular ingress point. The related rate gate limits the rate (messages

per second) at which messages may transit a particular ingress point. Unlike stateless gates (which are

essentially pure predicates), stateful gates must reside on their island of origin. Obviously a CURL, a

read-only structure, cannot reflect changes in imperative state since the same identical CURL u can be

used multiple times and and by multiple distinct islands. A stateful gate g is safely shared among multiple

ingress points t •i of a single transport t .22

Gates From Pure Predicates

A stateless gate can be constructed from an arbitrary pure predicate p over messages m where, given

p , the gate predicate is p and the gate action is a no-op. This reflects Crampton and Huth [49], where

21 Note also that the argument m for each gate predicate is irrelevant.
22 Each transport t implements a lock that is shared by all of the ingress and egress points of t . This lock serializes both the

transit of messages through the transport and the imperative side-effects of the actions of stateful gates. It is an error to share a
stateful gate among ingress points for two or more distinct transports.

71

predicates over state or context serve as piece-parts for constructing security policy.

Gate Combinators

Gate combinators are higher-order functions (f g 1 . . . g n) where each argument g i is either a primi-

tive gate or a gate constructed by a gate combinator. The return value of a gate combinator is itself a gate

h comprising a predicate p and an action a . For any message m the call (p m) evaluates one or more of

the predicates p1, . . . , pn of gates g 1, . . . , g n in a combinator-specific manner. If (p m) returns true then

the call (a m) evaluates one or more of the actions a 1, . . . , a n in a combinator-specific manner. If (p m)

returns false then message m is discarded and no further action is taken. The gate h is stateful only if at

least one constituent gate g i is stateful, otherwise it is stateless.

There are four boolean combinators.

(gate/not g) returns a gate h with predicate (lambda (m) (not (p m))) where p is the predicate of

gate g . If g is stateless then h is stateless; otherwise, h is stateful and the action of h is the action a of g .

(gate/and g 1 . . . g n) returns a gate h whose predicate (p m) evaluates (p1 m), . . . , (pn m) in order

from left to right. If any (p i m) returns false the remaining (p i+1 m) . . .(pn m) are left unevaluated,

message m is discarded, and (p m) returns false. If all (p i m) return true then (p m) returns true and

the action (a m) of h is evaluated as (begin (a 1 m) . . . (a n m)). h is stateful only if some g i is stateful.

(gate/or g 1 . . . g n) returns a gate h whose predicate (p m) evaluates (p1 m), . . . , (pn m) in order

from left to right. If any (p i m) returns true the remaining (p i+1 m) . . .(pn m) are left unevaluated,

(p m) returns true, and the action (a i m) is evaluated as the action of h. If all (p i m) return false then

(p m) returns false and message m is discarded. h is stateful only if some g i is stateful.

(gate/xor g 1 . . . g n) returns a gate h whose predicate (p m) evaluates (p1 m), . . . , (pn m) in order

from left to right. There are three cases to consider:

• All (p i m) return false, in which case (p m) returns false, no action is taken, and message m is

discarded.

• There is exactly one p i such that (p i m) is true. In this case (p m) returns true and (a i m) is

evaluated as the action of h

72

• There exists p i , p j i < j such that both (p i m) and (p j m) are true and j is the least index> i such

that (p j m) is true. In this case the remaining (p j+1 m), . . . , (pn m) are left unevaluated, (p m)

returns false, no action is taken, and m is discarded.

h is stateful only if some some g i is stateful.

3.6.2 Implementation of CURLs

Capability URLs, unlike many other access control mechanisms[43], dictate that a service client re-

send their access capability on each and every access (in other words, from the perspective of the provider

access is stateless), Islands communicate by connections secured with CurveZMQ23, an implementation

of CurveCP [51] [16] over TCP. When a connection is requested by one island to another, they identify

themselves one to the other via an exchange of their public elliptic curve keys — these keys serve as

long term, globally unique, island identifiers. The two island endpoints create an encrypted session with

perfect forward security using short term keys. When the session terminates both endpoints discard their

short term keys leaving their encrypted transmissions unreadable, even if the long term, island public

keys are compromised.

CurveZMQ, like CurveCP, provides weak non-repudiation. An island I can prove to itself, packet by

packet, that island J generated each packet, but it cannot after the fact, prove that assertion to anyone

else. Every service request r to island I comprises a CURL u i and a payload. In this context, island

I on receiving a CURL u I , has at that point in time proved that r originated with island J and that is

sufficient to implement non-delegable CURLs (that is, CURLs that may be legitimately used by a finite,

enumerated set of islands). In particular, if the use of CURL u I is restricted to islands J1, . . . , Jm then

unless J ∈ J1, . . . , Jm then request r will be rejected by I .

Every CURL issued by an island contains an island-unique cryptographic identifier therefore an island

can generate multiple distinct CURLs for a single access point and distinguish one from the other for

the purposes of service, customization, or security. The embedded cryptographic identifier of a CURL

u makes it effectively impossible to guess u and since every request r is fully encrypted no man-in-the-

middle attack can expose either the CURL u or the payload of r . Therefore it is impossible to steal a CURL

by snooping on the communications between islands.

23http://curvezmq.org

73

http://curvezmq.org

Each CURL u I is also signed by I hence any attempt to pass off a forged or tampered CURL u I in

a request as genuine is detected by I and the request is discarded. CURLs u I issued by an island I

meet the fundamental requirements for a capability, namely each u I is an unforgeable reference. While

many different kinds of objects may move between islands including primitive values, closures, binding

environments, and persistent data structures, CURLs are the only capability that confers the power to

communication. Without a CURL u I in hand it is impossible for an island J to communicate with island

I .

Finally, an island I can protect itself against unwanted communication even with legitimate CURLs u I

by placing time limits, time locks, use limits, or rate limits, or other arbitrary island-specific constraints

on the use of all or specific CURLs. A CURL u I may be limited to a single use and I , at its discretion,

grants an additional use by including a fresh CURL u ′I (also single use) in its response to a request r

that was issued with u I . Each and every inter-island transmission is treated afresh and it may well be

that an ongoing exchange between service provider and service client requires a fresh CURL for each

transmission (in either direction) between provider and client.

3.7 Computations and Identity

Computations are no less critical to COAST than CURLs. I discuss here a vexing problem: the mean-

ing of “identity” for computations; arguing that for security purposes identity is a red herring and that

encapsulation and security are better served when individual computations are anonymous.

A computation is a single thread of control executing in the context of a an execution site 〈E , B〉within

the confines of an island (a network-addressable homogeneous memory space). Each island is capable

of hosting multiple computations simultaneously. Safe execution of mobile code demands that threads

be preemptively scheduled; otherwise an infinite loop in any executing mobile code amounts to a denial-

of-service attack. Threads may be implemented natively by the underlying operating system (common

in Unix-like systems such as FreeBSD, Linux, and Mac OS X) or as green threads scheduled by a virtual

machine, itself driven by a native operating system thread.

Each island, as sketched in Figure 3.3, is identified by a globally unique public key. To what extent

then are island-resident computations distinguished one from the other? For guidance we turn to the

implementations of modern web servers. When a web client issues an HTTP request to a server the

74

client has no idea of which specific server-side computations generated the response. Here “ignorance”

promotes server-side encapsulation and encourages variation among server implementations. In any

case, a client can no more trust the response it receives then it trusts the origin server.

Like arguments can be made for “anonymous” computations on islands where the identity of a com-

putation x residing on island I is unknown both to other islands J and to other computations y co-

resident on island I . There are obvious benefits. Anonymity eases evolution, recovery, and adaptation,

thus freeing an island to create, reorganize, replace, or destroy computations as it sees fit. The obfuscation

of identity may frustrate attacks that target island-specific computations, in particular, computations for

critical intra-island services. Security goals may also be served by anonymity; for example, an island may

implement a family of computations whose individual instances offer identical service interfaces but

where each member emphasizes distinctive security concerns. More generally, an island may implement

“aligned” services, each outwardly identical but whose non-functional characteristics vary for the sake of

performance, security, testing, monitoring, or analysis.

Identity and security are not synonymous — identity is neither necessary nor sufficient for security.

The identity of a mobile code computation is ill-defined and, irrespective of identity, no computation is

more trustworthy than the island on which it is executing. At a minimum an executing island I has:

• Deep knowledge of the implementation of f (absent effective cryptographic obfuscation [118]),

since I reconstructed f in executable form from f ’s on-the-wire network representation.

• Complete control of f ’s execution. I can deploy a f -tailored execution site 〈E f , B f 〉 for any closure

or continuation f that it receives.

While one can know the proximate point of origin of mobile code, say a closure f transmitted from

island Alice to island Bob for execution, tracing the seminal origin of f (using provenance as an intuitive

substitute for identity) is another task altogether. For example, Alice may have acquired f from island

Carol. Even if Carol signed f , (almost) nothing prevents Alice from reconstructing and (re)signing f with

Alice’s private signing key before passing f on to others. The transmission of a closure f from one island

to another says next to nothing about the identity, point of origin, or provenance of f . All the receiver

knows with certainty is the public key (nominal identity) of the island that transmitted f to the receiver.24

24 However, if Bob was expecting to receive f from Carol with Alice acting solely as an intermediary, then Bob can verify
(using the public signing key of Carol) that f came from Carol. However, that doesn’t prove that Carol was the origin of f as

75

Identity is a higher-order concept outside the bounds of the COAST style. While identity is important

for assigning blame in the event of an error, breach, or disruption, it is not the linchpin of decentralized

security. Others might argue that identity is fundamental to trust and to the extent that is true the public

key of each individual island is a hook for a rich, nuanced exposition of identity. Nonetheless, there is no

single defensible security perimeter in a decentralized system; consequently, in a mobile code regime,

trust may be a weak indicator of safety, reliability, integrity, or error-free execution.

Naturally computations are tagged with island-specific unique identifiers necessary to allocate re-

sources, assign execution sites, monitor behavior, log events, and defend island integrity. But this is

woefully insufficient for decisions of trust, security, and capability. The criteria for these decisions may

be highly island-, domain-, and application-specific and for these reasons Island implements a generic

mechanism to underpin attribute-based security; specific applications include attribute-based access

control (ABAC)[129] and attribute-based encryption (ABE) [36, 193].

The generic mechanism is simple. Affiliated with each island thread is a thread-specific key/value

store where the keys are attribute names (given as Motile symbols) and the values are arbitrary Motile

values. This alone is sufficient to implement complex forms of access control. For example, attribute-

based gates25 can be implemented for both ingress and egress points to regulate intra-island communica-

tion among co-resident computations (threads). Critical and sensitive functions in binding environments

can query the attribute store to determine if the calling thread has sufficient authority for the call — to

regulate access to functional capability. More generally, a function may modify its behavior based on the

attributes of the calling thread; for example, logging the call as a precaution if the attributes suggest that

the caller is noteworthy for any reason, including risk or patterns of behavior.

Attribute-based security generalizes identity, as oftentimes we are not interested in identity per se but

attributes or characterizations. Consequently mechanisms that capture “pattern and practice” may be

more practical and effective then mechanisms devoted to establishing identity. Furthermore, even “good”

islands will occasionally host “bad” computations — an inevitable fact of life in a world of computation

exchange. Should higher-order formulations of identity become available, for example attestations of

identity backed by a web of trust, then these can be accommodated by additional bespoke attributes in

Carol herself may have acquired f from yet another island, deleted the original signature, and (re)signed f before passing it on
to Alice. More generally, the problem of mobile code provenance is a technical challenge that lies well outside the scope of my
thesis.

25 Sections 3.2.2 and 3.6.1.

76

thread-specific attribute stores. Even so, I conjecture that identity offers limited technical utility and is

best reserved for legal, administrative, social, regulatory, and economic structures outside of the technical

sphere of COAST.

The threat model of COAST, detailed in Section 3.1, also argues against relying on identity as a defini-

tive indicator of threat or risk. Two recent major security incidents highlight the weaknesses of identity.

The data breach at Sony Pictures Entertainment in late November 2014 exfiltrated hundreds of gigabytes

of sensitive information.26 The identity of those responsible for the Sony theft is a subject of considerable

speculation and debate27 but in many respects their identity is irrelevant. Better had the breach been

prevented outright, irrespective of the identity of the perpetrator, or at worst, detected far earlier. Preven-

tion, early detection, and risk mitigation rest on behavior — the acquisition, dispersion, and exercise of

capability over time — not identity.

Identity is also stolen or forged with astonishing ease. The second incident, the Anthem data breach

(with data losses for approximately 80,000,000 Anthem customers) reported in February 201528, appar-

ently hinged on the theft of an Anthem system administrator’s login identity and password; in other words,

it was only one (small) step removed from an insider attack. I speculate that in many attacks knowledge

of identity is at best a weak preventative.

As I explore in later chapters, the attributes of computations can, in tandem with the base mecha-

nisms of the COAST style, prevent the acquisition, use, and (re)transmission of unwarranted capability.

The anonymity of computations (or at best their weak identity) is a distraction. The threat of insider

attack (see section 3.1) demands comprehensive mechanisms, for which capability security is superior

to “identity security.’

3.8 Summary

Unlike many architectural styles COAST is deeply security-centric — as befits for a style dedicated to

the safe exchange and execution of decentralized live computations. The style is deliberately underspec-

ified, leaving many decisions open to implementations of the style. However, all instantiations of the

style must account for computations (the embodiment of services), the separation of computation and

26 http://deadline.com/2014/12/sony-hack-timeline-any-pascal-the-interview-north-korea-1201325501/
27 https://www.schneier.com/blog/archives/2014/12/more_data_on_at.html
28 http://www.latimes.com/business/la-fi-anthem-hack-20150207-story.html

77

http://deadline.com/2014/12/sony-hack-timeline-any-pascal-the-interview-north-korea-1201325501/
https://www.schneier.com/blog/archives/2014/12/more_data_on_at.html
http://www.latimes.com/business/la-fi-anthem-hack-20150207-story.html

functional capability (in the form of execution sites), the separation of computations and communica-

tions in which communication is an explicit capability that may be granted or withdrawn (in the form

of CURLs), and the service- and communication-dependent interpretation of the messages exchanged

among computations.

The notional infrastructure described in section 3.5 distinguishes between large-grain identity, the

public key of an island, and small-grain anonymity, the more-or-less anonymous computations sharing

the address space of a single island. Islands are the encapsulation boundary of computations; an island is

free to organize its resident computations, both native and visiting, in any manner it sees fit. Any COAST-

based collaboration is likely to contain multiple islands operating under two or more distinct spheres of

authority, where islands are the smallest fundamental unit of decentralization.

The complexity of the style arises largely from its security demands. The execution of arbitrary mobile

code of likely unknown origins is inherently dangerous; adequately confining its execution and interac-

tions is imperative. Although there is ample room for debate about the details of the mechanisms there

is little room for discussion of their necessity. The functional capability of computations (executions of

visiting mobile code) must be restricted for the sake of island safety. The communication capability of

computations (message exchanges among computations) must be restricted for the sake of collaborative

integrity. The resource capability of computations, the acquisition and release of fungible resources (such

as memory or storage space) or fixed assets (such as sensors, actuators, or databases), must be restricted

for the sake of island liveness. Out of these necessities arise four mechanisms of considerable power

and generality: communication by introduction, execution engines, global binding environments, and

CURLs.

The style succinctly intermixes computation exchange with object-capability security. The Services

rule defines computation exchange as the sole means by which services are presented and confines inter-

action among computations to messages that may themselves contain computations (reified as closures

and continuations). The Execution rule delimits execution sites (execution engines and binding envi-

ronments) as the sole means by which functional capability is granted to executing computations. The

Messaging rule confines communication capability to the possession of CURLs (for transmission) and

egress points (for reception). Finally, the Interpretation rule grants computations the freedom to do “as

they please” within the confines of the functional and communication capability at their disposal. In

78

combination the three rules, Services, Execution and Messaging, delineate the only means by which ca-

pability may be transferred from to a computation: messages and the binding environments of execution

sites. This guarantees that the embedding of computation exchange in the object-capability model is

complete; there are no back channels by which capability can be smuggled in undetected.

Are they the only mechanisms appropriate to the task? Certainly not. For example, type systems or

proof carrying code, though not explored here, may contribute to the safe and efficient exchange and

execution of mobile code. However, it is difficult to imagine any realistic system implementing the idiom

of computation exchange that does not account for the restriction and modulation of functional, com-

munication, and resource capability. With this in mind I present, In Chapter 4, the obligations that the

style levies on its implementations and then, in Chapter 5 following, explore how the reference imple-

mentation, Motile/Island, reflects those obligations. Finally, it comes as no surprise that code mobility

brings with it unique security concerns for Motile/Island ; those issues are addressed in Chapter 6.

79

Chapter 4: Obligations of the COAST Style

What obligations must an implementation satisfy to conform to the COAST style? What technical

alternatives are available to developers who are building COAST-compliant infrastructure? I address these

two questions here. As stated in section 3.3 the COAST style contains four rules:

• Services: All services are computations whose sole interactions are the asynchronous messaging

of values, closures, continuations, and binding environments.

• Execution: All computations execute within the confines of some execution site 〈E , B〉where E is

an execution engine and B a binding environment.

• Messaging: Computation x can transmit a message to a computation y only if there exists 〈t •, t .〉

such that x holds a CURL u denoting t • and y holds t ..

• Interpretation: The interpretation of a message delivered to a computation y via CURL u is y- and

u -dependent.

Sections 4.1–4.4 explore these obligations rule by rule. Section 4.5 briefly considers two important

topics on which the COAST style is silent: spheres of authority and grounds for confinement, both are

matters of security policy that fall outside the purview of the style. Finally, section 4.6 is a brief summary

of the findings of this chapter.

4.1 Obligations of the COAST Services Rule

The primitives of the Services style rule include computations, asynchronous messaging, values, clo-

sures, continuations, and binding environments. In Sections 4.1.1–4.1.3 following I appraise the technical

interpretations for each of these six elements.

4.1.1 Computations

A computation is a single, distinct thread of control; however, the granularity of that thread is left

unspecified. There are three possibilities. A computation could be a process comprising, at a minimum, a

thread of control, an address space, and a protection domain (for example, a protection ring — a feature

80

common to modern CPU architectures). Alternatively, a computation may be one out of many kernel

threads all sharing the resources of a single process (a system structure known as multithreading); POSIX

threads fall into this category.1 Distinct computations (in the COAST sense) are not necessarily co-resident

in the same process. Finally, a computation may be a green thread that is scheduled at application-level

(and not by the operating system, as is the case for processes and kernel threads).

As a general rule, the state and instruction costs of kernel scheduling for a process greatly exceeds

those of a kernel thread as the latter requires little more than a single set of machine registers (includ-

ing a program counter and top-of-stack pointer). Typically, multiple green threads are executed in a

preemptive round-robin by a single kernel thread that is unaware of the application-level scheduling

of the green threads. Consequently, green thread scheduling need not cross a protection domain nor

require any interaction with an operating system kernel. In all three cases—processes, kernel threads,

and green threads—the style implicitly assumes preemptive, rather than cooperative, scheduling; other-

wise, a COAST-based system would be prey to denial-of-service attacks by greedy, malicious, or merely

erroneous computations.

At a minimum COAST computations are distributed; hence, absent all guarantees of shared memory,

they must interact by message passing. The style requires asynchronous messaging, a pattern that is both

well-suited to overlapping computation with communication and from which one can easily implement

synchronous communication should it be required. Asynchronous network communication is a common

feature of modern operating systems and is used by modern web servers to scale to heavy client loads.

4.1.2 Values

Values are the semantic bricks of programming languages, including both primitive data types such

as characters, integers, floating point, rationals, booleans and references, as well as composite data types

such as strings, lists, vectors, records, associative maps, sets, and bags. The particulars of values are

outside the scope of the style; however, for any particular class or type of value to be communicated from

one COAST computation to another, it must have a transmission representation that is recognized and

accepted by both sender and receiver. The details of transmission representations is an obvious concern

of implementations but also lie well outside the scope of the style proper.

1 POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995).

81

4.1.3 Closures and Continuations

The transfer of live computations is the fundamental interaction among services within computation

exchange. The style calls out three abstract values — closures, continuations, and binding environments

— that capture the essence of computation exchange. A closure, comprising a procedure plus its lexical

scope binding environment, is in practice a low-cost snapshot of the starting point of a computation.2

For languages (such as Scheme) where closures are first-class values, closure generators (functions that

return closures as values) can generate tailored computations whose lexical scope bindings represent

the starting state of the computation. In contrast, a continuation is a snapshot of a computation in mid-

execution, comprising a stack representing the dynamic call structure of the computation, a program

counter, and the set of values, residing in the heap, that can be transitively reached from the contents of

the stack.3

4.1.4 Binding Environments

Binding environments, maps of name/value pairs, are a generalization of lexical scope. They can

be used to represent simple objects, modules, and records as well as the global (ambient) binding en-

vironment that appears in an execution site. Research in the semantics and exploitation of binding

environments has a long history in functional programming. One of the earliest examples is Pebble (circa

1984) [27], a language based on the typed lambda calculus, intended as a tool for the “precise description

of programming language constructs,” in particular, parameterized modules and abstract data types. The

language T (circa 1984), a pioneering early dialect of Scheme4, introduced locales, first-class binding

environments that served as both the global environment and as modules [200].5 Felleisen and Friedman

(circa 1986) [80] described how modules, with varying degrees of delayed bindings, could be implemented

in Scheme as purely syntactic extensions (via macros), illustrating the generality and power of lambda

and letrec (itself a syntactic extension).

2 The programming language PAL (1968) was the first to offer lexically-scoped first-class functions (closures) [75].
3 Scheme is purportedly the first programming language to support continuations (though not as a first-class value) by

reifying the current continuation as a single argument function via call-with-current-continuation. One can regard a
closure as a “trivial” continuation whose stack contains only one frame, the closure’s calling arguments, and whose program
counter is set to the entry point of the procedure of the closure.

4 An informal and entertaining history of T by Olin Shivers can be found at http://www.paulgraham.com/thist.html.
Jonathan Rees lists errata in Shivers’ accounting here: http://web.archive.org/web/20070120135524/http://mumble.net/
~jar/tproject/.

5 I wasn’t able to locate an online copy of the 1984 Fourth edition of The T Manual. However, the 1988 Fifth edition is
available at http://web.archive.org/web/20060925104715/http://mumble.net/~campbell/t/tman.pdf

82

http://www.paulgraham.com/thist.html
http://web.archive.org/web/20070120135524/http://mumble.net/~jar/tproject/
http://web.archive.org/web/20070120135524/http://mumble.net/~jar/tproject/
http://web.archive.org/web/20060925104715/http://mumble.net/~campbell/t/tman.pdf

Work by Gelernter, Jagannathan, and London (circa 1987) [102] considers first-class binding envi-

ronments in a dynamically-scoped Lisp dialect that substitutes this single primitive for multiple distinct

language constructions including records, structures, closures, modules, classes, abstract data types,

partially closed functions, and environments with temporal behavior such as streams or a representa-

tion of an evolving file system directory. Miller and Rozas (circa 1991) [165] address replacing the top-

level interaction environment in Scheme with first-class binding environments. In those cases where

compiled Scheme code does not manipulate the first-class environments their optimizations eliminate

performance penalties. Lee and Friedman (circa 1993) [Lee_Quasi_Static_Scoping-1993] introduce

quasi-static scoping into Scheme to allow variables bound in static scope to be shared across indepen-

dent scopes (such as modules) or among object instances and detail an implementation that extends

well-known compiler representations for static scopes. Jagannathan (circa 1994) [134], in the spirit of

Miller and Rozas, strives for a balance between first-class binding environments, common program trans-

formations that rely on static scoping, and constraining the effects of reification and reflection while

preserving the semantic power of first-class binding environments. Queinnec and De Roure (circa 1996)

[198] make a clear distinction between the orthogonal roles of mapping names to locations and then

locations to values to meld first-class environments with the quasi-static variables of Lee and Friedman

and improve the efficiency of some reflective operations on binding environments. Without exception,

all of the work on binding environments cited above, from 1984 through 1996, assumes execution on a

single host—the programs were not even distributed, much less mobile.

Fong (circa 1998) [92]was the first to understand the significance of binding environments for code

mobility. In his analysis of Queinnec and De Roure [198], Fong observed that a mobile closure undergoes

dynamic linking on arrival at the remote execution host wherein the free variables of the closure are

linked to the actual resources administered by the computing environment. In other words, free vari-

ables name the resource expectations of mobile code and code mobility is the equivalent of remapping

closure evaluation into distinct remote resource (binding) environments. Hence remote evaluation can

be understood as the evaluation of a form f in a remote environment (eval f u) where u denotes the

network location of the remote environment to which f is dispatched for evaluation. Code-on-demand

is a similar construction (eval r b) where r denotes the network location of the remote program to be

imported for execution and b is a local binding environment.6

6 See [92], page 7–8. Interestingly, Fong fails to mention combining the two constructions to obtain remote execution of

83

Fong’s view of mobile code dovetails with the concept of remove evaluation introduced a decade

earlier by Stamos (circa 1986) [228] (of which Fong was apparently unaware). His characterization of

name spaces (binding environments) as protection domains is explicitly embraced by COAST. Under

COAST environment sculpting is the procedure by which a binding environment is tailored for a specific

service. Binding environments differ along two dimensions: the names αi available in the environment

and the values vi bound to those names. In particular distinct services may employ binding environments

whose name spaces {α1, . . . ,αn} are identical but whose actual bindings vary with respect to performance,

security, logging, and the details of service semantics. For example, a binding environment B may restrict

the range of arguments accepted by a critical binding α/ f because the execution site 〈E , B〉 offers a

more restricted level of service than an otherwise equivalent execution site whose binding environment

contains a like named, but less restricted binding, α/g .

Finally, service is a particularly amorphous and ill-defined notion. From the COAST perspective a

service is a computation that responds to the messages sent to it by other computations. Under COAST

there is no effective distinction between service providers and service consumers; all are computations

interacting under the obligations of the four COAST style rules. Provider and consumer are just roles

adopted by computations over time and a single computation may switch between the two roles as it sees

fit (or exercise both roles in tandem when two or more services collaborate). Beyond the bare bones of

interaction service is in the eye of the beholder. For example, a computation that accepts and immediately

discards any message is a legitimate service if your goal is measuring network loading or the overhead of

message transmission and reception between computations.

4.2 Obligations of the COAST Execution Rule

All COAST computations, irrespective of origin, are potentially dangerous. Continuous confinement

is one of the means by which providers and consumers ensure their own safety and integrity. As I argued

in Section 3.7, computations are anonymous — absent any effective methodology or technique for deter-

mining provenance or anything other than proximate origin. The confinement imposed by COAST is a

computation-specific interpretive model, the execution site, 〈E , B〉, where E is an execution engine and

B is a binding environment.

code-on-demand as (eval r u).

84

4.2.1 Late Binding is Necessary

The binding environment B of an execution site defines the functional capability that an COAST

service provider grants to visiting mobile code executing within the confines of 〈E , B〉. Late binding of

discretionary functional capability is necessary for mobile code. As Fong observed [92], mobile code is

mobile for a reason — it is transmitted to a service provider for execution because the provider offers:

• Fungible assets such as processor cycles, memory, network bandwidth, or storage capacity

• Infrastructure as a service, for example, replicated databases, content-delivery, collaboration aids,

design tools, continuous integration, and the like

• Functional capability such as libraries for image recognition, data analytics, or circuit analysis

• Fixed assets such as domain-specific databases, peripheral devices (cameras at locations of interest

or data sensors and actuators such as the the pressure transducers, pumps, and values of a waste

water treatment plant), or live data streams including streams of synthesized or derived data

Late and dynamic (re)binding is a necessity as visiting mobile code executing under the stewardship

of an execution site must bind to the implementations of standard functions made available to visitors,

the library interfaces offered by a provider, and the site-, location-, and provider-specific configuration

parameters detailing resource limits, metadata, defaults, and other provider idiosyncrasies. Moreover,

a single closure may visit and execute within several execution sites 〈E1, B1〉, . . . , 〈En , Bn 〉 in succession

on the same island I , hop from island to island, I1, . . . , Im executing in zero, one, or more execution sites

along the way, or exhibit some combination of the two behaviors. As a consequence, mobile code may

also abandon bindings as it transits from one island to another. There are many scenarios in which

leaving one or more bindings behind is a desirable tactic:

• An identical or comparable binding is available at the next destination; there is no point in wast-

ing network bandwidth dragging along the implementation of a function whose exact replica or

functional equivalent is available at your destination.

• The binding in hand now may not be appropriate or effective at your destination; for example, it

may contain host- or island-specific customizations that are nonportable, it may be implemented

in a processor-specific assembly language, or even worse, it is a blob of host binary instructions.

• The binding may be a proprietary implementation that the provider does not want to share.

85

• The implementation contains trade secrets (for example, the formulation of Pepsi) that may not

leave the confines of the island of the provider.

• The service contract of the provider requires that departing mobile code abandon all of the bindings

that it acquired on arrival.

• The binding may be of a provider- or island-specific type that cannot be transferred from one island

to another (for example, a large database or a subtree of a file system).

• The binding may be a valuable provider- or island-specific asset that must not be transmitted

off-island.

• The binding may be so voluminous that transmitting it off-island is unfeasible.

• The binding may contain cryptographic material that must be confined to the island

4.2.2 Binding Variations Across a Single Sphere of Authority

Within the confines of a single sphere of authority many considerations apply to the construction and

deployment of binding environments. There is no expectation, much less a guarantee, that the binding

environments B1, . . . , Bn deployed within a sphere of authority are identical. Aside from a shared subset

of basic bindings, they may differ significantly:

• Variations in binding environments can arise for the sake of backwards compatibility where B i and

B i+1 are two successive versions (i and i +1) of a binding environment containing a library whose

API is evolving. Mobile code that relies on the older API can be directed to an execution site 〈E , B i 〉

while mobile code written to the latest API can be directed to another execution site 〈E , B i+1〉

• Two or more binding environments may be functionally identical but differ in terms of performance,

logging, tracing, debugging aids, or error responses.

• A binding environment may be severely restricted to confine mobile code to a small set of bindings

reflecting a domain-specific language or a narrowly defined service.

• Binding environments may be strictly nested B1 ⊂ B2 ⊂ . . . ⊂ Bk reflecting a set of differentiated

service offerings with k distinct levels of service.

• Two binding environments B and B̃ may contain functions f and f̃ respectively where, for example

f and f̃ are both functions that translate images from one format to another but f̃ supports a larger

set of formats than f .

86

• In response to an emerging security threat or an actual breach a provider may rapidly deploy vari-

ants of its binding environments containing instrumentation or run-time checks that can assist in

tracking, slowing, or halting the attack

4.2.3 Binding Variations Within an Island

Within the confines of an island different considerations apply. A mobile code closure f , once it

arrives on-island, may be shared among multiple on-island computations x1, . . . ,xn , each x i executing

in the context of an execution site 〈E i , Bi 〉. The execution semantics of f may vary by caller x i as, f will

be evaluated in a binding environment determined by x i . In this case, the safety and security of the me-

chanics of per-computation evaluation come to the fore. The Motile compiler defines four special forms

for binding environments: query for a binding within an environment, add a binding to an environment,

delete a binding from an environment, and evaluate a sequence of expressions within the context of an

environment.7 For the sake of security and safety the first three (query, add, and delete)are restricted

to discourage untrusted mobile code from assembling binding environments containing superfluous or

unsafe capability.

In particular, absent specific functional capability it is impossible for a closure executing within an

execution site 〈E , B〉. to capture the instantiation of either the execution engine E or the binding envi-

ronment B . The Motile library function (environ/capture) returns the binding environment B of the

execution site under which it is executed.8 Without environ/capture the only way that a computation

can capture a portion of B as a binding environment is

(let ((α1 α1) · · · (αm αm)) (environ/add environ/null α1 · · · αm))

for α1, . . . ,αm ∈ B .9 This is weak protection at best, for though this construction is unwieldly, it is easily

mechanically generated and, if all of the names αi ∈ B are known, then B can be duplicated in its entirety.

But despite their apparent weakness

. . . it is possible to retain the program reasoning capabilities afforded by lexical scoping, while

7 See Section 7.5.5 for the details of each.
8 The BASELINE binding environment is usually the starting point for constructing specialized binding environments and

contains approximately 340 pure (side-effect free) functions. environ/capture is deliberately omitted from BASELINE.
9 There are alternative constructions but they all amount to the same thing.

87

also gaining expressive power through the use of bindings constructed and shared across dis-

joint lexical contexts. ([133], Section 2, page 75).

Finally, the special form

(environ/reflect b e1 · · · em)

defined by the Motile compiler10 evaluates the expression (begin e1 · · · em) in the context of execution

site 〈E ,b 〉 and returns the value of em . In this case, the contents of b are the outcome of evaluation at

run-time and consequently b may contain arbitrary bindings whose values were delivered via messaging

or as the return value of a function contained in a binding environment elsewhere. These confinement

targets, messaging and restricting the propagation of specific functions within binding environments,

are addressed in Section 6.2. It should be noted that far more powerful and general functions for ma-

nipulating binding environments are made available to highly trusted computations, for example, those

computations responsible for remote evaluation and spawning. However, because Motile requires that

all ambient capability be explicit (in the form of execution sites), that capability can also be confined

using the same mechanisms that implement Motile/Island in the first place.

4.2.4 Why Execution Sites?

Execution sites serve several goals. While their principal role is resource and functional confinement

they also encourage flexibility and diversity in service offerings. Minor variations in binding environments

allow service providers to easily construct and deploy services targeted toward specific categories of

service consumers, in other words, the execution sites 〈E , B1〉, . . . , 〈E , Bn 〉 may each offer an execution

site-specific service variant Si of some general service S. Alternatively, execution sites 〈E1, B〉, . . . , 〈En , B〉

may offer the same service S to mobile code written in distinct programming languages L 1, . . . , L n where

each E i is capable of executing mobile code whose source language is L i . More generally, perhaps a

small number of distinct execution engines E1, . . . , Em may be sufficient for a larger set of mobile code

programming languages.11 Finally, an execution engine may be a meta-interpreter that “executes” mobile

code in a distinct semantic domain. For example, a execution engine, acting as a model checker, theorem

10 See Section 7.5.5 for a complete discussion of the Motile primitives for manipulating binding environments.
11 This highly speculative notion is suggested, in part, by the mere existence of enscripten http://emscripten.org/, a

transpiler that translates LLVM http://llvm.org/ byte-code to asm.js http://asmjs.org/, a strict subset of JavaScript that is
used as a low-level, efficient target language for compilers. Enscripten allows programs written in C or C++ to be safely executed
within a modern web browser.

88

http://emscripten.org/
http://llvm.org/
http://asmjs.org/

prover, or transpiler may verify the message passing behavior of a COAST closure, demonstrate liveness

and safety guarantees, predict performance or garbage collection behavior, generate proofs that the

mobile code satisfies type-safety constraints, or rewrite the mobile code for the purposes of logging,

tracing, or optimization. In other words, by expanding our view of execution engines, services may move

well beyond the direct execution of mobile code and into other less traditional domains.12

An execution engine may take many forms: a native hardware processor in a resource-constrained

embedded device, a sandbox13, a virtual machine such as a byte-code interpreter, or an abstract inter-

preter (including a model checker or theorem prover). In general, a sandbox is a security mechanism

for isolating and confining untrusted software; however, here I use sandbox to denote confinement of

machine binaries. One excellent example of a sandbox is the Google Native Client (NaCl) [267, 268], de-

signed to give “web browser-based applications the computational performance of native applications

without compromising safety.” NaCl requires a specialized tool chain for generating restricted Intel x86

binary modules that are amenable to analysis and strict confinement. The NaCl sandbox itself comprises

an inner sandbox that isolates the execution of the binary modules generated by the tool chain and an

outer sandbox that provides a restricted set of services for remote procedure calls and safely interacting

with a browser. In some respects this structure resembles the abstraction of an execution site 〈E , B〉with

the inner sandbox playing the role of the execution engine E and the outer sandbox taking the role of the

binding environment B .

The Java Virtual Machine (JVM) [153] is a widely used stack-based, byte-code virtual machine. Lua, a

popular scripting language, employs a register-based virtual machine [132]. Scheme 48 [142] also relies

upon a stack-based, byte-code, virtual machine, and is notable for the clarity of its architecture and the

flexibility of its module system. Here the Scheme 48 virtual machine is the equivalent of an execution

engine E and its fine-grain, expressive module system can be used to construct customized binding

environments B . The latter feature is heavily used in scsh [217], a Unix shell programming language

based on Scheme (and written in Scheme 48) that gives the user full access to Unix programs.14

Execution engines may be engineered to meet nonfunctional goals such as memory consumption,

12 This intriguing possibility falls well outside the scope of this thesis. Any takers?
13 It is not my intention to provide a comprehensive survey of modern sandbox technology. I briefly review selected examples

to indicate the range of choices available to the implementer of a COAST-compliant system.
14 The most recent source code is available at https://github.com/scheme/scsh. Older versions including user documen-

tation can be found at http://scsh.net/.

89

https://github.com/scheme/scsh
http://scsh.net/

debugging, logging, communication patterns, and auditing or the constraints of distinctive processor

architectures. For embedded applications minimizing memory consumption and exploiting processor-

specific features are two common concerns. For example, BIT [66] is a Scheme dialect whose byte-code

virtual machine is optimized for execution by microcontrollers with as little as 3–4 kB of memory and

whose runtime implements a soft real-time garbage collector. PICOBIT [5], another Scheme dialect

targeted for memory-constrained embedded applications, uses whole-program analysis (including the

run-time library) to eliminate superfluous library functions from the binary image generated by the

PICOBIT compiler. The PICOBIT virtual machine is also available in two additional feature-constrained

versions that lead to significant space savings. Finally, Vandemme [250] ported BIT to the xCore processor

[161], making effective use of the hardware’s limited memory and multicore, multithread architecture.

The concept of “execution sites” in mobile code was, as far as I can determine, introduced by Agent

Tcl (1998) [117]where it functioned as both a security mechanism (with tailored binding environments

for confinement) and as a means of adaptation and integration (by supporting execution engines for

languages other than Tcl15). If one takes “execution engine” to mean native hardware then the the mobile

object language Emerald (1995) [229] established an early precedent—mobility among heterogeneous

processor architectures — by translating a single common virtual machine code to the native binary of

the host processor.

The style is silent on the implementation of binding environments, the only requirement being that

binding environments can be included in the messages exchanged among computations.

4.3 Obligations of the COAST Messaging Rule

The COAST Messaging rule enforces the separation of communication from computation16 — a fac-

toring motivated by common constructions in distributed computing. For example, a “reverse proxy”

mediates between clients and background servers by delegating a client request to a background server

and returning the server response to the client as though the response originated with the reverse proxy

itself. The client is ignorant of the details of the computations (including their number, composition, or

location) that the proxy server contacted to satisfy the client request. Since clients can never communi-

15 To my knowledge, only the Tcl execution engine was ever implemented. Nor is it clear to me, absent inspection of the
source code, what hooks, if any, were actually available for multiple, distinct execution engines in Agent Tcl. The implementation
of Motile/Island is certainly no better. Support for execution engines other than Scheme is a subject for future work.

16See Section 3.2.

90

cate with any computation other than the reverse proxy the service provider enjoys considerable latitude

in its service implementations. Miller [170] constructs an analogous encapsulation in object-capability

security where object p , acting as a proxy for one or more background objects b1, . . . ,bm prevents any

object o, holding only a reference to p , from discovering the existence of objects b1, . . . ,bm much less the

details of their construction.

Possession of a CURL u does not guarantee successful communication; possession is just that and

nothing more. If x is a computation holding a CURL u then the agency A executing x may enforce a policy

preventing communication with the agency that cryptographically signed u or A may be unable to verify

the signature, consequently rejecting u as a forgery. A may also cap the total number of messages that x

may transmit (by agency, in bulk, or some combination of the two), enforce rate limits on the frequency of

message transmission, or even limit the periods of time when x can even attempt to transmit a message

— mere possession of u does not guarantee efficacy.

4.3.1 Message Ordering

Islands are obligated to preserve message ordering in two senses. First, the inter-island transmission

protocol must preserve message ordering, that is, if two messages, m and m̃ are transmitted by island J to

island I , m preceding m̃ in the transmission order, then the transmission protocol between I and J must

guarantee that the arrival of m precedes the arrival of m̃ at island I . This ordering guarantee simplifies

inter-island coordination and is easily implemented by layering the inter-island protocol over a transport

protocol, such as TCP, that guarantees byte-ordered or message-ordered delivery. However, message

arrival at an island boundary does not mean that the message will be allowed to pass into the island

interior. Even if I permits the exercise of CURL u by J there is no guarantee that the communication

will be accepted by the island I , the issuer of CURL u . For example, CURL u may be non-delegable,

intended for the sole use of computations residing on island H . Island I can detect the misuse and refuse

to communicate. In addition, gates embedded in the CURL u itself as metadata or gates in the ingress

point denoted by u may also prevent delivery to the underlying transport.

Second, all messages, irrespective of origin — whether off-island or on-island, transiting an ingress

point t •u must be delivered to the underlying transport t in arrival order. COAST messaging must deal

with two cases: intra-island and inter-island transmissions. COAST messaging distinguishes between the

91

receipt of a message m by an island I and the delivery of m via an ingress point t •u to an underlying

I -resident transport t . Given the gates affiliated with t •u m may not necessarily transit through the

ingress point to transport t . To wit, a temporal gate acting as a time lock may permit delivery only during

a fixed period of the day and only messages arriving within that window will be passed on to transport

t . More generally, for a CURL u issued by island I and denoting ingress point t •u of I COAST messaging

guarantees that if island J transmits two messages m and m̃ to I via u then I will receive m and m̃ in

transmission order and either:

• Deliver m and m̃ in transmission order to t •u

• Deliver exactly one of m or m̃ to t •u or

• Deliver neither of m and m̃ to t •u

A temporal gate can give to rise to all three of these behaviors. In the first case messages m and m̃ arrive

within the bounds of the window, in the second case only one of m and m̃ arrive within the bounds of

the window while the other arrives either early or late, and in the third case both messages arrive outside

the bounds of the window, that is, both are either too early, too late, or one is early and the other late.

However, preservation of arrival order may not be guaranteed by the transport t to which an ingress

point t • refers. Under Island the default transport is a bankers queue, which is arrival order-preserving,

but an island is free to substitute other transports, for example a priority queue that always delivers the

highest priority message in the queue and thus may deliver messages in an ordering that is not the arrival

order. In short, the ingress order must be arrival order but the egress order is the order dictated by the

transport.

Finally, a transport may not guarantee message delivery (much less preserve message arrival order).

For example, the “null” transport discards every message given to it and each of its egress points returns

#f when read. A “lossy” transport may randomly drop messages that transit its ingress points, a “fresh”

transport may drop older messages in favor of fresher ones, and a “disordered” transport may reshuffle

its buffered messages awaiting outbound transit through an egress point.17

4.4 Obligations of the COAST Interpretation Rule

The Interpretation rule echoes two critical observations of the web [70]:

17 All of these transports are legitimate. Whether they are useful is another matter.

92

• A web server s organizes its namespace (reflected in its URLs) independently of the namespaces of

other web servers

• The interpretation of an URL u for web server s is s -dependent18

Combined these two laissez-faire principles reduced coordination costs to zero (no “web police” per se

to license, sanction, or seize your namespace), encouraged semantic diversity (modulo voluntary confor-

mance to common conventions) at the edges of the network, and fueled an explosion in the number and

diversity of web servers and web services. The lesson is clear — any architectural style for decentralized

services must maximize freedom at the edges of the network and minimize coordination costs.

Interpretation is the COAST-equivalent of laissez-faire web behavior: COAST service providers do as

they please whenever they please. Chaotic? Perhaps, but a more restrictive policy stifles growth and

innovation — the chaos of the web, though intimidating, did not hinder its utility. Think of each COAST

service as a nanoserver. In keeping with the lessons of the web, each nanoserver is free to interpret

incoming messages as it chooses. Besides, if the service is a visiting computation x then, as a practical

matter, there is little that an island can do to enforce a standardized interpretation of the messages that x

receives.19 That interpretation is also CURL-dependent as the metadata in the CURL may be intended to

parameterize the interpretation. Consequently, for CURLs u and v , both issued by computation x , the

same message m can be interpreted differently depending on whether it was transmitted to x via u or

v .20

However, the flip side of freedom of interpretation grants a COAST service provider absolute discretion

in confining visiting mobile code. How so? Because the execution of mobile code by a COAST provider is

a form of interpretation, as is analyzing the code, or meta-interpretation of the code in an alternate non-

standard domain. More mundane interpretations are also valid. Therefore, under the color of freedom

of interpretation a COAST provider may limit communications (for example in number, rate, bandwidth,

content, or correspondent), confine, in CURL-dependent ways, the execution sites it grants to mobile

code, inspect (and confine) both incoming and outgoing message traffic, log message contents for behav-

ioral analysis, conduct traffic analysis of the communications of visiting mobile code, log call traces to

18 All we ask is that the interpretation conforms to the specifications of the methods (GET, PUT, POST, . . .) [84] supported by u ;
however, even that weak requirement is frequently violated.

19 It helps to recall a fundamental rule of security: Do not mandate what you cannot enforce.
20 More generally, the CURL may carry, as mobile code, the implementation of the response of x to message m .

93

global bindings in the global binding environments of execution sites, confine in various ways the seman-

tics of global bindings, augment global bindings (for example, to include non-functional semantics such

as execution time or sizes of arguments), generate trust measures derived from mobile code behavior, or

incorporate trust measures when making communication or capability decisions.

4.5 What the COAST Style Leaves Unsaid

There are two concepts that that COAST leaves undefined: spheres of authority and grounds for con-

finement. The limits of a sphere of authority are not necessarily crisp and well-defined; they may be

contextual and change over time. Likewise the grounds for confinement, that is, the rationale for confine-

ment decisions, may be highly nuanced and precise, only roughly approximate, or something in-between.

4.5.1 Spheres of Authority

At a minimum a COAST-compliant implementation is distributed and, in its most general form de-

centralized — operating under multiple spheres of authority. A sphere of authority delineates the limits

within which any particular power may be exercised. A sphere of authority may be a civil entity, for ex-

ample a government, court, or legislature; a legal construction such as a limited liability corporation; a

commercial enterprise; a not-for-profit entity such as a charity; a social or religious organization such as

a soccer club or a church; a social network of any form; an individual; a family unit whether immediate or

extended; an interest group; or a temporary organization erected for a single event over a (comparatively)

brief span of time, to name but a few examples. An island, the COAST analogue of a server, is a network-

addressable computation administered by a sphere of authority. A single sphere of authority may control

more than one island.

Given an island I , its identity kp ,I is a cryptographic token (a public key) that can be verified by any

other island J interacting with I (as can kp ,J , the identity of J , to I). I implicitly assume the existence

of one or more mappings f : kp 7→ a where k is an island identity and a a sphere of authority. However,

these mappings may be incomplete or erroneous in some respect and two distinct mappings f and g

may disagree on the sphere of authority for island k I (that is, f (k I) 6= g (k I), reflecting a fundamental

uncertainty — an island identity k I may not be sufficient to determine with confidence its controlling

sphere of authority. Even if two mappings f and g disagree one is not necessarily right and the other

wrong as they may each map to different levels or aspects of the same sphere of authority, since spheres

94

of authority are often hierarchical and even distinct spheres may overlap in complex ways.21 The dis-

agreements and lacuna of these maps reflect the complexity of identity, the subtle distinctions among

the multiple roles that a single identity may play, and our deep contextual understanding of identity and

role in our personal, social, public, legal, economic, religious, and professional affairs.

To the extent that computation is an extension or expression of identity, computation exchange may

lead to an ecology of service where the exchange of computations is a mirror of the exchanges among

individuals, organizations, and enterprises. This view originated with mobile agents [25]. Many use

cases portray agents as active representatives of individuals; for example, an agent might book a flight

and a hotel room for a tourist or purchase theater tickets and reserve a dinner table at a restaurant.

However, agents preserve their identity as they migrate from one locale of execution to another while

COAST-based computations are anonymous apart from their proximate island of origin. Identity and the

meaning and significance of agency are troublesome issues well outside the scope of this thesis. Even

for a well-known and easily identified service such as the local dry cleaners on the corner, it can be

challenging to trace that identity back to a sphere of authority, for example the absentee owners of the

establishment. Offshore corporations, shell companies, holding companies, interlocking directorates,

and limited liability corporations are well-known legal constructions for obscuring a chain of corporate

authority. Yet many of us interact daily with multiple organizations whose sphere of authority is obscure

or even unknown to us.

From the complexities of agency and the contextual meaning of identity spring difficult questions

of trust and capability. These questions are neither addressed nor resolved here. My goal is far simpler;

namely,to explore mechanisms that when taken in isolation are comparatively simple and inexpensive

to implement but, when combined in various ways, offer significant and constructive protection against

erroneous or malicious mobile code. Reliable and accurate estimations of trust will figure in the safe

exchange and execution of mobile code but the technology of accumulating, expending, and accounting

for trust will come from other work.22

21 Think of questions of jurisdiction or precedence that frequently arise in courts.
22 Distributed consensus algorithms for cryptocurrencies (such as Bitcoin) may play an important role in trust management.

95

4.5.2 Grounds for Confinement

On what grounds can a COAST provider make confinement decisions? Watson, in Network Protocol

Design with Machiavellian Robustness [257], considers robust protocol design in the face of overtly ma-

licious actors, a common problem for public-facing, network-based services. There he argues that the

model of expectations in which identity plays a role is a far more effective defensive posture than sole

reliance on identity which presumes “known parties and their permissions,” an assumption that is even

less appropriate for COAST than it is for modern web services. Identity is a slippery notion in the modern

internet; it is ambiguous (it may be only loosely associated with one or more spheres of authority) and

agile (able to present itself anew at will).

Consequently specific identity may be far less important than the approximate sphere of authority.

Access control, in the sense of a yes or no grant of privilege, becomes far more nuanced — approximate

decisions replace good or bad decisions. Like a credit card company, a COAST service provider focuses

on reducing abuse by visiting mobile code to a tolerable level and minimizing its consequences.23 Given

this far more lax, but far more realistic goal, a COAST service provider is open to alternate sources of

information including, but not limited to: historical behavior, current network conditions, indications

of abuse reported by other COAST services, time of day, execution patterns over multiple spans of time,

patterns of abuse observed elsewhere, and anomalous behavior within the other islands operating under

the same sphere of authority.

Systematic exploration of grounds for confinement is also out of scope for my purposes here. However,

exploiting alternate sources of information, particularly events elsewhere within the network at multiple

scales (local, cloud, across multiple spheres of authority, and so on) is likely a fruitful area of research.

COAST is amenable to instrumentation at many levels and the event streams of COAST service providers or

post-analysis of island logs may supply valuable data for statistical measures of both safe and threatening

behavior.

4.6 Summary

The Services rule requires the exchange of closures, continuations, and binding environments for

the simple reason that these three well-known objects of functional programming reify the exchange of

23 Credit card providers tolerate a modest level of fraud and abuse as a cost of doing business, recognizing that it is impossible
to eliminate these losses altogether.

96

live computations: state plus code. Alternatives are possible, for example, objects as implemented in the

style of Emerald or Obliq (see section 2.4), but I leave that avenue to others.

There is a long history of functional programming research in binding environments and I draw

heavily on that work in formulating the binding semantics of Motile. The Execution rule demands late

binding, otherwise the full value of execution sites is lost and with it half of the adaptabilty of COAST-based

systems (the other half comes from the mobile code itself). In addition, as shown in Chapter 10, late

binding is instrumental in eliminating ambient authority, a crucial step in establishing that Motile/Island

is capability-safe.

The Messaging rule establishes the role of capability URLs in segregating communicaton from com-

putation and introduces communication by introduction; this too is necessary, but not sufficient, for

establishing capability-safety (see Chapter 10). The Messaging rule does not levy any requirements for

message ordering however, the FIFO order implemented by Motile/Island is both efficient and sufficient

for many purposes. Stronger ordering guarantees can be implemented by application-level protocols if

needed.

The Interpretation rule reflects a basic web sentiment; provided that a web server observes the rules

of HTTP 1.1 it can interpret an URL any way it damn well pleases. COAST adopts a like philosophy.

Finally, the rules interact with one another. For example, COAST offers two distinct views of service:

service as interpretation where a service provider interprets each service request in a provider-specific

manner to generate a response and service as execution site 〈E , B〉where clients construct client-specific

services by spawning a computation executing in the context of 〈E , B〉. The first category is a consequence

of the COAST Services and Interpretation rules; RESTful web services are a proper subset of this category.

The second view is a COAST contribution and arises from the confluence of the COAST Execution, Services,

and Interpretation rules. A single computation may offer both forms of service simultaneously where

the target CURL and/or message content dictates one rather than the other.

Both computation exchange and object-capability security appear in the COAST style rules. The Ser-

vices rule is a transparent recasting of computation exchange. The model of object-capability is reified in

COAST by three constructions: execution sites (the Execution rule), and messaging via capability URLs

(the Messaging rule). The former regulates functional capability and the latter two regulate communica-

97

tion capability. As the four evaluation studies illustrate (Chapters 8, 9, 10, and 11) manipulating functional

and communication capability independently can, in a regime of computation exchange, lead to a variety

of useful design patterns for both security and adaptation.

In the two chapters that follow, Chapters 5 and 6, I examine the COAST style in light of the details

of Motile, the mobile code language. Chapter 5 examines how a programming language can reflect an

architectural style, while Chapter 6 explains why weak mobility is a sensible choice for a language in

which decentralized security is an ongoing concern.

98

Chapter 5: Motile: Reflecting the Style

With an understanding of the obligations enjoined by the COAST style (Chapter 4) we come to where

the rubber meets the road: how are those obligations reflected in Motile/Island ? There are numer-

ous examples of programming languages whose semantics and features are influenced by one or more

architectural styles. I begin with a review of frameworks, domain-specific languages, and style-specific

languages (sections 5.1–5.3); all three offer insight into the intersection of architectural style and language

design.

In particular, those languages intended for mobile-code distributed systems each display a close

affinity between their communication model and the mobility of their objects. This holds true for Motile

as well, whose binding semantics for closures (section 5.5) is driven by the obligations of the COAST

Execution rule (section 4.2). Further, the Motile semantics for message transmission (section 5.6) di-

rectly reflect the communication model of COAST (section 3.2). However, the style affords considerable

generality, exemplified by the Motile implementation of decentralized promises (section 5.7).

COAST is silent on the details of how closures become computations. Motile follows models estab-

lished by earlier languages. Spawning, employed by Erlang1, is detailed in section 5.8 and an example,

demonstrating the interplay of spawning, messaging and promises, is given in section 5.9. Spawning is a

generalization of an earlier model, remote evaluation, that was invented by Stamos [226]. Remote evalua-

tion, which has security guarantees not shared by spawning, is also supported by Motile; it is detailed in

section 5.10.

5.1 Frameworks

Creating a style-specific language is, of course, not the only way that architectural styles have been

supported in the past. Implementations of architectural styles often take the form of frameworks, for

example, C2, an architectural style for GUI software, implemented as Java-based framework [240]; Rails,

1 Termite [104] and Mobit [192], two Scheme-based mobile code languages, also use Erlang as the model for spawning
computations.

99

a RESTful web application framework written in Ruby [206]; and GStreamer, a dataflow style framework

written in C for multimedia applications [119].

Frameworks have several distinguishing characteristics. First, they typically exhibit inversion of con-

trol where the flow of control is dictated by the framework and not by the application. In other words, the

framework embodies a style-specific control flow to which the application must adapt. Second, a frame-

work presents default behaviors that number among the distinguishing benefits of the style. This relieves

the developer of the burden of implementing those critical behaviors. Third, each framework is usually

extensible in some manner and those mechanisms are the means by which the style is adapted to the

specific domain and use cases of the subject system. Finally, each framework also presents immutable be-

haviors that are not subject to change, often reflected in core portions of the framework implementation

that cannot be safely or conveniently modified.

Frameworks may reduce implementation effort, speed deployment, and ease system evolution. Be-

cause a framework has many principal system design decisions already “baked in,” it reduces the de-

grees of freedom in system design and consequently lessens development risk. However, a framework

may interpret a style so narrowly that, in some cases, it becomes confining or obstructive. Finally, each

framework is expressed in a particular programming language whose semantics, structure, performance,

availability, or reliability may not be suitable for a specific system.

5.2 Domain-Specific Languages (DSLs)

Domain-specific languages (DSLs) are a common alternative to frameworks. While many DSLs are

clearly not style-specific—such as SQL for relational database queries, flex for lexers2, bison for parsers3,

or Mathematica for symbolic mathematics—others occupy a fuzzy middle ground between domain- and

style-specific. These languages offer lessons for designing style-specific languages. For example, Orc

[145] is a functional language used to express orchestrations and wide-area computations in a simple and

structured manner, reflecting a service architecture in which clients make requests to service providers,

an abstraction of REST or WS-*. Orc deals with concurrency, ordering, and failure using a small set of

powerful combinators—operators that abstract parallel and sequential execution, blocking, priority, and

timeouts. Many common idioms (such as fork/join and priority poll) are implemented in Orc as higher-

2 http://flex.sourceforge.net
3 https://www.gnu.org/software/bison

100

http://flex.sourceforge.net
https://www.gnu.org/software/bison

order functions. Orc illustrates that a rich and robust concurrency semantics requires only a few simple

but general primitives combined with higher-order functions.

galsC is a C dialect targeted to event-driven, resource-constrained embedded systems such as net-

works of sensors and actuators [38, 39]. galsC is distinguished by its Globally Asynchronous Locally Syn-

chronous (GALS) concurrency model in which actors communicate with one another at the application

level asynchronously by message passing but within any single actor components communicate syn-

chronously via method calls. Here we see an example of a computational model, actors, adapted to the

resource and timing requirements of a specialized domain. Orc and galsC are domain-specific (orches-

tration and embedded systems respectively) but each is also strongly influenced by an architectural style:

the former REST, and the latter, event-driven.

5.3 Architectural Style-Specific Languages

The REST architectural style is fertile ground for style-specific languages. Links is a programming

language for web applications that generates code for all three tiers of a web application from a single

source [46]. Intended for rich “Ajax-like” applications, Links generates code for both client- and server-

side. It also presents a unified programming model for dealing with the three-tier pattern of web business

applications, a client-facing tier, a middle business logic tier, and a database back-end tier. Flapjax is a

language designed for web mashups, browser-side applications that communicate with servers and have

rich, interactive interfaces [164].

The dataflow architectural style has influenced many domain-specific programming languages, chief

among them LabVIEW, a visual dataflow language for laboratory instrumentation, data acquisition, and

industrial automation [246]. Distributed dataflow offers several examples: Swift is a scripting language for

executing domain-specific applications repeatedly on large collections of file-based data [263]; however,

Swift is deliberately sparse and omits many of the constructs commonly found in other scripting lan-

guages such as Python or the Bourne shell. Skywriting, on the other hand, is a complete pure functional

scripting language for describing file-based distributed computations [175, 176].

Distributed systems, though a broad architectural style, are addressed by several noteworthy lan-

guages. Emerald is a landmark object-based, mobile code language designed to simplify the construction

of distributed systems [22, 137]. Erlang, first developed for telephone switches, is a functional language

101

modeled after Prolog for highly reliable, soft real-time, distributed systems [7]. Clojure is a LISP-inspired

functional language for distributed applications distinguished by its rich collection of persistent, func-

tional data structures and its commitment to dynamic systems [91].

The object-capability language E [167], intended for secure distributed systems is, in spirit, a near

neighbor of Motile. Deeply influenced by security concerns [168], E is domain-specific in the sense that

it is an embodiment of object-capability security but, as Miller, Tulloh and Shapiro observed, it was not

the first language of its kind:

Our object-capability model is essentially the untyped lambda calculus with applicative-order

local side effects and a restricted form of eval — the model Actors and Scheme are based on.

This correspondence of objects, lambda calculus, and capabilities was noticed several times by

1973 [109, 124, 174], and investigated explicitly in [199, 247].

The communication semantics of E are deeply intertwined with a model of distributed remote method in-

vocation based on promise pipelining [166], an optimization that reduces the latency of multiple, chained,

remote method invocations.

5.4 Lessons Learned

In each case, be it framework, DSL or architectural style-specific, the details of the style exert an

influence in many ways: naming conventions, flow of control, level of abstraction, specialized data objects

and communications, and generally relieve the developer of dealing with tedious, error-prone details. Of

note though is that frameworks, domain-specific languages, and style-specific languages are not mutually

exclusive. One example is the gen_server framework of the Erlang Open Telecom Platform [158]which

automates many of the painful details of deploying highly reliable and robust servers for enterprise-

critical systems. Another is galsC, which reflects both an architectural style, event-driven dataflow, and a

domain, resource-constrained embedded systems.

The object-capability security model for E lies at the core of the language however, one can argue

that Emerald, Erlang, and Clojure [90] are all object-capability languages, or at worst, very near misses.4

However, for each the communication model lies at the core of the language and the semantics of remote

4 Hinging on the degree to which each language restricts ambient authority.

102

communication often dominate the semantics of the objects of the language. This lesson holds true in

Motile where mobile code transmission dominates the binding semantics of the language.

5.5 Motile Binding Semantics

When a Motile closure is transmitted from one islet to another (both intra- and inter-island) it leaves

all of the bindings of its free variables behind and obtains new bindings from the binding environment of

the execution site in which it is called. Why these particular binding semantics for Motile mobile code?

The Motile semantics:

• Afford a plain and obvious reading when inspecting Motile source code. Other mobile code lan-

guages such as MAST [255], allow programmers to pick and choose which free variable bindings to

drag along, as do some formal models [17]. These alternative formulations are are more difficult to

explain or understand and their notation can complicate source code.

• Enforce functional capability. It is impossible for arriving mobile code to carry unwanted or danger-

ous functions through the security perimeter of a computation as a closure leaves all of its “global”

bindings behind as it transits from one execution site to another. Since all executions are grounded

in the contents of the binding environments of their respective execution sites their “functional

reach” is bounded. By restricting the contents of binding environments (an application of POLA),

hosts can minimize the risk or at least confine the damage of an erroneous or malicious mobile

closure.

• Improve security. Appropriate construction of the closures populating a binding environment

prevents proprietary or sensitive implementations from ever leaving the confines of the execution

site in which they appear. A COAST service provider can safely include specialized functions within

its execution sites without fear that the implementations will be transmitted outside of its sphere

of authority.

• Offer opportunities for per-binding customization such as logging, monitoring, debugging, and

restriction.

• Relieve the COAST implementation of the burden of requiring a single, uniform execution engine

throughout all decentralized services, thereby encouraging diversity of implementation and pro-

viding an avenue for evolution and innovation.

103

5.5.1 Alternative Binding Semantics

The binding semantics for Motile are but one of many possible alternatives. To better understand the

foundational issues of dynamic rebinding for mobile code Bierman et al. [17] present core dynamic

rebinding mechanisms as extensions to a typed, call-by-value lambda calculus and define λmarsh, a

statically-typed lambda calculus that supports the dynamic rebinding of marshaled values. They also

offer a three-axis taxonomy of dynamic binding in programming languages:

1. Resolve variables with respect to a dynamic environment versus static scoping with explicit rebind-

ing.

2. Unify all variables into a single class or cleave them in two, one class static, and the other dynamic.

3. Rebind explicitly per name or alternatively rebind all variables bound within a certain context (for

example, a labeled static scope or the contents of a module).

λmarsh employs static scoping with explicit rebinding, has only a single class of variables, and implements

rebinding with respect to named contexts. In contrast, Motile resolves free variables with respect to a

dynamic environment (the binding environment B of an execution site), has two classes of variables:

those that are lexically scoped and free variables (those variables not bound in lexical scope), and rebinds

all free variables implicitly.

To ease understanding of the semantics the dynamic rebinding of λmarsh occurs only when unmar-

shaling values and not during normal computation. Motile, on the other hand, delays until the last

possible instant; all free variables are resolved at execution time at point of reference relative to the binding

environment B of the execution site of the mobile code.

Bierman et al. point out that the receiver of λmarsh mobile code can securely encapsulate untrusted

code5 but the combination of Motile, CURLs, and binding environments can achieve identical effects

and with a higher degree of security and confidence (noting that λmarsh is a theoretical model intended

for distributed computation and not the security demands of decentralized computation).

In contrast to Motile, Obliq, a mobile, object-based language for distributed systems [30] that also

supported closure transfer, did not transfer the lexical scope bindings or the free variables of a closure,

rather all such references were remote. This preserved network transparency — the property that the

5 See [17] Section 3.6 and Figure 5.

104

behavior of a closure is independent of its network location. This reduces the burden on a developer as

there is no distinction (expect perhaps with respect to performance) between the behavior of a closure λ

that executes locally and the remote execution of a migrated copy of λ.

However, COAST, as a style, explicitly rejects network transparency as inappropriate, unrealistic, and

unenforceable in a loosely coupled, decentralized system. Even within the confines of a single island a

closure λmay have different behaviors when executed in the context of two distinct on-island execution

sites 〈E , B〉 and 〈E , B ′〉. In particular, spheres of authority may, for many reasons, legitimately distinguish

themselves, one from the other, by hosting execution sites that offer authority-specific variations in

binding environments. The rationales include: competitive and market pressures, variations in customer

demand, historical evolution of service requirements, experimental and trial offerings, alternative forms

of regulatory compliance, and backwards compatibility. In this light the mix of computation exchange

and object-capability security found in the COAST style aims for service variation rather than service

uniformity.

5.5.2 Motile is eval-Free

Unlike other languages such as Lisp, Lua, PHP, Python, Ruby, or even classic Scheme, Motile does

not contain an eval-like function. Consequently no Motile program (closure) can dynamically construct

an arbitrary Motile expression from source strings and then execute it. This restriction guarantees that

Motile/Island can authoritatively determine the complete set of global functions that a visiting closure

may reference.6 A sphere of authority may simply decline to execute visiting code that references func-

tions that may be easily abused (for example, functions for creating, writing, and reading scratch files)

or the authority may moniter the visitor’s execution more closely than it might otherwise. In particular,

even if a Motile closure f contains a reference to a suspicious function α it is always safe to execute the

closure if α/v /∈ B , the binding environment of its execution site, or if v is a harmless stub. It may also

be the case that the reference α appears in a closure g , contained within the body of f , where g will be

transmitted for execution elsewhere and is never dereferenced by f . For example, f may be a helper or

“carrier” closure that distributes helper and service computations across a set of islands.

6 For similar reasons, no execution site for visiting live computations has access to the Motile compiler.

105

5.5.3 Deconstruction of a Closure

To illustrate Motile binding semantics consider the function palindrome? shown in Figure 5.1:

1. The symbols s, left, and right (lines 1, 3, and 4 respectively) are each bound within lexical scope.

2. The expressions (let . . .), (or . . .), (and . . .) are special forms recognized by the Motile compiler

and in this context none of let, or, and are free symbols.

3. The symbols sub1 (lines 4 and 11), string-length (line 4), >= (line 6), char=? (line 8), string-ref

(lines 8 and 9), and add1 (line 10) are free, that is, not bound within lexical scope.

The free variables (sub1, string-length, >=, char=?, string-ref, and add1) are bound (defined) by

the binding environment B of the execution site. When a closure is transmitted to an execution site

the bindings of all of its free variables (that is, those not in lexical scope) are left behind and rebound

(redefined) under the binding environment of its destination execution site.

1(define (palindrome? s)
2(let loop
3((left 0)
4(right (sub1 (string-length s))))
5(or
6(>= left right)
7(and
8(char=? (string-ref s left)
9(string-ref s right))
10(loop (add1 left)
11(sub1 right))))))

Figure 5.1: A Motile predicate to test for palindromes. It returns #t (true) if its string argument s is a
palindrome and #f (false) otherwise.

5.6 Islets and Message Passing

Under Motile/Island an island, a locus of computations executing under the supervision of a sphere

of authority, is a single, network-accessible, uniform address space. Each island is identified by a globally

unique, island-specific public key [15] that allows any two communicating islands to verify the identity

of the other.7 Each Motile islet resides, over its entire lifespan, on the island on which it was created.

By default, an islet is incapable of transmitting or receiving messages. Communication capability

must be explicitly granted to an islet by bound variables within lexical scope, by bindings within the bind-

7 The current implementation uses a 32-byte public key and a 64-byte secret key.

106

ing environment of its execution site, or both. There are four distinct combinations of communication

capability for an islet. It may be: unable to transmit or receive, able to transmit only, able to receive only,

or able to both transmit and receive. An islet that does not hold any egress points t . cannot receive. An

islet that does not hold any CURLs cannot transmit. However, possession of an egress point or a CURL

alone is insufficient. The binding environment of the islet’s execution site must also contain the func-

tional capability to communicate: a function to transmit a message via a CURL, a function to extract a

message from a transport t via an egress point t ., or both.8,9

5.6.1 Motile: curl/send

The primitive function for message transmission is (curl/send u v) where u is a CURL and v a

Motile value. Recall (section 3.6) that a CURL u comprises:

• The public key identifier, kp , of an island J .

• A denotation of an ingress point, t • residing on island J 10

• Arbitrary metadata (included by J) to assist J in the routing and interpretation of the messages

transmitted via u

Each Island message transmission is a murmur, a Motile structure 〈kp , u , v 〉 containing:

• kp , a public key, the identifier of the transmitting island

• u , a CURL, the target of the transmission

• v , a Motile value, the payload of the murmur

This message structure follows from the COAST Interpretation rule (section 3.3) that grants each islet the

right to interpret a messageµ in the context of the CURL u employed by the sender. Implementations may

provide additional context to aid, expand, or constrict the interpretation.11 The identity of the transmitter,

captured in a murmur, may prove useful in formulating island safety and security policy. On the other

hand, it does not present a significant barrier to anonymity as islands can be created and discarded on a

8 The remainder of this section relies on the notation established in section 3.2.1.
9 Communication under Motile/Island is an example of rights amplification, where the possession of at least two distinct

capabilities, c1, c2, . . . , cn , confers an additional capability that cannot be obtained with any proper subset of c1, c2, . . . , cn .
10 The denotation is a island-specific Motile symbol that uniquely identifies a J -resident ingress point.
11 In other words, Interpretation sets a floor for the information that is available to a computation for the interpretation of a

message.

107

whim and nothing prevents an island X from acting as a anonymizing proxy on behalf of an island Y that

wants to communicate with, but shield its identity from, island I .

Weak identity is a feature of COAST and implicitly acknowledges that nontechnical mechanisms may

be required to regulate behavior among multiple spheres of authority; for example, X may have a contrac-

tual agreement with I that restricts X ’s proxying to a limited number of well-known, third-party spheres

of authority or that requires X to assume liability for the behavior of any island to which X grants proxy

service.

If the transmission is successful then the murmur 〈kp , u , v 〉will be delivered to the J -resident ingress

point t • denoted by CURL u . However, while the function curl/send guarantees reliable delivery of

〈kp , u , v 〉 to J (in the sense of TCP byte stream delivery) there is no commitment that J will accept the

mumur much less inject it into transport t . There are many possible reasons for rejection:

• J , in response to a security alert, rejects all murmurs originating from the sending island I .

• J interdicts the payload of the murmur. For example, it may contain CURLs for islands that are

known sources of malware or mobile code in the murmur payload may contain calls to global

functions12 that are forbidden to visiting mobile code.

• J has revoked the ingress point t •. In this case any murmur transmitted to J via any CURL u

denoting t •will be discarded.

• The circumstances of the delivery of the murmur (time or rate of arrival at J , processor load, avail-

able memory, or J -specific domain state, to name just a few) contravenes the contract enforced by

CURL u .

• The murmur violates the semantics of the underlying J -resident transport t . For example, t may

be a bounded queue that discards overflows or, in the event of high processing loads, t accepts

high priority murmurs but refuses low priority murmurs.

• The murmur is accepted by transport t but on extraction from t , via an egress point t ., fails to pass

the gates of t .when extracted from t and is consequently discarded.

Message transmission is always nonblocking and curl/send returns immediately.13 Nonblocking trans-

mission addresses several characteristics fundamental to COAST messaging. Let J be the transmitting

12 That is, those functions that are resolved by lookup in the binding environment of an execution site.
13 Each islet is animated by its own green thread. Message transmission is delegated to a dedicated and trusted island green

thread that is separate and distinct from the green thread animating any islet calling curl/send.

108

island, I the target island, u the CURL used by J to contact I , and µ the murmur transmitted from J to I .

First, message delivery is subject to arbitrary delay. The transit of a murmur µ to I may be delayed, for

any one of several reasons: backlog in the transmission queue of J , congestion in the network connection

between I and J , or delay in the transit of the murmur through an ingress point of J onto a J -resident

transport. I may be offline, halted or crashed, or in transit from one network access point to another (I

is executing on a mobile device that is between Wi-Fi hot spots). Second, delivery alone is insufficient.

Successful delivery of murmur µ to the J -resident transport t does not guarantee that that µ will pass

the gates of an egress point t .. Even if murmur µ passes the I -resident gauntlet of ingress t •, transport

t , and egress t . there is no guarantee that the I -resident receiving computation will honor the request

encoded in the payload of µ.

There is a fundamental constraint that precludes an error response at this level — communication by

introduction forbids target island I from responding to J absent a CURL for J . In general, an island I is

under no obligation to report any information of any sort to J much less provide a useful error response.

In particular, security policy may prevent I from reporting success or failure to its correspondents or give

any indication of the disposition of the transmission from J , including a rationale for rejecting the trans-

mission. Silence can thwart or frustrate attackers who maliciously probe the computational resources,

functional capability, and fixed assets of I [257]. Furthermore, island J may not want target island I

to reach back. Why? To preserve anonymity, husband limited resources such as network bandwidth

or power14, minimize traffic to fly under the radar of pervasive state-sponsored or corporate network

snooping, or defend against probing15 or attacks by I . Finally, communication responses may be highly

domain- and application-specific. In a world dominated by computation exchange effective responses

are likely higher-order constructions erected atop simpler and narrower primitives.

5.6.2 Motile: receive

To receive a message an islet must hold an egress point t .; in other words, an egress point conveys

the capability to receive. Three primitive functions are available for message reception: (receive e),

(receive/try e), and (receive/wait e δ) where e is an egress point t . from which a message is ex-

pected:

14 For example, J may be a battery-powered, embedded sensor that periodically “phones home.”
15 The COAST equivalent of UDP or TCP port knocking.

109

• (receive e) implements blocking receive and the calling islet blocks until a murmur arrives. The

return value is a murmur µ.

• (receive/try e) is nonblocking and returns immediately with either a mumur µ or the value #f.

The latter indicates that no murmur is available from transport t .

• (receive/wait e δ) blocks at most δ fractional seconds (given as a real number) for a mumur µ

to arrive. It either returns µ prior to the expiration of the time period or #f if no murmur arrives

within the time period. (receive/wait e 0.0) is equivalent to (receive/try e).

The Island communication primitives guarantee that for any receiving island I all transmissions from

any other island J are delivered to I in transmission order and the bankers queue implementing the

default transport preserves that order. However, in general a transport is not required to preserve delivery

order; for example, a transport t that implements a priority queue may release a high priority murmur

µj through an egress point t . before releasing a lower priority murmur µi even though µi arrived prior

to µj . Finally, a single egress point t .may be shared among multiple co-resident islets, for example, to

implement an n-way fanout.

5.7 Decentralized Promises

To bridge the gap between functional programming and asynchronous messaging Motile implements

promises, a proxy object p for a murmur that, at the outset, is undefined because the computation of its

value is incomplete. Unlike other languages, Motile promises are fully decentralized, that is, a promise

held by one authority may be resolved by another authority elsewhere in the network. In addition, the

mechanisms: transports, ingress points, egress points, and CURLs, are identical for both the intra- and

inter-island resolution of promises.

A computation waiting on a promise p anticipates that eventually a mumur µ (from some computa-

tion somewhere) will appear as the resolution of the promise. A promise p comprises two distinct and

separable capabilities: rp , a resolver, and sp , a settlement. The resolver rp grants a computation the power

to resolve p , that is, to supply a murmur µ as the resolution for the promise. The settlement sp grants a

computation the power to read the settlement (resolution) of the promise. These two capabilities, rp and

sp , are separable, that is, each can be given to separate computations and, in the most general case, each

can be given to multiple computations.

110

A simple promise p can be composed from the communication elements presented in Section 3.3.3.

Let 〈t •, t , t .〉 be given where transport t is an instance of a a first-in, first-out queue, t • the sole ingress

point for t , t . the sole egress point for t , and

t • −→ t −→ t .

is the only possible transmission trajectory.16 Any CURL u referencing ingress point t • of transport t ,

denotedC (t •), is a resolver rp for p , while egress point t . is the settlement sp of p . Computation x grants

CURL u to any computation y that it selects to resolve the promise and then waits for the the resolution

of the promise — the first message transmitted by y via u , to be emitted by settlement t ..

The separability of rp and sp is critical. The computation capable of resolving p will likely not be

the computation x that created the promise (otherwise x could have computed the resolution itself and

not bothered with the promise in the first place). A computation y capable of resolving the promise

may or may not be co-resident with the computation x that created the promise and, in either case,

object-capability security dictates how y can acquire rp :

• The closure with which y is spawned contains rp among its lexical scope bindings

• Functions in the binding environment of the execution site of y may return CURL rp as a value

when called or the value of a binding may contain rp

• rp may be embedded in the payload of a murmur that y receives

It must be possible to transmit rp to y via messaging as this is the only means by which two COAST

computations on distinct islands communicate. The settlement sp may be closely held by x and in

the case of a one out of n settlement, such as blind competitive bidding or first to complete, it may be

unnecessary, inappropriate, or illegal for a resolving computation to learn the resolutions proffered by

competing computations for promise p . Finally, if sp is closely held by x then x guarantees that it is the

only computation capable of providing the resolution of p to others — an essential security property that

is impossible to enforce unless rp and sp are separable.

These arguments are analogues of those given for separating read/write/update capabilities in other

domains and appear at many levels in modern systems. Likewise, the communications model for COAST

16 See Section 3.2.3.

111

〈t •, t , t .〉, eschews bidirectional communication where read and write privileges are inseparably bound

to a single structure. Communication by introduction is impossible without separating reception (read)

from transmission (write); otherwise an introduction would always grant bidirectional communication

— violating POLA in many circumstances. With separation computation y can transmit to computation

x only because x (or a proxy for x) granted y that capability while, using ingress points, gates and CURLs,

x can unilaterally enforce communication contracts on all parties to which x extends this grant. The

separation of powers is emblematic of the “self-determination” of computations in a decentralized world.

As a matter of security, safety, and resilience every computation must be capable of dictating its terms

of interaction. By accepting a grant of write (transmission) capability from x computation y does not

immediately place itself at risk since accepting the grant never dictates that y must reciprocate.17 Finally,

x can preemptively revoke a transmission capability (a CURL u) it granted earlier by revoking the ingress

point that u references—allowing x to isolate itself from computations that are abusing its grant.

5.7.1 Promises: The Details

The actual implementation of promises differs in detail from the introductory account above. Those

details follow.

In the Motile/Island implementation of promises tp is a specialized “promise” transport that accepts

at most one message m (a murmur) and allows that message m to be read repeatedly, tp• is an ingress

point with a single-use gate for tp , and tp. is an egress point with a whitelist gate for tp . The triple

〈tp•, tp , tp.〉 presents the transmission trajectory

tp• −→ tp −→ tp.

for any message m that resolves the promise. Any CURL u p = C (tp•) referencing ingress point tp• of

transport tp is a resolver rp for promise p and egress point tp. is the settlement sp of p . By default, the

whitelist gate of tp. is restricted to the computation x that created p .18 CURL u p is given by x to those

computations yi capable of computing a resolution to the promise. Since u p is a single-use CURL (a

consequence of the single-use gate attached to tp•) at most one of the computations yi will resolve p .

17 The higher-level protocol in which x and y are participating may demand reciprocity but that is a matter of application-
specific protocol (hence policy) and is not required by the underlying mechanism.

18 A whitelist (or blacklist) attached to an ingress or egress point is an access control policy that restricts which islets may
exercise the capability granted by the ingress (egress) point.

112

The resolution of p is either a murmur if some computation yi resolves the promise and #f otherwise.

Since x is the only computation that can read (receive) from tp. it alone can proxy the resolution of the

promise to any other computation z .19

An ingress point t •may be pinned (restricted) to accept: only intra-island messages, only inter-island

messages, or both intra- and inter-island messages (the default). Any CURL u referencing an ingress point

t •intra pinned for intra-island messaging cannot be used off-island; only islets residing on the same island

I as the ingress point may transmit messages via u to t •intra. Similarly, a CURL u referencing an ingress

point t •inter pinned for inter-island messaging cannot be used on-island; only islets residing on a remote

island J may transmit messages via u to t •inter.

By default, the settlement of a promise is open to both intra- and inter-island messaging and the

resolver is a single-use CURL r . A single-use CURL may be used as the target for a message transmission

only once; thereafter any mumur transmitted via r will be immediately discarded by the receiving host.20

CURL r may be given (via messaging) to multiple islets (both on- and off-island) capable of resolving the

promise but only one message transmission via u p will resolve the promise; any others will be silently

rejected. By default, the sole egress point tp. is gated with a whitelist whose only member is the islet

that created the promise. The whitelist of the egress point tp. guarantees that only the islet that created

the promise can read the murmur (if any) representing the resolution of the promise. Normally, reading

a murmur from a transport via an egress point removes the murmur from the transport; however, for

convenience, reading a “promise” transport leaves the murmur in place to be reread if need be.21

5.8 Spawning

Spawning is the creation of a fresh islet executing a closure on an island. A minimal set of trusted

islets are spawned ab initio at island creation. The primitive function (spawn B f) takes two arguments,

a binding environment B and a thunk (a zero-argument closure) f , and returns a fresh islet executing

Motile function f in the context of execution site 〈E, B〉 where E is the default execution engine of the

19 Once x passes the resolution µ of the promise to an untrusted computation z , either on- or off-island, it loses control as
nothing prevents z from sharing µ (or its payload) with whomever it pleases.

20 Only the first response (out of n ≥ 0) will be accepted; all others will be rejected by the ingress point tp•.
21 In the more general case, where the promise settlement is whitelisted to multiple n > 1 islets this feature allows all n islets

to receive/wait on the settlement simultaneously and to read the settlement without any inter-islet coordination. It is an
elegant example of the flexibility and power of the COAST communication model.

113

birth island.22

Remote (inter-island) spawning is implemented via spawn and inter-island message-passing. Spawn-

ing is a potent capability; safety and security dictate strict regulation by any island offering the service.

Multiple ingress points referenced by multiple CURLs is a powerful and versatile design pattern for service

flexibility, safety, and security. Let t be a given transport with ingress points t •1, . . . , t •m . Each ingress

point can support a t •i -specific collection of gates that reflect a distinct access and security policy. For

example, one ingress point t •i has a whitelist gate that restricts its use to a small set of trusted islands and

another ingress point t •j is accessible to co-resident islets only and has a rate gate that severely restricts

how frequently it will accept requests. Each ingress point t •i can be referenced by zero or more CURLs

u i ,1, . . . , u i ,n where the metadata of any CURL u i ,j reflects additional constraints or service-specific pa-

rameters. Multiple ingress points t •i , each enforcing its own gate contract, allow an island to offer highly

differentiated services where each service variation is specific to a CURL/ingress pair u i ,j /t •i .

Islands can create ingress points (and distribute CURLS that reference them) whenever needed to

address fluctuations in demand or usage or shifts in policy. Islands may define domain- and island-

specific gates for ingress points that reflect their relevant points of service inflection. Further, as an

ingress point t • can be revoked at any time, any CURLs referencing t • are also subject to immediate

revocation, whereby an island can quickly defend against abuse, erroneous use, or accidental misuse of

its CURLs. In other words, highly differentiated services not only increase service variety and specificity

but also contribute to service resilience since an island can modify or terminate access to a single member

of a service family while leaving its other members undisturbed.

Figure 5.2 is a conceptual sketch of an island’s implementation of spawning using the design pattern

of CURL/ingress pairs. Under Island a single trusted islet, the hatchery (the only islet that holds the

sole egress point for the transport t that enqueues spawn requests), responds to spawn requests that

either arise on-island or that arrive from remote islands elsewhere in the network. The hatchery awaits

incoming murmurs of the form

〈kp , s i ,("SPAWN" f)〉

where kp is the public key of the transmitting island (that is, the island requesting a spawn), s i is one of

22 The general form of spawn is (spawn E B f a 1 · · · a n) where E is an execution engine, B a binding environment, f an
n-argument closure, and a 1, . . . , a n the calling arguments of f . As of this writing the only execution engine implemented is a
threaded Scheme interpreter.

114

the four CURLs s1, . . . , s4, and the payload, ("SPAWN" f), is a request to spawn an islet executing closure

f . Four islands, U , V , W and X , each hold a CURL that conveys the capability to spawn computations on

island J . Islands U and V both hold a copy of CURL s1 which references ingress point t •2. Island W holds

CURL s2 which references ingress point t •3 while island V holds CURL s3 which references ingress point

t •4. Finally, island J ingress point t •1 is for on-island use only and consequently, CURL s4 referencing

t •1 is restricted to islets residing on J .23

s2

J

s3

transport

ingress point

egress point

CURL

islet

island

W

X

hatcherys4

s1
U

s1
V

1
2

3 4

Figure 5.2: The design pattern of multiple CURL/ingress pairs implements variants of island J ’s spawn-
ing service.

In fact, the Island peering infrastructure is itself structured as COAST-based system, that is, the in-

ternals of an island are a COAST system in miniature comprising a set of collaborative “nanoservers”

that interact solely by exchanging messages containing values, closures, continuations, and binding en-

vironments (Services), and where each nanoserver executes within a confined binding environment

(Execution). The nanoservers intercommunicate via CURLs (Messaging) and for each nanoserver mes-

sage interpretation is both CURL- and nanoserver-dependent (Interpretation). In this manner, Island is

a rare example of a “recursive” style in which the style itself (COAST) is used to implement an instantiation

of the style.

Figure 5.3 is the implementation curl/spawn, the client-side of islet spawning. Argument u @ is a

23 CURL s4 can never be shipped off-island. Any attempt will be detected as the murmur payload is prepared for transit and
aborted prior to transmission.

115

1(define (curl/spawn u@ f)
2(curl/send u@ (list "SPAWN" f)))

Figure 5.3: The client implementation of spawning.

CURL denoting denoting a transmission trajectory (either on- or off-island) for a spawning service and

f is the Motile closure to be spawned (line 1). The body of curl/spawn (line 2) is trivial — the request

("SPAWN" f) is delivered to the target service as murmur 〈kp , u @,("SPAWN" f)〉 where kp is the public

key of the transmitting island.

Each CURL/ingress pair s i /t •j describes and designates, by way of ingress gates and CURL-specific

metadata, a distinct variant of the generic spawning service. Here each ingress point enforces access

policy for the spawning service while the CURL metadata details resource allocation bounds (such as

memory, lifespan, and file storage) for an islet, the characteristics of the execution site 〈E , B〉 of an islet

including the contents of binding environment B , and any other island-specific parameters relevant

to islet construction and deployment. The pair s1/t •2 is the capability for a restricted form of remote

spawning with sharp limits on memory, processor cycles, frequency of use, and functional capability24

and is intended for use by islands that have no prior history with J . Islands W and X are paying customers

of J but have purchased different levels of service. The pair s2/t •3 ensures that the islets spawned by W

are allocated fewer processor cycles and less memory than the islets spawned by X under the capability

granted by pair s3/t •4. In addition, only island W can exercise the capability of s2/t •3 as t •3 contains a

whitelist gate that restricts access to W alone. On the other hand, island X is one of a small set of islands

that banded together to negotiate a bulk discount on spawning services hosted by J .25 Consequently,

the ingress point of pair s3/t •4 contains, in addition to other gates, a whitelist enumerating the member

islands eligible for a discount.

Service variation within the confines of a single service follows from the COAST style rules. The

COAST Messaging rule (section 3.3) separates computation from communication. Islands encapsulate

computations and an island has no obligation (within the style) to reveal the topology of its internal

communications, the constitution of its islets within its borders, or their numbers. To the extent that

communications are differentiated by CURLs and ingress points the services they denote can be charac-

24 The latter by sculpting the contents of the binding environment B of the execution site 〈E , B〉 in which the spawned islets
will execute.

25 Or more precisely, the spheres of authority governing the members of that set of islands.

116

terized, one from the other, along a broad spectrum of policy, functionality, and performance. The COAST

Interpretation rule (section 3.3) allows the evaluation of each murmur µ to vary with both the CURL u

that effected the delivery of µ and the islet to which µwas routed. The construction of murmurs

〈kp , u , v 〉

and the trajectory of communication ensures that the receiving islet can base service decisions on point of

origin (kp), the ingress point of the trajectory (denoted within CURL u), the egress point of the trajectory

(known to the receiving islet), the metadata of CURL u , and the content v of the payload.

Access and security policy for spawning arises from the CURL/ingress pairs, u /t • (that grant the

capability to communicate with the hatchery) and the hatchery’s interpretation of those pairs u /t •. While

an island can have a custom hatchery implementation, one can write a generic hatchery that knows

nothing of the details of the pairs u /t • or the policy which each pair represents. A generic hatchery is

parameterized by two binding environments, E andB : the first a binding environment of execution

engines E = α1 : E1, . . . ,αm : Em and the second a binding environment of binding environmentsB =

β1 : B1, . . . ,βn : Bn . The engines E1, . . . , Em and binding environments B1, . . . , Bn constitute the engines

and binding environments that may appear in the execution sites of spawned islets. Each αi (βj) is an

island-specific name for the respective E i (B j).26

Each CURL u of a pair u /t • can contain arbitrary metadata (included in u by the island J that created

u) and in particular, a u -specific Motile closure spawnu with five arguments:

• kp , an island public key

• u , a CURL

• f , a thunk

• E , a binding environment of execution engines

• B , a binding environment of binding environments

In essence spawnu is a u -specific wrapper around the primitive function (spawn E B f). The call

(spawnu kp u f E B)

26 For example, in Motile BASELINE is the binding environment that comprises a large number of well-known, side-effect
free, R7RS Scheme functions.

117

is itself executed within the confines of a restricted execution site 〈Es , Bs 〉 tailored by J to meet the func-

tional and resource demands of the family of spawnu functions generated by J .27 Argument kp identifies

the client island, u is the CURL by which the client island transmitted the spawn request, and f is the

thunk to be executed by the spawned islet. Each variant, spawnu , validates the spawn request, selects

(and, if need be, customizes with respect to a u -specific security and safety policy) an execution engine

αi : E i from E , a binding environment βj : B j fromB , and, if appropriate, finally calls (spawn E i B j f)

to create a new islet executing closure f in the context of execution site 〈E i , B j 〉. By construction spawnu

has all the information it needs to validate, parameterize, and execute a spawn request.

The generic implementation of spawning is an example of fire and forget, a model of stateless service

in which the functions implementing the service are delegated to CURLs as mobile code. In other words,

an island J constructs a CURL u whose metadata implements a service variant and then “forgets” the

implementation. This is another form of highly differentiated services in which an island can craft on-

demand a service variant deliver the implementation of that variant as mobile code embedded in a CURL

u and, when presented with a service request transmitted via u , resurrect the custom service in its entirety

for the sake of its client.

Here a trade is being made: larger, more complex CURLs that require more bandwidth to transmit

and processor cycles to digest in favor of a higher degree of service variance and customization, less

server-side state, and perhaps, less server-side complexity. Finally, fire and forget is safe; since all CURLs

u are cryotographically signed by the issuing island it is impossible for any other island to forge or modify

u and its metadata without the issuing island detecting that u is illegitimate. One possible security risk is

that the CURL-embedded service functions may expose sensitive details of the service implementation.

If this is a concern then the relevant Motile mobile code, service-related metadata, and parameters can

be encrypted using a CURL- or service family-specific secret key. While this burdens the serving island

with additional state the memory requirements for storing even a large number of secret keys may be less

than retaining the implementations of an equivalent number of service variants.

27 For example, binding environment Bs must contain a binding (name/value pair) spawn/λwhere λ is the closure that is the
implementation of spawn.

118

1(let*
2((reply (promise/new)) ; Create a promise.
3(reply/resolver (promise/resolver reply))) ; The CURL of the promise.
4
5;; Return #t if string s is a palindrome and #f otherwise.
6(define (palindrome? s)
7(let loop
8((left 0)
9(right (sub1 (string-length s))))
10(or
11(>= left right)
12(and
13(char=? (string-ref s left)
14(string-ref s right))
15(loop (add1 left)
16(sub1 right))))))
17
18;; Transmits a list of palindromes , computed at the
19;; dictionary service , back to the client via the resolver
20;; of the promise.
21(define (palindromes)
22(curl/send reply/resolver (words/filter palindrome ?)))
23
24;; Send the palindromes thunk to the dictionary service for execution.
25(curl/spawn J@ palindromes)
26;; Block until the promise is resolved , returning the list of palindromes.
27(promise/block reply))

Figure 5.4: Spawning an islet to remotely compute palindromes at a dictionary service. The definition
of palindrome?, lines 6–16, is taken from Figure 5.1.

5.9 Example: A Client Computation for Palindromes

With messaging, promises, and spawns in hand we can construct a client-defined service. Figure 5.4

illustrates how a COAST client constructs a client-defined service from the primitive functions curl/send,

promise/new, and curl/spawn, and the functions in the binding environment of a provider-defined

execution site.

The service provider, island J , implements a dictionary service (execution site) and the binding en-

vironment of that service provides a higher-order function (words/filter p) that applies predicate p

to each word in J ’s dictionary and returns a list of all words α such that (p α) is #t. Regrettably, service

provider J neglected to include a palindrome filter in its collection of dictionary functions and client

island I has constructed a Motile closure palindromes28 for execution by J that computes a set of palin-

28 Specifically, a thunk—a zero-argument closure.

119

dromes and transmits them back to I to remedy the oversight.

First, palindromes (lines 17–18) must contain a CURL u I , the target for the transmission of the result

back to I . For this I allocates a promise reply (line 2) and extracts the resolver of the promise as binding

reply/resolver (line 3). Next I defines a predicate, (palindrome? s) (lines 6–16), that returns #t if

string s is a palindrome and #f otherwise. It steps two indexes, left and right (lines 8–9), starting

from the first and last characters of the string respectively, to the opposite end of string; comparing the

characters at the two positions at each step. If the indexes ever meet or cross then s is a palindrome and

#t is returned. If the characters fail to match at any step then s is not a palindrome and #f is returned.29

Note that the implementation of palindrome? (lines 6–16) depends entirely on well-known primitive

functions of R7RS Scheme. Those primitives are defined in the BASELINE binding environment of Motile,

a starting point for the binding environments of many execution sites.

The last constructive step, the thunk itself, is defined in lines 21–22. Variables reply/resolver and

palindrome? (line 22) are bound within the lexical scope of thunk palindromes and when transmitted

from island I to island J for execution it will carry those bindings along with it to J . The thunk itself is

trivial. It executes a higher-order, domain-specific filter (words/filter) implemented by J and transmits

the result (curl/send) back to I via the promise resolver (reply/resolver) generated by I (line 22).

Finally, island I spawns (curl/spawn) an execution of thunk palindromes on island J (line 25). Vari-

able J@ (line 25) is bound to a CURL generated by J for J ’s dictionary service (execution site).30 The client

islet on island I executing lines 1–27 blocks (promise/block at line 27) waiting for the promise (reply at

line 2) to be resolved by the spawn dispatched to island J .

5.10 Remote Evaluation

Spawning (section 5.8) generalizes, but does not replace, remote evaluation. Remote evaluation is a

useful restriction and a peer may be inclined to accept a remote evaluation over a spawn — a remote eval-

uation is a one-shot, finite computation while a spawn may (legitimately) execute indefinitely. I briefly

describe the Motile-level primitives for remote evaluation and recast the example of Figure 5.4 using

these primitives. These primitives automate, to various degrees, work done by the client in Figure 5.4

29 The definition of the predicate function palindrome? is taken from Figure 5.1, in section 5.5.3 where it is used to illustrate
the difference between variables bound in lexical scope versus free variables.

30 For the sake of brevity and ease of presentation I omit the details of how island I came to possess that CURL. For now,
assume that J@ is bound in some outer lexical scope enclosing lines 1–27.

120

1(let*
2((reply (promise/new))
3(reply/resolver (promise/resolver reply)))
4
5(curl/remote*
6J@ ; u@
7(lambda () (words/filter palindrome ?)) ; f
8reply/resolver) ; r@
9
10(promise/block reply))

Figure 5.5: Using curl/remote* to compute palindromes at a dictionary service. Assume that
palindrome? is defined in an outer lexical scope (see Figure 5.1, section 5.5.3).

where the client: constructs a promise (lines 2–3), transmits the resolver for that promise to the service

provider (lines 17–18 and 20), and, at some point waits for the resolution of the promise or alternatively,

repeatedly polls until the promise is resolved (line 21).

There are three related Motile primitives for remote evaluation: curl/remote*, curl/remote, and

curl/remote/block.

5.10.1 curl/remote*

When called by island I (curl/remote* u @ f r @) transmits thunk f and CURL r @ to island J via

CURL u @ for evaluation. Island J will execute f and transmit its return value via CURL r @. There is

no requirement that r @ be a CURL for I nor that r @ be the resolver (CURL) of a promise.31 Island J can

provide any CURL r @ it finds appropriate, including a CURL for an island K 6= J or one that is not single-

use (for example, J may dispatch an identical remote evaluation to multiple islands — all with CURL r @,

accept an odd number n > 1 of return values, and use majority voting to select a result. curl/remote*

always returns immediately. Figure 5.5 illustrates how a client implements the palindrome service of

Figure 5.4 using curl/remote*.

5.10.2 curl/remote

(curl/remote u @ f) relieves the caller of the burden of generating a promise and returns a fresh

promise p as its value. Again, as before, @u is the CURL for the service provider, the island J that will

31 Though J can easily determine if r @ is (or is not) a CURL for I it cannot determine if r @ is a resolver. As a matter of security
policy island J may refuse remote evaluations for which CURL r @ is not a CURL for the island I that transmitted the remote
evaluation to J .

121

1;; Block on the promise returned by curl/remote.
2;; The resolution of that promise will be a list of palindromes.
3(promise/block
4(curl/remote
5J@ ; u@
6(lambda () (words/filter palindrome ?)))) ; f

Figure 5.6: Using curl/remote to compute palindromes at a dictionary service. Assume that
palindrome? is defined in an outer lexical scope (see Figure 5.1, section 5.5.3).

1;; curl/remote/block generates a promise and blocks until it is resolved.
2;; Here the resolution will be a list of palindromes.
3(curl/remote/block
4J@ ; u@
5(lambda () (words/filter palindrome ?)))) ; f

Figure 5.7: Using curl/remote/block to compute palindromes at a dictionary service. Assume that
palindrome? is defined in an outer lexical scope (see Figure 5.1, section 5.5.3).

execute thunk f on behalf of island I . The reimplementation of Figure 5.4 using curl/remote is given in

Figure 5.6.

5.10.3 curl/remote/block

Finally (curl/remote/block u @ f) blocks until the return value x of f is received. It returns x as the

value of the call. The reimplementation of Figure 5.4 using curl/remote is given in Figure 5.7.

5.10.4 Implementation

Remote evaluation is implemented by Island as a spawn where the islet executes with tight resource

limits32 and in an execution site 〈E , B〉where all capability for intra- and inter-island communication has

been stripped from the binding environment B .33 Even if the closure for the remote evaluation carries

one or more CURLs among its lexical scope bindings it cannot exploit those CURLs in any effective way.

Transmitting the return value of the evaluation via the CURL accompanying the thunk of the remote

evaluation is the responsibility of the island consequently, it is impossible for a remote evaluation to

abuse communication capability and, barring an “evil island,” there is no question of the integrity of the

return value of the remote evaluation. As remote evaluations can neither send nor receive messages they

32 Those resource limits, such as memory, processor cycles, total lifespan and file space, are dictated by island policy and
vary from island to island and request to request.

33 In almost all cases the functions for generating CURLs are also expunged.

122

are more likely to be narrowly defined with a single purpose, hence may be easier to further confine, track,

and audit.

A remote evaluation, with its smaller attack surface, presents less risk to both provider and consumer

than a spawn. Since a remote evaluation ρ arriving from another island neither holds egress points nor

receives them from other co-resident computations it is also impossible to generate an effective CURL

that allows any computation, either on- or off-island, to communicate with ρ.

Alternatively, let λ be a thunk on island J that contains ingress points, egress points, or CURLs in its

lexical scope bindings. For all remote evaluations whether they originate on- or off-island the binding

environment of the remote evaluation is stripped of any function that can: create a CURL given an access

point, read a murmur from an egress point, or transmit a message via a CURL.

If λ is the thunk for a “remote” evaluation ρ on J that is initiated by a computation x residing on J

then, even if ρ could somehow generate a CURL u t • for an ingress point t • bound in the lexical scope

of λ, then u t • might appear as the return value of the remote evaluation ρ but ρ itself is incapable of

exploiting u t • in any way.

In particular, if λ contains both t • and t . for a transport t it cannot smuggle out a CURL u t • that

would allow any computation anywhere to transmit a message to ρ. Without access to the primitive

receive ρ cannot read a murmur from any egress point t . that may be present in the lexical bindings of

λ; even if a computation could somehow transmit a murmur via transport t , ρ has no means by which

to read it. In other words, ρ is held incommunicado, and the transmission of its return value is at the

discretion of the hosting island J , not ρ.

Finally, both curl/remote and curl/remote/block are easily implemented with curl/remote*. Fig-

ure 5.8 illustrates their implementations.

5.11 Summary

Like other languages intended for mobile-code distributed systems, communication and mobility

are intertwined. However, under COAST, the influence extends further— communication, mobility, and

security are braided together and each of the four COAST rules has an important role.

The influence of COAST is played out in the palindrome examples of Figures 5.4–5.7 which illustrate

123

1(define (curl/remote u@ f)
2(let* ((p (promise/new))
3(r@ (promise/resolver p)))
4(curl/remote* u@ f r@)
5p))

1(define (curl/remote/block u@ f)
2(let* ((p (promise/new))
3(r@ (promise/resolver p)))
4(curl/remote* u@ f r@)
5(promise/block p)

Figure 5.8: Implementations of curl/remote and curl/remote/block using curl/remote*.

the roles of each of the four COAST rules (section 3.3): Services, Execution, Messaging, and Interpre-

tation and their realization in Motile/Island. Under Island, spawning, a basic interaction for systems

founded on computation exchange, is itself a COAST service. The hatchery (Figure 5.2) is a trusted compu-

tation that is a recipient of values and closures (hence a COAST Service). It executes within the confines

of a tailored execution site (COAST Execution), whose communication privileges are constrained (con-

forming to COAST Messaging). The hatchery’s interpretation of the messages it receives are both CURL-

and hatchery-dependent (COAST Interpretation).

The style is silent on the execution semantics of computations, leaving that to the specifics of the

computation’s execution site 〈E , B〉. Motile/Island defines two distinct “flavors” of computations: remote

evaluations and spawns. The distinctions between the two have significant security consequences. Live

computations under COAST span the spectrum from one-shot computations to long-lived client-defined

services and the Motile abstractions match that span.

The palindromes thunk (see Figure 5.4, lines 16–22) that island I dispatches to the dictionary service

of island J is a one-shot computation; it executes once and transmits a single result via a CURL bound in

lexical scope (see Figure 5.4, lines 3 and 22); an application of Motile binding semantics. Decentralized

promises (section 5.7) are a convenient abstraction for the result of a remote evaluation (by definition

a one-shot computation). Importantly, promises are constructed entirely from COAST, using nothing

but a CURL and the piece parts of the underlying communication model: an ingress point, transport,

and egress point. Promises also play an important role in orchestration and coordination, as shown in

the live update protocols of Chapter 8. Again, the influence of COAST reaches deep into infrastructure of

Motile/Island.

124

Finally, the palindromes example illustrates the critical role that binding environments (COAST Rule

Execution) play in COAST-based services. However, while the COAST rules call for closure transfer as a

form of computation exchange (rules Services and Execution), the style is silent on the specific binding

semantics for the variables of transported closures. Motile closure transfer always rebinds free variables

in the context of the binding environment of the destination execution site while retaining all lexical

scope bindings. In other words, the bindings for free variables are always left behind.

There are many alternatives for binding semantics, both languages (such as MAST [255] or Obliq [30])

and formal models [17]. The choice for Motile, leaving all free variable bindings behind and transporting

all lexical scope bindings is unusual but, is easily explained and understood, maximizes the opportunities

for service variation and differentiation, and guarantees that the destination host has complete control of

the functional capability that it allocates to visiting mobile code. Here a single element of an architectural

style (Execution) deeply influences the semantics, adaptivity, and security of a style-specific language.34

The implementation details of Motile/Island directly reflect the embedding of computation exchange

within the object-capability model of security. Motile binding semantics leverage object-capability to

guarantee that a hosting island controls all of the capability that a visiting live computation may exercise.

Message transmission among computations is explicit: it requires both curl/send and possession of

one or more CURLs, Likewise message reception demands that a computation holds two distinct ca-

pabilities, an egress point e and, via the binding environment of an execution site, access to a form of

receive. Decentralized promises are implemented using only the base mechanisms for COAST Messag-

ing; consequently promises are likewise constrained by object-capability. Spawning, implemented as

a COAST service, evinces an internal island micro-architecture that is itself COAST-compliant. In turn,

a remote evaluation is a spawn absent any communication capability and is an excellent example of

the intersection of computation exchange and object-capability security. Finally, the integration of re-

mote evaluation with decentralized promises (curl/remote*, curl/remote, and curl/remote/block)

illustrates the complementary roles of computation exchange and object-capability.

34 Alternatively, an implementation may, for certain assets, support remote references back to the origin site. One obvious
example is a remote reference to a Scheme input or output port. However, I regard that behavior as unsafe and in those cases
where it is required it should be supported by a proxy computation (service) executing on the island of origin that responds to
CURL-mediated requests directed to the fixed asset in question (here reads or writes on a Scheme input or output port).

125

There is one remaining area, not yet discussed, where the style and the reference implementation also

meet: the mobility semantics. Just what is mobile and why has profound security and safety consequences

and those issues are the topic of Chapter 6 following.

126

Chapter 6: How Mobile is Motile and Why?

The COAST style sets a floor for mobility that includes well-known immutable values (strings, numbers

and such), data structures (lists, vectors, hash maps and the like), and finally, the triumvirate of closures,

continuations, and binding environments — these last three are the reification of live computations,

that is, state plus code. However, a language could choose to expand mobility to include for example,

input/output streams, green threads, or database cursors.

In this chapter I argue that restrictions on mobility above and beyond what is mandated by COAST

are motivated by concerns for security, safety, confidentiality, competitive advantage, and trade secrets

among others. In section 6.1 I present the general case for weak mobility, wherein mobility is restricted

to a subset of language types.

However on-island, where everything is passed by reference, mobility has no meaning and absent any

additional safeguards arbitrary assets can be transmitted from one co-resident computation to another

(modulo possession of an appropriate CURL). Section 6.2 describes how fixed assets, elements that must

be confined to their island of origin, arise naturally in Motile (and in any implementation of COAST that

supports the transmission of binding environments). Serialization, which translates language objects

into a flat representation suitable for network transmission, is a critical tool for the interdiction of fixed

assets both inter- and intra-island (sections 6.2 and 6.3 respectively). Given that intra-island messaging is

by reference, where fixed assets can pass among co-resident computations, one might ask if it is COAST-

compliant? In section 6.4 I answer that question in the affirmative; a necessary step in proving that

Motile/Island is capability-safe (Chapter 10).

6.1 Weakness is a Greater Good

There are two forms of code mobility: strong and weak [99]. Under strong mobility all of a language’s

values are mobile, while weak mobility limits the values that may move from host to host (or in the case

of Motile/Island from one address space to another). The COAST style is silent on the question of strong

versus weak mobility and leaves that decision to the implementation. Motile/Island implements weak

mobility because strong mobility:

127

• Presents a significant risk to system security and integrity in a decentralized environment

• Demands a more complex and less secure implementation

• Threatens the encapsulation and isolation of computations

Individual islands are structures for encapsulation and isolation. As COAST separates computation from

communication an island is free to arrange its on-island computations as it pleases — their role, number,

and communication topology is hidden from the view of other islands in the network.1 To guarantee the

integrity of inter-island communications the base components of island messaging — transports, ingress

points, and egress points — are fixed assets; objects confined to their island of origin. A fixed asset is not

serializable, that is, there is no serial, on-the-wire representation available that allows a fixed asset to be

transmitted to a remote island and reconstructed. All access to a fixed asset of an island must be mediated

by a co-resident computation. Active mediation helps to ensure security and integrity by enforcing island-

specific preconditions and constraints for each and every access. Fixed assets discourage (but do not

necessarily eliminate) capability amplification.2 Active mediation can consult arbitrary on-island state to

thwart unwanted amplification, using island state, for example, to implement and enforce fine-grained,

non-delegable capabilities.

Weak mobility also draws a bright line between code mobility versus asset mobility. Object-based

distributed systems, for example the language E [170], blur the line between mobility and assets by

generating a proxy redirect for every exported object reference.3 Others, such as Emerald, transport the

object wholesale including, if need be, the code of its class [137]. However, neither E nor Emerald deal

with the challenges of decentralized systems. While code mobility necessarily includes mobile values and

mobile data structures, the weak mobility of Motile/Island strives for a balance between convenience

on one hand and safety and security on the other. A decentralized service may have legitimate and

compelling reasons for restricting or forbidding outright forms of asset transfer, including safety, legal,

contractual, proprietary, or regulatory considerations. A mobile code infrastructure for a decentralized

milieu must not overreach and should allow developers the freedom to restrict or confine as circumstances

demand.

1 CURLs testify to the services that an island offers but give no hints to their implementation or organization.
2 Where two or more capabilities κ1, . . . ,κm are combined to obtain an additional capability κ′ not included among the κi .
3 In Miller’s terminology [170] this would be an inter-vat reference.

128

Treating transports, ingress points, and egress points as fixed assets illustrates many of the factors that

must be considered. A transport is an on-island container for messages that arrive from elsewhere in the

network or are transmitted from one co-resident islet to another. In general, the Island implementation

hides transports from untrusted code just as programming languages (such as Scheme) leave the evalua-

tion order of the arguments of procedures undefined to prevent programmers from making unwarranted

assumptions about run-time behavior. The separation of computation from communication strongly

suggests that computations should be ignorant of the details of message transport to permit variation

where demanded by domain or circumstance [112]. To this end transports are isolated from computation

by the mechanisms of ingress and egress points (an analogue of the input and output ports of Weaves

[112]). Including transports among the primitive structures (in contrast to lists or vectors for example)

for which serialization is automatic threatens the separation of communication and computation.

Accommodating the transmission of an I -resident transport t to a remote island J by introducing

a default proxy object on I subverts the intent and safeguards of ingress points and CURLs. Consider

instead two COAST-compliant alternatives. First, island I can implement and deploy a co-resident islet

x t whose sole function is to proxy remote access to t for reading, writing, or both. That access, itself

mediated by one or more CURLs, ingress points, and egress points, enjoys the same guarantees of safety,

integrity, and control as any other inter-island message exchange — no additional mechanisms or special

case circumventions are required; the security analyses and guarantees are simpler, easier to understand

and explain, and less likely to fall victim to subtle faults. Alternatively, one can deconstruct (with trusted

primitives) a transport t and convert t and its contents into a data structure (for example a vector, list, or

record) that is serializable for transmission elsewhere. This provides a “copy” of transport t that cannot

affect in any way the operation of t . As in the first alternative, this task must be undertaken on the island

of origin; a restriction that is consistent with the philosophy and intent of COAST. In both alternatives

the transport is strongly encapsulated and in the second no transport can ever leave its island of origin

without the island’s full knowledge and cooperation.

For ingress points a mechanism already exists for off-island transport: CURLs. Ingress (and egress)

points are a locus for stateful gates whose evaluation depends on island-resident state. Again the best that

one might do for the transmission of an ingress point off-island is to transmit a reference to a proxy object

(co-resident with the ingress point) but that is roughly how CURL-based messaging is implemented

129

in Island in the first place. The gates of an ingress (egress) point may be proprietary, confidential, or

concealed for the sake of security. Egress points, unlike ingress points, have no off-island representation

of any kind and are never serialized. This posture guarantees that only only islets co-resident with the

egress point and that hold the egress point can ever read messages from the transport to which the egress

point refers. In other words, no message that is received by an island I is ever (re)transmitted off I unless

its transmission is mediated by an islet x of I ; in which case islet x must hold a CURL u J to deliver any

message to island J . Any other policy violates the COAST Messaging rule and is an unwarranted exception

to communication by introduction.

Scheme ports4, objects which represent input and output devices, are another domain-independent

example of fixed assets. Ports cannot be denoted by CURLs or serialized for inter-island transmission.

An islet may be granted ports for its use via the binding environment B of its execution site or it may

receive a port in an intra-island message. However, in most cases those ports will be embedded in the

closures of domain-specific primitives appearing in B to better regulate, monitor, and confine an islet’s

exercise of those ports. The more interesting fixed assets of a COAST system are likely domain-dependent:

databases, digital sensors, actuators, legacy services including RESTful web services, cyber-mechanical

devices, network devices, log files of all descriptions, cyber-monitoring, authentication and defensive

services, special-purpose computing devices, as well as critical computational and storage resources. In

these cases there will likely be a constellation of domain- and asset-dependent islets executing under

customized execution sites that actively mediate access to, and exercise of, these valuable resources. As is-

lands are inexpensive to create and deploy one can imagine individual islands each of whose sole purpose

is to encapsulate, protect, regulate, command, and monitor a particular mission-critical resource.

Fixed assets are commonplace in the bricks and mortar world. Coca-Cola has its secret formula,

manufacturers restrict access to portions of factory floors where closely-held tooling or production pro-

cesses are employed, and product design labs are the Fort Knoxes of consumer electronics. In cyberspace

software-based services such Amazon, Google, and Uber rely on proprietary algorithms and software

for core business operations while, in the twilight zone of the intersection of the physical world and cy-

berspace, domain-dependent design and analytical software tools are critical, valuable assets. Given the

ubiquity of fixed-assets strong mobility in a decentralized ecology appears ill-considered and reckless.

4[216], Section 6.13

130

Weak mobility defaults to effective protection and where stronger mobility is required Motile/Island de-

velopers can construct domain-specific protocols for those cases. This stance aligns with POLA where

the default is strong and adaptive protection but with sufficient expressiveness and flexibility to oblige

service- and domain-specific needs.

Strong mobility is more difficult to implement than weak and in many cases the semantics of strong

mobility are unclear or of questionable value.5 Complexity often increases the attack surface and while

strong mobility is both seductive and convenient its allure is outweighed by the risks of malicious abuse.

Even an outwardly innocent extension may give attackers valuable clues, expose vital information, or

threaten the integrity of an island. As should be clear the security considerations for mobile code systems

are nontrivial and even a detailed, conscientious security review of a mobility extension may overlook

a subtle, but dangerous flaw. Absent compelling use cases conservative security argues against strong

mobility furthermore, strong mobility may violate POLA in many specific instances.

Finally, strong mobility threatens island encapsulation and isolation. Motile mobility has been de-

signed and implemented to ensure effective closure transfer without threatening island integrity. Where

the mobility primitives are inadequate islands can implement higher-level protocols to simulate strong

mobility while minimizing risk. Note that if island I can deploy closures to execution sites (with sufficient

functional capability) on remote island J then I can deploy any protocol it likes, implemented as closures,

to J . Since mobile code itself can be used to overcome many of the limitations of weak mobility without

introducing additional security risks (beyond those already at play) it makes little sense to undermine that

security for the sake of questionable benefits. It may be more productive and far safer to create additional

Motile libraries (themselves written in Motile) that implement common use cases for strong mobility as

higher-level protocols. This reduces the complexity of the serializer, gives greater freedom to developers

without risking fundamental security safeguards, does not require the introduction of new (and likely

complex) language semantics, minimizes the size of the Motile/Island base infrastructure, and allows for

considerable island diversity and adaptation.

5 Serialized representations for common data values (numbers, strings, booleans, characters, strings and byte vectors)
are straightforward, as are common data structures (lists, vectors, and hash maps). The serialization of Motile closures and
CURLs is non-trivial and goes directly to questions of effective and safe serial representations. Stateful objects such as ports
or islets are far more complex and present technical challenges. Serialization for more exotic domain-dependent objects may
be infeasible, impractical, or used so infrequently that developers are better off with an object-specific protocol that does
not require extending the serializer. However, nothing prevents collaborating service providers from augmenting the Motile
(de)serializer to selectively strengthen mobility for a valued use case (see Section ??? for a brief discussion of amending or
extending the Motile (de)serializer).

131

Weak mobility confines sensitive (fixed) assets to their island of origin. However, it has no effect

within the confines of an island (that is, intra-island). If computation x holds a CURL u y for co-resident

computation y then nothing prevents x from transmitting to y a reference to any fixed asset that x may

hold. Since many hundreds of untrusted co-resident computations may reside “alongside” x at any one

time it behooves a prudent and suspicious authority to confine x to prevent the unwanted transfer of

capability into untrusted hands. This security issue and its solution are the topics of sections 6.2 and 6.3

below.

6.2 Intra- versus Inter-island Messaging

While fixed assets cannot be transmitted inter-island they can be transmitted intra-island from one

co-resident islet to another. Islets residing on the same island share a single, homogeneous address space

(by definition of an island). Motile/Island, for reasons of efficiency, implements intra-island message

passing by reference. To partially eliminate the distinction between intra- and inter-island message pass-

ing Motile is a single-assignment language in which all primitive and compound values are immutable.

Data structures such as extensible vectors and hash tables are functional and persistent [180], that is,

immutable and version-preserving. All objects (including murmurs) shared among an island’s islets are

immutable; this improves islet isolation and eliminates the classic data races seen in threaded imperative

languages.6

However, there are subtle distinctions between intra- and inter-island message passing that are inti-

mately intertwined with fixed assets and the implementation of serialization, translating Motile values

(including closures) into flat representations suitable for network transmission. Any Motile value, fixed

asset or otherwise, may be included in a intra-island message. However, if islet y receives a reference

to a fixed asset ι in a message from islet x we cannot perforce conclude that islet y has the necessary

functional capability (in the binding environment of its execution site) to exercise or probe ι. For y , in

that case, fixed asset ι is just an opaque reference that islet y may be able to transmit to other co-resident

islets or embed in a data structure, but nothing more. There is good reason to allow fixed assets to be

6 There are two caveats. First, single assignment does not eliminate races in message ordering in the application-specific
messaging protocols implemented by Motile/Island computations (see [41] for a discussion of this problem in Erlang and tools
that detect message races). Second, the binding environments of execution sites may contain functions that rely upon library
functions or system primitives by which multiple islets can share mutable data, test their values, and update them destructively
(see [40] for a discussion of this problem in Erlang and the use of dialyzer, a popular static analyzer for Erlang, that detects the
race conditions these functions can introduce). Such functions are inherently dangerous and must be used with caution. They
are best avoided altogether if possible.

132

transmitted from one islet for another. For example, an islet x may be a factory for a fixed asset ι that

x wraps in closures f ι,1, ..., f ι,m for transmission to other co-resident islets.7 Alternatively, islet x can dis-

pense adaptations for fixed assets to its fellow islets in response to changing conditions such as asset load

variations, asset failure and recovery, threats of attack, or software updates. In a reversal of roles x could

be a trusted service that manipulates a set of fixed assets on behalf of co-resident computations holding

members of that set, but whose own execution sites lack the requisite functions.

The calling convention for Motile closures differs from that of the native closures of the underlying

Scheme implementation.8 The vast majority of the closures appearing in execution-site binding environ-

ments are native Scheme closures wrapped with Motile calling conventions. But these are rightfully fixed

assets:

• Many, though by no means all, of the native Racket Scheme closures are written in C. Their binary

representation is inaccessible, unsuited for serialization, and deeply processor-dependent; inter-

island transmission is infeasible and unwanted.

• Other Racket Scheme functions are written entirely in Racket Scheme and are compiled into Racket

virtual machine bytecodes. That bytecode representation is poorly documented and frequently

changes from one version of Racket to another and, in any case, there is no guarantee that a remote

recipient is even running atop Racket much less a compatible version.

• A binding environment may often contain domain-specific library functions written entirely in

C/C++ by developers who never imagined that their library would be rehosted within Scheme

wrappers. Here the Scheme interface is supplied by the Racket FFI (Foreign Function Interface)

and then wrapped, like any other native Scheme closure, in the Motile calling conventions. In

appearance and behavior these functions are identical to any other native Scheme function.

• Binding environments may contain proprietary functions, developed by the island authority, or

offered under license from a third party. In any case the island can be obligated by policy or contract

to take reasonable technical measures to protect the details of their implementation.

These considerations: machine-language binary blobs unsuited for (de)serialization and exchange, li-

brary functions written in languages for which mobile code is unavailable or infeasible, and proprietary

7 The poor man’s version of a singleton object that is shared among multiple computations.
8 The Motile compiler is a transpiler, compiling Motile closures into the native closures of Racket Scheme (www.racket-lang.

org)).

133

www.racket-lang.org
www.racket-lang.org

restrictions on function implementations, will hold, to one degree or another, for any Motile/Island im-

plementation. Inevitably there are closures for which inter-island transport is impossible, impractical, or

unwanted.

To prevent native, foreign, or proprietary closures migrating from one island to another Motile/Island

relies on two interlocking mechanisms:

• Every closure that respects the Motile calling conventions can “decompile” itself into a graph struc-

ture (possibly cyclic) called a Motile Assembly Graph (MAG). The graph nodes are abstract machine

instructions for a high-level lambda calculus engine and every appearance of a free variable α in

the Motile source is represented by the instruction

#(global/get α)

where global/get names the abstract machine instruction and α is a symbol denoting the binding

name of the function. The Motile recompiler, invoked during deserialization, recompiles this in-

struction into a native closure g that fetches the binding of symbol α from a binding environment

B (given as an argument of g).

• A set of higher-order functions for the construction of binding environments accept a native func-

tion α as an argument and return an equivalent function α̃ that (1) obeys the Motile calling conven-

tions (thereby bridging the gap between Motile and the underlying host Scheme) and (2) always

decompiles into a single node MAG, #(global/get α). Every native closure α included in the

binding environment of an execution site appears as α̃.

In the case of inter-island closure transmission, these two mechanisms guarantee that free variable bind-

ings are always left behind and resolved on-demand in the context of an execution site at the destination

island.9 The same closure λ can be transmitted to multiple islands and the semantics of its execution can

vary from island to island as the free variables of λ are rebound in the context of distinct, island-specific

execution sites.

To illustrate these mechanics consider the code snippet10 of Figure 6.1 as it executes in the context of

an execution site 〈E , B〉 on island I :

9 A free variable is resolved at time of reference in the course of the execution of the Motile expression in which it appears.
10 Motile, like many other programming languages, is case sensitive. Variables v and V are distinct.

134

1(let ((LIST list) ; Capture native function list in local binding.
2(MAP map)) ; Capture native function map in local binding.
3(curl/send ; Native funcion.
4@u ; Target CURL.
5(lambda () ; Anonymous thunk.
6(MAP (LIST 1 2 3 4) even?)))) ; even? is an unbound free variable.

Figure 6.1: Bring native bindings (from the binding environment of the execution site) into lexical scope
and transmit those bindings in a closure.

1. There are three variables in lexical scope: LIST (line 1), MAP (line 2), and @u (line 4).11

2. There are four free variables: list (line 1), map (line 2), curl/send (line 3), and even? (line 6).

3. At execution time, the local scope variables, LIST (line 1) and MAP (line 2), are bound to the values of

list and map respectively. Those two values are native closures, obtained by resolving (at run-time)

the symbols list and map with respect to binding environment B .

Assume here that CURL @u (line 4) is an inter-island CURL for island J . The anonymous closure (lines

5–6), passed as the message payload to curl/send (line 3), contains lexical scope references to two native

closures, the values of LIST and MAP respectively (line 6), and a single free variable, even? (line 6).

Inter-island transmission is, of necessity, somewhat elaborate. Under the covers, out of sight of the

Motile programmer, the message payload is serialized prior to transmission and, in doing so, the transitive

closure of every closure in the payload is decompiled to its MAG representation. The combined MAG

representations, data structures, and data values of the payload are then converted into a flat, on-the-wire

representation suitable for network transmission. On receipt by the destination island the on-the-wire

representation is silently reconstituted as a Motile value and any MAGs therein are recompiled into Motile

closures.

In this regime both lexical scope references, MAP and LIST, each bound to a native closure, decompile

to a single MAG instruction, #(global/get map) and #(global/get list) respectively.12 The free vari-

able even? decompiles likewise to #(global/get even?). Thus, all native closures are abandoned and

left behind when the representation of the closure (lines 5–6) is transmitted to J . At island J the closure

is reconstituted as

(lambda () (map (list 1 2 3 4) even?))

11For the sake of brevity and simplicity I omit the lexical scope binding of @u.
12 Decompilation preserves the original name assigned to a native closure in the resolving binding environment.

135

where map, list, and even? are free variables. When island J executes the reconstituted closure in a

J -specific execution site 〈E , B〉 those three free variables will be resolved relative to binding environment

B on J . In this way the semantics of execution of the received closure are J -dependent and may or may

not match the execution semantics of the original closure at island I .

6.3 Intra-Island Messaging

The code snippet of Figure 6.1 also illustrates the distinction between intra- and inter-island trans-

mission. In this case assume that target CURL @u is a CURL for island I , the same island on which this

code snippet is executing. The anonymous closure (lines 5–6) is transmitted intra-island via CURL @u

(line 4) by curl/send (line 3). Variables LIST and MAP are within lexical scope and their bindings (native

closure implementations of well-known Scheme functions list and map) are carried along in the clo-

sure. However, when the anonymous closure is executed elsewhere on island I (in the context of some

other execution site 〈E ′, B ′〉) then even? (line 3), the only free variable, will be resolved against binding

environment B ′.

What is happening here? The anonymous closure is a vehicle for transferring native functional ca-

pability among co-resident islets. In other words, intra-island transmission can “leak” functional capa-

bility.13 This is both an opportunity and a threat. An islet x can generate functional capability for other

co-resident islets by confining native closures (available in x ’s binding environment) within specialized

Motile closures. For example, the closures that x exports may limit the arguments of the “inline” native

closures, supply context-specific error checking, apply the native closures in a manner known to be safe,

in short, the confinements sacrifice power and generality for safety and specificity. Islet x can limit these

closures in many other ways, for example, rate of use, time of use, number of uses, or non-delegation and

use can also depend upon time-varying state of I . It is also possible to implement revocation so that a

closure λ, distributed earlier, can never be used again. Alternatively, the purpose of the closure may just

be encapsulation. It is impossible for an untrusted islet to inspect the interior of a Motile closure — any

native closures bound within are inaccessible and cannot be extracted, called directly, or tampered with.

Consequently, by mixing inline native closures and free variables a closure generated by one islet and

transmitted to another co-resident islet can selectively amplify the functional capability of a receiving

islet.

13 We can be far less subtle about it, for example: (curl/send @u map).

136

Native functions are but one example of fixed assets and intra-island transmission can “leak” any

fixed asset from one on-island islet to another. Egress points, a fixed asset common to all islands, can

be transmitted from islet to islet within the confines of a single island just as easily as native functions.

Sharing fixed assets portends a blend of opportunity and threat comparable (in both mechanism and

technical measures) to the exchange of native closures. In all cases, fixed assets can be encapsulated in

closures and the mechanisms outlined above for confining native closures apply in equal measure to

the confinement of non-procedural fixed assets. The same benefit holds — an islet can generate asset-

specific capability for other co-resident islets by confining a fixed asset within one or more asset-specific

closures.

Sharing or distributing fixed assets is critical as it allows for “factory” islets whose role is to create

tailored or encapsulated (via closures) fixed assets for use elsewhere on an island. Nonetheless, sharing a

fixed asset is not required and is asset- and application-specific. For example, an islet may regulate access

to, and exercise of, a fixed asset and never share it with any other islet. However, the islet holding the

fixed asset may be a service provider to other islets — it implements a service protocol via messaging that

allows other islets (on-island, off-island, or perhaps both) to issue service requests and receive service

responses.

On the other hand, an untrusted or malicious islet may use intra-island transmission to distribute

native capability that is best left confined. There are several mechanisms available to restrict or prevent

the unwanted distribution of functional capability among untrusted islets on an island:

1. Never allocate an execution site containing unsafe functional capability to an untrusted islet. POLA

applies equally to functional and communication capability. Where feasible, confine functional

capability to the bare minimum required to satisfy the service goals of the execution site.

2. Poison the unsafe functionsα1, . . . ,αm in the binding environment B of an execution site by pinning

their execution to a given islet. In other words, ifαj is pinned to islet x and ever executed by another

islet y then αj fails softly (for example by immediately returning a constant safe value). Even if islet

x confines αj by embedding it in a custom closure λαj that closure, absent effective execution of

αj , is likely useless or harmless.

3. Mark each CURL for off-island use only or on-island use only.14 Consistently marking CURLs as

14 Each CURL can be marked for use off-island, on-island, or both.

137

either “off-island only” or “on-island only” will prevent a CURL ux , intended for off-island commu-

nication with untrusted islet x from ever being appropriated and used by any co-resident islet y .

This will frustrate, though not necessarily prevent, efforts to leak functional capability from y to x

by exploiting a CURL that granted excessive communication capability.

4. Confine curl/send in the binding environment of untrusted islet x so that it rejects any on-island

CURL. If x cannot transmit to co-resident islets then it simply cannot disseminate functional

capability.15

5. Expunge curl/send from the binding environments of those execution sites where intra- and inter-

island transmission is not required. For example, in remote execution (as opposed to spawning)

the result of the evaluation of the received thunk λwill be transmitted back by the executing island

and not by λ itself. In this case, an island I as a matter of policy and practice can omit curl/send

from the binding environment B of the execution site 〈E , B〉 that I deploys for remote execution.

Where this is not feasible curl/send can be customized to restrict intra-island communication to a

small number of trusted ingress points. Likewise, the same instance of curl/send can be restricted

to a small whitelist of islands to which which inter-island transmission is acceptable.

6. Expunge receive from the binding environments of those execution sites where intra- and inter-

island message reception is not required. Any islet x executing in the context of such an execution

site lacks the functional capability to receive messages and is incapable of receiving additional

functional capability from any source.

7. Poison each egress point t .with a whitelist or blacklist that restricts the set of islets that may receive

messages. If possible, ensure that an islet x holds no egress points at all as then it cannot receive

messages from any source whatsoever.

8. Augment curl/send in the binding environment of untrusted islet x so that whenever the target

CURL is an on-island CURL it substitutes the payload (deserialize (serialize p)) for the given

payload p . This has the effect of expunging all native functional capability from the payload (just

as would occur in an inter-island transmission); therefore no co-resident islet y can ever acquire

additional functional capability from x . While this has the disadvantage of significantly increasing

the overhead of intra-island transmissions from x the additional security assurances may be worth

15 However, x might obtain an unlimited curl/send from another co-resident islet and circumvent the ban.

138

the cost.

9. Inspect the payloads of inbound messages sent via intra-island CURLs for unwanted or suspicious

objects such as other intra-island CURLs or native closures. Using an inspector (derived from

the Motile/Island serializer) it is possible to extract every native closure and intra-island CURL

embedded in the payload and embargo any message whose contents is a potential threat.16

10. Define specialized transports that include deep payload inspection and capability interdiction in

their delivery. For intra-island transmissions this also ensures that the transmitting islet bears the

cost.17

All of the techniques outlined above apply to all fixed assets and are not limited to confining the transfer

of native closures. The rules of COAST detail where and how capability is exercised and thereby precisely

identify the choke points for the transfer of capability of all forms.

6.4 Is Intra-Island Messaging COAST-Compliant?

In a word, yes. The outward mechanisms of intra-island message passing: CURLs, ingress points,

transports, and egress points are identical to those inter-island messaging and conform with the COAST

Messaging rule. The only difference between the two is serialization, a necessity for inter-island messag-

ing but overkill for the common use cases of intra-island messaging.18 There is a delicate balance at work

here. An island is an encapsulation and isolation boundary established by a single authority. Nothing

prevents an authority from having many islands within its sphere and island multiplicity and specializa-

tion can play important roles in system reliability, recovery, security, and adaptivity. Highly efficient, low

overhead intra-island communication is a practical necessity and reflects the expected costs of commu-

16 The inspector would be embedded within a customized version of receive placed in the binding environments of the
execution sites of untrusted islets. Each such untrusted islet then pays the execution cost (accounted in memory consumption
and processor cycles) of deep inspection. By limiting the total execution cost and lifespan of an islet to prevent resource
exhaustion we ensure that untrusted islets “pay” for the burdens that they impose upon the island on which they reside.

17 The Island implementation guarantees that on-island transmission is always executed by the same thread of control that
is delegated to the sending islet.

18 Serialization is a necessity irrespective of the detailed architecture chosen for the infrastructure of a COAST-conformant
system. First, it is unlikely that distinct spheres of authority will share address spaces and even a single sphere of authority
will turn to multiple, distinct address spaces as a well-understood, defensive measure against attack — distinct address spaces
will be commonplace in any COAST-based infrastructure. At a minimum, serialization (of some form) is demanded by the
computation and value exchange lying at the heart of COAST. Even if exchange is based on a bytecoded virtual machine
or processor-dependent binary blobs, it still must be possible to transmit and reconstruct live data structures and for this
some form of serialization is required. Finally, CURLs, besides having an in-memory representation must also, for practical
reasons, have a human-readable representation that is both roughly consistent with the CURL on-the-wire format for network
transmission and that allows them to be freely exchanged out-of-band; scribbled on the back of a cocktail napkin, tucked into
the body of an email, embedded in a web page, or placed as a comment in source code.

139

nication within the confines of a single authority. As a rule, intra-organization communication tends

to be more efficient and less burdensome than inter-organization communication. The reduced costs

reflect the physics of locality: we expect higher communication rates intra-island versus inter-island and

intra-island latency and overhead magnify the total cost of intra-island messaging disproportionately.

However, with ease of communication comes complacency. The threat model for COAST categorizes

all threats, irrespective of source, as variants of insider attacks. Hardening the interior of an island is a

necessity and the mechanisms for confining intra-island communication capability are identical to those

for confining inter-island communication. As Miller points out ([170], Chapter IV, Emergent Robustness,

pp. 145–161) object-capability security is fractal and can be reapplied in ever-finer granularity on ever-

smaller scales of interaction and capability. Confining communication and functional capability within

an island is as necessary as confinement in inter-island exchanges.

However, the capability relationships in a large system (not to mention a system-of-systems) are

invariably rich and complex. And while a single island is a small, encapsulated domain it may be the

residence of several thousand islets of which only a small fraction are trusted. While tools for capability

analysis [136, 220, 221] are outside the scope of this thesis it is a rich area for future work.

6.5 Summary

From a security and safety perspective I hold a skeptical view of languages that support strong mobility

or that, by default, grant mobility to sensitive local assets such as input/output streams, file systems,

or green threads. As an alternative to mobility for these sensitive assets I argue for the use of asset-

specific proxies, themselves COAST services, that function as protective intermediaries between off-island

computations and the asset itself. This approach has several advantages:

• It affords island- and asset-specific protection that can vary from one asset instance to another,

from one asset class to another, and from one island to another.

• It does not require any new mechanism and builds upon the mechanisms at hand: communication

by introduction, mobile code, execution sites, and CURLs.

• It is flexible and easily encapsulated in asset-specific frameworks.

• Since asset proxies are just another COAST service other adaptation mechanisms apply as well, for

example, live update (see Chapter 8).

140

In general, the weak mobility of Motile seems more than adequate to meet the needs of many systems

and in our experimental work to date we have not encountered a use case that presented a critical and

compelling need for strong mobility. For many common fixed assets it may be sufficient to implement

a proxy and, if the frequency of the use case warrants, construct a Motile framework or library for the

common cases, such as input/output ports.

To the extent that fixed assets must be interdicted intra-island proxies can be used as well however,

there is an alternative mechanism, serialization, that can thwart any effort to surreptitiously pass a sensi-

tive asset to another co-resident computation. To my knowledge, with two notable exceptions, there is

little discussion in the literature of mobile-code systems on the role of serialization as a tool for security

and safety. The first is Kornstaedt [147], the only doctoral thesis that I know of devoted to the topic of

serialization, and the second is Rossberg, Tack and Kornstaedt [204], who describe a general framework

for serialization in the context of Alice ML, a mobile-code variant of ML.

Since an island must deserialize every single message transmission that crosses its border and re-

construct, element by element, the contents of a message, an island can conduct deep inspection of the

objects that are entering its sphere of authority. Using (de)serialization as a starting point for logging,

debugging, event tracing, and instrumentation is an interesting avenue for future work.

Nothing in computation exchange demands strong mobility and in a decentralized world much ar-

gues against it. However, computation exchange can simplify the deployment of the protocols that an

island may require for access (via proxy) to a fixed asset. In this case the protocol implementation is

simply bundled as an additional closure λ that either travels with, or is transmitted to, a live computation

executing elsewhere. The owner of the fixed asset can impose whatever restrictions it likes on asset access

that those restrictions can be implemented, in whole or in part, by λ. Since closures are a fundamental

form of encapsulation the live computation may be ignorant of the restrictions being imposed on its

access to the remote asset. Once again we see a productive interplay between computation exchange

and object-capability.

The exploration of Motile concludes with a description of the language from the perspective of two

well-known Scheme standards, R5RS [143] and the more recent R7RS [216], in Chapter 7.

141

Chapter 7: Motile: The Details

Motile strongly resembles Scheme R5RS and shares its syntax [143] though it differs in substantial

details such as its lack of imperative assignment (for example, no set! for lexical variables or set-car!

and set-cdr! for cons cells). Motile also borrows a few features from Scheme R7RS [216]; however,

Motile is missing features now commonplace in a mature Scheme implementation such as hygienic

macros and exceptions. I assume that the reader is familiar with R5RS and R7RS and, for the sake of

brevity, devote effort to describing the differences between Motile and R5RS rather than rehashing the

obvious congruences.

7.1 Expressions

7.1.1 Variable References

An 〈identifier〉 α that appears in an 〈expression〉 is a variable reference. Each variable reference is

either closed, there exists a 〈local binding〉 (α 〈expression〉) in lexical scope, or free, no 〈local binding〉 for

α appears in lexical scope. In the later case the free variable reference is resolved at execution time by

consulting the global binding environment B for a binding α/u . It is a runtime error to evaluate a free

variable reference that is not defined in the given global binding environment B .

7.1.2 Procedures

The Motile syntax and semantics for procedures, that is the evaluation of a 〈lambda expression〉

(lambda 〈formals〉 〈body〉), is that of R5RS.

7.1.3 Procedure Calls

The syntax and semantics of a Motile 〈procedure call〉 (〈operator〉 〈operand〉*) is identical to that of

R5RS with the exception that the evaluation of variable references is always relative to an explicit global

binding environment B .

142

7.1.4 Conditionals

Like R5RS (if 〈test〉 〈consequent〉 〈alternate〉) is the fundamental conditional form. However, the

form (if 〈test〉 〈consequent〉) is not available in Motile. Instead the alternatives, (when 〈test〉 〈sequence〉)

and (unless 〈test〉 〈sequence〉), are provided (with the obvious semantics).

7.1.5 Assignment

Motile is a single-assignment language, that is, every variable is initialized at binding time and is al-

ways read-only thereafter. Consequently, the special form (set! 〈identifier〉 〈expression〉) is unavailable

in Motile.

7.2 Derived Expressions

7.2.1 Conditionals

The derived construct cond is identical to that of R5RS. The well-known and much loved case con-

struct is not defined in Motile.1

7.2.2 Binding Constructs

The binding constructs let, let*, and letrec are identical to those of R5RS. The binding construct

letrec*, taken from R7RS, is also available in Motile.

7.2.3 Sequencing

Motile provides two of the three variants of begin defined in R7RS2:

• (begin 〈definition〉+ 〈expression〉+) is equivalent to a letrec* where each 〈definition〉 appears,

in definition order, as a 〈local binding〉 and each 〈expression〉 appears, in textual order, as an

〈expression〉 in the 〈sequence〉 comprising the 〈body〉 of the letrec*.

• (begin 〈expression〉+) is equivalent to (let () 〈expression〉+).

7.2.4 Iteration

The iteration construct (do (〈iterator〉*) (〈test〉 〈do result〉) 〈command〉*) is identical to that of R5RS.

1 I know, I know . . . chalk it up to laziness. I kept on meaning to throw it in and never got around to it.
2 The third variant, used as a library declaration in R7RS, is not included in Motile.

143

7.2.5 Quasiquotation

Quasiquotation in Motile is identical to that of R5RS.

7.3 Macros

The form (define-macro (〈name〉 〈define formals〉) 〈body〉) defines a nonhygienic macro with the

given 〈name〉 and whose extent is the lexical scope in which the macro definition appears.3 Each macro

definition generates a function (lambda (〈define formals〉) 〈body〉). Given a macro with 〈name〉 α then,

at compile time, any macro form (α s1 . . . sn) appearing in the lexical scope of macro α is evaluated with

compile-time expressions s1, . . . , sn as arguments and the return value v of that evaluation is substituted

for the form (α s1 . . . sn). The value v may, in turn, contain forms that require macro expansion. Macro

expansion repeats until the expansion is free of macro forms.

7.4 Standard Procedures

All Motile closures are evaluated in the context of a given global binding environment, for which the

BASELINE environment is the default. The BASELINE environment is severely constrained and includes

only pure functions free of imperative side effects. For example, input/output functions such as read or

write are absent as are all of the Island messaging primitives. BASELINE is often the starting point for the

binding environments of richer, domain-specific Island execution sites.

7.4.1 Type Predicates

Procedure Standard Procedure Standard Procedure Standard

boolean? R5RS bytes? Racket char? R5RS

number? R5RS null? R5RS pair? R5RS

procedure? R5RS string? R5RS symbol? R5RS

The predicate bytes? is equivalent to the R7RS predicate bytevector?.

7.4.2 Equivalence Predicates

Procedure Standard Procedure Standard Procedure Standard

eq? R5RS eqv? R5RS equal? R5RS

3 The Motile compiler maintains a distinct, scoped, compile-time namespace for macros.

144

7.4.3 Numbers

Numerical Types

Procedure Standard Procedure Standard Procedure Standard

number? R5RS complex? R5RS real? R5RS

rational? R5RS integer? R5RS exact? R5RS

inexact? R5RS

Numerical Predicates

Procedure Standard Procedure Standard Procedure Standard

= R5RS > R5RS < R5RS

> R5RS <= R5RS >= R5RS

zero? R5RS positive? R5RS negative? R5RS

odd? R5RS even? R5RS

Numerical Functions

Procedure Standard Procedure Standard Procedure Standard

max R5RS min R5RS + R5RS

* R5RS - R5RS / R5RS

abs R5RS quotient R5RS remainder R5RS

modulo R5RS gcd R5RS lcm R5RS

numerator R5RS denominator R5RS floor R5RS

ceiling R5RS truncate R5RS round R5RS

rationalize R5RS add1 Racket sub1 Racket

Motile also includes 1+ and 1- as common shorthand for add1 and sub1 respectively.

Transcendental Functions

Procedure Standard Procedure Standard Procedure Standard

exp R5RS log R5RS sin R5RS

cos R5RS tan R5RS asin R5RS

acos R5RS atan R5RS

145

Exponents

Procedure Standard Procedure Standard Procedure Standard

sqrt R5RS expt R5RS

Representations

Procedure Standard Procedure Standard Procedure Standard

exact->inexact R5RS inexact->exact R5RS number->string R5RS

string->number R5RS

7.4.4 Pairs and Lists

Motile lists are immutable hence the imperative procedures set-car! and set-cdr!, found in R5RS

and later Schemes, are unavailable.

Whenever a function returns a pair or a list that pair or list is immutable.

Procedure Standard Procedure Standard Procedure Standard

append R5RS assoc R5RS assq R5RS

assv R5RS car R5RS cdr R5RS

caar . . . cddr R5RS caaar . . . cdddr R5RS caaaar . . . cddddr R5RS

cons R5RS list R5RS list-ref R5RS

list* R7RS member R5RS memq R5RS

memv R5RS null? R5RS reverse R5RS

7.4.5 Symbols

Procedure Standard Procedure Standard Procedure Standard

symbol? R5RS string->symbol R5RS symbol->string R5RS

146

7.4.6 Characters

Procedure Standard Procedure Standard Procedure Standard

char->integer R5RS char-alphabetic? R5RS char-ci<=? R5RS

char-ci<? R5RS char-ci>=? R5RS char-ci>? R5RS

char-downcase R5RS char-lower-case? R5RS xchar-numeric? R5RS

char-upcase R5RS char-upper-case? R5RS char-whitespace? R5RS

char<=? R5RS char<? R5RS char=? R5RS

char>=? R5RS char>? R5RS char? R5RS

integer->char R5RS

7.4.7 Strings

Motile strings are immutable; hence the imperative procedure string-set!, found in R5RS and later

Schemes, is unavailable. The function string-copy is omitted as well since in Motile it amounts to the

identity function.

Whenever a function returns a string as its value that string is immutable.

Procedure Standard Procedure Standard Procedure Standard

format Racket list->string R5RS make-string R5RS

string R5RS string->list R5RS string->number R5RS

string->symbol R5RS string-append R5RS string-ci<=? R5RS

string-ci<? R5RS string-ci=? R5RS string-length R5RS

string-ref R5RS string<=? R5RS string<? R5RS

string=? R5RS string>=? R5RS string>? R5RS

string? R5RS substring R5RS string-append R5RS

Motile implements the two argument form of (make-string k c) given in R5RS and returns an

immutable k -character string c . . . c . The single argument form (make-string k) is not provided as

it must return a mutable k -character string.

147

7.4.8 Bytes

The procedures for Motile byte strings are modeled after those of Racket Scheme with the difference

that all byte strings are immutable.4 A byte is an exact, non-negative integer in the range 0 . . . 255.

(bytes? x) returns #t if x is a byte string and #f otherwise.

(bytes i 0 . . . i n−1) returns a byte string whose individual elements are i 0, . . . i n−1, in index order,

where each i j is an exact, non-negative integer in the range 0 . . . 255. The length of the byte string is n .

(bytes/length x) returns the length of byte string x .

(bytes/ref x i) returns byte x i of byte string x , 0≤ i < n where n is the length of x .

(subbytes) x i) returns an immutable byte string comprising bytes x i , . . . x n −1 in index order. If

i = 0 then byte string x is returned.

(subbytes x i j) returns an immutable byte string comprising bytes x i , . . . x j−1 in index order. If

i = 0 and j = n (the length of x) then byte string x is returned.

(bytes/append x0 . . . xm) returns an immutable byte string that is the concatenation of byte strings

x0, . . . xm .

(bytes/append* x0 . . . xm y) returns an immutable byte string that is the concatenation of byte

strings x0, . . . xm and the byte strings s0, . . . s j of list y = (s0 . . . s j). In other words, bytes/append* is

the byte string analogue of list*.

(bytes-to-list x) returns an immutable list comprising the individual bytes x0, . . . xn−1, in index

order, of immutable byte string x .

(list-to-bytes y) returns an immutable byte string constructed from the contents of list y = (y0

. . . ym) and is equivalent to (bytes y0 . . . ym).

(bytes=? x1 . . . xm) returns #t if all arguments x i are eqv?. Otherwise #f.

(bytes<? x1 . . . xm) returns #t if the arguments are sorted in increasing lexigraphic order (the com-

parison of individual bytes are ordered by <). Otherwise #f.

4 Motile was defined and implemented well before the endorsement of R7RS by the Scheme community. Future versions of
Motile will likely conform to the R7RS conventions for bytevectors rather than the nomenclature of Racket Scheme.

148

(bytes>? x1 . . . xm) returns #t if the arguments are sorted in decreasing lexigraphic order (the com-

parison of individual bytes are ordered by >). Otherwise #f.

7.4.9 Control Features

Procedure Standard Procedure Standard Procedure Standard

procedure? R5RS apply R5RS map R5RS

for-each R5RS call/cc R5RS

Motile deliberately omits eval as it is significant threat to island integrity and security.

7.5 Persistent Functional Data Structures

Persistent functional data structures erase the semantic differences between sharing and copying. A

persistent data structure offers nondestructive update while a functional data structure omits any im-

perative side effects. Modern implementations of these data structures balance efficiency with structure

sharing. Persistent functional structures are thread-safe, reduce memory consumption, reduce locking,

and minimize the distinctions between intra- and inter-island messaging.

There are five principal persistent functional data structures: vectors, tuples, hash maps, unordered

sets, and binding environments. Vectors and hash maps are modeled after the implementations of the

comparable structures in Clojure (hash array mapped trie—HAMT) implementations of the structures

invented by Bagwell [8]). Unordered set are also HAMTs and binding environments are implemented as

a specialization of hash maps.

7.5.1 Persistent Vectors

A Motile persistent vector is a functional structure whose constituent values are indexed by a finite

contiguous sequence of non-negative integers 0, . . . , n −1 for n ≥ 0 (n is the length of the vector). Their

implementation is modeled on the persistent vectors of Clojure5. Just as one can prepend a new pair

p to the head of a list x without modifying x one can append a new element e to the end of a vector v

without modifying v . In both cases the original structure (here list or vector) remains unchanged and a

successor structure is returned as the result of the operation. To the extent possible the original vector

and its successor share substructure to minimize needless copying.

5http://clojure.org/

149

http://clojure.org/

vector/null is the persistent vector equivalent of the empty list nil. The length of the null (empty)

vector is 0.

(vector/persist? x) returns #t if x is a persistent vector and #f otherwise.

(vector/null? x) returns #t is x is the null persistent vector and #f otherwise.

(list-to-vector l) where l is a list of length n returns a persistent vector x such that the length of x

is n and each element x i is eq? to e i where l = (e0 . . . en−1). If list l is nil then vector/null is returned.

(vector-to-list x) returns a list (x0 . . . xn−1) of the n elements of x .

(vector/build n f) returns a persistent vector x of length n where x i = (f i) for 0≤ i < n .

(vector/cons x v) appends value v to persistent vector x returning a persistent vector y such that:

• (and (eq? x0 y0) . . . (eq? xn−1 yn−1)) is #t where n is the length of x

• n +1 is the length of y and

• (eq? yn v) is #t

The contents of x are left unchanged.

(vector/update x i v) returns a persistent vector y identical to x with the exception that yi = v . x is

left unchanged and where feasible y shares common structure with x .

(vector/length x) returns the number of elements in x as an exact, non-negative integer.

(vector/ref x i) returns element x i , i = 0, . . . , n −1 where n is the length of x .

(vector/cdr x) returns a persistent vector y that omits the last element xn−1 of x for any non-empty

persistent vector x of length n > 0.

(vector/subvector x i) returns a persistent vector y formed from the elements of x beginning with

x i and ending with xn−1 where n > 0 is the length of persistent vector x .

(vector/subvector x i j) returns a persistent vector y formed from elements of x beginning with

x i and ending with x j−1 for i < j ≤ n where n is the length of x .

(vector/map x f) returns a persistent vector y whose elements are (f x0), . . . , (f xn−1) where n is

the length of persistent vector x .

150

(vector/filter x p) returns a persistent vector y whose elements are those elements x i (in index

order) such that (p x i) is not #f.

(vector/fold/left x f s) returns the value of folding persistent vector x from left to right over the

function (f x i vi) where vi is the value of the prior fold i −1. The seed value for fold 0 is s .

7.5.2 Tuples

A Motile tuple is an immutable, fixed-length, heterogeneous vector whose length and contents are

fixed at creation time. Its constituent values are indexed by a finite set of contiguous non-negative integers

0, . . . , n −1 for n ≥ 0 (n is the length of the tuple).

(tuple v0 . . . vn−1) returns a tuple of length n whose elements, in index order, are the objects

v0, . . . , vn−1. It is the tuple analogue of list.

(tuple? x) returns #t if x is a tuple and #f otherwise.

(tuple/build f n)

Given a single argument function f and a non-negative integer n returns a tuple x of length n where

x i = (f i), i = 0, . . . , n −1.

(tuple/length x) returns the length n ≥ 0 of tuple x .

(tuple/ref x i) returns value x i of tuple x .

(tuple-to-list x) returns a list of the elements of tuple x in tuple order.

(tuple-to-list x i) returns a list (x i . . . xn−1) of the elements of tuple x where n is the length of x .

(tuple-to-list x i j) returns a list (x i . . . x j−1) of the elements of tuple x , 0≤ i < j ≤ n .

(list-to-tuple x) returns a tuple x0 . . . xn−1 of length n where x is the list (x0 . . . xn−1).

(tuple/copy x i) returns a tuple whose elements are elements x i , . . . , xn−1 of tuple x where n is the

length of x . If i = 0 then tuple/copy returns x .

(tuple/copy x i j) returns a tuple whose elements are elements x i , . . . , x j−1 of tuple x . If i = 0 and

j = n , the length of x , then tuple/copy returns x .

(tuple/append x y1 . . . yn) returns a tuple whose elements are the concatenation of tuples x , y1, . . . , yn .

151

(tuple/map x f) returns a tuple whose elements are (f x0), . . . , (f xn−1) where n is the length of

tuple x .

(tuple/filter x p) returns a tuple whose elements x i 0 , . . . , x i m , where i 0 < . . .< i m , are exactly the

elements of tuple x for which (p x i) is not #f.

(tuple/partition x p) returns a pair (u . v) where u is a tuple containing, in index order, all

elements x i such that (p x i) is not #f and v is a tuple containing, in index order, all elements x j such that

(p x j) is #f. In other words it partitions x into two disjoint tuples, the first containing all of the elements

of x that satisfy predicate p and the second containing all of the elements of x that do not satisfy p .

7.5.3 Persistent Hash Maps

A persistent hash map is an immutable collection of key/value pairs for which the keys are unique.

Hash maps are distinguished by the predicate the map uses to test key equality: eq?, eqv?, or equal?.6

After adding a key/value pair k/v to a persistent hash map h the result is always a successor hash map

h \ {k/x }∪ {k/v }where k/x is any key/value pair in h with key k (there is at most one). The predecessor

hash map h is left unchanged.

(hash/persist? x) returns #t if x is a persistent hash map. Otherwise #f.

Every hash map has the same starting point, an immutable and empty hash map. There are three

different empty hash maps, hash/eq/null, hash/eqv/null and hash/equal/null, whose names reflect

the the map’s predicate for key equality.

(hash/null? x) returns #t if x is one of hash/eq/null, hash/eqv/null, or hash/equal/null. Oth-

erwise #f.

(hash/eq? x) returns #t if the equality predicate of hash map x is eq?. Otherwise #f.

(hash/eqv? x) returns #t if the equality predicate of hash map x is eqv?. Otherwise #f.

(hash/equal? x) returns #t if the equality predicate of hash map x is equal?. Otherwise #f.

(hash/length h) returns the total number of key/value pairs in hash map h.

(hash/empty? h) returns #t if hash map h is empty. Otherwise #f.

6 Since two Scheme values can have the same print representation but fail to be eq? or eqv? two objects can “look” the same
but be distinct (non-identical) from the perspective of the hash map predicate for object equality.

152

(hash/add h k1 v1 . . . kn vn), given a hash map h, returns the successor hash map

h ∪{k1/v1, . . . , kn/vn}

adding the pairs k i /vi in sequence order. If the same key k appears in the list of key/value pairs more

than once then the last pair k/vi in the sequence appears in the new hash map. hash/new can be used

to create new hash tables (when h is one of hash/eq/null, hash/eqv/null, or hash/equal/null) or to

derive an update of a non-empty hash table h.

(list-to-hash h (k1 v1 . . . kn vn)) is equivalent to (hash/new h k1 v1 . . . kn vn).

(pairs-to-hash h ((k1 . v1) . . . (kn . vn))) is equivalent to (hash/new h k1 v1 . . . kn vn).

(hash/cons h k v) returns the successor hash map h ∪ {k/v } where h is a hash map and k/v a

key/value pair.

(hash/remove h k) returns the successor hash map h \ {k/v }when k/v ∈ h for some value v . Other-

wise returns h.

(hash/merge h g 1 . . . g n) returns the successor hash map that is the merge of hash maps g 1, . . . , g n

into hash map h. Any key/value pair k/v in g i whose key k appears in h is replaced with k/v in the

successor hash map. Any key/value pair k/v in g whose key k does not appear in h is added to the

successor hash map. The merge proceeds in sequence order and for any key k appearing in multiple

binding environments g i the key/value pair k/v in the rightmost g i will supplant all prior pairs with key

k in the successor hash map.

(hash-to-list h) returns a flat list (k1 v1 . . . kn vn) of all key/value pairs k i /vi in hash map h. The

key/value pairs are not in any particular order.

(hash-to-pairs h) returns an association list ((k1 . v1) . . . (kn . vn)) of all key/value pairs k i /vi

in hash map h. The key/value pairs are not in any particular order.

(hash/keys h) returns a list (k1 . . . kn) of all keys in hash map h. The keys are not in any particular

order.

(hash/values h) returns a list (v1 . . . vn) of all values in hash map h. The values are not in any

particular order and the same value may appear more than once.

153

(hash/ref h k f) returns the value indexed by key k in hash map h. If key k does not appear in h

then the failure value f is returned instead.

(hash/car h) returns the “first” key/value pair as (k . v) in non-empty hash map h. “First” here has

no particular meaning; it is merely the first k/v pair appearing in an implementation-dependent walk of

the hash map. If hash map h is empty then an error is raised.

(hash/cdr h) returns the hash map h \ {k/v } where k/v is the first key/value pair appearing in an

implementation-dependent walk of the hash map. In other words, hash/cdr returns the “rest” of a hash

map in the sense that cdr returns the “rest” of a list. If h is empty then an error is raised. hash/cdr is

equivalent to (hash/remove h (car (hash/car h))) but far more efficient.

(hash/contains? h k) returns #t if hash map h contains key k . Otherwise #f.

(hash/fold h f s) folds function f over the key/value pairs of hash map h and returns the value of

the final call of f . f is a function of three arguments: a key, its affiliated value, and the current seed. In

the very first call to f the seed is s . In all later calls the seed is the value of the immediate prior call to f . f

is called exactly once for every key/value pair in h and the presentation order of the key/value pairs to f

is implementation-dependent.

(hash/map h f) applies function f to every key/value pair in hash map h and returns a hash map

g = {k ′/v ′ | (k ′ . v ′) = (f k v), k/v ∈ h}. The equality predicate of g is that of h and the presentation

order of key/value pairs to f is implementation-dependent. hash/map is the hash equivalent of map for

lists.

(hash/for-each h f) applies function f , as (f k v) to every key/value pair k/v ∈ h for the sake of

the side-effects of f . hash/for-each is the hash equivalent of for-each for lists.

(hash/filter h p) applies predicate p , as (p k v) to every key/value pair k/v ∈ h and returns a

hash map g = {k/v | (p k v) 6= #f, k/v ∈ h}. The equality predicate of g is the equality predicate of h

and the presentation order of key/value pairs to p is implementation-dependent.

(hash/partition h p) returns a pair (g t . g f) of hash tables where

g t = {k/v | (p k v) 6= #f, k/v ∈ h} and g f = {k/v | (p k v)= #f, k/v ∈ h}

154

The equality predicates of g t and g f are the equality predicate of h. The presentation order of key/value

pairs to p is implementation-dependent.

(hash/and h p) returns #t if (p k v) is not #f for all k/v ∈ h. Otherwise #f is returned. This

combinator performs short-circuit evaluation and returns #f immediately if (p k v) is #f for any k/v ∈ h.

The presentation order of key/value pairs to p is implementation-dependent.

(hash/or h p) returns #t if (p k v) is not #f for any k/v ∈ h. Otherwise #f is returned. This

combinator performs short-circuit evaluation and returns #t immediately if (p k v) is not #f for any

k/v ∈ h. The presentation order of key/value pairs to p is implementation-dependent.

7.5.4 Persistent Unordered Sets

A persistent unordered set is an immutable collection of distinct objects. Unordered sets are dis-

tinguished by the predicate the set uses to test object equality: eq?, eqv?, or equal?.7 Since sets are

persistent all updates are nondestructive and leave the original set unchanged.

(set/persist? x) returns #t if x is a persistent set. Otherwise #f.

Every unordered set has the same starting point, an immutable and empty unordered set. There are

three different empty sets, set/eq/null, set/eqv/null and set/equal/null, whose names reflect the

the set’s predicate for object equality.

(set/null? x) returns #t if x is one of set/eq/null, set/eqv/null, or set/equal/null. Otherwise

#f.

(set/eq? s) returns #t if the equality predicate of set s is eq?. Otherwise #f.

(set/eqv? x) returns #t if the equality predicate of set s is eqv?. Otherwise #f.

(set/equal? s) returns #t if the equality predicate of set s is equal?. Otherwise #f.

(set/length h) returns the total number of objects in set s .

(set/empty? s) returns #t if set set s is empty. Otherwise #f.

(set/contains? s o) returns #t if o ∈ s . Otherwise #f.

7 Since two Scheme values can have the same print representation but fail to be eq? or eqv? two objects can “look” the same
(have the same print representation) but be distinct (non-identical) from the perspective of the setpredicate for object equality.

155

(set/add s o1 . . . on), given a set s , returns the successor set s ∪ {o1, . . . on}. set/add can be used

to create nonempty sets (when s is one of set/eq/null, set/eqv/null, or set/equal/null) or to add

objects to a non-empty set s . The equality predicate of the successor set is the equality predicate of s .

(set/remove s o1 . . . on) returns the successor set s \ {o1, . . . ,on}.

(set/union s1 s2 . . . sn) returns s1 ∪ s2 . . .∪ sn . The equality predicate of the union is the equality

predicate of s1.

(set/intersection s1 s2 . . . sn) returns s1 ∩ s2 . . .∩ sn . The equality predicate of the intersection is

the equality predicate of s1.

(set/difference s1 s2) returns s1 \ s2. The equality predicate of the difference is the equality predi-

cate of s1.

(set/difference s1 s2 . . . sn) returns s1 \ (s2∪ . . .∪ sn). The equality predicate of the difference is the

equality predicate of s1.

(set/subset? s1 s2) returns #t if s1 ⊆ s2. Otherwise #f.

(set/superset? s1 s2) returns #t if s1 ⊇ s2. Otherwise #f.

(set-to-list s) returns a list of the objects contained in set s . The ordering of the objects in the list

is implementation-dependent.

(set/fold s f i) folds function f over the objects in set s and returns the value of the final call of f .

f is a function of two arguments: an object and the current seed —in the first call to f the seed is i . In all

later calls the seed is the value of the immediate prior call to f . f is called exactly once for every object in

s and the presentation order of the objects to f is implementation-dependent.

(set/for-each s f) applies function f , as (f o), to every object o ∈ s for the sake of the side-effects

of f . set/for-each is the set equivalent of for-each for lists.

(set/filter s p) applies predicate p , as (p o) to every object o ∈ s and returns a set t = {o | (p o) 6=

#f,o ∈ s }. The equality predicate of t is the equality predicate of s and the presentation order of objects

to p is implementation-dependent.

156

(set/partition s p) returns a pair (rt . r f) of sets where

rt = {o | (p o) 6= #f,o ∈ s } and r f = {o | (p o)= #f,o ∈ s }

The equality predicates of rt and r f are the equality predicate of s The presentation order of objects to p

is implementation-dependent.

(set/and s p) returns #t if (p o) is not #f for all o ∈ s . Otherwise #f is returned. This combinator

performs short-circuit evaluation and returns #f immediately if (p o) is #f for any o ∈ s . The presentation

order of objects to p is implementation-dependent.

(set/or h p) returns #t if (p o) is not #f for any o ∈ s . Otherwise #f is returned. This combina-

tor performs short-circuit evaluation and returns #t immediately if (p o) is not #f for any o ∈ s . The

presentation order of objects to p is implementation-dependent.

7.5.5 Binding Environments

Motile is one of the few languages for which binding environments are first class objects.8 A binding

environment is a map whose keys are identifiers (Scheme symbols) and whose values are arbitrary Motile

values. A single identifier/value pair α/v is a binding in Motile parlance. The notation α/v ∈ b means

that b contains the binding α/v ; α∈b denotes that for some v , α/v ∈b ; and α /∈b means that α does not

appear among the keys of b .

A binding environment is a functional persistent structure; each is immutable and every update

is nondestructive. Augmenting, updating, or restricting a binding environment b always produces a

successor binding environment b ′ reflecting the change while leaving b unmodified. If α/u ∈ b and

binding α/v is added to b then α/v ∈ b ′ and b is left unchanged with α/u ∈ b . If α /∈ b and binding α/v

is added to b then α/v ∈b ′ and α /∈b .

There is a distinguished empty binding environment environ/null that is used as the starting point

for the construction of all binding environments.

Motile draws a sharp distinction between lexical scope and global scope. Global scope contains

the ambient procedures, functions, and constants on which programs rely, for example: cons for list

8 Other examples include Symmetric Lisp [102], Bla [181], MAST [255], and MIT Scheme [173].

157

construction, car and cdr for list deconstruction, or + and - for arithmetic to name but a few. Every Motile

expression is evaluated in the context of some explicit binding environment, B . Over the course of the

execution of a Motile closure its individual constituent expressions ε1, . . . ,εn may be evaluated in several

distinct binding environments B1, . . . , Bm . Unlike many other Scheme implementations, the Motile global

binding environment is explicit (rather than implicit), a consequence of the COAST Execution rule —

closures are evaluated in the context of an execution site 〈E , B〉where E is an execution engine and B a

global binding environment.

There are four Motile special forms9 devoted to binding environments:

• environ/get obtains the value affiliated with an identifier in a given binding environment.

• environ/add augments a binding environment with one or more bindings to obtain a modified or

enlarged binding environment.

• environ/reflect evaluates expressions in the context of a given binding environment.

• environ/delete eliminates bindings from a binding environment to obtain a more restricted bind-

ing environment.

These special forms accept literal symbols that denote the names of bindings (denoted as α) or literal

expressions (denoted as ε) as might appear in the body of a (lambda () . . .).

(environ/getb α u) returns value v ifα/v ∈b otherwise value u is returned. α is a literal (unquoted)

symbol.10

(environ/get b0 (α1 . . . αn) u) interprets a list of literal symbols (α1 . . . αn) as a “path” name for a

binding as:

b0
α1−−−−→b1

α2−−−−→ ·· ·
αn−1−−−−→bn−1

αn−−−−→ v

where:

• b1, . . . ,bn−1 are binding environments

• b i = (environ/get b i−1 αi #f), and

• v = (environ/get bn−1 αn u)

9Special forms are implemented directly by the compiler.
10 Consequently, environ/get cannot be used, for example, in a loop to explore the contents of a binding environment. This

is a security feature to frustrate efforts by visiting mobile code to discover the contents of any binding environments that they
encounter.

158

If any αi of the path fails to resolve then u is returned instead. Note that (environ/get b (α) u) is

equivalent to (though less efficient than) (environ/get b α u).

(environ/add b α1 . . . αn) returns successor environment b ′ that contains the bindings in b plus the

bindings of identifiers α1, . . . ,αn appearing in the lexical scope of the call to environ/add.11 The bindings

{α1/v1, . . . ,αn/vn} are added in sequence order.12 If b = environ/null then the successor environment

b ′ contains just the bindings α1/v1, . . . ,αn/vn and nothing more.

(environ/reflect b ε1 . . . εn) evaluates expression (begin ε1 . . . εn) in the context of the bind-

ing environ b and returns the value. In other words, b is the global binding environment for (begin

ε1 . . . εn).13

(environ/delete b α1 . . . αn) returns a successor binding environment that contains all of the bind-

ings of b with the exception of those with names α1, . . . ,αn .

The remaining functions for binding environments are available as procedures in island-supplied

binding environments. The baseline binding environment provides just two bindings: environ/null

and environ/merge.

environ/null is the canonical empty binding environment.

(environ/merge b b1 . . . bn) returns the successor environ b ′ that is the merge of environs b1, . . . ,bn

into environ b . If α1/v1, . . .αm /vm is the contents of binding environment b1 then

(environ/merge b b1)

is equivalent to

(let ((α1 v1) (α2 v2) · · ·(αm vm)) (environ/add b α1 α2 · · · αm))

11 The Motile compiler will raise a compile-time error if an αi does not appear within the lexical scope of the call to
environ/add.

12 Because the αi are literal symbols the Motile compiler knows (at compile-time) exactly which bindings are being added to
b . This prevents Motile code from performing automated sweeps of lexical scope bindings and eases tracking the propagation
of functional capability.

13 Any expression εi in a call to environ/reflect must contain variables that either lie in lexical scope or are available
as bindings in b . This makes it more difficult (though not impossible) for visiting mobile code executed in the body of an
environ/reflect to systematically explore the bindings of environ b .

159

and

(environ/merge b b1 · · · bn)

is equivalent to

(environ/merge (environ/merge b b1 · · · bn−1) bn)

In other words, the merge proceeds in sequence order and for any name α appearing in multiple binding

environments b i the binding pair α/v in the rightmost b i will supplant all prior binding pairs with name

α in the successor environ.

Other functions that may be available in some binding environments are: environ/length,

environ/capture, environ/map, environ/and, and environ/or.

(environ/length b) returns the total number of bindings in binding environment b .

(environ/capture) returns the current global binding environment in effect at the point of call.14

(environ/map b f) applies f to each binding α/v ∈ b , as (f α u), in an unspecified order and

accumulates the results in a list.

(environ/andb p) applies predicate p to each bindingα/v ∈b ,as (p α u), in an unspecified order. It

returns #t if (p α u) is #t in each case and #f otherwise. environ/and performs short-circuit evaluation

and will return #fas soon as any (p α u) evaluates to #f.

(environ/or b p) applies predicate p to each binding α/v ∈ b , as (p α u), in an unspecified order.

It returns #t if (p α u) is #t in at least one case and #f otherwise. environ/and performs short-circuit

evaluation and will return #t as soon as any (p α u) evaluates to #t.

7.6 Syntax

Here I sketch the syntax of Motile—a subset of R5RS [143] plus a few constructions borrowed from

R7RS [216]. Nonterminals (anything of the form 〈xyz〉) not defined here borrow their definitions from

R7RS.

14 There is a strong security argument for omitting environ/capture from the baseline binding environment as it allows
visiting mobile code to discover, with the assistance of a malevolent island, the contents (in the form of the binding names) of
the global binding environment assigned to its execution site. While no global binding environment available to visiting mobile
code should contain environ/map (which allows one to trivially construct a list of the binding names) visiting mobile code can
easily transmit the binding environment returned by (environ/capture) to an island service specifically constructed for the
logging and/or analysis of the names of the bindings.

160

7.6.1 External Representations

A 〈datum〉 is anything that the read procedure can parse. Note that any string that parses as an

〈expression〉will also parse as a 〈datum〉.

〈datum〉 −→ 〈simple datum〉 | 〈compound datum〉

〈simple datum〉 −→ 〈boolean〉 | 〈number〉 | 〈character〉 | 〈character string〉 | 〈byte string〉

| 〈symbol〉

〈symbol〉 −→ 〈identifier〉

〈compound datum〉 −→ 〈list〉 | 〈vector〉

〈list〉 −→ (〈datum〉*) | (〈datum〉+ . 〈datum〉) | 〈abbreviation〉

〈abbreviation〉 −→ 〈abbreviation prefix〉 〈datum〉

〈abbreviation prefix〉 −→ ' |` | ,| ,@

〈vector〉 −→ #(〈datum〉*)

Motile is implemented as a transpiler, consequently it relies on the underlying Scheme host for da-

tums. However, Motile the language is single-assignment, meaning that the simple datums, such as

〈character string〉 and 〈byte string〉, as well as the compound datums 〈list〉 and 〈vector〉, are immutable in

Motile programs.

The notations '〈datum〉, 〈̀datum〉, ,〈datum〉, and ,@〈datum〉 denote two-element lists whose first ele-

ments are the symbols quote, quasiquote, unquote, and unquote-splicing respectively.

7.6.2 Expressions

The expression syntax is essentially R5RS15 with a few elements of R7RS, specifically when, unless,

and letrec*. Unless explicitly noted otherwise in the grammar below all elements reflect R5RS.16

As a matter of convention a 〈command〉 is a procedure that does not return a useful value to its

continuation.

15Although case is not implemented.
16 The grammar itself is liberally cribbed from R7RS [216].

161

〈expression〉 −→ 〈identifier〉

| 〈literal〉

| 〈procedure call〉

| 〈lambda expression〉

| 〈conditional〉

| 〈environ expression〉

| 〈derived expression〉

〈literal〉 −→ 〈quotation〉 | 〈self-evaluating〉

〈self-evaluating〉 −→ 〈boolean〉 | 〈number〉 | 〈character〉 | 〈string〉

〈quotation〉 −→ '〈datum〉 | (quote 〈datum〉)

〈procedure call〉 −→ (〈operator〉 〈operand〉*)

〈operator〉 −→ 〈expression〉

〈operand〉 −→ 〈expression〉

〈lambda expression〉 −→ (lambda 〈formals〉 〈body〉)

〈formals〉 −→ (〈identifier〉*) | 〈identifier〉 | (〈identifier〉+ . 〈identifier〉)

〈body〉 −→ 〈definition〉* 〈sequence〉

〈sequence〉 −→ 〈command〉* 〈expression〉

〈command〉 −→ 〈expression〉

〈identifier〉 −→ See Section 7.1.1, page 62 of [216]

162

〈conditional〉 −→ 〈if〉 | 〈when〉 | 〈unless〉

〈if〉 −→ (if 〈test〉 〈consequent〉 〈alternate〉)

〈when〉 −→ (when 〈test〉 〈sequence〉) R7RS

〈unless〉 −→ (unless 〈test〉 〈sequence〉) R7RS

〈test〉 −→ 〈expression〉

〈consequent〉 −→ 〈expression〉

〈alternate〉 −→ 〈expression〉

〈environ expression〉 −→ (environ/cons 〈environ〉 identifier+) Motile

| (environ/ref 〈environ〉 〈identifier〉 〈substitute〉) Motile

| (environ/reflect 〈environ〉 〈sequence〉) Motile

| (environ/remove 〈environ〉 identifier+) Motile

〈environ〉 −→ 〈expression〉

〈substitute〉 −→ 〈expression〉

163

〈derived expression〉 −→ (cond 〈cond clause〉+)

| (cond 〈cond clause〉* (else 〈sequence〉))

| (and 〈test〉*)

| (or 〈test〉*)

| (let (〈local binding〉*) 〈body〉)

| (let 〈identifier〉 (〈local binding〉*) 〈body〉)

| (let* (〈local binding〉*) 〈body〉)

| (letrec (〈local binding〉*) 〈body〉)

| (letrec* (〈local binding〉*) 〈body〉) R7RS

| (begin 〈body〉)

| (do (〈iterator〉*) (〈test〉 〈do result〉) 〈command〉*)

| 〈quasiquotation〉

〈cond clause〉 −→ (〈test〉 〈sequence〉)

| (〈test〉)

| (〈test〉 => 〈recipient〉)

〈recipient〉 −→ 〈expression〉

〈local binding〉 −→ (〈identifier〉 〈expression〉)

〈iterator〉 −→ (〈identifier〉 〈start〉 〈step〉)

| (〈identifer〉 〈start〉)

〈start〉 −→ 〈expression〉

〈step〉 −→ 〈expression〉

7.6.3 Definitions

〈definition〉 −→ (define 〈identifier〉 〈expression〉)

| (define (〈identifier〉 〈define formals〉) 〈body〉)

| (define-macro (〈identifier〉 〈define formals〉) 〈body〉)

〈define formals〉 −→ 〈identifier〉* | 〈identifier〉+ . 〈identifier〉

164

Chapter 8: Evaluation: Live Update

To demonstrate that COAST is sufficiently expressive to implement adaptive decentralized services I

consider two challenge problems. The first, live update, the practice of modifying a service in place

without interrupting the service1, is presented here. The second, client-driven service APIs, is presented

in Chapter 9.

Even under a single sphere of authority the simultaneous update of a set of related services is often

impractical if not infeasible. In a decentralized system, simultaneous update may be impossible, as the

loosely aligned needs, goals, and timelines of multiple, distinct organizations may leave incremental

updates as the only path forward. Further, an organization may be forced to update services in response

to immediate legal, financial, security, regulatory, or consumer pressures. Here, incremental and dynamic

service update may be the wisest course; repairing and improving while preserving, without change, the

bulk of the existing service structure.

Live update2 modifies the code, structures, and data values of a running system in place without

halting the system or interfering with it [125]. Repairing bugs, upgrading features, inserting monitors

and probes for engineering analysis, patching security exploits, tuning performance, logging, auditing,

and early warning are facts of life for vital services. Live update strives to minimize service interruptions

even as the software is modified. Architectural styles that ease the complexity and risk of live update for

large-scale systems can be beneficial.

In section 8.1 I present the evaluation criteria for the two live update problems posed here. Section 8.2

illustrates and evaluates a live update for the faulty binding environment of an island execution site.

Section 8.3 revisits the problem of the previous section using “fire and forget” CURLs, a form of service

invocation that is unique to COAST. Section 8.4 briefly turns to more general forms of live update where

islands are provisioned with live update in mind, suggesting how the COAST rules can secure the broad

deployment of island services specific to live update.

1 Interruption is in the eye of the client. There will a brief delay, from the perspective of the client, while the service is
undergoing update but no outstanding service requests will be lost and clients can continue to issue service requests over the
course of the update.

2 The technical phrase dynamic software update (DSU) also appears frequently in the literature.

165

Section 8.5 tackles four distinct forms of service live update: in place (without hot backup), intra-

island with hot backup, in place with hot backup, and inter-island with hot backup. The latter three,

which implement transparent service recovery in the event that the update fails, are a gold standard for

live update. Section 8.6 compares the COAST solutions to other work in system-level live update. Finally,

section 8.7 summarizes the contributions of the COAST architectural style to live update for decentralized

services.

8.1 Evaluation Criteria

We know that architectural structure can aid dynamic updates. Early examples of dynamic software

adaptation drawn from architecture include the software buses Polylith [195, 196] and FIELD [202], the

dynamic data flow environment Weaves [112], and C2, an architecture for event-based components and

connectors [241].

How can we be assured that COAST-compliant systems will be adaptive? The evaluation criteria are

rooted in the observations of Oreizy and Taylor [185]:

• Architectural style can have a pervasive influence on the ease and range of dynamic adaptation for

systems constructed in the style; and

• Specific elements of a style contribute to the ease (or difficulty) of dynamic adaptation.

From this perspective a style is sufficiently expressive for adaptive decentralized services to the extent that

the style rules contribute to (or hinder) dynamic adaptations that are likely to arise in practice.

Taylor, Medvidovic, and Oreizy [239] examine the roles of architectural style in implementations of

live update and present a unified model, BASE (Behavior, Asynchrony of change, State, and Execution

context), for evaluating the innate capacity of an architectural style for dynamic adaptation. They observe

that styles amenable to live update provide the means to:

• Identify the system elements subject to change;

• Manipulate those elements;

• Restrain or redirect system interactions with those elements; and

• Extract, transform, and inject system state that pertains to those elements.

166

They also isolate two strategies that appear repeatedly in such styles: (1) malleable bindings and (2)

explicit messages/events in communication (both of which are embraced in COAST).

The BASE model has four aspects:

Behavior: What aspects of system behavior can be changed? Can new behaviors be added and existing

behaviors replaced or deleted? How are behavioral changes instigated and deployed? To what

extent are behavioral changes confined in extent, place, or duration?

Asynchrony of change: Is system execution suspended during change or does it continue to run in some

capacity? If the latter, how are partial changes dealt with? Can multiple changes occur simultane-

ously?

State: How is state captured and transformed for update? At what point are state updates applied? Are

state updates synchronized across the system? Is state updated lazily as it is accessed?

Execution context: System execution may proceed by virtual machine, interpreter, physical processor,

just-in-time compiler, or a combination of such. Updates must be mindful of the engine of execu-

tion and the execution representation to ensure that that the updates do not introduce errors or

unwanted effects.

COAST has much in common with its predecessor Computational REST (CREST) [69, 70] and whose

BASE factoring appears in [239]. Both COAST and CREST embrace computation exchange as a fundamen-

tal interaction among peers. Both permit peers to behave as service providers and service consumers

simultaneously. Both employ execution sites as flexible sandboxes for confining the resource, functional,

and communication capability of visiting computations. However, they differ in two critical respects:

CURLs and communication by introduction.3

While CREST had a generalization of URLs for naming computations those URLs were not crypto-

graphic structures, as are CURLs. Further, under CREST there was no hint of communication by in-

troduction and CREST could not dictate patterns of communication. Under COAST explicit control of

communication is woven into the fabric of the style. A CREST URL names either a computation or an

3 Overall, the security posture of COAST is far more aggressive and comprehensive than that of CREST. Motile treats
binding environments as a first line defense to confine functional capability and, in general, the binding environments of its
execution sites are far more confined than were those of CREST. In part this is attributable to additional experience in confining
visiting computations and to the Motile implementation of binding environments, where multiple binding environments
efficiently share common subsets of bindings. Sharing encourages greater variety among a family of binding environments
while minimizing memory consumption.

167

execution site. A COAST CURL names an ingress point while the communication model underlying COAST

(section 3.2) severs any connection between computation and communication. Hence computations

can remain anonymous and service providers are free to rearrange the linkage between communication

and computation to suit provider needs (say for live update).4

That same communication model allows COAST service providers and consumers to enforce arbitrary

contracts on communications including stateful constraints (section 3.2). CURLs are tamper-proof and

cannot be forged or guessed. While both styles permit arbitrary metadata in their communication names

(URLs for CREST and CURLs for COAST), CREST could not guarantee the integrity of that metadata, leaving

open a door to a broad class of attacks. COAST, on the other hand, guarantees the integrity of a CURL

and its contents. In consequence, CURL metadata can safely carry island-generated mobile code for

the purposes of contract enforcement, service definition, traffic tracing, service accounting, and other

service- and client-specific functions.

Taylor and company acknowledge that CREST was an elastic architectural style for dynamic adaptation.

We expect no less from COAST, a successor to CREST, which incorporates the elements (mobile code,

messaging, execution sites, and peers) that account for the plasticity of CREST. With respect to the BASE

framework:

Behavior: COAST peers (islands) may join and depart arbitrarily. Computations (state + code) are ex-

changed for execution among services (themselves computations) allowing for arbitrary run-time

behavior (in principle) among islands. The dispatch of closures and continuations is the mecha-

nism by which behavior is deployed and changed. The lifespan of a computation may vary from

milliseconds to months and computations can be added, replaced, or killed. Computations may

be executed in any execution site for which a client holds an appropriate CURL. A single com-

putation may dispatch multiple computations to multiple execution sites on multiple islands. A

single island may host multiple computations originating from the same island. In general there

are many-to-many relationships among islands and the computations residing on those islands.

Asynchrony of change: By definition of the COAST style the only interaction among computations is

asynchronous messaging. There is no other means by which computations can interact. Update

4 A CURL names the ingress point t • of a transport t . A client, holding a CURL u , has no idea of which computation (and
there may be more than one) holds an egress point t . of t and is therefore capable of receiving a message sent via t •.

168

is also asynchronous to the extent that the inter-computation relationships permit asynchronous

update. Inter-dependence among computations does not necessarily preclude asynchronous up-

date. Though the details are system-specific there is nothing in the style that prevents multiple

simultaneous updates.

State: All state transfers among COAST computations are explicit in the messages exchanged among

computations: the state is contained in ordinary values, the lexical scope bindings of closures, the

bindings of binding environments, or the stack frames and heap references of continuations. All

state transfers are immutable, which simplifies reliable state capture. The style does not make

explicit provision for state capture; however, service design that is sensitive to the requirements

of live update can reduce state capture and state transform to a simple deterministic procedure.

State updates can be applied at points within a service where state quiescence is guaranteed. State

updates can be synchronized across a system though this is both system- and update-dependent.5

Lazy state update is not addressed in the style (though nothing in the style prevents or forbids it).

Execution context: Execution context is always explicit, namely the execution site 〈E , B〉 of a computa-

tion. The smallest unit of update is a single closure and all visiting mobile code is “recompiled” for

its target execution site. It may be the case that a free variableα in an update closure has no binding

α/v ∈ B , in which case the update will fail post-restart if α is ever referenced.6

The BASE evaluation above indicates that COAST is hospitable to live update. Several aspects of COAST

and Motile/Island contribute to this conclusion:

• Execution sites are a natural locus of live updates. Computation exchange suggests that execution

sites are the locus of service provisioning and we see that reflected in the implementation of remote

evaluation and spawning (section 5.8). The binding environments B of execution sites 〈E , B〉 are

natural targets for live update when the scale of the update is at most a small number of bindings

αi /g i ∈ B .

• A nanoservice is a natural target for live update.7 COAST supports an architecture of cooperating,

5 In the most general case simultaneous live update across multiple spheres of authority may require decentralized barrier
synchronization. Decentralized barrier synchronization can be implemented using a dedicated (but ephemeral) service b as
the barrier. Each service s i undergoing update transmits the resolver rsi of an s i -specific promise psi to b (via a CURL ub for
b) and blocks, waiting on the resolution of the promise. When all s i have delivered a resolver to the barrier b resolves all of the
promises psi to a value indicating success. Timeout for failure is easily added, the requisite primitives are available in Motile.

6 The unresolved free variable could be detected by the Island deserializer in cooperation with the Motile recompiler. This
has not been implemented although the hooks are available in both the deserializer and the recompiler.

7 I use the term “nanoservice” to denote a single Motile islet that provides a service or side effect on behalf of a client. A

169

isolated, and independent nanoservices that are orchestrated by clients (who themselves may be

collectives of nanoservices). This view of service design, construction, and deployment favors live

update on the scale of an individual nanoservice for both clients and providers.

• Message flow is a natural target for achieving state quiescence. Manipulating message flow is a

powerful mechanism to ensure state quiescence, a necessary, but not sufficient condition, for

state capture, state transformation, and safe restart — each essential for reliable and scalable live

update.8

• The Motile/ Island reference implementation of COAST is “turtles all the way down.” The internal

architecture of Island adheres to the COAST style and the communication mechanisms that govern

inter-island communication apply in equal measure to the intra-island communications of co-

resident islets (that is, nanoservices, implemented as green threads, residing on the same island).

In fact, all of the internal island services (such as resource allocation, message routing and delivery,

remote evaluation, spawning, and reaping dead or expired services) are themselves implemented as

nanoservices bound together by patterns of immutable-message exchange. In short, the reference

implementation of Motile/Island is “turtles all the way down” and, consequently itself a promising

target for live update. To my knowledge COAST is one of the few architectural styles for which an

implementation of the style conforms to the style.

• COAST frameworks may reduce the difficulty of constructing and deploying systems that are live

update ready. Higher-order COAST service constructions, that is, services comprising a collective of

cooperating services, can safely accommodate live update provided that the live update respects

the underlying communication topology and semantics of the service. Live update can be woven,

by design, into the service frameworks for common patterns of organization and communication

among nanoservices; for example, the pattern of a reverse proxy that distributes incoming requests

to a collection of identical, but independent, services s1, . . . , sm .9

nanoservice may be one-shot (for example, a remote evaluation), issued solely for: (1) its side effect, for example, a remote
evaluation whose thunk (lambda () (f · · ·)) is effectively an RPC; (2) the return value of the thunk; or (3) both. Alternatively,
a nanoservice may be long-lived (a remote spawn) and may respond to requests issued elsewhere. Finally, a service provider
may perform a local spawn to create a nanoservice for internal use; local use by islets created on-island by remote evaluation or
remote spawn; or remote use by clients elsewhere in the network.

8 The server framework of the Erlang OTP library [158, 186] is an example of exploiting message flow for the sake of live
update. Motile, like Erlang, is a single assignment, multi-threaded language with immutable messages and many of the design
elements in the OTP frameworks have direct analogues in Motile/Island. Hicks ([125], section B.3.7, page 205–206) calls out
Erlang as a hospitable target for dynamic update and attributes this to two language features: all data is immutable (write-once)
and all thread communication occurs via message passing. Both features are requirements of the COAST style.

9 Again, the Erlang OTP server framework is an industrial-strength implementation of framework-based live update.

170

• COAST provides essential security for live update. As attractive as live update might be for the mainte-

nance and upgrade of nonstop systems it is also a potent tool for attack by which malicious agents

may introduce subtle flaws or security back doors into critical software infrastructure. COAST,

driven by the exigencies of decentralized systems, offers general, powerful, and adaptive security

mechanisms to reduce the risk of damage due to innocent error, oversight, or deliberate malicious

attack. These same mechanisms can obstruct, thwart, or prevent malicious attempts at live update.

To my knowledge this contribution to the security of live update is novel.

8.2 Exploiting Binding Environments for Live Update

The binding environment B of an execution site 〈E , B〉 can play an important role in service-side

updates where the update is limited to a few bindings within B . For example, many minor faults can be

remedied by wrapping a binding α/g ∈ B (where g is the faulty implementation) with a layer of adaptive

code that repairs the fault.

1(curl/remote
2Delta@ ; CURL for live update at island I.
3(lambda ()
4(let* ((B (island/environ/lookup ...)) ; Obtain defective environ B.
5(g (environ/get B alpha #f)) ; Fetch defective closure g from B.
6(repair
7(lambda (x) ; Transforms vector argument to list.
8(g (if (vector? x) (vector-to-list x) x))))
9(S (environ/add B alpha repair))) ; Successor environ.
10...))) ; Stage successor environ S for deployment within island.

Figure 8.1: Repair a defective implementation of function α in binding environment B and construct a
successor binding environ S that will be used in an execution site 〈E ,S〉 as a replacement for 〈E , B〉. The
function curl/remote (line 1) delivers a thunk (lines3–10) for remote evaluation and returns as its value
a promise whose resolution is the value of the remote execution of the thunk.

Figure 8.1 sketches the dynamic repair of binding α/g ∈ B on an island I . Assume that function α

was specified to accept either a list or a vector as its argument but its implementation g accepts only a

list. The repair is constructed as a remote evaluation (lines 1–2) delivered to I for evaluation within an

execution site 〈E ,∆〉whose binding environ∆ contains service functions tailored for live update. CURL

u∆ (line 2) is closely held and non-delegable; it is not known to any outside authority, and even if it were,

it can be used only by a tiny handful of islands J1, . . . , Jm (and perhaps only one island J) within a trusted

sphere of authority.10 The anonymous thunk (lines 3–10) implements the live update:

10 The public keys of those islands J1, . . . , Jm are encoded within CURL u∆ which cannot be altered without detection by I .

171

• The binding environment B containing the defective binding α/g is fetched from an island-level

registry of binding environments maintained by island I (line 4)

• The erroneous implementation g is fetched from B (line 5) and wrapped in an anonymous closure

to correct the flaw (lines 6– 8).

• A successor environ S is derived from B (line 9) where the repair is substituted for the binding of

α in B ; and S is subsequently substituted for B in the execution sites constructed by I for service

requests from other islands.

The repair is delivered to I as mobile code using a closely-held CURL u∆ specifically constructed for

island live update.

This live update, though trivial, illustrates several key advantages of COAST:

• An island can offer a customized execution site 〈E∆, B∆〉 whose execution site E∆ and binding

environment B∆ have been customized to support live update. For example, E∆ may implement

detailed logging that assists system administrators and developers in verifying an update and B∆

may contain unsafe, low-level functions for live update that are not available in any of the island’s

other execution sites.

• CURLs can be used to enforce access and security to prevent unauthorized agents from surrepti-

tiously modifying portions of a system. Critical elements of system infrastructure can be protected

by multiple, distinct CURLs to help ensure that no one single authority can act alone to conduct

live update. In short, CURLs can act as layers of protection to minimize damage where the attack

vector is the live update of the system itself.

• Live updates are mobile code in their own right executing within the confines of an execution site

devoted to live update. Consequently, developers and system administrators are not restricted to a

single update strategy and individual updates can be tailored as update-specific mobile code. In

addition frameworks for the deployment and monitoring of live update can be constructed entirely

as mobile code for delivery and execution at islands (in the same spirit as JavaScript applications

that are delivered browser-side for execution).

• Live update can be delivered as a nanoservice. The example of Figure 8.1 presented its live up-

CURL u∆ may narrowed in other ways, for example, it may have a limited lifespan (on the order of minutes), and may contain
restrictions limiting exactly which bindings of environ∆ the update can invoke.

172

date as a remote evaluation (itself a form of nanoservice) however, it could also be issued as a

remote spawn (by using curl/spawn in place of curl/remote), hence a long-lived COAST-based

nanoservice. The return value of a remote evaluation can contain information on the successive

stages of an update and a remote spawn can, in real-time, transmit on the incremental progress

of an update. A more elaborate nanoservice-based update may wait for confirmation at critical

points in the update before proceeding further or may notify administrators and developers of a

critical failure and then rollback its portion of the update to a prior version or a known safe state.

Live update nanoservicescan be deployed for many purposes: debugging, regression or A/B test-

ing, performance tuning, penetration analysis, adaptation to security threats, or as transitionary

infrastructure in preparation for large-scale pervasive updates.

• A live update is a closure, by definition, an amalgam of code and state. Consequently, it is trivial

to include needed additional state in a live update that may: parameterize the update, act as a

transition state enroute to a complete update, or to be incorporated into the end state of the update.

Further, since rich, live Motile data structures may be captured in lexical scope of the closure that

state may be incorporated into the target of the update without translation or restructuring or,

when interpreted, drive the orchestration of the update. Closures may be a important vehicle for

the delivery and installation of live updates.

However, the technique illustrated in Figure 8.1 has several limitations:

• Here the unit of service update is a single closure, however the technique can be trivially generalized

to accommodate the atomic update of multiple closures in a single binding environment.

• Service requests already in progress will continue to execute unchanged, using the deficient binding

environment B . However all future service requests will be executed in the remediated execution

site 〈E ,S〉.

• An island must be designed and implemented with live update in mind however, that burden can

be eased by frameworks for island implementation.

• It does not make provision for updates to internal island data structures and is limited to the tar-

geted modification of the binding environments of execution sites.11

11 The design of libraries for COAST-based live update (that is, collections of functions to be included in the binding envi-
ronment of a specialized island execution site) is an open research topic and the example of Figure 8.1 is merely suggestive and
not definitive.

173

The technique has the advantage of atomicity and graceful transition from old to new but an islet that

is already executing in the context of execution site 〈E , B〉 continues unchanged. If g migrates, via intra-

island messaging, then other on-island islets can hold g (the deficient implementation) and edge cases

can arise in which in which visiting computations, post-update, can conspire to circumvent the patch.12

8.3 CURL-based Live Update

A variant technique takes advantage of a CURL’s ability to carry arbitrary metadata, including closures.

In this case the remedy is code similar to that of Figure 8.1 but with the difference that the corrective code

is delivered to island I by way of a remedial CURL u r that service clients J would use to deliver a client

closure to I . Recall that every CURL u for island I is either generated by I over its lifespan or offline by

the sphere of authority responsible for I and that all of the metadata in any such CURL, including any

mobile code, originates with either I or its authority.13 Why bother to include repair code in CURLs when

live update is available? For several reasons:

• Client-dependent or client-specific repair.

• Support for legacy repair or backwards compatibility that is rarely required or strongly deprecated.

• Downgrading a service to limit or eliminate access to particular service features for the sake of secu-

rity, preparation for essential but disruptive upgrades, excessive workloads, or mitigation following

an attack, theft of service, or abuse of fixed assets.

• Time-, load-, or state-dependent degradation of the precision or accuracy of service to reduce

resource demands during periods of high load or when reducing latency takes priority over other

considerations.

• Experimental deployment of a repair to selected clients.

• Early deployment of a repair to favored clients.

• Differential repair (as dictated by distinct repair-carrying CURLs u r1 , . . . , u rm) permits service clients

to continue using legacy mobile code as they migrate to reformulated interfaces.

The mechanism works as follows. By convention, per-CURL metadata is represented by a binding

environment (essentially a wrapper around a functional, persistent hash table) whose keys are symbols

12 The security precautions detailed in Section 6.2 can be applied as a preventative.
13 Every CURL u for island I must be signed by I ’s secret signing key. Only two entities hold that key: island I itself and the

authority for I .

174

and whose values may include closures, data structures, continuations, binding environments, or other

CURLs. The symbol environ/repair can be bound to a closure (lambda (B) . . .) that accepts a binding

environment as its single argument, performs the necessary repairs, and returns the successor binding

environment S as its value. A “repair” CURL is yet another example of a highly differentiated service and

can enforce complex preconditions to limit its scope or application.

8.4 More General Forms of Live Update

More general forms of repair and live update are possible if an island implementation offers a degree

of self-reflection and manipulation. The general concept is simple, a closely guarded execution site

〈Eρ , Bρ〉, an execution engine and binding environment tailored for reflection and repair, to which the

service provider deploys targeted mobile code for live update. As an example, an island itself, as well as

the service domain-dependent bindings of its execution-site binding environments, will often depend on

critical shared libraries written in other languages. To illustrate, Island itself depends upon libsodium,

an open-source cryptographic library written in C.14 and an experimental island binding environment

supporting video encoding and streaming relied on libvpx, an open-source video codec (implemented

in C) for VP8 video streams [113]. Libraries such as these, and countless others large and small, are

repeatedly updated to correct bugs or omissions, improve performance and stability, extend functionality,

refactor interfaces, eliminate security flaws, or improve integration with other libraries.

Here COAST mobile code can deliver a shared library to a host, load that library into an island, and

reconfigure the island appropriately. Dynamic software update of this form can be used to: debug island

services, modify or refine logging, generate measurements, compare A/B configurations, patch library-

induced security flaws, update or refine services, introduce additional services, or repair flaws in existing

services.

For the sake of security and safety an island may configure multiple, distinct execution sites Si =

〈Eρi , Bρi 〉, where each Si is tailored for a specific live update task (such as debugging, logging, patching,

starting, halting or restarting services, downloading a software library, or linking island services to a

library) and access to each Si is guarded by one or more Si -specific live update CURLs uSi To help ensure

that the island administrative services Si are not abused islands can employ:

14 See https://www.gitbook.com/book/jedisct1/libsodium/details for additional information.

175

https://www.gitbook.com/book/jedisct1/libsodium/details

• Use count and rate limit gates in the ingress points named by uSi . A use count of 1 enforces single-

use making it impossible for an attacker to reuse uSi .

• Temporal gates within uSi to enforce “time locks” or constrain the lifespan of the CURL.

• Non-delegation within uSi to limit which islands may direct live update requests to a live update

target island.

• A strong secret password (an n-bit cryptographic-grade random number x) to validate a live update

request r . Here the CURL uSi accompanying r would include a cryptographic hash of h(x)15 Requst

r itself contains x and the live update target island validates x against h(x) before executing r ; if

the validation fails then r is discarded and the request ignored.16

8.5 Live Update for COAST

Under COAST the distinctions between service provider and service client may be blurred and a single

peer, acting as a client, may deploy remote spawns to peers elsewhere (both within and outside the sphere

of authority of the client) to establish long-lived nanoservices that take advantage of remote resources:

processor cycles, network bandwidth, databases, domain-specific binding environments, sensors, actu-

ators, and the like. In other words, an island can serve as a host for nanoservices that are deployed by

co-resident computations or remote computations on other islands without necessarily distinguishing

between the two. A computation x on island I that has established nanoservices on other islands else-

where in the network may also employ live update to patch bugs or deploy service upgrades. I briefly

explore variations on the update of a single islet: in-place, intra-island, and inter-island.

8.5.1 Live Update of a Remote Evaluation

COAST service clients may often act as a service provider, either on their own behalf or for the sake of

other service clients operating in the same sphere of authority. Every dispatch of a thunk f in a request

for remote evaluation is the enactment of a single-shot service request (the evaluation of f and the

transmission of its return value back to the client). Here live update is trivial; the client issues a successor

closure f + when the service is next enacted.

15 Using a modern, well-tested algorithm such as SHA256, SHA512, or SHA-3 for example) possibly augmented by a key-
stretching algorithm (such as PBKDF2, bcrypt, or scrypt).

16 All inter-island communications are encrypted. The current implementation uses a minor variant of CurveCP [16] incor-
porated into ZeroMQ [52]. See http://curvecp.org/ and https://github.com/zeromq/libcurve for additional details.

176

http://curvecp.org/
https://github.com/zeromq/libcurve

1(let loop ; Service loop.
2((s_1 ...) (s_2 ...) ... (s_m ...)) ; Initial state s_1 , ..., s_m.
3(let ((request (receive))) ; Block waiting for an incoming service request.
4(case (car request) ; Switch on request name.
5((r_1)
6... ; Body for response to request r_1.
7(loop s_1/r_1 ... s_m/r_1)) ; Fresh state after request r_1.
8...
9((r_n)
10... ; Body for response to request r_n.
11(loop s_1/r_n ... s_m/r_n)) ; Fresh state after request r_n.
12(else
13... ; Body for response to unknown request.
14(loop s_1/e ... s_m/e))))) ; Fresh state after unknown request.

Figure 8.2: A notional nanoservice loop whose state variables are s1, s2, . . . , sm . Each case ri is a request
of the form (ri a 1 · · · a ri) where ri is a symbol, the name of the request, and the a j are request arguments.
For each request some actions are taken (suggested by the freestanding ellipsis of lines 6, 10, and 13) and
the loop is recursively called with updated state variables s1/ri , . . . , sm /ri .

8.5.2 Intra-Island Live Update: Background

In many cases a nanoservice is structured as an infinite loop that accepts a service request, acts on

that request, generates the successor internal state of the service, and then loops again awaiting the next

request; that request loop is an ideal transition point for a safe, live update [107]. Figure 8.2 is a notional

example of that structure and with that structure in mind I sketch a framework for three distinct forms of

live update under Motile/Island :

update/here The update occurs in-place, that is, a nanoservice f executing in the context of an execution

site 〈E , B〉 “overwrites” itself — invoking a successor nanoservice f + atop the prior nanoservice f .

In other words, the islet that once executed f now executes f +.

update/near The successor f + executes on the same island I as the prior nanoservice f but as a different

islet; the successor may (or may not) execute under the same execution site as the prior nanoser-

vice. In this variant f is a hot backup for the successor f + and remains in place to resume service

should the live update fail. Once the update concludes and the successor f + is in place the prior

nanoservice f commits suicide.17

update/far The successor nanoservice f + executes on an island J different from the island I on which

the prior nanoservice f resides. This variant also preserves f as a hot backup should the live update

17 The thunk comprising f returns and the islet that animated f terminates.

177

fail. Once the update concludes and successor nanoservice f + is in place f updates itself in place

as a forwarding proxy f p for f +. Service clients holding CURLs u f for f can continue to use those

CURLs; each service request routed via a CURL u f will be received by f p and forwarded to f +.

In all three forms the live update is transparent and maintains continuity of service, though there may be

a delay as service transitions from the prior nanoservice to its successor.

In general live update comprises five distinct stages:

Capture the internal execution state S f of nanoservice f for restart of a successor nanoservice f + else-

where. This includes domain-specific state, state specific to the service instantiation (for example

CURLs, ingress points, and egress points), and any other service-specific state that must, for the

sake of continuity, survive the transition from prior to successor.

Translate the output of state capture, S f , to a form compatible with the expectations of the successor f +.

Abstractly, the state translation function τ : S f 7→S f + , is a bridge between the internal state of the

prior service f and the initial state of the successor f +. By definition τ is specific to both f and f +.

Transition from f to the successor nanoservice f +.

Rollback to the prior nanoservice f in the event state translation fails.

Retire the prior nanoservice f once the successor f + begins executing.

In essence, state capture delivers sufficient state to restart a service however, the meaning of “restart”

is, by necessity, imprecise and elastic.18 In many cases live update improves a service by repairing a defect,

improving performance, increasing transparency of service (for example, additional logging) eliminating

security flaws or adding additional security measures, or increasing the variety of requests to which the

service responds. However, live update is not necessarily additive or monotonic. An update can just as

easily: remove a service request that is deprecated or no longer used, eliminate a service request that

has been assumed, or supplanted, by another service, restrict a service under attack, or impose client-

specific restrictions in response to systemic abuse. Finally, updates may be nonfunctional including:

moving a service to an execution site tailored for debugging, monitoring for the sake of performance,

usage or detecting attacks, A/B testing prior to the introduction of an upgrade, load balancing, fleeing

compromised computing resources (for example, a cloud experiencing a DDOS attack), transfer of service

from one cloud to another or large-scale, live testing of disaster recovery procedures [26].

18 I use restart in the sense of crash-only software [29]where start and restart are synonymous.

178

There are three distinct manifestations of state capture that reflect the three different forms of live

update:

capture/here The captured state S will remain on-island and evaluated within the context of the execu-

tion site 〈E , B〉 in which it was captured. At a minimum it includes all of the fixed assets that the

service requires. By definition, fixed assets are Motile or Island objects that cannot be transferred

inter-island, for example, an input/output port, the ingress and egress points associated with islet

communications, the bindings of an execution-site binding environment, or a physical asset such

as a camera or pump. Since an island is a single address space shared among the islets executing

on the island and intra-island messages among islets are exchanged as shared references then ref-

erences to fixed assets can be transmitted from islet to islet on-island. However, given variations in

the execution engines and binding environments across execution sites there is no guarantee that

any execution site, other than the execution site of origin for S provides the capability to manipulate

the fixed assets a (if any) within S.

capture/near The captured state S will remain on-island but may be evaluated in the context of an exe-

cution other than the site in which it was captured. S includes all of the fixed assets that the service

requires but some assets may be represented in a manner that is execution-site independent. The

execution site in which S will be evaluated may contain capability that either permits an islet to re-

constitute a fixed asset from its execution-side independent representation or, directly manipulate

the fixed assets a whose references appear in S.

capture/far The captured state S will be transmitted off-island. Consequently, no fixed asset may appear

in S however S may contain descriptions of fixed assets expressed solely as Motile or Island values

that are suitable for inter-island transmission. Those descriptions may be interpreted by a recipient

of S to “reconstitute” a fixed asset (or its equivalent).

Because Motile is a single-assignment functional language the lexical scope bindings of a closureλ are

fixed and immutable at the point at which the definition of λ is evaluated. Consequently, a nanoservice

preserves static state in the lexical scope bindings of the thunk f dispatched to an islet for execution

and maintains dynamic state in the bindings of its service loop (see Figure 8.2, lines 2, 7, 11, and 14).

Implementing live update as a service request guarantees the integrity of state capture; the static state,

comprising the closure lexical scope bindings is immutable and, by construction, the dynamic state,

179

comprising the bindings s1, . . . , sm of the service loop, is complete and self-consistent.19

With this as background I sketch an implementation of the two forms of intra-island live update for

nanoservices: update/here and update/near in terms of the five stages of live update: state capture, state

translation, transition, rollback, and retirement. Each nanoservice f recognizes three service requests:

(UPDATE/HERE τ f + f +)

(UPDATE/NEAR r f +)

(UPDATE/FAR r f +)

where τ f + : S f 7→ S f + and r f + is the resolver for a promise p f + held by f +. I discuss UPDATE/HERE in

Section 8.5.3, UPDATE/NEAR in Section 8.5.4 and the third, UPDATE/FAR, in Section 8.5.5.

8.5.3 Intra-Island Live Update: In Place

We assume there exists a specific CURL for f , u f∆, by which f receives the request

(UPDATE/HERE τ f +)

That CURL is closely held; it may be time-locked, use-count or rate-limited, non-delegable or delegable

to only a small set of islands, or contains pure predicates (the equivalent of stateless gates) that rely on

go/no-go indicators residing on other islands. Unless a request UPDATE/HERE is delivered via u f∆ it is

ignored. The workflow for UPDATE/HERE is:

capture f collects its state inline as a Motile record S f . The field names and their values are f -specific.

translate f invokes (τ f + S f) to generate a record S f + , a state record for f +. The field names and their

values are f +-specific.

rollback If state translation fails then f restarts its service loop using the state arguments s1, s2, . . . , sm

(see Figure 8.2, lines 2, 7, 11 and 14).

transition f halts with a return value of (RESTART f + S f +). An island wrapper (itself structured as a

nanoservice) around nanoservice f recognizes the RESTART command and calls (f + S f +) — start-

ing the service loop of successor f +.20

rollback There is no rollback to f if the transition to f + fails.

retirement f self-terminates as it transitions to successor f +.

19 In other words, state capture is performed inline.
20 The presence of the wrapper guarantees that the closure f and its stack frames are garbage collected. One way to think of

the wrapper is that it executes in stack frames below that of the prior service f .

180

In other words, a live update/here is performed in place where the successor nanoservice f + inherits

the state of the prior version and occupies the same address space and execution site. In particular, since

all of the CURLs issued by f are still effective under f + other computations that held CURLS u f for f can

continue to use those same CURLs to transmit service requests to f +. To the extent that f + behaves as

did f the live update will be transparent to any former client of f .

8.5.4 Intra-Island Live Update: Co-resident

A more elaborate workflow is required for update/near where the live update f + executes on the

same island I as the prior version of the nanoservice but requires a different execution site, 〈E+, B+〉.

This can arise if update f + must have access to island resources different from those available in the

execution site 〈E , B〉 of f , such as more (or less) liberal allocations of processor cycles, memory or network

bandwidth, updated libraries, and the like. There are also security considerations that arise: nanoservice

f may be barred from creating spawns on island I (this would be enforced by ensuring that the primitive

curl/spawn does not appear in the binding environment B of f). Consequently, while f must cooperate

in the update we can’t rely on it to spawn f + and instead must turn to another computation x elsewhere

that has the capability to spawn computations on I in 〈E+, B+〉 — understanding that x may reside

elsewhere on an island other than I .

1(begin
2(define (f+/skeleton) ; Skeleton thunk for spawning f+.
3(let* ((promise/f+ (promise/new)) ; Promise to be fufilled by f.
4(resolver/f+ (promise/resolver promise/f+)))
5; Ask f for state capture S_f.
6(curl/send f_Delta@ (list (quote UPDATE/NEAR) resolver/f+))
7; Block waiting for pair (S_f . r_f) from f.
8(let* ((response (promise/block promise/f+))
9(S_f (car response)) ; State S_f from f.
10(r_f (cdr response))) ; Resolver r_f for promise p_f of f.
11(cond
12((tau_f+ S_f) => ; Translate S_f to S_f+ for f+.
13(lambda (S_f+) ; State translation OK.
14(promise/fulfill r_f (quote HALT)) ; HALT f.
15(f+ S_f+))) ; Start f+.
16(else ; tau_f+ failed.
17(promise/fulfill r_f (quote RESTART))))))) ; RESTART f.
18
19(curl/spawn I@ f+/skeleton)) ; Spawn skeleton on I in site <E+, B+ >.

Figure 8.3: The closures that x , executing on island J , spawns on island I to create nanoservice f +, the
successor to nanoservice f , itself executing on island I .

181

There are three additional complications:

• The state S f that f assembles for the sake of the update cannot be transmitted off-island I as it may

contain fixed assets intended for the successor nanoservice, also executing on I (after all, this is

what update/near means). But absent a guarantee that computation x resides on I , the captured

state S f cannot be handed off to x as an intermediary between f and f + (the fixed assets will

not survive transmission off-island). f must therefore transmit its captured state S f directly to its

successor f +.

• State translation τ f + must be executed in the execution site, 〈E+, B+〉, of the successor nanoservice

as it may rely upon bindings found only in B+.

• For the sake of safety and security we must ensure that f + interacts with f only when and as

prescribed.

The scenario also presents a “chicken and egg” problem that is a consequence of communication by

introduction: we cannot start f + without S f but f must transmit S f directly to f +, for which f requires a

CURL u f + for f + that itself must be generated by f +. By spawning a skeleton on I for f + that executes a

closure generated for it by x we resolve all four problems:

• f communicates its captured state S f directly to co-resident computation f + (via a promise gener-

ated by the skeleton).

• τ f + , the state translation from S f to S f + , executes in 〈E+, B+〉.

• x dictates all interactions with f and f + does not execute until those interactions are complete.

Thereafter, it is impossible for f + to communicate with f in any manner: either f + starts and f

halts or f + fails to start and f resumes service exactly at the point prior to the live update.

Given these assumptions x holds:

• CURL u f∆ for f .

• CURL u I granting x the capability to spawn a computation on I under the desired execution site

〈E+, B+〉.

• Closure f +, the successor nanoservice.

• Closure τ f + : S f 7→S f + , a state transform function for the live update of f to f +.

Figure 8.3 contains the Motile code that x will use to spawn f + on island I . For the sake of simplifying

182

the presentation, assume that the bindings for:

Variable Notation Line (Figure 8.3)

f_Delta@ u f∆ 6

I@ u I 19

f+ f + 15

tau_f+ τ f + 12

are in an outer lexical scope.

All of the five stages of live update: capture, translation, transition, rollback, and retirement, are

embodied in the thunk, f+/skeleton (lines 2–17 of Figure 8.3) that x spawns on island I in the execution

site 〈E+, B+〉 (line 19). The back and forth between the skeleton, executing on I , and f follows this course:

capture The skeleton creates a promise/resolver pair p f +/r f + (lines 2–3) and dispatches to f the service

request (UPDATE/NEAR r f +) via the CURL u f∆ (line 6). It then blocks awaiting the fulfillment of the

promise by f (line 8).

capture In response to the request (UPDATE/NEAR r f +) f creates a promise/resolver pair p f /r f and trans-

mits its state, S f , and resolver r f as pair (S f . r f) via CURL r f + to f + (thereby fulfilling the promise

p f + held by the skeleton). S f will include any CURLs, ingress points, and egress points that f has

accumulated. f will block, waiting on the fulfillment of promise p f .

translate The skeleton, on receiving (S f . r f) (lines 8–10), computes (τ f + S f) to translate state S f to a

state S f + for the start of f + (line 12).

retire If the translation is successful then a HALT request is sent to f by the skeleton via resolver r f (line

14). f , blocked on p f , will receive the HALT and cleanly terminate.

transition The skeleton, once it has commanded f to halt, transitions into f + passing S f + as the initial

state of f + (line 15). Control will enter the nanoservice loop of f + and, barring a fault or deliberate

halt, will not return.

rollback If the translation fails (the return value of (τ f + S f) was #f) then a RESTART request is sent to f

via resolver r f (line 17). The skeleton terminates without starting f + and f transparently resumes

service with the first pending service request.21

21 No service requests are ever lost in the transition; neither f nor f + read a service request until either f + has assumed
service or f restarts. This same protocol could also be used where both f and f + execute under the same execution site 〈E , B〉
— to ensure that f remains behind as a hot backup for f + should the transition fail. The only difference is that CURL u I must
target an execution site 〈E , B〉 on I rather than 〈E+, B+〉.

183

8.5.5 Inter-Island Live Update

It may be advantageous to create a successor nanoservice f + on an island J other than the island I

inhabited by the current version f . However, each CURL u f is tied to (and signed by) its island of origin,

I in the case of nanoservice f . If we instantiate f + on another island J then none of the CURLs u f issued

by f can be used to deliver service requests directly to f +. How then to preserve the CURLs of f for the

sake of transparent transition from f to f +? Update f as a proxy that forwards service requests directed

to f onward to the successor nanoservice f +. In other words, the price of updating a service to execute

elsewhere on another island is that the prior service must itself be updated and left behind as a proxy to

guarantee service transparency and continuity.

Assume that nanoservice f resides on island I and that the successor nanoservice f + will reside on

island J 6= I . A computation x , distinct from f , directs the live update by generating a custom closure

and spawning it on island J . Computation x has two intertwined goals: first, start the successor service

f + on island J , and second, repurpose the prior service f as a forwarding proxy p+ for f +. The rules of

communication by introduction require that p+ be introduced to f + otherwise it will be impossible for p+

to forward service requests to f + that are issued via older, outstanding CURLs u f . However, CURLs u f +

can only be issued by island J on behalf of f + and, absent access to the secret signing key and internal

run-time state of J , x must spawn a computation on J to generate such CURLs.22

To simplify the mechanics x relies on two higher-order, single-argument generators, F+ and P+, for

the successor closures f + and p+ respectively. The first generator, (F+ d), given a duplet d 23, returns a

closure f + where duplet d is bound within the lexical scope of f +. This technique, illustrated in Figure 8.4,

is a trope of introductory functional programming.

The second generator, (P+ u d), given the CURL u d of duplet d , returns a closure p+ where CURL

u d is bound within the lexical scope of p+. Proxy p+ will use CURL u d to forward service requests from

22 The sphere of authority responsible for J will closely hold the secret keying material of J . Any agency in possession of
those keys can generate CURLs that will (given assumptions about J ’s conventions for naming ingress points) be accepted
by J as valid, genuine CURLs for J . The distribution of Motile/Island contains examples of this and it is the mechanism by
which “bootstrap” CURLs uβ are generated offline and distributed out-of-band (for example, via email or embedded in web
pages) to island developers and users. However, as a matter of practical security, such CURLs uβ count little for live update
and any industrial-strength, COAST-based framework for live update will, by necessity, rely on dynamic communication-by-
introduction.

23 A duplet is a Motile object comprising a transport t , an ingress point t •, an egress point t ., and an unguessable CURL u d

for the ingress point t •. It establishes a private, communication-by-introduction path from a source computation x to a sink
computation y .

184

1(define (+n n)
2(lambda (x) (+ x n)))
3
4(let ((+17 (+n 17)))
5(+17 33))

Figure 8.4: The higher-order generator +n (lines 1–2) returns a single argument closure (line 2) that adds
n to its argument x . Such a closure is generated and bound to the variable +17 (line 4) that, when called
with an argument of 33 (line 5), returns the value 50.

island I , the former residence of nanoservice f , to its successor nanoservice f + residing on island J .

Since f +, on island J , contains duplet d within its lexical scope it can receive (read) the service requests

forwarded to it by p+ on island I .

Given these assumptions x holds:

• CURL u f∆ for f .

• CURL u J granting x the capability to spawn a computation on J under the desired execution site

〈E+, B+〉.

• F+, a higher-order generator for f +, the successor nanoservice.

• Closure τ f + : S f 7→S f + , a state transform function for the live update of f to f +.

• P+, a higher-order generator for p+, a forwarding proxy for f +.

• A closure τp+ : S f 7→Sp+ , a state transform function for the live update of f to p+.

As illustrated in Figure 8.5 thunk skeleton/f+ (lines 2–21) is spawned on island J (line 23) under

execution site 〈E+, B+〉. That computation orchestrates the live update: from nanoservice f on island I

to nanoservice f + on J . The skeleton, executing on island J , must first capture the state of f , S f .

capture The skeleton, on island J :

• Constructs a promise p f +/r f + (lines 3 and 4).

• Transmits the service request (UPDATE/FAR r f +) to island I via CURL u f∆ (lines 4 and 6).

• Blocks waiting for the promise to be fulfilled (line 8) as pair (S f . r f) (lines 9–10).

The service f , on island I :

• Receives the service request (UPDATE/FAR r f +)

• Assembles state S f . Since state S f will be transmitted off-island to J it may not contain any

fixed assets of I . It may however contain CURLS or island-independent descriptions of fixed

185

1(begin
2(define (skeleton/f+) ; Skeleton thunk for spawning f+.
3(let* ((p/f+ (promise/new)) ; Promise to be fufilled by f.
4(r/f+ (promise/resolver p/f+)))
5; Ask f for state capture S_f.
6(curl/send f_Delta@ (list (quote UPDATE/FAR) r/f+))
7; Block waiting for pair (S_f . r_f) from f.
8(let* ((response (promise/block p/f+))
9(S_f (car response)) ; State S_f from f.
10(r_f (cdr response))) ; Resolver r_f for promise p_f of f.
11(cond
12((tau_f+ S_f) => ; Translate S_f to S_f+ for f+.
13(lambda (S_f+) ; State translation OK.
14(let* ((forward (islet/curl/new ...)) ; Duplet includes CURL.
15(f+@ (duplet/resolver forward)); CURL of duplet.
16(p+ (P+ f+@)) ; Closure p+ has CURL f+@ of duplet.
17(f+ (F+ forward))) ; f+ has duplet.
18(promise/fulfill r_f (list (quote UPDATE/HERE tau_p+ p+)))
19(f+ S_f+))) ; Start f+.
20(else ; tau_f+ failed.
21(promise/fulfill r_f (quote RESTART))))))) ; RESTART f.
22
23(curl/spawn J@ skeleton/f+)) ; Spawn skeleton on J in site <E+, B+ >.

Figure 8.5: Thunk skeleton/f+ (lines 2–21) is spawned on island J (line 23) to undertake the live update
of nanoservice f on island I to nanoservice f + on J .

assets expressed as Motile values that can be serialized.

• Creates a promise/resolver pair p f /r f .

• Transmits, via resolver r+f , the pair (S f . r f) to island J in reply to the service request.

• Blocks waiting for promise p f to be fulfilled.

translate The skeleton, on island I , on receiving response (S f . r f) (line 8):

• Maps state S f into a state S f + for f + by executing (τ f + S f) (line 12).

• Fails to map state S f (τ f + returns #f). In this case we enter the rollback phase.

rollback The skeleton has failed to map state S f to the state S f + that the skeleton expects:

• Promise p f of f is fulfilled via resolver r f as the symbol RESTART by the skeleton and the

skeleton terminates.

• f , waiting on the resolution of promise p f , transparently restarts its service loop exactly where

it left off (all of its state is intact and unchanged). No service requests are lost and service

clients experience, at worst, a modest delay.

transition If state mapping (line 12) succeeds then the anonymous, single-argument closure of lines

186

13–19 is called with S f + , the return value of τ f + ; starting the transition phase:

• A single J -specific duplet is created (line 14) that will allow the proxy p+ on I to forward

service requests to f + on J .

• CURL u d is extracted from the duplet and bound to f+@ (line 15).

• A closure for forwarding proxy p+ is generated and bound to p+ (line 16). That closure con-

tains the CURL u d that will allow the proxy to transmit service requests to f +.

• A closure for f + is generated and bound to f+ (line 17). That closure contains the duplet (line

14) that will allow nanoservice f + to receive the service requests forwarded to it by proxy p+.

• Promise p f of f is fulfilled via resolver r f as the list (UPDATE/HERE τp+ p+).

• f , waiting on the fulfillment of promise p f , receives (UPDATE/HERE τp+ p+). In response f

transitions in place (update/here) to nanoservice p+ (see Section 8.5.3).

• f + is started as (f + S f +) (line 19) and enters its service loop awaiting the arrival of service

requests from proxy p+.24

retire nanoservice f is “overwritten” by proxy p+.

8.6 Related Work

A substantial body of work is devoted to the live update of legacy software25 while striving to maintain

adequate levels of safety, flexibility, and reliability. However, that work is largely untethered to either an

architectural style or even a specific architecture. Giuffrida and Tanenbaum [108] argue that progress in

live update is hobbled by an emphasis on legacy software and propose, as an alternative, live update for

systems that actively cooperate with updates to ensure a safe transition from old system to new. Given

the BASE model and prior work on the role of architecture in dynamic software update [182], I regard the

cooperative live update of Giuffrida and Tanenbaum as a call to ground live update in architectural styles

deliberately crafted to simplify large-scale system updates.

COAST-based live update bears comparison to the mechanisms developed for PROTEOS [107], an

operating system expressly designed for automated live update. While the techniques employed in PRO-

24 Careful readers may suspect that lines 18-19 (Figure 8.5) hide a race condition in which the proxy p+ can forward service
requests to f + before f + is ready to receive them and consequently, one or more service requests may be lost in transition. Not
so. The transport underlying the duplet constructed for forwarding (line 14) guarantees that all service requests arriving on
island J will be enqueued until received (read) by f +.

25 Hayden et al. [123] contains an excellent review of recent work in dynamic software update (see Section 7, Related Work,
pages 13:32–36).

187

TEOS are different from those detailed here, the PROTEOS concept of state quiescence is equally useful

in COAST and the event loops of PROTEOS subsystems are conceptually identical to the service loops of

COAST-based nanoservices.

The update-specific state filters of PROTEOS could be implemented per-island by update-aware exe-

cution sites. The interface filters of PROTEOS that are used to improve convergence guarantees could be

implemented by specialized transports and a few modest island-level reflective mechanisms. It could be

presented to clients as a privileged island nanoservice for which access is limited to closely-held CURLs

similar in spirit to the CURL u f∆ for nanoservice update.

PROTEOS employs an update manager that orchestrates updating multiple processes simultaneously

in a single update transaction. The COAST analog would be a specific per-island nanoservice for coordi-

nating and sequencing a set of nanoservice updates for nanoservices f 1, . . . , f m simultaneously. Under

PROTEOS the update manager is responsible for hot rollback of all services if an update transaction fails.

Their update manager can detect and automatically recover from a variety of errors including timeouts

in state quiescence that arise from erroneous orchestration conditions, deadlocks, or other synchroniza-

tions failures, timeouts for state transfer and translation (due to crashes, errors in state translation, or

service loops that fail to converge), and finally crashes or errors in the updates themselves. These issues,

vital for reliable and safe industrial-strength update, are ignored in the protocols presented in section.

Nonetheless, there are no apparent technical obstacles to the inclusion (as a nanoservice) of a an update

manager on each COAST island with comparable safeguards for multiple nanoservice upgrades in a single

transaction.

8.7 Summary

COAST provides fundamental mechanisms that reduce the complexity of live update. Mobile closures

encapsulate both state and code; a critical prerequisite for simplifying live update. As Motile is based

on Scheme, closures are first-class values that can be generated on-the-fly to satisfy the demands of

each specific update strategy. COAST is message-centric, reducing closure transmission and update

coordination to basic primitive operations. The serialization of structured data (lists, vectors, hash maps,

sets, records, and CURLs) encourages constructing state expressed as rich compositions of these primitive

structures, thereby simplifying state capture and state interpretation. Finally, the Island infrastructure,

188

which lies outside of the strict boundary of the COAST architectural style, is a hospitable environment for

live update. Spawning, where closures are dispatched to an island for execution, is the COAST-equivalent

of live code migration and is a necessary element of live update.

Services expressed as endless loops illustrate how a well-formed architectural construct can be ex-

ploited for sound state quiescence and capture. The mechanisms described for intra- and inter-island

live update (Sections 8.5.3–8.5.5) have their roots in COASTC A S T, a video streaming service in which live

streams can be moved in near-realtime from source to source (camera or forwarder) and from sink to sink

(forwarder or display service) [113]. There video encoding services (implemented as closures executing

in binding environments specialized for video capture and compression) were migrated from island to

island (and host to host) within a local area network. Video display services, implemented as closures

executing in binding environments specialized for video decompression and display, could simultane-

ously be migrated or duplicated live within the network. The use of CURLs to regulate access to video

sources or video sinks allowed COASTC A S T users to securely share video feeds and selectively restrict their

distribution.

More generally, these service structures hint at large scale, decentralized, simultaneous, live update

across multiple islands and multiple spheres of authority where a designated authority orchestrates a

hierarchy of decentralized update managers to execute a cross-authority update in a single transaction.

Update services of this breadth and depth are an interesting topic for future research.

Computation migration under COAST is a special case of intra- and inter-island live update where

f + = f and τ f + is either the identify function or a minor remapping of state S f . Migration is itself a useful

capability with many applications, for example:

• Services fleeing an island, host, or cloud that is under attack.

• Transferring a nanoservice f to a tailored execution site 〈E+, B+〉 for debugging, logging, perfor-

mance analysis, or security monitoring.

• Reallocating service resources to compensate for hardware or network failures.

Notably, migration, like live update, is transparent in the sense that service clients may experience a

minor delay in service but not a significant interruption. In particular, no service requests would be

lost as a consequence of migration. The techniques of state capture, state transfer, and state translation

189

can be used to generate nanoservice checkpoints as safe points for emergency restarts or to collect live

nanoservice state for fault predication, post-analysis, or soft real-time analytics. Lastly, replicating multi-

ple, identical nanoservice instances, for example, hot backups or members of a worker clan living behind

a reverse proxy, can be implemented using techniques similar to those of computation migration. Solu-

tions to managing large-scale, COAST-based infrastructure may provide fresh insights into the problems

of operating other large-scale services and infrastructure.

While many architectural styles offer dynamic adaptation, it is the rare style for which the adaptations

are expressed in the style itself. Every single step in the live update protocols is a consequence of one of

the COAST style rules. All of the mechanics of live update are either primitive mechanisms in Motile/Island

drawn directly from the style rules or constructed from those mechanisms (decentralized promises are

an example of the latter). The ease with which live update with hot backup can be implemented wholly

within the style by the style speaks to the adaptive span of COAST.

COAST offers unique security and safety benefits for live update. All access to the update machinery

of each individual service f is mediated by an unguessable f -specific CURL u f∆. Update-specific CURLs

protect services from malicious updates; granting the capability to update based on predicates including

time of day, rate of update, origin of update, number of updates, the state of f , and arbitrary island or

system conditions. Without access to CURL u f∆ it is impossible for any authority, either by accident

or design, to update f . Safe hot rollback is transparent (without loss of service) thanks to persistent,

functional data structures, immutable messages and the underlying communication model for COAST.

Communication by introduction and the systematic use of promises minimizes contact between succes-

sive versions of a service, shrinks the number of synchronization points, and reduces the risk of livelock

or deadlock during update.

Both computation exchange and object-capability contribute to the ease with which COAST-based

systems support safe and secure live update with hot backup. Computation exchange reduces the transfer

of state and code, a necessary precondition for live update, to a near triviality. Spawning is exactly the

mechanism one requires for both live update and migration. Object-capability plays multiple roles: the

destination execution site for the successor service, closely held CURLs devoted solely to the operations

required for live update, and decentralized promises for securely communicating the intermediate results

of the update process between the prior service and the successor service.

190

Chapter 9: Evaluation: Web API Design

In this chapter I explore the claim sufficienlty expressive for adaptive services from the perspective

of service APIs for web services.1 Service APIs are not born perfect or immutable—they change over

time reflecting: customer demands for additional features, repairs to remedy semantic or security flaws,

accumulated experience with the convenience, function, or efficiency of the service, business pressure

to differentiate the service offerings from those of competitors, changes in regulatory requirements, or

contractual obligations, to name but a few of the “new or altered circumstances” influencing service

evolution. In this context I evaluate the ability of COAST to accommodate the ongoing, natural evolution

of service APIs from the perspective of service consumers, that is: can service consumers eliminate or

repair inconsistencies and omissions in the service APIs of providers?

Section 9.1 briefly reviews web APIs from a COAST perspective, focusing on the Delicious API, a well-

known service interface for web bookmark services, Section 9.2 contains a review the HTTP version

of the Delicious API and characterizes its flaws. Section 9.3 restates the Delicious API, reducing it to a

mere three functions for inclusion in the binding environment of an execution site of a service provider

for web bookmarks. Section 9.5 turns to the core problem of (re)constructing a service-rich API using

nothing but consumer-generated mobile code and presents a rich set of examples that demonstrate the

ease with which service consumers can remediate the deficiencies or omissions of provider-side APIs.

Section 9.6 briefly touches on the performance of consumer-defined APIs. Finally, section 9.7 summarizes

the contributions of COAST-based live adaptation for API repair and extension.

9.1 Web Service Design from a COAST Perspective

From a service perspective COAST is as expressive as REST or WS-* since Motile/Island can emulate

HTTP/1.1 or SOAP [156, 157]. Further, a Motile/Island peer can interact seamlessly with HTTP/1.1-

compliant web sites and browsers; acting as a web client or web server respectively. One can craft COAST

execution sites that emulate the essential semantics of either REST or WS-* since an execution site can

1 Public facing web services are commonly decentralized as the the web browser (the client) often operates under a sphere
of authority that is distinct from the sphere of authority of the web server. Web services internal to an enterprise, for example,
time card reporting or purchase requests, are distributed but likely not decentralized.

191

be populated with the functional equivalent of the basic REST methods GET, PUT, POST, and DELETE or,

since RPC is a proper subset of the COAST semantics, the functional equivalent of WSDL service methods.

However, both REST and WS-* service APIs fall prey to the many failings of software libraries including

awkward or incomplete primitives, irregular coverage of the domain, inappropriate granularity, complex

arguments, specification errors, and inconsistencies within and among like services [9].

Despite the historical failings of the APIs of software libraries or frameworks, an integrated collection

of functions dedicated to a specific domain or task can offer many advantages including ease of use,

precision of interface, and a high degree of utility. With respect to service COAST offers a “third way” in

which fine-grain service primitives are made available to service clients as individual functions within the

binding environment of an execution site and, unlike REST or WS-*, this primitives are combined as the

client, not the provider, dictates. Even if the COAST service primitives are the direct analogues of RESTful

requests, COAST mobile code allows multiple requests to be batched together and refined server-side to

deliver just the results the client requires and nothing more. In addition, as we argue below, deficiencies,

errors, or omissions in these APIs can be remedied by the service provider, the service client, or both,

thereby accelerating the evolution and refinement of decentralized services.

Web service APIs and the details of their HTTP requests and responses are often hidden behind

a language-specific facade (C, Go, Python, or Ruby for example). Denaro, Pezzè, and Tosi [56] examine

integration issues in a case study of Web 2.0 social applications that integrated the published HTTP-based

APIs of Delicious or OpenSocial.2 I focus here on the Delicious API.

The Delicious web site, https://delicious.com/, is a social tool for saving and sharing bookmarks

to web sites of interest and for also browsing popular web content. Its API—Plain Old XML (POX) over

HTTP—and far from RESTful has been adopted by other social bookmark web sites. In addition, on the

client side, multiple libraries are available for the Delicious API in Java, PHP, and Python. Given m distinct

Delicious-compatible web sites and n available Delicious API client libraries (hence m ×n combinations

of sites and client libraries) Denaro et al. explore the integration problems this diversity presents and I use

their findings to guide an evaluation of COAST-based adaptation and remediation for service providers

and service clients alike. I begin with a synopsis of the Delicious API and from there use the findings of

Denaro et al. as a springboard for presenting COAST-based provider- and client-side remediations.

2 https://delicious.com/developers and http://docs.opensocial.org/display/OSD/Specs respectively.

192

https://delicious.com/
https://delicious.com/developers
http://docs.opensocial.org/display/OSD/Specs

Table 9.1: The Delicious HTTP interface for searching and manipulating bookmarks.

Method Path Description
GET /posts/update Check to see when a user last posted an item
POST /posts/add Add a new bookmark
GET /posts/delete Delete an existing bookmark
GET /posts/get Get bookmark(s) for a single date, or fetch specific bookmarks
GET /posts/recent Fetch recent bookmarks
GET /posts/dates List dates on which bookmarks were posted
GET /posts/all Fetch all bookmarks by date or index range
GET /posts/all/hashes Fetch a change detection manifest of all bookmarks
GET /posts/suggest Fetch popular, recommended, and network tags for a given URL

9.2 The Delicious API

The Delicious API accommodates three distinct classes of objects: bookmarks, tags, and bundles.3

I confine my discussion to the two fundamental classes, bookmarks and tags. Each bookmark contains

a web URL and metadata including tags, an indexing mechanism for bookmarks. Each bookmark is

assigned one or more tags t1, . . . , tm and each tag t may be affiliated with multiple bookmarks b1, . . . ,bn .

The API is far more RPC-like than it is RESTful [135]:

• The first class objects of the Delicious data store, bookmarks and tags, are not exposed as resources.

• The HTTP methods are used incorrectly and the HTTP method GET is repeatedly used to implement

non-idempotent operations.

• The resource operations are not interconnected. It is impossible to traverse from a set of bookmarks

to a single bookmark or from a tag to the set of bookmarks indexed by that tag.

Bookmarks are the building blocks of Delicious and each contains a web link (URL) and several

elements of metadata. There are nine API requests for bookmarks, enumerated in Table 9.1. Tags are

brief, descriptive text strings that users attach to an URL to describe and categorize a bookmark. There

are three API requests for manipulating tags, shown in Table 9.2.

Denaro, Pezzè, and Tosi [57] uncovered four distinct classes of integration faults:4

• Inconsistent interpretation of parameters or values. Here the API interpretations are reasonable but

3 To simplify the discussion I ignore the Delicious authentication protocol https://github.com/avos/delicious-api/
blob/master/api/oauth.md. The specification of the API, https://github.com/SciDevs/delicious-api, is thin, incomplete,
and omits many critical details. I also ignore the specifics of the XML representation of the Delicious responses as XML (or JSON
for that matter) as the format for responses is a matter for the client mobile code and not the COAST service provider.

4 Taken from page 256, Table 3 of [56]. Detailed experimental data available in [245].

193

https://github.com/avos/delicious-api/blob/master/api/oauth.md
https://github.com/avos/delicious-api/blob/master/api/oauth.md
https://github.com/SciDevs/delicious-api

Table 9.2: The Delicious HTTP interface for searching and manipulating tags.

Method Path Description
GET /tags/get Fetch all tags from all of a user’s posts
GET /tags/delete Delete a tag from all of a user’s posts
GET /tags/rename Replace all occurrences of a tag with a new tag within a user’s posts

incompatible: old parameters or their values are now interpreted differently, parameter orders may

have changed, or new positional parameters have been inserted between older parameters.

• Violations of value domains or capacity/size limits. The older API relies on implicit assumptions on

ranges of values or sizes that no longer hold for the newer API. For example, a newer API my arise

from improvements in scaling or performance that allow services to cope with larger workloads.

• Side-effects on parameters or resources. The implicit effects of an API on resources (whether sever-

side or elsewhere) are not explicitly documented in its interface.

• Missing or misunderstood functionality. Incorrect assumptions about results due to incomplete

documentation.

In addition, many REST and WS-* APIs rely heavily on strings for parameter passing. For example,

the Delicious API uses strings with embedded separators to represent list parameters and results but fails

to define the set of legal separators [245]. This is but one example of the dangers of string parameters:

they may require parsing and can be exploited in scripting attacks [230]. In Motile this flaw is easily

remedied as immutable lists are a basic data type, easing the representation of common structures such

as sequences, trees, and acyclic directed graphs. In many cases the specific flaws and omissions in the

del.icio.us API can be eliminated outright by using well-defined Motile data types, reducing the API to

simpler primitives, and exploiting closures and binding environments as functional supplements.

9.3 Delicious as a COAST-Based Service

I restate the Delicious API as a small set of functions for inclusion in a binding environment B of

an execution site 〈E , B〉. Clients deploy remote computations to “Delicious” islands for evaluation to

add bookmarks, search sets of bookmarks or tags, and add or tags. Unlike Delicious I assume that the

bookmark database maintains a complete temporal history of a user’s collection of bookmarks, that is,

each bookmark is maintained, in temporal order, from most recent to oldest. In other words, the database

of bookmarks is persistent and any user u can effectively snapshot her bookmarks by noting the time of

194

the most recent bookmark of interest. Further for any other user v, v 6= u user u can snapshot v ′s book-

marks in the same way. Unlike Delicious tags are treated as first-class objects and can be manipulated

independently of the bookmarks with which they are affiliated.

To simplify the presentation I ignore the details of user authentication and assume that for each user

u there exists a secret (known only to u and the bookmark service) cryptographic token su that identifies

u to the bookmark service provider. Each user u also has a public token, known to other users v , that

uniquely names u ’s database of bookmarks and tags. Again for the sake of simplicity, I assume that the

bookmarks and tags of each user are public and, given the public token for a user u any user v may read

the bookmarks and tags of u .

For convenience I adopt the following nomenclature: an url is an URL given as a string, an id is a

cryptographic-grade random number (given as a byte string), a datestamp is a POSIX-like timestamp (also

known as Unix epoch time), the number of elapsed milliseconds since 1970-01-01T00:00:00Z. and a date

is a datestamp or a cons cell (s . e) where s and e are each datestamps, s ≤ e . The cons cell defines the

half-open range t ∈ [s , e), s ≤ t < e . Affiliated with each bookmark is metadata comprising a list of tags.

Each tag is a three element list (n α v) where n (a string) denotes a namespace, α (a string) is an attribute

within that namespace and v is a Motile value associated with p in n . For the sake of simplicity we restrict

a value to be a primitive value (boolean, number, symbol, string, byte string), a list, vector, or a recursive

construction of same. A tag namespace defines (perhaps informally) a set of recognized identifier names

and their types. The interpretation of a tag value is namespace- and attribute-dependent.

Figure 9.1 contains example tags for the namespaces location, rollercoaster, restaurant, and

siunit. The location namespace contains attributes such as street, city, state, country, latitude

and longitude where the values for longitude and latitude are in degrees. The photo namespace with

attributes: format (with values, "JPG", "PNG", or "GIF"), height and width (both in pixels) may be used

to describe photographs. Tag namespaces, such as rollercoaster or restaurant, may be ad-hoc or

left open to experimental expansion and variation. Here we see that the namespace rollercoaster has

a height identifier whose value is given in meters and that the restaurant namespace has a cuisine

attribute that specifies the style or method of cooking offered by a restaurant.

In the examples to follow I assume that clients define a simple set of access and query functions, enu-

merated in Figure 9.2, to inspect individual tags. The three functions, tag/namespace, tag/attribute

195

("location" "country" "France")
("roller coaster" "height" 99.06)
("location" "latitude" +33.6454)
("location" "longitude" -117.8426)
("restaurant" "cuisine" "Tex-Mex")
("photo" "format" "JPG")
("photo" "height" 1200)
("photo" "width" 1600)

Figure 9.1: Sample bookmark tags.

1(define (tag/namespace t) (first t))
2(define (tag/attribute t) (second t))
3(define (tag/value t) (third t))
4(define (tag/namespace =? t s) (string =? (tag/namespace t) s))
5(define (tag/attribute =? t s) (string =? (tag/attribute t) s))

Figure 9.2: A few utility functions for inspecting and querying tags.

and tag/value (lines 1–3), are accessors for the elements of tags. The two functions, tag/namespace=?

and tag/attribute=? (lines 4–5), test for a given tag namespace or attribute.

Finally, a bookmark is a Motile record containing the fields shown in Table 9.3.

Table 9.3: The fields of a bookmark.

Name Value Description
id id Unique record identifier
created datestamp Creation date and time of the bookmark
user string Public token of the user that created the bookmark
url string URL of the bookmark
tags list (t1 · · · tm) where each t i is a tag

9.4 A Motile API for Delicious

A Motile/Island service provider can gracefully extend and adapt a service API in many ways. One

strategy is to delegate the evolution and adaptation of the service API to the service clients; observe how

clients overcome the perceived shortcomings or inconsistencies of the API and allow their innovations to

guide alterations and improvements. For example:

• Add or extend service primitives to include use cases that are not accommodated by the current

service API

196

• Add service primitives that address commonly observed patterns of extension to improve perfor-

mance, reduce resource consumption, or ease the burdens of client adaptation

• Eliminate, generalize, or refactor service primitives that are infrequently used

• Refine existing service primitives to eliminate unanticipated edge cases

In other words, a service provider can crowdsource the evolution of its API and offer distinct versions of

the API a i (using CURLs that reference distinct execution sites Sa i for the sake of testing, experimentation,

and evaluation.

Open-source software developers implement libraries for almost every imaginable domain and the

culture of open-source encourages those who incorporate these libraries into their own work to repay

the gifting with bug reports, constructive criticism, patches, and suggestions for improvements. These

artifacts, captured in issue trackers, mailing lists, test reports, blogs and the commits of revision control

systems, are invaluable for experimental and data-driven software engineering. However, mobile code

systems such as Motile/Island offer yet another perspective on the evolution of software — a service

provider can observe, in detail, how a service API is employed by its service clients.

There are two opportunities for observation, one static and the other dynamic. Static observation oc-

curs when mobile code arrives at an island for execution and is recompiled from its on-the-wire network

representation into closures. At this point, an island can detect closures that reference island-specific APIs

of interest and these closures can be captured and archived for later analysis by program comprehension

tools [4].5

Dynamic observation of visiting closures that invoke elements of a provider API may give service

providers additional insight into client-generated extensions. Service providers may want to enforce

computational contracts, that go beyond verifying a function’s input and output conditions to include

events that occur within the function such as prohibiting or verifying that certain functions are called,

checking access permissions, time or memory constraints, or interaction protocols [211].

The static analyses (generated by program comprehension tools) of visiting closures can be combined

with the dynamic observations of those same closures to create detailed, trace-like views of the behavior

5 There is a single instruction in the Motile assembly graph (MAG) that references a global binding by name. It would be
a straightforward extension to include to those references, say as a tuple of symbols, in the closure representation of visiting
mobile code.

197

of client closures that detail when, how, and why domain-specific API functions are invoked [74]. In

this sense, service clients inform service providers of their intentions and interests. The combination

of static analysis and dynamic measurement of visiting mobile code suggests an alternative model of

software development in which the alteration, growth, and extension of an API is informed (and indirectly

crowdsourced) by the mobile code that clients submit to providers.6

What should be the starting point for a client-driven API? I suggest that a minimal API can maximize

client innovation as it imposes fewer constraints, offers greater scope for interesting forms of special-

ization, and can suggest designs, use cases, or optimizations that might not arise otherwise. A more

expansive API imposes the preconceptions of the service developers on its clients at the risk of closing off

avenues of diversity. With this in mind, I adopted three constraints for a Motile-based alternative to the

Delicious API :

• Reduce the service-provider API to a bare minimum: one function each for search, read, and create

• Restrict the binding environment of the service execution site to a pure functional subset7 and

• Assume that only remote evaluation is available to service clients

These constraints are the backdrop for a rich, purely functional API for a Delicious-like bookmark ser-

vice — constructed by clients from a microscopic collection of domain-specific, service-provider prim-

itives (three in all) and the basic functions found in any modern Scheme. Since the purpose of Motile

remote evaluation is to sharply confine the communication capability of the visiting mobile code the

primitives for both inter- and intra-island communication are absent from the provider’s execution site,

as is curl/spawn, the primitive for spawning islets (either on- or off-island) and its lesser cousins, the

variants of curl/remote (see Section 5.10). Consequently, no visiting client closures have the luxury of

constructing concurrent data extraction pipelines or exploiting transports (see Section 3.2.1) as buffers

for intermediate data products.

The fundamental organizing principle of the database is temporal: bookmarks are ordered by the

time of their creation, from most recent backwards to the oldest. Users may add new bookmarks but no

bookmark is ever deleted (hence the database is persistent and a user/timestamp pair (u . t) amounts

to a checkpoint of the database for user u at time t . More recent bookmarks take precedence over older

6 See [47] for an excellent survey of recent work in program comprehension via dynamic analysis.
7 In line with the B A S E L I N E binding environment defined by Motile/Islandas the starting point for constructing binding

environments.

198

bookmarks but all bookmarks, irrespective of age, are available via temporal search. The bookmarks of a

user u may be inspected (but not modified) by any user v 6= u and only u may add to the bookmarks of

u . With these constraints in mind I model a Motile API roughly comparable to a RESTful API proposed

by James [135] as I shift the burden of formulating service extensions to the service consumer.

Only three API functions are available for searching, creating, and manipulating bookmarks and tags:

• bookmarks/iterate to read portions of the bookmarks database

• bookmark/get to fetch a specific bookmark

• bookmark/post to create a bookmark.

Each is detailed below.8

The bookmark database is append-only and persistent. Bookmarks may be added but not deleted

or updated and tags are immutable. To update the tags of a bookmark b with url x and tags (t1 · · · tm)

a user creates a new bookmark b ′ with url x but with different tags. For example to delete tag tk of

bookmark b posts a new bookmark b ′ with url x and tags (t1 · · · tk−1 tk+1 · · · tm). Consequently, the

addition and deletion of tags with respect to a bookmark is atomic.

The client-side extensions rely on iterators defined by the API of the execution sites of the bookmarks

service. An iterator g is a specialized continuation (in these examples implemented as a thunk) that

implements a traversal of a collection of values x1,x2,9 On success (g) returns a pair (x . h) where x

is a value from the traversal and thunk h is the successor of iterator h, itself an iterator that returns the

successor next value/iterator pair (if any) in the traversal. If no more values x remain in the traversal then

(g) returns #f. Iterator g is idempotent and each invocation (g) of g returns the same pair (x . h). In

this sense g is a both a continuation of the iteration and a snapshot of the iteration; g can be called at

any point in the future to “restart” the iteration at exactly the same point in the traversal.

(bookmarks/iterate u d) is a generator (a function that returns a function) that returns an iterator

g over the set of bookmarks for the user whose public token is u over date d . The iterator traverses the

bookmarks of user u in temporal order from most recent (first) to oldest (last). If d is a single datestamp

then the set of elements is restricted to the day given by the datestamp. If d = (s.e) then the set of

8 As a matter of convenience I assume that wherever a datestamp is called for it may also be given as a string in ISO 8601
format, for example, "2015-11-28T10:16:42Z".

9 The order of the traversal depends upon the structure of the collection and the semantics of the traversal, for example, the
iterator of a tree may perform a depth-first or breadth-first walk, thus the traversal is some sequence xk1 ,xk2 , . . . of values x i .

199

elements is restricted to the time period [s , e). If d is #f then the traversal begins with the most recent

bookmark. The iterator (g) returns #f repeatedly if the set of bookmarks is exhausted otherwise it returns

(x . h) where x is the next bookmark in the temporal order and h is the successor iterator.

(bookmark/get r) returns the bookmark whose id is r . If no such bookmark exists then #f is re-

turned.

(bookmark/post s u t) creates a bookmark b for the user whose secret token is s . The url of b is

u and the tags of b are the list t = (t1 · · · tm), each t i a tag. On success the return value is the id of b ;

otherwise #f.

9.5 Client-defined Extensions of the Motile API for Delicious

I examine a selection of client-constructed functions based on the minimalist API sketched above.10

1(begin
2(define (bookmark/latest user)
3(let* ((g (bookmarks/iterate user #f)) ; Most recent bookmark first.
4(pair (g))) ; May return #f if no bookmarks.
5(and pair (car pair)))) ; Return bookmark if any , otherwise #f.
6
7(curl/block/remote ; Blocking remote evaluation.
8Bookmarks@ ; CURL for bookmark service.
9(lambda () ; Thunk for remote evaluation.
10(let ((b (bookmark/latest "alice")))
11(and b (time-to-ISO8601 (:: b created)))))))

Figure 9.3: A client-defined routine for discovering the latest bookmark (lines 2–7). Lines 10–16 illustrate
a remote evaluation to obtain the datestamp of the latest update for user alice.

Discovering a user’s latest update is a common requirement in social service APIs and is easily con-

structed from the available primitives as illustrated in Figure 9.3. The function bookmark/latest (lines

2–5) returns the most recent bookmark posted by a given user or, if that user has never posted a bookmark

then #f. The thunk (lines 9–11) of the remote evaluation (lines 7–11) obtains the latest bookmark for

user Alice and returns its creation date in ISO 8601 format (a string, for example "2015-02-22") or #f if

Alice has never created a bookmark. The mobile code transmitted to the bookmark service relies on two

service-side functions bookmarks/iterate and time-to-ISO8601, a function that converts Unix epoch

time to an ISO 8601 representation.

10 For the sake of brevity and ease of presentation I assume that the CURL of the bookmark service is defined elsewhere and
bound (somewhere within lexical scope) to the Motile name Bookmarks@. User public tokens for the API are given as simple
strings such as "alice" or "bob".

200

Of more interest are client-defined combinators for client-driven extensions to the service-side, itera-

tion primitive bookmarks/iterate. I discuss four combinators below: fold, filter, map, and pipe.

9.5.1 Fold

1(define (iterate/fold g f s)
2(let ((pair (g))) ; pair is (x . h), x an object and h a successor to g.
3(if pair
4(iterate/fold (cdr pair) f (f (car pair) s)) ; Fold again.
5seed))) ; Iterator is exhausted.

Figure 9.4: iterate/fold, a client-defined combinator.

(iterate/fold g f s) takes three arguments: an iterator g , a folding function f , and s , an initial

seed value for f . For each object x generated by g the folding function is applied to x and the current

seed as (f x s). The return value of (f x s) is the successive seed for the next iteration of the fold, in

effect an accumulator of the successive return values of f .

9.5.2 Filter

1(define (iterate/filter g f)
2(lambda () (subiterate/filter g f))) ; Return iterator that filters.
3
4(define (subiterate/filter g f) ; Traverse until an object passes filter f.
5(let ((pair (g))) ; (x . h) or #f. h successor iterator to g.
6(if pair
7(if (f (car pair)) ; Test object x against filter f.
8(cons
9(car pair) ; Object x.
10(lambda () (subiterate/filter (cdr pair) f))) ; Successor to g.
11(subiterate/filter (cdr pair) f)) ; x failed filter.
12#f))) ; Iterator is exhausted.

Figure 9.5: iterate/filter, a client-defined combinator.

(iterate/filter g f) is a generator which takes two arguments, an iterator g and a predicate f ,

returning an iterator g f whose return value is the first pair (x . h f) in the traversal order of g for which

(f x) is #t and h f is the successor iterator. If the traversal is exhausted then #f is returned. In other

words if the sequence x1,x2, . . . is the traversal order of g then the traversal order of g f is x j1 ,x j2 , . . . where

j1 < j2 < · · · , x j i precedes x j i +1 in the traversal order of g , f (x j i) is #t, and if any x i satisfies f then x i

appears in the sequence x j1 ,x j2 ,

201

9.5.3 Map

1;; Generate a derived iterator that maps f over iterator g.
2(define (iterate/map g f)
3(lambda () (subiterate/map g f)))
4
5;; Map every x in the traverse of g to (f x).
6(define (subiterate/map g f)
7(let ((pair (g)))
8(if pair
9; pair is (x . h), x an object and h a successor to g.
10(cons
11(f (car pair)) ; (f x)
12(lambda () (subiterate/map (cdr pair) f)))
13#f))) ; Iterator is exhausted.

Figure 9.6: iterate/map, a client-defined combinator.

(iterate/map g f) is a generator which takes two arguments: an iterator g and a transform f re-

turning ((f x) . h) for each (x . h) in the traversal order of g . If the traversal is exhausted then #f is

returned.

9.5.4 Pipe

1;; Construct a "pipeline" of generators = (g0 g1 ... gN)
2;; where g0 is a zero-argument lambda and each gi thereafter is a
3;; single argument lambda.
4;; For example (iterate/pipe g0 g1 g2 g3) becomes (g3 (g2 (g1 (g0)))).
5(define (iterate/pipe generator . generators)
6(fold
7(lambda (x g) (x g)) ; Fold function.
8(generator) ; Seed
9generators ; List of generators to fold over.

Figure 9.7: iterate/pipe, a client-defined combinator.

(iterate/pipe g 0 g 1 · · · g m) accepts m +1 arguments for m > 0 where:

• g 0 is a zero-argument function for which (g 0) returns an iterator

• Each g i , 1≤ i <m is a single-argument function for which (g i (g i−1)) returns an iterator, and

• g m is any single-argument function that accepts an iterator as a parameter

The effect is to compose functions g 0, g 1, . . . , g m as a single nested invocation where

(iterate/pipe g 0 g 1 · · · g m)≡ (g m (· · · (g 2 (g 1 (g 0)))))

202

in other words, a functional pipeline that starts with g 0 and ends with g m , where the return value of

iterate/pipe is the return value of (g m (· · · (g 2 (g 1 (g 0))))).

9.5.5 Count

The “classic” Delicious web API allows a user to count the number of bookmarks posted per day with

optional filtering by tag. I duplicate and generalize that functionality here. Counting bookmarks-per-day

captures variations in a user’s engagement with a bookmark service and is illustrated (without filtering

by tag) in Figure 9.8. This client-defined query computes the number of bookmarks constructed by user

Bob per day over the month of December, 2014. The value of that query is a Motile persistent hash table

whose keys are days (strings "2014-12-19" for example) and whose values are integers n > 0 (days on

which Bob did not construct bookmarks are ignored).11

1(begin
2(define (bookmark-to-day b)
3(let ((s (time-to-ISO8601 (:: b created))))
4(substring s 0 9))) ; "2015-11-28 T10:16:52Z" => "2015-11-28".
5
6(define (total-per-day day h)
7(let ((count (hash/get h day 0))) ; Return 0 if day not in hash.
8(hash/cons h day (+ count 1)))) ; Add day/count pair to hash.
9
10(curl/remote/block ; Dispatch remote evaluation , block for return value.
11Bookmarks@ ; CURL for bookmark service.
12(lambda () ; Client thunk for evaluation.
13(iterate/pipe
14(bookmarks/iterate
15"bob" ; Public user token for Bob.
16(cons ; Time period is December , 2014.
17"2014-12-01 T00:00:00Z" "2015-01-01 T00:00:00Z "))
18
19(lambda (g) (iterate/map g bookmark-to-day))
20
21(lambda (g) (iterate/fold g total-per-day hash/equal/null))))))

Figure 9.8: Generate a persistent hash map of d /n pairs where d is a day (a string such as "2015-09-29")
and n > 0 is the total number of bookmarks introduced on day d . We assume that the client-defined
combinators iterate/pipe, iterate/map, and iterate/fold of Figures 9.7, 9.6, and 9.4 respectively are
available in an enclosing lexical scope.

The Motile code of Figure 9.8 demonstrates a three-stage pipeline — generate bookmarks, map the

bookmarks into the desired representation, and then fold that representation — within the confines of

11 If Bob did not contribute any bookmarks over the month of December, 2014 then an empty persistent hash table is returned.

203

the client combinator iterate/pipe (lines 13–21). The generate stage (lines 14–17) is implemented by

the service-side primitive bookmarks/iterate , the map stage (line 19) is implemented by the client

combinator iterate/map and the client function bookmark-to-day (lines 2–4), and the fold stage (line

21) is implemented by the client combinator iterate/fold and the client folding function total-per-

day (lines 6–8). Note that since Motile hash tables are persistent and functional the hash table h is left

unchanged and the value returned by hash/cons (line 8) is a fresh and distinct hash table h ′ that shares

the structure of h to the fullest extent possible modulo the update.

Since the client combinators and the two client functions, bookmark-to-day and total-per-day, are

defined within the lexical scope of the client thunk they are carried along when the client thunk (lines

12–21) is transmitted to the bookmarks service for remote evaluation. The only service-side primitives

that the client query requires are time-to-ISO8601 (line 3), a service-side function that converts a Unix

epoch time to its ISO 8601 representation, and bookmarks/iterate (line 14–17).

The value returned to the client is a persistent hash table of key/value pairs d /n where d is a day (say

string "2014-12-09") and n > 0 is the total number of bookmarks with that creation date.

9.5.6 Index by Date

The same pattern, — generate, map and fold — again within the context of combinator iterate/pipe,

can be used to by clients to create indexes of their own bookmarks or the bookmarks of others. Figure 9.9

illustrates a client-generated index whose keys are dates (such as "2014-10-30") and whose values are a

list of the ids of the bookmarks created on that day.12

As in the previous example (Section 9.5.5) bookmarks are generated (lines 116–19) by the service-side

primitive bookmarks/iterate.

An anonymous function (line 24)

(lambda (b) (cons (bookmark-to-day b) (:: b id)))

maps (lines 21-24) each bookmark b to the pair (d . x) where d is the day on which b was created (as a

string, say "2014-10-29") and x is the id of b .

Folding (line 26) is performed by iterate/fold (line26) and collect-per-day (lines 7–13). The latter

accepts two arguments: a pair (d . x) where d is the creation day of a bookmark b and x is the id of b

12 Recall that the service-side primitive (bookmark/get x) returns the bookmark whose id is x .

204

1(begin
2(define (bookmark-to-day b)
3(let ((s (time-to-ISO8601 (:: b created))))
4(substring s 0 9))) ; "2015-11-28 T10:16:52Z" => "2015-11-28".
5
6(define (collect-per-day pair h) ; Seed h is a persistent hash table.
7(let* ((day (car pair)) ; pair is (day . id)
8(x (cdr pair))
9(values (hash/get h day null))) ; Returns null if day not in h.
10(hash/cons h day (cons x values)))) ; Accumulate id for day.
11
12(curl/remote/block ; Dispatch remote evaluation , block for return value.
13Bookmarks@ ; CURL for bookmark service.
14(lambda () ; Client thunk for evaluation.
15(iterate/pipe
16(bookmarks/iterate
17"alice" ; Public user token for Alice.
18(cons ; Time period is September-December , 2014.
19"2014-09-01 T00:00:00Z" "2015-01-01 T00:00:00Z ")))
20
21(lambda (g)
22(iterate/map
23g
24(lambda (b) (cons (bookmark-to-day b) (:: b id)))))
25
26(lambda (g) (iterate/fold g collect-per-day hash/equal/null)))))

Figure 9.9: Generate a persistent hash map of d /X pairs where d is a day (such as "2015-09-29") and X =
(xm xm−1 . . . x1) is a list of bookmark ids. If bookmarks b1, . . . ,bm were created on day d then x i is the id
of b i . We assume that the client-defined combinators iterate/pipe, iterate/map, and iterate/fold
of of Figures 9.7, 9.6, and 9.4 respectively are available in an enclosing lexical scope.

and a seed h, a persistent hash table. In each invocation the fold function returns a hash table h ′ identical

to h except that h ′ contains the key/value pair d /(x . X) when d /X ∈ h; otherwise, if the key d did not

appear in h then d /(x)∈ h ′.

The client receives a hash table with key/value pairs d /(xm · · · x1) where x i is the id of a bookmark

bx i created on day d . The list is in reverse temporal order from oldest, xm , to most recent, x1, on day d .

The customary temporal order, from most recent to oldest, is easily restored in one of two ways. It can be

reversed service-side if the client wraps the call (iterate/pipe · · ·) (lines 15–26) as:

(hash/map (iterate/pipe · · ·) (lambda (day ids) (cons day (reverse ids)))))

or alternatively, amends the client side by wrapping lines 12–26

(curl/remote/block Bookmarks@ (lambda () · · ·))

with a call to hash/map as

205

(hash/map (curl/remote/block · · ·) (lambda (day ids) (cons day (reverse ids))))

In other words, the client can shift portions of the work from client to provider or back again as circum-

stances dictate.13

9.5.7 Reverse Index by Tag

1(begin
2(define (tag/namespace t) (first t))
3(define (tag/attribute t) (second t)) ; Unused.
4(define (tag/value t) (third t)) ; Unused.
5
6(define (collect-tags pair h) ; Seed h is persistent hash table.
7(let loop ((id (car pair)) (tags (cdr pair)) (h h))
8(if (null? tags)
9h ; No more tags for reverse index.
10(let* ((alpha (tag/namespace (car tags)))
11(ids (hash/get h alpha null)))
12(loop
13id (cdr tags)
14(if (member id ids) h (hash/cons h alpha (cons id ids))))))))
15
16(curl/remote/block ; Dispatch remote evaluation , block for return value.
17Bookmarks@ ; CURL for bookmark service.
18(lambda () ; Client thunk for evaluation.
19(iterate/pipe
20(bookmarks/iterate
21"alice" ; Public user token for Alice.
22(cons ; Time period is September-December , 2014.
23"2014-09-01 T00:00:00Z" "2015-01-01 T00:00:00Z "))
24
25(lambda (g) (iterate/map g (lambda (b) (cons (:: b id) (:: b tags)))))
26
27(lambda (g) (iterate/fold g collect-tags hash/equal/null))))))

Figure 9.10: Generate a persistent hash map ofα/X pairs whereα is a tag namespace and X = (xm · · · x1)
is a list of bookmark ids. Each bookmark bx i contains at least one tag whose namespace is α. The
list X is ordered from oldest (xm) to most recent (x1). We assume that the client-defined combinators
iterate/pipe, iterate/map, and iterate/fold of of Figures 9.7, 9.6, and 9.4 respectively are available
in an enclosing lexical scope.

Using the pattern of generate, map, and fold clients can construct a variety of specialized indexes.

Figure 9.10 demonstrates a reverse index whose keys α are the namespaces of bookmark tags and whose

values are lists of bookmark ids (xm · · · x1) where each bookmark bx i contains at least one tag whose

namespace is α. The ids are in reverse temporal order, that is, bookmark bxm is the oldest bookmark with

13 For example, if the service is heavily loaded the client may reduce latency by shifting to client-side that portion of the
computation that does not require the service-specific API of the provider.

206

a tag in namespace α and bx1 is the most recent bookmark with a such a tag.

In this form the index is ideal for locating the oldest bookmark containing a tag with namespaceα.14 A

varient of this index, whose construction is shown in Figure 9.11, can efficiently resolve compound queries

over tags, for example, the set of all bookmarks that refer to photographs of roller coasters. Figure 9.10

differs from Figure 9.11 in one critical detail: the folding function of the latter (lines 4–10) uses a persistent

unordered set to capture bookmark ids (lines 9–10) rather then the simple lists of the former example.

In other words, both examples return hash tables whose keys are tag namespaces but in Figure 9.10 the

hash table values are ordered lists (from oldest to most recent) of bookmark ids while in Figure 9.11 the

values are unordered sets of bookmark ids.

1(begin
2(define (tag/namespace t) (first t))
3
4(define (collect-tags pair h) ; Seed h is persistent hash table.
5(let loop ((id (car pair)) (tags (cdr pair)) (h h))
6(if (null? tags)
7h ; No more tags in this bookmark for reverse index.
8(let* ((alpha (tag/namespace (car tags))) ; Hash key.
9(ids (hash/get h alpha set/equal/null))) ; Hash value.
10(loop
11id (cdr tags)
12(if (set/contains? ids id))
13h ; Set of ids already contains id.
14(hash/cons h alpha (set/cons ids id)))))))
15
16(curl/remote/block ; Dispatch remote evaluation , block for return value.
17Bookmarks@ ; CURL for bookmark service.
18(lambda () ; Client thunk for remote evaluation.
19(iterate/pipe
20(bookmarks/iterate
21"alice" ; Public user token for Alice.
22(cons ; Time period is September-December , 2014.
23"2014-09-01 T00:00:00Z" "2015-01-01 T00:00:00Z "))
24
25(lambda (g) (iterate/map g (lambda (b) (cons (:: b id) (:: b tags)))))
26
27(lambda (g) (iterate/fold g collect-tags hash/equal/null))))))

Figure 9.11: Generate a persistent hash map of α/X pairs where α is a tag namespace and X is a persis-
tent unordered set of bookmark ids x1, . . . ,xm for bookmarks bx i that contain at least one tag whose
namespace is α. We assume that the client-defined combinators iterate/pipe, iterate/map, and
iterate/fold of of Figures 9.7, 9.6, and 9.4 respectively are available in an enclosing lexical scope.

14 As sketched in Section9.5.6 above it is trivial to convert this index to the opposite temporal order in which the most recent
bookmark id appears first.

207

Let h be a reverse index constructed in the manner of Figure 9.11. A client in possession of h can,

for example, fetch the set of all bookmarks that refer to photographs of roller coasters as Figure 9.12 illus-

trates. By combining pure predicates, the standard logical connectives and, or and not, and the basic

set operations of set/contains?, set/union, set/intersection and set/difference a client can pose

complex selections against a set-based reverse index. More generally, client-generated indexes can take

many forms and, as the examples of Sections 9.5.6 and 9.5.7 suggest, are easily constructed. Here we can

see the beginnings of a service ecology in which independent indexing services arise around a bookmark

service. The simplicity and generality of the bookmark service API sketched here (comprising three func-

tions: bookmark/iterate, bookmark/get and bookmark/post) grants COAST-based clients the freedom

and independence to implement and deploy sophisticated indexing services that serve special needs or

offer domain-specific access to bookmarks that the bookmark service does not provide.15 These simple

examples lie at the heart of COAST; every service can be a programmable, extensible platform — the un-

derlying model elevates innovation to a network effect where development and evolution can be client-

rather than provider-driven.

1(begin
2(let* ((roller-coaster (hash/get h "roller-coaster" set/equal/null))
3(photo (hash/get h "photo" set/equal/null))
4(ids (set/intersection roller-coaster photo)) ; Wanted ids.
5(list-of-ids (set-to-list ids))) ; Convert set of ids to list.
6(if (null? list-of-ids)
7null ; List is empty.
8
9(curl/return/block ; Dispatch thunk for remote evaluation.
10Bookmarks@ ; CURL of bookmark service.
11(lambda () (map bookmark/get list-of-ids)))))) ; Thunk.

Figure 9.12: Let h (lines 2 and 3) be a reverse index whose keys are tag namespaces α and whose values
are unordered sets of bookmark ids x such that each bookmark bx contains a tag whose namespace is
α. A client, holding a copy of h, determines the ids of all bookmarks that refer to photographs of roller
coasters (lines 2–4) and converts that set of ids to a list of ids (x1 · · · xm), m ≥ 0 (line 5). If the list of ids
is empty then the empty list (line 7) is the value of (begin · · ·); otherwise the client dispatches a remote
evaluation to a bookmark service to fetch those bookmarks and return them as a list (bx1 · · · bxm) (lines
9–11).

15 This does not necessarily reflect ill on the bookmark service as their focus on core data storage for bookmarks and allowing
others to supply and maintain indexes may be a strategic choice.

208

9.5.8 Filtering

The RESTful query primitive defined by James [135] allows a user to simultaneously query on both

a temporal period in which the bookmark was created and a single bookmark tag. However, far more

flexible and general filtering is easily incorporated in a pipeline by way of the client-defined combinator

iterate/filter that passes only those bookmarks b for which a given predicate (p b) is true. To sim-

plify the construction of filters against bookmark tags our client also defines an additional combinator

list/find, shown in Figure 9.13, that returns the first item x in a list of items for which predicate (p x)

is #t. If no item satisfies p then #f is returned.16 list/find is used to search through the list of tags

(possibly empty) that appears in each bookmark.

1(define (list/find p items)
2(cond
3((null? items) #f)
4((p (car items)) (car items)))
5(else (list/find p (cdr items)))))

Figure 9.13: Function list/find returns the first item x in a list items that satisfies predicate (p x). If
no such item is present in the list then it returns #f.

1(define (has-namespace b n))
2(list/find (lambda (t) (tag/namespace =? t n)) (:: b tags)))
3
4(define (has-namespace-attribute b n a)
5(list/find
6(lambda (t) (and (tag/namespace =? t n) (tag/attribute =? t a)))
7(:: b tags)))
8
9(define (bookmark-is? b n) (and (has-namespace b n) #t))
10
11(define (country-of-bookmark? b . places)
12(let ((t (has-namespace-attribute? b "location" "country ")))
13(and (member (tag/value t) places string-ci =?) #t)))

Figure 9.14: Client-defined helper predicates for searching and querying bookmark tags.

Figure 9.14 contains four client-defined predicates for searching and querying bookmark tags:

• (has-namespace b n) (lines 1–2) returns the first tag t of bookmark b such that t = (n α v) for

some attribute α and value v . If no such tag exists in b then #f is returned.

16 list/find is ambiguous if (p #f) returns #t however, the examples here guarantee that #f never appears in the list of
items.

209

• (has-namespace-attribute b n α) (lines 4–7) returns the first tag t of bookmark b such that

t = (n α v) for some value v . If no such tag exists in b then #f is returned.

• (bookmark-is? b n) (line 9) is a predicate that returns #t if bookmark b contains a tag t = (n α v)

for some attribute α and value v ; otherwise, if no such tag exists in b then #f is returned.

• (country-of-bookmark? b c1 · · · cm) (lines 11-13) returns #tif bookmark b contains a tag t =

("location" "country" v) where v = c i for some i , 1≤ i ≤m , each c i a country name given as a

string. If no such tag exists in b then #f is returned.

The first example, illustrated in Figure 9.15, is a remote evaluation that returns a list of Alice’s book-

mark ids x i for which bookmark bx i was issued over the period September–December, 2014 and contains

a location tag — a restriction enforced by the iterate/filter (lines 11–12) within the iterate/pipe

(lines 5–15). This is the equivalent of the Delicious search primitive that combines temporal confinement

with a match on a single, specific tag.

1(begin
2(curl/remote/block ; Dispatch remote evaluation , block for return value.
3Bookmarks@ ; CURL for bookmark service.
4(lambda () ; Client thunk for remote evaluation.
5(iterate/pipe
6(bookmarks/iterate
7"alice" ; Public user token for Alice.
8(cons ; Time period is September-December , 2014.
9"2014-09-01 T00:00:00Z" "2015-01-01 T00:00:00Z "))
10
11(lambda (g)
12(iterate/filter g (lambda (b) (bookmark-is? b "location "))))
13
14(lambda (g)
15(iterate/fold g (lambda (b seed) (cons (:: b id) seed)) null))))))

Figure 9.15: Search Alice’s bookmarks over the period September-December, 2014 for all bookmarks bx i

that refer to a location return a list of their ids (xm · · · x1). If no such bookmarks exist then the empty
list () is returned to the client. We assume that the client helper functions of Figures 9.13 and 9.14 are
contained in an outer lexical scope.

The second example, illustrated in Figure 9.16, is a remote evaluation that returns a list of Allice’s

bookmark ids x i for which bookmark bx i was issued over the period September–December, 2014 and con-

tains a location tag for either "France" or "Germany" — a restriction enforced by the iterate/filter

(lines 11–13) within the iterate/pipe (lines 5–16). This is a generalization of of the Delicious search

primitive that combines temporal confinement with a match on a single, specific tag, made possible in

210

part by the more elaborate tag structure adopted here. This search cannot be expressed in the classic

Delicious API or a proposed RESTful equivalent [135].

1(begin
2(curl/remote/block ; Dispatch remote evaluation , block for return value.
3Bookmarks@ ; CURL for bookmark service.
4(lambda () ; Client thunk for remote evaluation.
5(iterate/pipe
6(bookmarks/iterate
7"alice" ; Public user token for Alice.
8(cons ; Time period is September-December , 2014.
9"2014-09-01 T00:00:00Z" "2015-01-01 T00:00:00Z "))
10
11(lambda (g)
12(iterate/filter
13g (lambda (b) (country-of-bookmark? b "France" "Germany "))))
14
15(lambda (g)
16(iterate/fold g (lambda (b seed) (cons (:: b id) seed)) null))))))

Figure 9.16: Search Alice’s bookmarks over the period September-December, 2014 for all bookmarks
bx i that refer to a location in France or Germany and return a list of their ids (xm · · · x1). If no such
bookmarks exist then the empty list () is returned to the client. We assume that the client helper functions
of Figures 9.13 and 9.14 are contained in an outer lexical scope.

An iterate/pipe may contain multiple filters f 1, . . . , f m with each filter f i acting as the element

of a conjunct f 1 ∧ · · · ∧ f m . Any boolean expression containing boolean variables and pure functional

predicates over a bookmark b can be normalized into conjunctive normal form e1 ∧ · · · ∧ em and each e i

can be rewritten as a filter f i

(lambda (g) (iterate/filter g (lambda (b) e i)))

To illustrate I amend the example of Figure 9.16 to further restrict its range to bookmarks that refer to a

photo of a roller coaster in either France or Germany, where the search criteria are:

Alice’s bookmarks (line 7) ∧

created over September–December, 2014 (lines 8–9) ∧

tagged with either France or Germany as the location (lines 11–13) ∧

tagged as a photo (lines 15–16) ∧

tagged with the topic “roller coaster” (lines 18–19)

as shown in Figure 9.17.

The ability to deploy highly-customized and specific filters embedded within an iterate/pipe far

211

1(begin
2(curl/remote/block ; Dispatch remote evaluation , block for return value.
3Bookmarks@ ; CURL for bookmark service.
4(lambda () ; Client thunk for remote evaluation.
5(iterate/pipe
6(bookmarks/iterate
7"alice" ; Public user token for Alice.
8(cons ; Time period is September-December , 2014.
9"2014-09-01 T00:00:00Z" "2015-01-01 T00:00:00Z "))
10
11(lambda (g)
12(iterate/filter
13g (lambda (b) (country-of-bookmark? b "France" "Germany "))))
14
15(lambda (g)
16(iterate/filter g (lambda (b) (bookmark-is? b "photo"))))
17
18(lambda (g)
19(iterate/filter g (lambda (b) (bookmark-is? b "roller-coaster "))))
20
21(lambda (g)
22(iterate/fold g (lambda (b seed) (cons (:: b id) seed)) null))))))

Figure 9.17: Search Alice’s bookmarks over the period September-December, 2014 for all bookmarks that
refer to a photo of a roller coaster in either France or Germany. The search relies upon a small set of query
functions for tags, shown in Figure 9.2 and an additional simple client-defined combinator, list/find,
whose definition is given in Figure 9.13.

exceeds the expressive power of any bookmark service considered here, RESTful or otherwise. While it

falls short of a relational algebra (omitting joins and products) the primitives illustrated here can perform

selection (gathering bookmarks that satisfy one or more criteria), projection (restricting bookmarks to a

subset of fields), and the renaming of attributes. With client-generated indexes one can produce products

and joins. However, an efficient and general relational calculus is far more complex to implement. The

solutions presented here have the virtue of simplicity, ease of implementation, and modest efficiency.

9.5.9 Append, Interleave, Merge, and Limit

All of the examples so far have dealt with a single stream of bookmarks, that is, the bookmarks of

a single user over a single time span. However, clients can define combinators that fuse two or more

generators into one, thereby constructing generators that may vary over users (the authors of bookmarks),

time spans (over which the bookmarks were created), the order of in which bookmarks are presented, or

arbitrary predicates (over the contents of bookmarks). I present three of many possible such combinators

that:

212

• Append multiple streams s1, . . . sm into a single stream s1+ · · ·+ sm .

• Interleave the bookmarks of multiple streams in a round-robin fashion, repeatedly issuing one

bookmark from each stream s i , i = 1, . . . , m until all streams are exhausted.

• Merge the bookmarks of multiple streams, preserving temporal order, until all streams are ex-

hausted.

Finally, when combining streams, terminating a search early after the first n > 0 successful hits can reduce

response latency, and I present such a combinator here.

Append

1(define (iterate/append g1 g2)
2(lambda () (subappend g1 g2)))
3
4(define (subappend g1 g2)
5(let ((pair1 (g1)))
6(if (pair? pair1)
7; g1 is not exhausted.
8(cons (car pair1) (lambda () (subappend (cdr pair1) g2)))
9; g1 is exhausted.
10(g2))))

Figure 9.18: The combinator iterate/append appends the stream of generator g 2 to the stream of gen-
erator g 1 (but without regard to temporal order) and is intended as the first argument of an iterate/pipe.

The simplest of these, iterate/append, is shown in Figure 9.18. Recall that the provider-side primitive

bookmarks/iterate returns a generator, a zero-argument function, which in prior examples, appeared as

the first argument f 1 to (iterate/pipe f 1 · · · f m). Argument f 1 of iterate/pipe is distinguished from

the others f 2 · · · f m each of which accepts a single argument, namely the generator g i−1 that was the re-

turn value of f i−1. The client-side combinator, iterate/append, is an alternative to bookmarks/iterate

and its definition reflects that role; line 10 defines the thunk expected by iterate/pipe. Lines 1–7 de-

fine the generator proper where the the subgenerator g 2 is not invoked (line 7) until generator g 1 is first

exhausted (lines 2–4).

Its use is demonstrated in Figure 9.19 where two distinct sources of bookmarks, those of Sam (book-

marks bs i) and Rachel (bookmarks brj), are combined into a single stream, bs1 , . . . ,bsm ,br1 , . . . ,brn . In this

particular case temporal order is preserved as both bookmarks bs i and bookmarks brj are in temporal or-

der (from most recent to oldest) and Sam’s last bookmark bsm is more recent than Rachel’s first bookmark

213

1(curl/remote/block
2Bookmarks@
3(lambda ()
4(iterate/pipe
5(iterate/append
6; Sam s bookmarks from May 15, 2014 thru the morning of June 1, 2014.
7(bookmarks/iterate ; g1
8"sam"
9(cons "2014-05-15 T00:00:00Z" "2014-06-01 T12:00:00Z "))
10
11; Rachel s bookmarks over July , 2014.
12(bookmarks/iterate ; g2
13"rachel"
14(cons "2014-07-01 T00:00:00Z" "2014-08-01 T00:00:00Z ")))
15
16(lambda (g)
17(iterate/filter g (lambda (b) (country-of-bookmark? "Scotland "))))
18
19(lambda (g)
20(iterate/fold g (lambda (b seed) (cons b seed)) null)))))

Figure 9.19: The combinator iterate/append (lines 5–14) is used as the source of bookmarks for
iterate/pipe (lines 4–20). Two streams are appended. The first stream (lines 7–9) comprises Sam’s book-
marks over the period of May 15, 2014 through the morning of June 1, 2014. The second stream (lines 12–
14) comprises Rachel’s bookmarks over the month of July, 2014. Lines 16–17 passes only those bookmarks
(from either stream) tagged with the country "Scotland" and lines 19–20 accumulate those bookmarks
b into a list (in reverse temporal order) that is returned to the client as the value of curl/remote/block
(lines 1–20).

br1 .

A series of generators g 1, g 2, . . . , g m , m > 2 can be appended by nesting calls to iterate/append

(iterate/append g 1 (iterate/append g 2 · · · (iterate/append g m−1 g m) · · ·))

as a right-associative composition. This extension, from two generators g 1 and g 2 to m > 2 generators

can itself be captured as a general purpose combinator, as illustrated in Figure 9.20. For example, a

combinator to append m > 2 generators can be written as

(iterate/compose/right iterate/append (g 1 g 2 · · · g m))

A convenient, equivalent shorthand, iterate/append*, defined in Figure 9.21, can be called as

(iterate/append* g 1 g 2 · · · g m)

214

Preserving temporal order when using iterate/append is the responsibility of the client and there are

many useful cases for which temporal order is irrelevant. Further, iterate/append is indifferent to the

detailed composition of the individual generators g i and each one may itself be a complex construction

based, for example, on iterate/pipe. Figure 9.22 illustrates appending two streams distinguished both

by user, Sam and Rachel, and by country tag, Spain and France. Here generators g 1 (lines 6–10) and g 2

(lines 12–15) produce any bookmark by Sam with a country tag of Spain and any bookmark by Rachel

with a country tag of France, respectively. These two substreams, S1 and S2, are both in temporal order

(from most recent to oldest) but the complete stream S1+S2 is not necessarily in temporal order as there

is no guarantee that the oldest bookmark of Sam with a country tag of Scotland is more recent than the

first bookmark (the most recent) of Rachel with a country tag of France.

Interleave

Each of the three combinators proposed here, append, interleave and merge, are distinguished, one

from the other, by their visit pattern — given a sequence of generators g 1, . . . , g m in what order and and

pattern will the combinator visit the individual generators g i ? The visit pattern of append preserves the

sequence order g 1, . . . , g m and exhausts each generator g i before moving on to its successor g i+1. The

round-robin pattern of interleave visits each generator g i in sequence order in each round but obtains at

most one bookmark from each g i over the course of a round. Exhausted generators g j are discarded and

the rounds continue until every generator g i in the sequence is exhausted. In other words, every round

of the interleave pattern generates at most m bookmarks in the order b g 1 , . . . ,b g m for every round.

A call

(iterate/interleave g 1 · · · g m)

is a form of “fair access” for generators since each generator g i has the opportunity to contribute a book-

mark in each round (modulo the exhaustion of g i). To illustrate, imagine that we have three generators

g 1, g 2, g 3 for the bookmarks of Rachel, Sandra, and Ursula respectively. Generator g 1 can produce four

bookmarks r1, r2, r3, r4, generator g 2 can produce three bookmarks s1, s2, s3 and generator g 3 can produce

five bookmarks u 1, u 2, u 3, u 4, u 5. The call

(iterate/interleave g 1 g 2 g 3)

will return a generator that produces the bookmark sequence r1, s1, u 1, r2, s2, u 2, r3, s3, u 3, r4, u 4, u 5 in a

215

total of five rounds

(1) r1 s1 u 1

(2) r2 s2 u 2

(3) r3 s3 u 3

(4) r4 u 4

(5) u 5

Figure 9.23 illustrates its implementation. The return value (line 2) is a generator (implemented as a

thunk); therefore suitable as the first argument of an iterate/pipe. The helper function subinterleave

(lines 4–22) implements the traversal and maintains (as arguments) two lists for each round: the gener-

ators yet to be visited and the live generators visited so far (line 4); the state of the interleave comprises

these two arguments. Motile (like Scheme) performs tail-call optimization (see [67] p. 68), consequently

the recursive calls of subinterleave are optimized as loops-in-place. The anonymous λ of lines 18–21

shields the call of subinterleave and is the functional equivalent of a coroutine. The arguments of

iterate/interleave may themselves be any other combinators whose value is a generator, including

iterate/pipe, and iterate/interleave itself may be used wherever a generator is expected.

Merge

Given two generators g 1 and g 2 whose outputs conform to a total order p (for example the predicate

≤ for natural numbers) nerge combines two generators g 1 and g 2 to produce a single generator g whose

output contains all of the outputs of g 1 and g 2 and also conforms to the total order p . The general form

of iterate/merge , illustrated in Figure 9.25, takes three arguments: a two-argument predicate p and

two generators g 1 and g 2. The predicate defines the same total order p on the items generated if the

outputs of both generators g 1 and g 2, say x1,x2, . . . and y1, y2, . . . respectively, conform to (p x i x i+1) and

(p yi yi+1) for all i = 1,2, The value returned by iterate/merge is a thunk, a generator g , suitable

for use in any combinator where a generator is expected. Finally, iterate/merge can be composed with

itself and other combinators to merge the streams of m > 2 generators g 1, . . . , g m .

Figure 9.26 defines a specific form of merge, iterate/temporal, that merges the output of two

bookmark generators and preserves the customary temporal order of bookmarks (from most recent to

oldest) provided the generators g 1 and g 2 produce bookmarks in temporal order from most recent to

216

oldest. Line 3 defines an anonymous function that serves as the total order p for iterate/merge.17

Left or right associative compositions of iterate/temporal can merge m > 2 generators, for example,

(iterate/temporal* g 1 · · · g m) the temporal equivalent of iterate/append*, is shown in Figure 9.24.

Limit

A client may wish to short-circuit a search, that is, terminate a search mid-way once some condition

has been met. To meet this need I present a combinator that terminates a stream once a limit n > 0 has

been reached, for example, halting a search after the first 50 bookmarks with given characteristics have

been collected. A definition of iterate/limit is given in Figure 9.27 and Figure 9.28 illustrates a use

case, selecting a small set of bookmarks from multiple, distinct sources that denote photographs. Here

iterate/interleave (lines 5–8) generates candidate bookmarks from the bookmark collections of Sam,

Rita, and Uri, an iterate/filter (line 10) passes on only those bookmarks that refer to photos, and

iterate/limit (line12) limits the collection of bookmarks to a maximum of 50. An iterate/fold (lines

14–15) gathers those bookmarks into an unordered set which is returned to the client as the value of the

remote evaluation (lines 1–2) of the thunk (lines 3–15) transmitted by the client to the bookmark server.

9.6 Performance

The primitives defined for the bookmark service may be sufficient but are not always efficient. Two

obvious examples come to mind. First, it is often useful to know the total number of bookmarks or tags

for an individual user u but, with the API as defined, the only way to obtain that total is to iterate through

all of u ’s bookmarks (or tags) from most recent to oldest. Having the back-end database maintain those

totals for each user is far more efficient. A related query is the oldest bookmark or tag for a user u . This can

be implemented within the API by conducting a temporal binary search (using either bookmark/iterate

or tag/iterate) with a temporal range of [s , E)where E is a fixed datestamp that precedes the inaugural

date of the bookmark service. The complexity of that search is roughly O(log2) in the number of calendar

days in the period between the date u joined the bookmark service and the service’s inaugural date.

In contrast, for the back-end database, memorializing the datestamp of the first bookmark or tag is an

insignificant one-time constant cost. Functions for both these examples would be a useful addition to

the API proposed here.

17 Recall that bookmark timestamps are given in epoch time (for example, elapsed seconds since the start of the epoch). If
the timestamp of bookmark b is ≥ the timestamp of of bookmark b ′ then b is at least as recent as b ′.

217

9.7 Summary

Not only do the examples demonstrate that COAST clients can compensate for the shortcomings of

provider APIs they can also guide the evolution and extension of provider APIs. In some respects the

burden on providers may be reduced, as it is sufficient to offer an API that is merely “general enough”

rather than an API that is complete or comprehensive. The advantages to service providers includes:

reduced costs and resources to develop and field APIs, greater opportunities for API experimentation and

variation, continual incremental improvement that reduces time to market and minimizes sunk costs,

crowd-sourced API engineering, constant feedback on the efficacy of the API, more effective integration

with other provider APIs, ongoing improvements in the vitality of the service ecosystem, greater synergy

with other service providers, richer and more varied service infrastructure, more rapid API repair to

eliminate bugs or shortcomings, and broad agreement within domains on common API cores while, at

the same time, fostering specialized API extensions.

The COAST style encourages a peering infrastructure where the roles of provider and client are largely

interchangeable. This “equitable trade” of roles may stimuate variation and specialization in services. I

speculate that reducing the friction of service API design, deployment, and improvement may prompt a

commensurate increase in the pace of innovation in service offerings. The examples here suggest, that at

a minimum, COAST-based APIs can match the richness of REST-based APIs. Future work on replicating

and extending well-known RESTful APIs may offer additional insights.

218

1(define (iterate/compose/right f generators)
2(let ((m (length generators)))
3(cond
4((= m 0) (lambda () #f)) ; Return the empty generator.
5((= m 1) (car generators)) ; Return the only generator as is.
6((= m 2)
7(f (car generators) (cadr generators))) ; (f g_1 g_2)
8(else
9(f
10(car generators) ; g_1
11(subcompose/right f (cdr generators) (- m 1))))))) ; (f g_2 ... g_m)
12
13(define (subcompose/right f generators n)
14(if (= n 2)
15(f (car generators) (cadr generators)) ; (f g_m-1 g_m)
16(f ; (f g_i (f g_i+1 ... g_m))
17(car generators) ; g_i
18(subcompose/right f (cdr generators) (- n 1))))) ; (f g_i+1 ... g_m)

Figure 9.20: Let f be any combinator f that accepts two generators g 1 and g 2 and combines those
two generators into a single stream. The combinator (iterate/compose/right f g 1 · · · g m), given f
and generators g 1, g 2, . . . , g m , m > 2, returns a generator g that is a right-associative composition of
combinator f for generators g 1, g 2, . . . , g m , in other words, (f g 1 (f g 2 · · · (f g m−1 g m) · · ·)).

1(define (iterate/append* . generators)
2(iterate/compose/right iterate/append generators))

Figure 9.21: A companion combinator to iterate/append, (iterate/append* g 1 · · · g m) appends the
streams of m > 2 generators by composing a right-associative chain of calls to iterate/append.

1(curl/remote/block
2Bookmarks@
3(lambda ()
4(iterate/pipe
5
6(iterate/append
7(iterate/pipe ; g1 - all of Sam s bookmarks for Spain.
8(bookmarks/iterate "sam" #f) ; #f means all bookmarks.
9(lambda (g)
10(iterate/filter g (lambda (b) (country-of-bookmark? b "Spain")))))
11
12(iterate/pipe ; g2 - all of Rachel s bookmarks for France.
13(bookmarks/iterate "rachel" #f) ; #f means all bookmarks.
14(lambda (g)
15(iterate/filter g (lambda (b) (country-of-bookmark? b "France "))))))
16
17; All of Sam s bookmarks for Spain and Rachel s bookmarks for Framce.
18(lambda (g)
19(iterate/fold g (lambda (b seed) (cons b seed)) null)))))

Figure 9.22: Using iterate/pipe to form generators for iterate/append.

219

1(define (iterate/interleave . generators)
2(lambda () (subinterleave generators null)))
3
4(define (subinterleave generators visited)
5(if (null? generators)
6; No more generators remaining in this round.
7(if (null? visited)
8#f ; All generators are exhausted.
9(subinterleave ; Otherwise round-robin again.
10(reverse visited) null))
11
12; One or more generators remaining in this round.
13(let* ((g (car generators))
14(pair (g))) ; (item . h) or #f. h is successor of g.
15(if (pair? pair)
16(cons
17(car pair) ; item.
18(lambda () ; Successor generator for interleave.
19(subinterleave
20(cdr generators)
21(cons (cdr pair) visited)))) ; (cdr pair) = h.
22
23(subinterleave (cdr generators) visited))))) ; g is exhausted.

Figure 9.23: The outputs of multiple generators can be interleaved in useful ways. In each round
j = 1,2, . . . of the interleave the combinator (iterate/interleave g 1 · · · g m) returns, in succession,
bookmarks b j ,1, . . . ,b j ,m where bookmark b j ,i is produced by generator g i .

1(define (iterate/temporal* . generators)
2(iterate/compose/right iterate/temporal generators))

Figure 9.24: The combinator iterate/temporal*.

220

1(define (iterate/merge p g1 g2)
2(lambda ()
3(let ((pair1 (g1))
4(pair2 (g2)))
5(cond
6((and (pair? pair1) (pair? pair2))
7(let ((x (car pair1))
8(y (car pair2))
9(h1 (cdr pair1))
10(h2 (cdr pair2)))
11(if (p x y)
12; x precedes y in iteration order.
13(cons x (lambda () (iterate/merge p h1 g2)))
14; y precedes x in iteration order.
15(cons y (lambda () (iterate/merge p g1 h2))))))
16((pair? pair1) (cons x h1)) ; g2 is exhausted.
17((pair? pair2) (cons y h2)) ; g1 is exhausted.
18(else #f))))) ; Both g1 and g2 are exhausted.

Figure 9.25: A combinator that interleaves two generators g 1 and g 2 in the order defined by the two-
argument predicate p where the the outputs of g 1 and g 2 both conform to the order defined by p .

1(define (iterate/temporal g1 g2)
2(iterate/merge
3(lambda (b1 b2) (>= (:: b1 timestamp) (:: b2 timestamp)))
4g1 g2))

Figure 9.26: A specialization of iterate/merge (Figure 9.25) that merges two streams of bookmarks
while preserving their customary temporal ordering (from most recent to oldest).

1(define (iterate/limit g n)
2(lambda () (sublimit g n)))
3
4(define (sublimit g n)
5(cond
6((<= n 0) #f)
7((g) =>
8(lambda (pair) ; pair = (x . h) where h is the successor to g.
9(cons
10(car pair) ; x
11(lambda () (subiterate (cdr pair) (- n 1))))))
12(else #f))) ; g is exhausted.

Figure 9.27: (iterate/limit g n) is a limit-stop for generator g where n ≥ 0 is the maximum number
of items that g may produce.

221

1(curl/remote/block
2Bookmarks@
3(lambda ()
4(iterate/pipe
5(iterate/interleave ; Interleave the bookmarks of Sam , Rita , and Uri.
6(bookmarks/iterate "sam" #f)
7(bookmarks/iterate "rita" #f)
8(bookmarks/iterate "uri" #f))
9
10(lambda (g) (lambda (b) (bookmark-is? b "photo"))) ; Pass photos only.
11
12(lambda (g) (iterate/limit g 50)) ; No more than 50 bookmarks total.
13
14(lambda (g)
15(iterate/fold g (lambda (b seed) (set/cons seed b)) set/eq/null)))))

Figure 9.28: A client searches though the interleaved bookmarks of Sam, Rita and Uri to find the most
recent 50 bookmarks referring to photos.

222

Chapter 10: Evaluation: Security

Here I evaluate the claim that COAST is sufficiently secure to ensure that service providers can ade-

quately protect themselves against erroneous or malicious visiting computations. There are two distinct

classes of threats: resource exhaustion and abuse of authority. Resources can be fungible1 or specific2In

these discussions I ignore fungible resources whose protection falls well within the purview of classical

resource allocation and accounting.3

On the other hand, access to, and exploitation of, specific resources is a running theme of this thesis

and the principal driver for the formulation of COAST, the design of the Motile language, and the details

of the reference implementation Motile/Island. Given a subject x the authority of x is the upper bound

of all of the actions that x may take with respect to the objects for which x holds access. Under COAST

every erroneous or malicious visiting computation amounts to an insider attack (see section 3.1 for a

discussion of the threat model). Maximizing isolation, minimizing capability, and restricting access are

the cornerstones of reducing the risks and consequences of insider attacks.

Further, mutual distrust (or equivalently, limited trust) among principals is a defining characteristic of

decentralized systems. That mistrust is magnified when once trusted partners, themselves under attack

or unknowingly subverted, become agents of misfeasance. Though absolute protection against insider

attack is impossible (as sufficient predicates can lie well outside the boundary of computability) limits on

access and resources are essential even when all principals enjoy a high level of trust.

Capability security emphasizes risk management over guarantees as breaches are inevitable in com-

plex systems and the best that one can hope for is to minimize or contain the damage [189, 209]. Two

related concepts speak to minimizing and containing system risk: connectivity and authority. Maffeis,

1Memory, processor cycles, network bandwidth, mass storage, and the like.
2 Databases, domain-centric functions such as an image processing library, sensors, actuators, or specialized computing

hardware such as a graphical processing units (GPU) or a quantum computer.
3 There is one caveat: accurate memory accounting in garbage-collected functional languages, a critical tool for bounding

the memory consumption of mobile code computations. Two solutions are noted here. Wick and Flatt [262] offers per task
(equivalently thread) memory accounting without requiring per-task object partitions by leveraging the language garbage
collector while Yang and Mazières [266] exploits the features of the Safe Haskell memory allocator, garbage collector, and
threads subsystem to account for per-thread references to shared structures. Racket (www.racket-lang.org) incorporates [262]
in its formulation of custodians [89] but Island (circa 2015), which is built atop Racket, does not take advantage of it. The
omission was deliberate. Life is short and I had more pressing matters to deal with.

223

www.racket-lang.org

Mitchell and Taly [159] define a system authority-safe if it satisfies two principles captured in the object-

capability literature [170, 220]:

• Only connectivity begets connectivity: demands that all access to resources of any description derive

from prior access. In other words, a system element x cannot gain access α out of thin air, rather

accessα derives from the transitive closure of the prior access of x . Communication by introduction

is a particular example of this principle.

• No authority amplification: restricts the transfer of authority to initial (ab initio) authority, authority

acquired through interaction, and fresh authority over newly created resources. There are no other

sources of authority.

A system that is authority-safe preserves isolation among isolated system elements and bounds the au-

thority that any subject x can acquire or transfer to others. The total authority held by x is the set of all

actions available to x .4 To ensure that COAST meets the minimal requirements for cooperation among

mutually distrustful parties (adequate security) I prove that:

• The COAST architectural style is authority-safe, meaning that it preserves isolation and eschews the

implicit propagation of authority; and

• Motile/Island is capability-safe, hence authority-safe, demonstrating that the Motile language and

the Island peering infrastructure preserve the security guarantees inherent in the style.

As I show in Chapter 11, pervasive authority-safety and capability-safety are crucial for higher-order

security.

Section 10.1 proves that the COAST architectural style is authority-safe. Section 10.2 proves by case-

analysis and induction that Motile/Island is capability-safe, and hence, courtesy of Maffeis, Mitchell and

Taly [159], authority-safe. Section 10.3 reviews the impact of the work of Maffeis, Mitchell and Taly on

web security while Section 10.4 reflects on the significance of our result for Motile/Island and offers a few

suggestions for future work.

4 In the object-capability model the the conservative upper bound on the total authority of x is the transitive closure of all
object references held by x .

224

10.1 COAST is Authority-Safe

I claim that services in the COAST architectural style are authority-safe. The COAST style states (sec-

tion 3.3):

• Services: All services are computations whose only interactions are the asynchronous messaging

of values, closures, continuations, and binding environments.

• Execution: All computations execute within the confines of some execution site 〈E , B〉where E is

an execution engine and B a binding environment.

• Messaging: Computation x can transmit a message to a computation y only if there exists 〈t •, t .〉

such that x holds a CURL u denoting t • and y holds t ..

• Interpretation: The interpretation of a message delivered to computation y via CURL u is y- and

u -dependent.

Communication by introduction among COAST services is codified in the Services and Messaging rules.

The first guarantees that messaging is the only interaction between two services x and y . The second en-

sures that x can transmit a message to y only if x holds a CURL u denoting a trajectory of communication

t • −→ t −→ t . (section 3.2.3) that terminates in y .5 How then did x acquire CURL u ? It was:

• Obtained ab initio (the closure comprising service x bound u in its lexical scope bindings);

• Returned to x by a function in the binding environment B of the execution site 〈E , B〉 of x (the

Execution rule), or;

• Received by x in a message (the Messaging rule).

In other words, communication by introduction is an instantiation of only connectivity begets connectivity.

A reprise of the argument above demonstrates the absence of authority amplification, that is, the

creation of authority out of thin air (of which ambient authority is one example). CURL u in the argument

above is an exemplar of authority (here the capability to communicate). How can that authority be

acquired? It is:

• Obtained ab initio in a lexical scope binding of a closure;

• Exercised implicitly via the execution of a function f in the binding environment B of an execution

site or returned as a value of a call to f (the Execution rule);

5 More formally, y holds an egress point t . of that trajectory.

225

• Contained in a message transmitted from one computation to another (the Services and Messaging

rules).

Under COAST the acquisition of CURL u is no different from the acquisition of any other distinct form of

authority. In combination the three rules: Services, Execution and Messaging, satisfy the conditions for

an authority-safe system.

10.2 Motile/Island is Capability-Safe Hence Authority-Safe

Authority safety, while a crucial underpinning for sufficiently secure, is just half the story. It only

defines safety conditions for ensuring isolation; not a programming model or methods of enforcement.

The object-capability model championed by Miller [170] defines a structure for exercising authority that

can guide programming language design (the language E defined and developed by Miller is one example).

Maffeis, Mitchell and Taly [159] formalize the object-capability model by reducing the model to a set of

reachability properties among abstract objects conforming to the object-capability model and then prove

that a programming language is capability-safe if the upper bound on the authority of a programming

language object

. . . is given by the union of the set of resources contained in all objects that are reachable

from a given object in the reference graph. This notion is also known as the topology-only

bound on authority.

A languageL is capability-safe if it meets four connectivity conditions6 that are stated in terms of object

references and the methods of those objects. A reference to an object is an unforgeable capability and

methods are the actions that a reference holder (another object) may perform. In accordance with Miller

connectivity is limited to:

Initial conditions: Object x is granted a reference ab initio as the initial conditions of a computational

state.

Introduction: If object x holds references to objects y and z , x can pass to z a reference to y and z can

retain that reference to y for subsequent use.

Parenthood: If object x creates object y then x acquires the only reference to the freshly created object

y .

6 Proposition 1 of [159]. These conditions, initial, introduction, parenthood and endowment, are the definitions established
by Miller [170] for an object-capability language.

226

Endowment: Let x hold references to objects z 1, . . . , z m . If object x creates object y then y holds refer-

ences only to those z i endowed to y by x . In other words, the object references of y at the time

of creation are a subset (possibly empty) of the references held by x at that point in time. In other

words, x cannot endow to y references that x does not hold.

These four conditions are often also stated in terms of message passing among objects. The two perspec-

tives, trading references via method invocation or message passing, are equivalent.

Maffeis and his colleagues [159] prove that if a language L is capability-safe then it is authority-

safe. In other words, the object-capability model provides sufficient guidance for programming language

design to ensure that a system S composed inL is authority-safe — within S only connectivity begets

connectivity and there is no authority amplification.7

With this in mind I argue that Motile, a functional, single-assignment language with persistent, func-

tional data structures, alongside Island, the COAST peering infrastructure, is a capability-safe language

and hence authority-safe.

• The Motile transpiler translates Motile programs into closures, each of which is implemented in a

continuation-passing, lexical-scope-passing, binding-environment-passing style. Motile is single-

assignment, there is no imperative assignment at any level of the language, and all Motile objects,

including closures, continuations, binding environments, tuples, lists, CURLs, and persistent vec-

tors, hash maps, unordered sets and records, are immutable. All objects are initialized at creation

time. There is no means by which any Motile program (an executing closure) can alter the contents

of any Motile object. Consequently, it is impossible for a Motile program to use global assignment

to lexical scope or a binding environment as a back channel for the communication of capability.

• No Motile closure has access to the lexical scope environment of its caller and no caller can access

a callee’s lexical scope environment of origin.8

• Every Motile closure executes within the context of some binding environment B . Any function

not within lexical scope must be resolved with respect to the binding environment B of the caller;

failure to resolve is a fatal error. The binding environments of Motile are themselves functional,

7 One must not read too much into this result, for example: there is no guarantee whatsoever that every system implementa-
tion in languageL is secure, safe, free of risk, or absent dangerous distributions of authority. Even a disciplined implementation
of a systemS inL may contain an inadvertent connection that leaks a dangerous authority.

8 The latter is not strictly true if caller and callee share the same lexical scope environment however, absent imperative
assignment neither caller nor callee can affect any portion of that shared lexical scope.

227

persistent hash maps; therefore immutable and version-preserving. A binding environment B may

be amended: bindings (name/value pairs) may be added, deleted, or the value of a binding changed

without changing B .9

• The baseline binding environment of Motile contains only pure functions and no effectual capabil-

ity. The binding environment B of an island execution site oftentimes is a superset of the baseline,

containing one or more procedures — functions capable of side effects.10

Motile, in both spirit and function, bears considerable resemblance to W7, a capability-safe, Scheme

dialect developed by Rees for the construction of a capability-based operating system kernel [199]. Two

features in particular ensured that W7 met the conditions for capability-safe: the absence of imperative

assignment and stringent control of the contents of the global binding environment containing the pro-

cedures and functions of the language. Motile, like W7, comprises a small, pure functional core for which

lambda definition, lambda combination, conditionals, and tail recursion optimization are the principal

elements. Consequently, the functional core of Motile (like W7) contains no ambient authority that exists

in an implicit environment where any subject can request it by name [169].

W7 eliminated ambient authority by insisting that all functional and procedural capability be con-

tained in modules explicitly imported at compile-time. Motile achieves the same goal at run-time by

treating binding environments as first-class objects and evaluating closures in known binding environ-

ments that exclude ambient authority. The binding environments of Motile computations executing on

an island are island-specific and minimize, to the extent possible, the capability granted to closures.

10.2.1 Intra-Island Motile Without Communication is Capability-Safe

Intra-island Motile is confined to a single island I supporting multiple computations (islets) x1, . . . ,xm ,

each x i executing a Motile thunk f i within an execution site 〈E i , Bi 〉. Assume for the moment that no Bi

9 To the extent possible functional, persistent structures share common substructure. A binding environment B ′ derived
from B by a series of additions, deletions, or value changes will likely share substantial, unchanged substructure with B (roughly
proportional to the difference between B and B ′). On a single island binding environments are safely shared by reference and
the memory costs of derived binding environments B ′ are modest.

10 For example, one binding environment used for debugging and testing contains the R7RS procedure display that produces
human-readable output on a display device of some description. Binding environments intended as targets for spawns contain
curl/send, a procedure that transmits a message from one computation (islet) to another be it intra- or inter-island.

• Motile does not implement eval for dynamically evaluating expressions in the context of one or more predefined binding
environments. Consequently Motile closures cannot amplify their authority by any means other than the acquisition of object
references by introduction, parenthood, or endowment.

228

contains communication capability directly or indirectly11, so that it is impossible for any computation

f i to message another computation f j on I .12

Even though two closures f i and f j may share memory via lexical scope (certainly when f i = f j), and

the same closure g may appear in the bindings of two or more binding environments Bi and B j , those

memory cells are immutable. Motile is single-assignment and the binding environments Bi lack any

closure capable of imperative assignment to the heap, the lexical scope of any f i , any binding of Bi , or

the lexical scope of any closure in Bi . As a consequence each computation (islet) executing f i is isolated

from the other; there may be shared state but that state is immutable.

How then do the computations x i acquire connectivity (object references) given these assumptions?

There are only four avenues:

Initial Conditions: Since each f i is a Motile closure its initial capability derives from only two sources: its

lexical scope bindings or capability acquired from the binding environment Bi of its execution site.

As each islet x i is isolated one from the other and they cannot communicate, no x i can acquire, by

initial conditions, any object reference that has effectual influence on its co-resident computations

x j .

Introduction: It is impossible for any computation x i to introduce an object reference to any other x j

as there is no communication of any form between x i and x j . It is also impossible to introduce a

reference of any kind, from anywhere, to any immutable data structure that x i may hold. Therefore,

in this scenario connectivity by introduction is impossible.

Parenthood: x i can create a new object, for example a list:

1(let ((a (list 7 11 17)))

2(f (car a)))

and bind the reference to that object, the list (7 11 17), within its lexical scope (here the variable

a).13 Calling a constructor bound within Bi or the lexical scope of x i is the only way that x i can

create an object.

Endowment: x i can endow objects with:

11For example, curl/send or the ability to create or read promises.
12 Recall that an island is a single, homogeneous address space where all islets residing on the island share the same heap.

For efficiency intra-island communication among islets is by reference via shared memory structures.
13 The primitive list is a pure function bound with the Motile baseline environment.

229

1. References from its lexical scope (or more formally from the lexical scope of f i),

2. References to functions within its binding environment Bi , or

3. References created by calls to functions within its binding environment Bi .

For example given,

(tuple a cons (cons (* 3 3) 27))

where tuple is the tuple constructor (a fixed-length immutable vector): a is a binding within the

lexical scope of f i and cons is the constructor for pairs (cons cells), with tuple and cons. Both

tuple and cons are bound within the baseline binding environment of Motile, hence Bi as well.

Clearly, intra-island Motile, absent any communication capability, is capability-safe and hence authority-

safe (not to mention dull and limited).

10.2.2 Intra-Island Motile with Only Intra-Island Communication is Capability-Safe

Assume that the binding environments Bi of islets x i contain procedural communication capabil-

ity — curl/send, promise/new, and promise/block among others — but that procedural capability is

restricted to intra-island communication (a restriction that any island can enforce).

There are two cases to consider. First, If no x i holds a capability for communication with any x j

(a CURL ux j) then the procedural capability for communication bound within Bi is useless. No x i has

been introduced to any x j and without an introduction, specifically a CURL ux j forx j , no x i can use any

communication procedure to greet x j and initiate an exchange. Therefore this case is equivalent to that

of Section 10.2.1 above and in this instance the construction is capability-safe.14

For the second case assume that x i holds a CURL ux j for x j and that x i is the only computation to

hold ux j . How did x i acquire ux j ? Absent any communication acts then ux j was endowed to x i by a chain

of endowment that can be traced back to the parent of x j . There is simply no other mechanism available

in a capability-safe language and we know that, in the absence of any communication, intra-island

Motile is capability-safe (per Section 10.2.1). From this point, if x i holds ux j it can establish bidirectional

communication with x j by creating a CURL ux i and transmitting it via ux j to x j . In other words, x i

introduced itself to x j . If an xk introduces itself to x j then x j can both reciprocate and introduce xk to x i

14 An identical argument applies to promises as well since the resolver of any promise is a CURL.

230

since x j holds ux i . Thus endowment plus successive introductions allows computations x i to establish

cliques x i 1 , . . . ,x i s of inter-communicating computations in which each member x i k has bi-directional

communication with all of the other members of the clique.15

I proceed by induction on the number n of pairs of computations x i → x j for which x i holds a CURL

ux j for x j .16 Assume n = 1, that is x i → x j is the only communication connectivity among the computa-

tions x1, . . . ,xn residing on an island I . The core of the argument rests on the observation of Section 10.2.1

above: absent connectivity by introduction Motile/Island on a single island is capability-safe. However,

all that x i → x j provides is one-way intra-island connectivity by introduction between a single pair of com-

putations. Since all messages are immutable no message can introduce a shared memory back channel

for communication and therefore the other three forms of connectivity — initial conditions, parenthood

and endowment — and their restrictions remain unchanged. The only change is that introduction opens

a path by which additional references to immutable objects can be propagated from one computation to

another. In other words, an island with a single communicating pair of computations is capability-safe.

Assume that an island with n − 1 co-resident pairs of communicating computations is capability-

safe. The introduction of an additional pair of communicating computations does nothing to expand the

means by which connectivity is extended, that is to say, connectivity begets connectivity only through

initial conditions, introduction, parenthood, and endowment. Ergo, intra-island Motile with only intra-

island communication is capability-safe.

10.2.3 Inter-Island Communication is Capability-Safe

Let I and J be two distinct islands executing Motile computations x1, . . . ,xm and y1, . . . , yn respectively.

Assume that:

• x i holds a CURL u y j for y j on island J and that x i is the only computation residing on I holding a

CURL referring to an ingress point on J .

• The binding environment B of the execution site of x i contains curl/send.

• x i may transmit messages inter-island.

15 It is trivial to create and endow a promise and bootstrap that, using a trivial exchange protocol, into a mutual exchange of
CURLS uxi and ux j between computations x i and x j .

16 For bi-directional communication we have x i → x j and x j → x i .

231

x i can transmit any serializable Motile object from island I to y j on island J including CURLs, closures,

binding environments, tuples, lists, and all persistent data structures. However, many of the closures

found in island binding environments are Motile-compliant wrappers around primitives written in lan-

guages other than Motile.17 Those closures are fixed assets, cannot be transmitted off-island, and are

safely ignored.18

CURLs may appear embedded within any other Motile object including closures, binding environ-

ments, and other CURLs. CURLs are the only object that can move between islands and confer additional

authority to its recipient, in the sense that possession of a CURL can grant the holder a communication

authority that it did not possess before (for example, communication with a previously unknown island

or access to service that was previously unavailable but on a known island). On the other hand, It is

impossible for any Motile closure transmitted inter-island that does not contain CURLs in its lexical-

scope bindings to confer additional authority because the capability granted to a Motile closure depends

entirely on the bindings in the binding environment of its execution site.19

How then did x i come to possess CURL u y j in the first place? CURLs have two distinct represen-

tations: on-island as a Racket record (with a Motile API and recognized as a Motile object type) and a

serialized representation as a human-readable set of attribute/value pairs, the latter is also suitable for

out-of-band transmission via web page, email, or pastebin.20 We can, without loss of generality, presume

that x i obtained the CURL u y j from initial conditions: the human-readable representation appeared as a

string literal in a body of Motile source code or was read from a repository of CURLs accessible via other

means, such as HTTP. The first two techniques are commonly used to bootstrap inter-island communica-

tions. The reference implementation of Motile/island (circa 2015) uses UDP broadcast to beacon island

presence and simultaneously distribute an island-specific CURL for initial contact; another form of con-

nectivity by initial conditions. More generally, CURLs arrive in messages from other islands, connectivity

by introduction and, in the case of x i , transferred via a chain of endowment until u y j appears in a lexical

17 In the reference implementation of Motile/Island those languages are C and Racket.
18 Section 6.2 discusses the subtleties of the inter-island transmission of closures. I confine the discussion here to binding

environments whose closures are wholly defined in Motile, hence not a fixed asset.
19 Recall that a Motile closure λ leaves the bindings of its free variables behind when transmitted off-island. Those free

variables are rebound (on each variable reference) by lookup in the binding environment B of of an island-specific execution
site 〈E , B〉 of the destination island. On a single island the same closure λ can safely execute in multiple, distinct, execution sites
〈E i , Bi 〉 simultaneously, even though the same free variable α∈λmay become bound to a different closure λα,i in each binding
environment Bi .

20 That serialized representation is translated back into its on-island record representation by the deserializer. That translation
is implemented by an Island library devoted to the two representations.

232

scope binding of a closure f i executed by some computation x i . Computations that are born on island

almost always acquire a “bootstrap” CURL via endowment and binding in the lexical scope of the thunk

comprising the computation.

Irrespective of how CURLs appear on-island in the first place21 the only form of connectivity that

CURLs confer is connectivity by introduction in which objects are serialized on the transmitting island

and deserialized on the receiving island. Communication by introduction is always capability-safe hence

inter-island communication, which is always CURL-mediated, is capability-safe.

This argument is completely independent of the number of computations communicating inter-

island between two islands. Induction on the total number of inter-communicating islands shows that if

n −1 islands are capability-safe then n inter-communicating islands are capability-safe since a pairwise

analysis for any (I i , I j), i 6= j from among all islands I1, . . . , In proves that all communication between I i

and I j is just connectivity by introduction, hence capability-safe.

10.3 Related Work

We are already awash in decentralized systems: the world of web servers and browsers is the largest

complex of decentralized principals in the world and the dynamic web pages generated by modern servers

for consumption by browsers are stuffed to the gullet with JavaScript (not mobile code by my definition

but an executable representation nonetheless).22 Practical systems for constraining JavaScript execution

in the browser include AdSafe23 [194] and Caja24 [171]. Maffeis, Mitchell and Taly formalize the key mech-

anisms underlying these sandboxes and prove that they can be used to create secure sandboxes. However,

their security rests critically on the underlying capability-safe language, exemplified by [233] which re-

lied upon the semantics of a restricted version of JavaScript expressly devised to isolate browser-side

JavaScript, when conducting a static security and safety analysis of server-included JavaScript libraries.

JSand [3] is a server-driven, but client-side executed, JavaScript sandbox that is, the executing JavaScript

is confined client-side (but with no changes to either the browser or remote JavaScript libraries). Taken as

21 Bootstrapping via initial conditions is our answer to the “chicken and egg” problem of how islands acquire CURLs to
launch communication with other islands. After all, if a CURL is required to communicate how do you communicate to acquire
a CURL?

22 Circa 2011, of the top 100,000 internet web sites a total of 3,300,000 web pages contained 8,439,799 remote JavaScript
inclusions [178].

23www.adsafe.org
24https://developers.google.com/caja/

233

www.adsafe.org
https://developers.google.com/caja/

a whole, this body of work suggests that capability-security and the twin models of authority-safe systems

and capability-safe languages can play a role in decentralized systems that are not browser-centric.

10.4 Summary

Adequately secure may be the strongest realistic claim that one can make about decentralized sys-

tems. The capability-object model, though far from complete or settled [59, 61–64], offers considerable

advantages, not the least of which being a concrete programming model for capability-safe and hence,

authority-safe systems. It all boils down to an acceptable level of risk for the stakeholders of a decentral-

ized system and, as my analysis suggests, COAST and its embodiment, Motile/Island, provide mechanisms

that allow a security-conscious developer to modulate access and capability with a high degree of flexibil-

ity and precision. I don’t claim perfection — adequacy is the best that I can hope to achieve.

The proofs also indicate that computation exchange and object-capability security are not incompati-

ble — the style is authority-safe and the reference implementation is capability-safe hence authority-safe.

While computation exchange introduces additional risk above and beyond those ordinarily found in dis-

tributed and decentralized systems it does not a priori render systems unsafe or insecure. At the same

time, as demonstrated previously in Chapters 8 and 9, computation exchange offers powerful primitives

for live system update and enlarges the scope and vigor of service API design, deployment, and exploita-

tion. As shown in Chapter 11 following it also offers the prospect of innovative forms of system inspection

and monitoring. I argue that embedding computation exchange in the object-capability model of security

strikes a useful and practical balance between the power of computation exchange and the demands of

safety and security.

In addition, the arguments for the authority-safety of COAST, the capability-safety of Motile/Island,

and the congruent authority-safety of the two combined are indicative of the degree to which COAST, the

style, influenced the semantics of Motile, the language [115]. Nonetheless Motile/Island is not the only

formulation of language and infrastructure capable of satisfying the demands of COAST. In fact, Maffeis,

Mitchell and Taly prove by example that while capability-safety is a sufficient condition for authority-

safety it is not a necessary condition; opening the door to languages for COAST that are authority-safe but

not capability-safe. In other words, capability-safety may be just one of many language models suitable

for COAST-based systems. There are also interesting variations in capability-safe languages, for example:

234

Oz-E [222], which draws upon experiences with the capability-secure languages E [170] and the W7-

kernel for Scheme48 [199], and Pony25, a statically typed, strongly typed, actor-based language with deny

capability [42].

Tools and logics for capability analysis may provide insight into both language design and system

architecture. Spiessens [220] contributes both a logic, SCOLL, and a model checker/solver SCOLLAR,

based on constraint logic programming, that solves safety problems in capability systems. The capability-

safety of Motile/Island and the “actor-like” islet-based services described in Chapter 8 may sufficiently

constrain the semantics of service execution and capability transfer as to permit formal verification of

the isolation, transfer, and confinement of capability [231], an appealing avenue for verifying the security

behavior of decentralized systems.

25http://ponylang.org

235

http://ponylang.org

Chapter 11: Evaluation: Architectural Accountability

The proofs of Chapter 10: that COAST is an authority-safe style, Motile a capability-safe language, and

Motile/Island a capability-safe infrastructure, hence authority-safe, offer a fresh perspective for designing

and developing secure decentralized systems. This perspective emphasizes capability accounting — for

which the fundamental unit of accounting is the creation of a capability, a transfer of capability from one

computation to another, or the exploitation of a capability. To use the terminology of the proofs, this

means tracking the parenthood, endowment, introduction, and authority of capability. In this context

capability accounting is a trace of the life history and authority of capability. Capability accounting

embodies architectural accountability [270], the degree to which an architectural style supports security

accounting.

The target systems for capability accounting are typified by decentralized services such as those found

in ecommerce, where there are multiple interacting principals, mutual distrust among those principals,

and no single overarching authority. The individual principals are autonomous, yet cooperate with other

principals to achieve shared goals (such as obtaining goods and shipping them to a consumer in return

for payment).

My perspective, however, differs from classic request/response services in several respects, ranging

from the granularity of services, to the extensive use of mobile code and capability security, to the very

nature of what a service provider is and how it operates. The core of COAST’s architectural accountabil-

ity is capability accounting — the practice of producing and maintaining a record or statement of the

generation, transfer, or use of capability relating to a particular period or purpose.

Even in a world of perfect security, accounting and auditing are necessary to verify the correct op-

eration and integrity of critical systems. I address the problems of accounting from the perspective of

system architecture and architectural styles [238]. Architecture, in addition to its other virtues, also has

the potential to induce forms of accountability for security, hence the theme of this final portion of the

evaluation: accountability through architecture. COAST is an architectural style where the explicit transfer

and exercise of capability is a fundamental structural element. To what degree can an architectural style

236

induce architectural accountability?

Section 11.1 analyzes the COAST style and its reference implementation, Motile/Island, for probe

points at which one can detect capability events. Section 11.2 presents a synopsis of an early experimental

study of capability accounting under COAST. Related work is reviewed in section 11.3 and section 11.4

offers suggestions for future work in this area.

11.1 Approach: Capability is in Plain Sight

Under capability architectures security arises from the deliberate and systematic allocation of mini-

mal capability (the Principle of Least Authority) across system components. In effect, capability security

systems erect a “capability workflow” for which the allocation, transfer, and exercise of capability resem-

bles the flow of goods through a logistics system or the steps in a manufacturing workflow.

The proofs of Chapter 10 pivoted on the the propagation of authority and capability through the style,

the communication of capability within Motile programs, and the exchange of capability among islands.

At every turn in the arguments, the exact points at which capability and authority appeared or were

transferred were explicitly identified. In other words, flows of capability and authority, like flows of money

or goods, appear and move through well-defined points in both the COAST style and its embodiment,

Motile/Island. In short, not only do the proofs tell us where to look, they are also complete — there is

simply nowhere else to look.

The COAST style therefore induces architectural accountability. Within the style there are only three

points of inspection: (1) the actions of mobile code (islets) at island execution sites, (2) intra-island mes-

saging, and (3) inter-island messaging. The explicit construction of an execution site as an 〈E , B〉 pair

encourages independent probes and accounting for both the execution engine E and the binding environ-

ment B of each islet computation. At a minimum, both inter- and intra-island message traffic accounting

is straightforward. Thus the architecture style dictates where fundamental, effective accounting must

occur.

Since Motile is a capability-safe language, capability arises solely from initial conditions, introduc-

tion, parenthood, and endowment. With all Motile types and structures immutable and the absence of

imperative assignment there are no back channels for the transmission of capability among co-resident

237

islets on a single island or between pairs of islets, each on a different island. From the perspective of

Motile there are only three forms of capability:

• Functional capability embodied in the contents of the binding environment B of an execution site

or acquired from co-resident computations via intra-island messaging;

• Fixed assets acquired from lexical scope bindings, the return values of functions bound to the

free variables of closures via the binding semantics of Motile mobile code, and the contents of

intra-island messages;

• Communication capability acquired from the accumulation of CURLs, themselves values appear-

ing in lexical scope bindings, the return values of functions bound to the free variables of closures

via the binding semantics of Motile mobile code, and the contents of messages, both intra- and

inter-island.

For any computation (islet) any exercise of capability can be detected at time and point of use. In the

case of inter-island exchanges all of the capability transferred in a message (and in particular CURLs)

can be detected by both the transmitting and receiving islands at no additional cost as a side effect

of (de)serialization. For intra-island exchanges an island may, at additional cost, detect all transfers of

capability at time of transmission or, for trusted islets, detect all incoming capability at time of reception.1

The proofs of Maffeis, Mitchell, and Taly [159], showing the link between authority-safe systems and

capability-safe languages, also enumerate the touchstones of capability accounting. In other words, the

twin conditions of authority-safe and capability-safe are sufficient to induce the points of capability

creation, use and migration. These proofs also explain why complementary mechanisms, all serving

the same end — capability accounting — appear in multiple levels throughout the architecture. While

the details may certainly vary from system to system and language to language, the close integration

between COAST the architectural style and Motile/Island the implementation, reveals that a small set of

fundamental mechanisms: communication by introduction, mobile code, execution sites and CURLs,

can serve multiple purposes — adaptability, security, and accountability simultaneously — at many levels

throughout a service system.

Outside of messaging in Island all Motile capability creation, endowment, and introduction takes

place within an execution site 〈E , B〉; specifically invoking functions f in the binding environment B .

1 See Section 6.2 for a discussion of the mechanisms and the security role of (de)serialization in this regard.

238

How then to monitor, identify, and collect incisive traces of function applications for the purposes of

capability accounting? The baseline binding environment of Motile is populated almost exclusively

with pure functions drawn from standard bindings of R7RS [216]. Almost all binding environments B

are elaborations on the baseline environment and whose additional functions g 1, . . . , g m are oftentimes

domain- and service-specific. I conjecture that in most cases it is sufficient, for the purposes of capability

accounting to monitor a select critical subset, C ⊂ {g 1, . . . , g m }, and thereby reduce trace and analytic

overhead.

11.2 Early Experimental Evidence

A preliminary and exploratory investigation of capability accounting is reported in the work of Giorgio

[106] and Giorgio, Gorlick, Nies and Taylor [105] in which a model electronic trading system, constructed

as a set of decentralized COAST services under Motile/Island, was hand instrumented to generate a trace

of critical capability events. A notional sketch of the model trading system is given in Figure 11.1. The

flow and exercise of communication capability is illustrated in Figure 11.2.

A variety of trading computations were executed; some seeded with faults. Traces of these trading

computations were subsequently analyzed with a homebrew, linear temporal logic, model checker. In

each case the trace analysis either correctly identified the trace as fault free or was able to pinpoint where

the expected capability event failed to occur or where an erroneous capability event did in fact take place.

The proofs of Chapter 10 guarantee that the probes captured all of the capability events. To the extent

that the test cases covered the space of service interactions, we have complete knowledge of the transfer

and exercise of communication capability; in other words, completeness guarantees that no capability

event will ever go undetected.2

Readers interested in the details of this work are invited to consult [106].

11.3 Related Work

There is a significant body of work in computational contracts for functional languages that includes

generic mechanisms for generating and placing probes and automatically producing trace streams for

analysis. Disney, Flanagan, and McCarthy [60] develop a formal model of module interactions for an

2 Whether a system can afford to collect and analyze every capability event is another question altogether. If nothing else
the completeness property guarantees that for instrumented critical services no capability event will slip by undetected.

239

C1 C2

C3

Risk Management
Server

C4

Market Data
Server

C4

C5

Order
Router

Broker

Trader

deploys

subscribes

subscribes

publishes

new order

execution report

Exchange

Figure 11.1: A model trading system comprising a trader, broker, and a financial exchange (adapted
from [106], Figure 7.1).

imperative untyped lambda calculus with constants and mutable reference cells.3 An operational abstract

machine, the Code × Store × Interface machine, formalizes the semantics of modules. This machine

model, in turn, generates traces of the higher-order interactions among functions defined in multiple

modules where functions in one module invoke (perhaps recursively) functions in another. These traces

capture the temporal behavior (in the sense of the ordering of calls and returns) of higher-order functions

and allow the authors to formulate trace predicates as behavioral contracts — exactly what security-

centric function-level monitoring requires. To demonstrate the work the authors define and implement

a declarative language for HOT (Higher-Order Temporal) behavioral contracts in Racket4, a well-known

Scheme dialect (and incidentally the implementation language of Motile/Island).

The computational contracts of Scholliers, Tanter and De Meuter [211] generalize HOT contracts,

3 This language, despite its simplicity, is general enough to model many modern languages including encapsulated behavior
(via lambda expressions and lexical scope bindings) and shared imperative state. In particular, it is more than adequate for
many Scheme dialects including Motile.

4www.racket-lang.org

240

www.racket-lang.org

which treat functions as black boxes, to contracts for grey-box verification that include requirements

such as mandatory function calls or protocol contracts. Applications include prohibit contracts (f may

never call g), promise contracts, the dual of prohibition (f must call g), usage protocols (such as every

call of f 0 must later be matched by a call to f 1), and stateful protocols whose evaluation guarantees that

time-varying state constraints are satisfied, even midway in the execution of a function (for example,

bounding memory consumption over the span from the call of f to its return).

11.4 Summary

The concept of capability accounting is novel and the results obtained here suggest that it can be

a useful abstraction of the behavior of decentralized services. Capability accounting arises naturally in

the COAST architectural style and its reference implementation, Motile/Island. Preliminary experiments

suggest that capability accounting may be useful for debugging, behavioral analysis, and the detection

of security faults or breaches. Automated tools for analyzing Motile live computations and inserting

capability probes is a promising line of investigation.

Contracts for tracing and analyzing the parenthood, endowment, and introduction of capability is an

open question, but combining a hazard analysis with contract-decorated functions in binding environ-

ments is a suggestive avenue of investigation. Factoring services s1, . . . , sm into multiple distinct binding

environments 〈E i , Bi 〉 simplifies the hazard analysis for each s i /〈E i , Bi 〉 pair by reducing the number of

critical control points that must be considered. This in turn increases confidence in the integrity of the

analysis and the adequacy of the critical limits, monitoring, and corrective actions at each critical control

point. In other words, the incisiveness of the hazard analysis may lead to significant security benefits.

One of the fundamental contributions of contracts to higher-order languages (such as Scheme, and

hence Motile) is the assignment of blame; that is, identifying exactly which module is at fault when a

contract is violated [87, 88]. Two other works cited earlier, Disney et al [60] and Scholliers et al [211], also

go to great lengths to ensure that blame is properly apportioned. One wonders if capability accounting

can be combined with higher-order computational contracts to at least narrow the scope of blame for

the misuse of capability. In a similar vein, the flow of capability through a program in a capability-safe

language is both well-defined and confined. Tracking and calculating approximate capability flow may

prove an important analytic technique in anticipating or identifying a security breach.

241

Trader creates a CURL for notifications.

Trader transfers the CURL.

Trader contacts Broker.

Broker receives computation.

Trader@Broker creates a CURL for updates.

Trader@Broker transfers the new CURL.

Trader@Broker sends the new CURL to RM.

RM receives the message.

Trader@RM creates a new intra CURL.

RM sends update to Trader@RM.

Trader@RM receives the update.

Trader@RM sends update to Trader@Broker.

Trader@Broker receives update.

Trader@Broker transfers the new CURL.

Trader@Broker sends the new CURL to MD.

MD receives the message.

Trader@MD creates a new intra CURL.

MD sends update to Trader@MD.

Trader@MD receives the update.

Trader@MD sends update to Trader@Broker.

Trader@Broker receives update.

Trader@Broker creates CURL for new order.

Trader@Broker transfers the new CURL.

Trader@Broker sends new order to OR.

OR receives the new order.

OR sends execution report back.

Trader@Broker receives report from OR.

Trader@Broker notifies trader.

Figure 11.2: A verification model for financial trading that includes each transfer and exercise of com-
munication capability (taken from [106], Figure 7.2). The abbreviations MD (Market Data server), OR
(Order Router), and RM (Risk Management server) refer to the services shown in Figure 11.1.

242

Chapter 12: Summary

A decentralized system is a distributed system that operates under multiple, distinct spheres of author-

ity in which collaboration among the principals is characterized by mutual distrust. Now commonplace,

decentralized systems appear in a number of disparate domains: commerce, logistics, medicine, software

development, manufacturing, and financial trading, to name but a few. These systems of systems face

two overlapping demands: (1) security and safety to protect against errors, omissions and threats; and

(2) ease of adaptation in response to attack, faults, regulatory requirements, or market demands. The

tension between security and adaptability appears irremediable given that traditional mechanisms for

adaptation, such as late bindings and malleable connectors, conflict with defenses that assume static

structures and strive to limit variation.

To resolve the conflict between adaptability and security I turned to the idiom of computation ex-

change, a model of services in which peers interact by exchanging live computations for evaluation. A live

computation is state plus code, a network continuation of a computation in progress. Live computations

allow a service consumer to construct exactly the service that it wants from the primitives offered by a

service provider. Computation exchange pushes innovation out to the edges of the network, simplifies

the service APIs of service providers, accelerates adaptation, and lowers the barrier to service deployment

— any computation exchange peer can be both a service provider and a service consumer simultane-

ously. However, while computation exchange might earn high marks for adaptability it is, at first glance,

a security nightmare. How then to balance adaptation against security?

I consider decentralized systems and their security in the context of architectural style, a domain-

specific set of rules or constraints that confer benefits to the system in question. COmputAtional State

Transfer (COAST) is an architectural style for decentralized systems where the exchange of live computa-

tions is the principal interaction among peers.

To ensure a level of security consistent with the risk posture of a service provider COAST embeds com-

putation exchange in the object-capability model of security. COAST exchanges rely on communication

by introduction, meaning that a peer x can communicate with a peer y only if peer x holds a Capability

243

URL (CURL) for y ; the only means of communication among computations are asynchronous immutable

messages.

CURLs are cryptographic structures; they are tamper-proof and cannot be guessed or forged. Live

computations received by peers via CURLs are evaluated in the context of execution sites, flexible sand-

boxes that confine the functional and communication capability of visiting computations. The object-

capability model guarantees the integrity of communication by introduction and execution site confine-

ment. There is simply no back channel by which a live computation can obtain a communication or

functional capability surreptitiously.

These four fundamentals — communication by introduction, live computations, execution sites and

CURLs — are sufficient to protect against many common security threats, including unwanted intrusion,

resource theft, or gross abuse of capability. Surprisingly, these same four concepts also account for

a considerable degree of adaptation and flexibility. In fact, COAST-based systems are self-similar and

fractal. Services, initiated as live computations executing within the confines of an execution site, can

themselves initiate services whose rules of engagement, courtesy of the COAST architectural style, are as

equally confined by the style as any other service. Self-similarity encourages security at all system levels

irrespective of level or origin of service. Likewise, it preserves adaptation, ensuring that adaptability and

security are both available at all points, irrespective of the location of a service within a constellation of

collaborating, but mutually mistrustful, services.

To validate the twin claims of security and adaptation for COAST I constructed a COAST-compliant

reference implementation comprising Motile, a language for mobile code exchange and execution, and

Island, a peering infrastructure for decentralized systems. Motile is a single-assignment dialect of Scheme

in which all values are immutable and all data structures (such as hash maps, vectors, sets, records, and

the like) are functional and persistent. Live computations are reified as Motile closures, continuations,

and binding environments. I performed four studies with the Motile/Island platform: two each directed

at adaptation and security.

The first adaptation study analyzed the problem of live update of a simple service, a gold standard

for adaptive systems. Modeling an individual service as an endless service loop reading and responding

to service requests I constructed Motile/Island protocols for three forms of server update: live update in

place, live update with hot backup in a single address space, and live remote update with hot backup in

244

which the update is instantiated in a remote address space.

COAST is one of the rare architectural styles in which live update for the style conforms to the style

rules itself; that is, live update is a COAST service that obeys the same rules for security and adaptation as

does any other COAST-based service. Further, the mechanisms of live update are either themselves the

mechanisms of Motile/Island or constructions derived from those mechanisms. Consequently, live up-

date is no less secure and no less adaptive than any other COAST service and can be implemented entirely

in Motile/Island — a notable example of fractal COAST computations. This evaluation demonstrates that:

• COAST is capable of fail-safe live update for individual services in a decentralized system;

• Live update does not demand additional mechanisms that lie outside of the COAST style; and

• Live update is safe and secure to the extent that COAST is safe and secure.

The second adaptation study examined the problem of evolving web service APIs, in particular client-

driven API evolution. Client-driven extension is a direct consequence of computation exchange. Using

a web bookmark service as a test case, I define a minimalist service API that is extended per-client by

client-developed live computations deployed provider-side. The examples rely heavily on higher-order

combinators that allow clients to concisely express complex searches and data manipulations.

The extensive client code examples (provided in Chapter 9) illustrate that service API extension and

adaptation can be shifted from a service provider to the service clients, thereby easing the burdens on

a service provider and speeding the pace of service evolution. In addition, the examples illustrate how

clients themselves can form a service ecology around one or more core services that offers functionality

well above and beyond that of the core. Again, that ecology is self-similiar and, given the COAST style

rules and the properties of object-capability security, the ecology —] or any services derived from it in

turn — cannot threaten the safety and security of the core services. I therefore conclude that COAST

is well-suited for client-driven service extension and customization while maintaining a high degree of

safety and security for providers.

The first security study offers a proof, by case analysis and induction, that COAST is authority-safe,

Motile is a capability-safe language, and that Motile/Island is capability-safe, and hence authority-safe.

The proof, by construction, identifies all of the points within a COAST-compliant system where capability

is created, transferred, or exercised. The proof demonstrates that computation exchange and object-

245

capability security are compatible. Computation exchange confers a significant degree of adaptation

while object-capability confines and modulates computation exchange in manners consistent with safety

and security. Moreover, the proof is also complete, in that it identifies all such points within a system.

The object-capability model allows COAST systems to inspect, regulate, and protect those points to the

extent that the security policy of a sphere of authority is computable (and the performance overhead is

tolerable). Since security and safety is fractal, the threat posed by a weak or even malicious island may be

adequately contained in many cases, and where not, it may be possible to minimize or mitigate damage.

Unlike many other architectural styles, security is baked in and identical mechanisms are available at

all system levels. This result suggests that mistrustful collaboration is a viable strategy for decentralized

systems and that the risks of colllaboration and resource sharing can be adequately contained. Finally,

these results place COAST and Motile/Island squarely within the growing body of work on the security

and safety of capability-safe languages and confirms that the idioms and patterns of object-capability

security are available to COAST.

In the second security study I evaluated COAST with respect to architectural accountability and ob-

tained outcomes that indicate COAST is well-suited for capability accounting, a system accounting prac-

tice in which capability is the basic unit of exchange within and among systems. Using a model financial

exchange implemented in Motile/Island and a family of live computations seeded with faults, Matias

and Taylor [106] demonstrated that probes placed at points where capability is created, exchanged, or

exercised can generate traces that allow a linear temporal logic model checker to validate system behavior

and accurately detect process and security faults.

Capability accounting is a novel abstraction of system behavior. The self-similar structure of COAST-

based systems ensures that it can be applied at all system levels. It may prove useful for debugging,

characterizing normative behavior, early detection of anomalous behavior including trip wires for incipi-

ent attacks, performance analysis, and establishing system-wide trust levels among multiple spheres of

authority of a COAST system.

Finally, for those that wish to experiment with COAST a web site1 contains documentation, examples,

prepackaged downloads of the reference implementations of Motile and Island, installation instructions,

and a link to the GitHub repository for same.2

1http://isr.uci.edu/projects/coast/
2 The implementations are open-source under the Apache 2.0 License.

246

http://isr.uci.edu/projects/coast/

Chapter 13: Future Work

COAST opens many interesting avenues of investigation including:

• Types for live computations;

• Extending execution engines;

• Service discovery as a COAST service;

• Pervasive live update;

• Fractalware;

• Integration with legacy systems; and last, but not least,

• Simplifying Motile/Island

I touch on each these topics briefly here.

13.1 Types for Live Computations

Motile, like Scheme, is strongly typed but dynamically typed. This improves flexibility and ease of ex-

perimentation but may complicate debugging, reduce confidence in the correctness of live computations,

or needlessly jeopardize security. Several languages offer type systems of considerable generality and

expressive power. Two examples stand out. The first is Alice ML, a statically typed mobile code language

base on ML [203] that also offers an interesting generalization of serialization [204]. The second is Shem,

an S-expression based dialect of Haskell [225], that is closely integrated with a browser-based IDE.

Gradual typing is a compromise between complete static typing and dynamic typing. However, a

recent paper by Asumu Takikawa et al [232] demonstrates that gradual typing can inflict a severe, if not

crippling, performance penalty. In any case, typing live computations is a challenging problem worthy of

further investigation.

There is also an extensive body of work on session types [127, 128], type systems for the protocol

exchanges of concurrent and distributed systems. A recent unpublished paper by Lindley and Morris

[154] charts a path forward for integrating expressive session types into a pure functional language like

247

Motile. Session types might simplify the design and development of the exchange protocols that appear

repeatedly in COAST-based systems.

13.2 Extending Execution Engines

Extending the execution engines of execution sites for the sake of debugging, analysis, security guar-

antees, or multi-lingual integration offers considerable promise. For example, engines that implement

trace generation for capability accounting (as a non-functional side effect of execution) may bring ca-

pability accounting to the fore as a common and useful technique. Alternatively, an execution engine

could enforce temporal higher-order contracts [60] for ensuring the safe execution of the functions of

execution-site binding environments.

A path to multi-lingual integration is given by Feeley [77]where he describes a Scheme compiler that

targets JavaScript, Python, and Java among other languages. The Motile Assembly Graph, an intermediate

language used in Motile/Island as the network representation for live computations, was intended for

recompilation into target languages besides Scheme, but no other recompiler besides the one for Scheme

has been implemented to date.

13.3 Service Discovery as a COAST Service

Service discovery, here the automated discovery of an island’s services and the characteristics of its

outward facing execution sites, is a topic that the thesis ignores. One can leverage remote evaluation — a

client can explore an island’s offerings by dispatching live computations to an island-specific execution

site tailored for service discovery. However, the appropriate primitives for service discovery (that is, the

bindings available in a discovery-centric execution site) and the representations for service descriptions

and specifications are an open question.

More generally, islands could offer execution sites suitable for reflection on island behavior, health and

status, performance loads, and traffic statistics. Higher-level services, themselves COAST computatons,

that use such sites as data sources may assist in monitoring system performance, measuring progress, or

detecting abnormal behavior indicative of a system fault, security breach, or attack.

248

13.4 Pervasive Live Update

Live update, as discussed in Chapter 8, is a powerful tool for system adaptation. Much could be done

by the Motile compiler and at the island level to ease state capture, promote continuation transfer, and

improve the reliability and performance of live update. Some of the burden might be shouldered by

Motile frameworks or libraries for implementing live update-compliant services. As a matter of technical

interest, it should be possible to design and deploy a “minimal” island that relies exclusively on live

computations dispatched to it from other islands and live update for the instantiation of all core island

services. This would be a powerful demonstration of the reach and power of COAST-based infrastructure.

13.5 Fractalware

Fractalware, the emergent, self-similar services that arise at many levels of COAST infrastructure and

systems, are a notable system structure and hint that the design patterns for COAST compositions of

COAST services may differ in interesting ways from the design patterns seen in other distributed systems.

I also suspect that fractalware presents beneficial security characteristics, above and beyond the recursive

extension of COAST under the flag of COAST. Fractalware extends upward as well as down. The are many

higher level services, service discovery being but one example, that themselves can be constructed as

COAST services. One can imagine deployment, monitoring, continuous testing, update, and migration

all available as COAST-compliant services implemented in COAST. Fractalware may present new forms

of fine-grain, multiparty collaboration based upon highly dynamic service sharing, service duplication,

service modification, and service migration as the basic elements of collaborative constructions.

13.6 Integration with Existing Legacy Systems

Over the course of the research questions have been raised regarding a path forward to integrate

COAST-based infrastructure with existing services. One attractive option is the implementation and

deployment of specialized islands bridge between HTTPS on one side and inter-island protocols on the

other. There is no significant technical impediment to this approach; however, it is unimplemented and

awaits a security analysis of the risks of integrating an outward-facing, island-based HTTPS server with

internal island services. On the other hand, its attraction is undeniable and would allow non-COAST

systems and applications to both dispatch computations (perhaps in a restricted form) for execution in

249

a COAST infrastructure and receive the results using a well-known and widely implemented protocol —

HTTP 1.1.

13.7 Simplifying Motile/Island

Finally, those who have developed applications and test systems in Motile/Island refer to it as “an

assembly language for decentralized systems” thereby simultaneously praising its scope and damning its

complexity and detail. This is an important area for further work. Here again, libraries and frameworks

can go a long way to hiding tedious, error-prone detail: particularly important where security is at stake.

There is also considerable room for improvement in Motile. Language features for deploying, coordi-

nating, and orchestrating decentralized live computations are ongoing topics of investigation and design

patterns for web microservices are being accumulated by practitioners. No doubt the lessons learned

there can be applied to COAST. It is certainly the case that the Island primitives for CURL generation and

reflection can be improved. Rarely is the first generation of an API the right API and there is still much to

learn about island- and service-level interfaces.

250

References
[1] 30 Years of RFCs RFC 2555 The Internet Society, Apr. 1999 (see p. 36)

[2] Adobe Systems Incorporated. PostScript Language Reference Manual. (First edition for PostScript
Level I) Boston, Massachusetts, USA: Addison-Wesley, 1985 (see p. 36)

[3] Pieter Agten, Steven Van Acker, Yoran Brondsema, et al. “JSand: Complete Client-side Sandboxing
of Third-party JavaScript Without Browser Modifications” in: Proceedings of the 28th Annual Com-
puter Security Applications Conference ACSAC 2012 New York City, New York, USA: ACM, 2012,
pp. 1–10 (see p. 233)

[4] Nouh Alhindawi, Jamal Alsakran, Ali Rodan, and Hossam Faris. “A Survey of Concepts Location
Enhancement for Program Comprehension and Maintenance” in: Journal of Software Engineering
and Applications, 7:5 (2014), pp. 413–421 (see p. 197)

[5] Vincent St-Amour and Marc Feeley. “PICOBIT: A Compact Scheme System for Microcontrollers”
in: Proceedings of the 21st International Conference on Implementation and Application of Func-
tional Languages Berlin/Heidelberg, Germany: Springer-Verlag, 2010, pp. 1–17 (see p. 90)

[6] Jason Ansel, Petr Marchenko, et al. “Language-Independent Sandboxing of Just-In-Time Compila-
tion and Self-Modifying Code” in: Proceedings of the 2011 Conference on Programming Language
Design and Implementation PLDI’11 ACM, Jun. 2011, pp. 355–366 (see p. 16)

[7] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf, Jul.
2007 (see pp. 17, 44, 60, 102)

[8] Phil Bagwell. Ideal Hash Trees. PhD thesis Lausanne, Switzerland: Ecole Polytechnique Federale
de Lausanne, 2001 (see p. 149)

[9] Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, and Brad A. Myers. “Usability Challenges
for Enterprise Service-Oriented Architecture APIs” in: Proceedings of the Symposium on Visual
Languages and Human-Centric Computing VLHCC’08 IEEE Computer Society, 2008, pp. 193–196
(see p. 192)

[10] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer. “Capriccio:
Scalable Threads for Internet Services” in: Proceedings 19th ACM Symposium on Operating Systems
Principles SOSP’03 New York City, New York, USA: ACM, Oct. 2003, pp. 268–281 (see p. 60)

[11] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “Developing Multi-Agent Systems with
a FIPA-Compliant Agent Framework” in: Software - Practice and Experience, 31:2 (Feb. 2001),
pp. 103–128 (see p. 47)

[12] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “JADE: A FIPA-Compliant Agent Frame-
work” in: Proceedings of the Fourth Conference on the Practical Application of Intelligent Agents
and Multiagent Technology Apr. 1999, pp. 97–108 (see p. 47)

[13] John K. Bennett. “Experience with Distributed Smalltalk” in: Software - Practice and Experience,
20:2 (1990), pp. 157–180 (see p. 40)

[14] John K. Bennett. The Design and Implementation of Distributed Smalltalk Technical Report 87-
04-02 Department of Computer Science, University of Washington, Seattle, Washington, USA, Apr.
1987 (see p. 40)

251

[15] Daniel J. Bernstein et al. “High-Speed High-Security Signatures” in: Journal of Cryptographic
Engineering, 2:2 (Sep. 2012), pp. 77–89 (see p. 106)

[16] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The Security Impact of a New Cryptographic
Library http://cr.yp.to/highspeed/coolnacl-20111201.pdf Dec. 2011 (see pp. 18, 73, 176)

[17] Gavin Bierman et al. “Dynamic Rebinding for Marshalling and Update, with Destruct-time λ” in:
International Conference on Functional Programming ICFP’03 Aug. 2003, pp. 99–110 (see pp. 103,
104, 125)

[18] Andrew D. Birrell and Bruce Jay Nelson. “Implementing Remote Procedure Calls” in: ACM Trans-
actions on Computer Systems, 2:1 (Feb. 1984), pp. 39–59 (see pp. 31, 37)

[19] Matt Bishop. Computer Security: Art and Science. First Addison-Wesley Professional, Dec. 2002
(see p. 17)

[20] Matt Bishop, Sophie Engle, Sean Peisert, Sean Whalen, and Carrie Gates. “We Have Meet the
Enemy and He Is Us” in: Proceedings of the 2008 Workshop on New Security Paradigms NSPW’08
New York City, New York, USA: ACM, Sep. 2008, pp. 1–12 (see pp. 51, 52)

[21] Matt Bishop, Sophie Engle, Deborah A. Frincke, et al. “A Risk Management Approach to the
Insider Threat’” in: Insider Threats in Cyber Security ed. by Christian W. Probst, Jeffrey Hunker,
Dieter Gollmann, and Matt Bishop Advances in Information Security, Springer USA, 2010, pp. 115–
137 (see p. 52)

[22] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. “The Development of the
Emerald Programming Language” in: History of Programming Languages HOPL III ACM SIGPLAN,
2007, 11:1–11:51 (see pp. 39, 101)

[23] J. K. Boggs. IBM Remote Job Entry Facility: Generalized Subsystem Remote Job Entry Facility Techni-
cal Disclosure Bulletin 752 Armonk, New York, USA: International Business Machines, Aug. 1973
(see p. 35)

[24] Allen C. Bomberger et al. “The KeyKOS Nanokernel Architecture” in: Workshop on Micro-kernels
and Other Kernel Architectures USENIX Association Apr. 1992, pp. 95–112 (see p. 18)

[25] Peter Braun and Wilhelm R. Rossak. Mobile Agents: Basic Concepts, Mobility Models, and the Tracy
Toolkit. Morgan Kaufmann, Jan. 2005 (see p. 95)

[26] Jon Brodin. Netflix finishes its massive migration to the Amazon cloud http://arstechnica.com/

information-technology/2016/02/netflix-finishes-its-massive-migration-to-the-amazon-

cloud/ Feb. 2016 (see p. 178)

[27] Rod Burstall and Butler Lampson. A Kernel Language for Modules and Abstract Data Types Re-
search Report Palo Alto, California, USA: Digital Equipment Corporation, Systems Research Cen-
ter, Sep. 1984 (see p. 82)

[28] R. Cailliau. The writing of NODAL programs CERN-SPS-Tech-Note 77-011-ACC Geneva, Switzer-
land: CERN, 1977 (see p. 36)

[29] George Candea and Armando Fox. “Crash-Only Software” in: Proceedings of the 9th Workshop on
Hot Topics in Operating Systems HotOS’03 May 2003 (see pp. 17, 178)

[30] Luca Cardelli. “A Language with Distributed Scope” in: Computing Systems, 8: (1995), pp. 286–297
(see pp. 40, 104, 125)

[31] Luca Cardelli. Obliq: A Language with Distributed Scope DEC/SRC-RR 122 Palo Alto, California:
Digital Equipment Corporation, Systems Research Center, Jun. 1994, p. 64 (see p. 40)

252

http://cr.yp.to/highspeed/coolnacl-20111201.pdf
http://arstechnica.com/information-technology/2016/02/netflix-finishes-its-massive-migration-to-the-amazon-cloud/
http://arstechnica.com/information-technology/2016/02/netflix-finishes-its-massive-migration-to-the-amazon-cloud/
http://arstechnica.com/information-technology/2016/02/netflix-finishes-its-massive-migration-to-the-amazon-cloud/

[32] Luca Cardelli. Obliq: A Language with Distributed Scope http://lucacardelli.name/Talks/1995-

05-31 Obliq A Language with Distributed Scope.pdf May 1995 (see p. 40)

[33] Adam Carlson. The Unifying Policy Hierarchical Model. MA thesis University of California at Davis:
Department of Computer Science, Jun. 2006 (see pp. 50, 51)

[34] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. “Higher-Order Distributed Objects” in:
ACM Transactions on Programming Languages and Systems, 17:5 (1995), pp. 704–739 (see p. 41)

[35] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Transmission of higher-order objects across
a network of heterogeneous machines United States Patent 5745703 Apr. 1998 (see p. 41)

[36] Melissa Chase and Sherman S. M. Chow. “Improving Privacy and Security in Multi-authority
Attribute-based Encryption” in: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security CCS’09 ACM, Nov. 2009, pp. 121–130 (see p. 76)

[37] Larry Chen. “AgentOS: The Agent-based Distributed Operating System for Mobile Networks” in:
ACM Crossroads, 5:2 (Dec. 1998), pp. 12–14 (see p. 47)

[38] Elaine Cheong, Judy Liebman, Jie Liu, and Feng Zhao. “TinyGALS: A Programming Model for
Event-Driven Embedded Systems” in: Symposium on Applied Computing SAC’03 ACM, 2003,
pp. 698–704 (see p. 101)

[39] Elaine Cheong and Jie Liu. “galsC: A Language for Event-Driven Embedded Systems” in: Pro-
ceedings of Design, Automation and Test in Europe DATE’05 IEEE Computer Society, Mar. 2005,
pp. 1050–1055 (see p. 101)

[40] Maria Christakis and Konstantinos Sagonas. “Static Detection of Race Conditions in Erlang” in:
Proceedings of the 12th International Conference on Practical Aspects of Declarative Languages
PADL’10 Berlin/Heidelberg, Germany: Springer-Verlag, 2010, pp. 119–133 (see p. 132)

[41] Koen Claessen, Michal Palka, Nicholas Smallbone, et al. “Finding Race Conditions in Erlang with
QuickCheck and PULSE” in: Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming ICFP ’09 New York City, New York, USA: ACM, 2009, pp. 149–160 (see
p. 132)

[42] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. “Deny Capabilities
for Safe, Fast Actors” in: Proceedings of the 5th International Workshop on Programming Based on
Actors, Agents, and Decentralized Control AGERE! ’15 New York City, New York, USA: ACM, 2015,
pp. 1–12 (see p. 235)

[43] Tyler Close. ACL’s don’t Technical Report HPL-2009-20 HP Laboratories, Feb. 2009 (see p. 73)

[44] Sylvain Conchon and Fabrice Le Fessant. “Jocaml: Mobile Agents for Objective-Caml” in: Proceed-
ings Third International Symposium on Mobile Agents Oct. 1999, pp. 22–29 (see p. 45)

[45] William R. Cook, Eli Tilevich, Ali Ibrahim, and Ben Wiedermann. “Language Design for Distributed
Objects” in: Proceedings of the 1st International Workshop on Distributed Objects for the 21st
Century DO21’09 Jul. 2009 (see p. 35)

[46] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. “Links: Web Programming Without
Tiers” in: Proceedings of the 5th International Conference on Formal Methods for Components and
Objects FMCO’06 Springer-Verlag, 2007, pp. 266–296 (see p. 101)

[47] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and Rainer Koschke. “A Sys-
tematic Survey of Program Comprehension through Dynamic Analysis” in: IEEE Transactions on
Software Engineering, 35:5 (Apr. 2009), pp. 684–702 (see p. 198)

253

http://lucacardelli.name/Talks/1995-05-31 Obliq A Language with Distributed Scope.pdf
http://lucacardelli.name/Talks/1995-05-31 Obliq A Language with Distributed Scope.pdf

[48] Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante. “Wayback: A User-level Versioning File
System for Linux” in: Proceedings of the USENIX Annual Technical Conference Berkeley, California,
USA: USENIX Association, 2004 (see p. 16)

[49] Jason Crampton and Michael Huth. “Towards an Access-Control Framework for Countering In-
sider Threats” in: Insider Threats in Cyber Security ed. by Christian W. Probst, Jeffrey Hunker, Dieter
Gollmann, and Matt Bishop Advances in Information Security, Springer USA, 2010, pp. 173–195
(see pp. 53, 71)

[50] G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna. “A Characterization of Mobility and State Distribu-
tion in Mobile Code Languages” in: Proceedings of the First Workshop on Mobile Object Systems
ECOOP ’96 Jul. 1996, pp. 309–318 (see pp. 47–49)

[51] CurveCP. CurveCP: Usable security for the Internet http://curvecp.org Jun. 2011 (see pp. 69, 73)

[52] CurveZMQ Authentication and Encryption Protocol http://rfc.zeromq.org/spec:26 2013 (see
p. 176)

[53] Eric M. Dashofy. Supporting Stakeholder-driven, Multi-view Software Architecture Modeling. PhD
thesis Irvine, California, USA: University of California, Irvine, 2007 (see p. 18)

[54] N. Davies, G. S. Blair, and J. A. Mariani. Supporting persistent relocatable objects in the ANSA
architecture tech. rep. MPG-92-04 Bailrigg, Lancaster, UK: Computing Department, Lancaster
University, Jan. 1992 (see p. 41)

[55] Linda G. DeMichiel and Richard P. Gabriel. “The Common Lisp Object System: An Overview” in:
European conference on object-oriented programming on ECOOP ’87 London, UK: Springer-Verlag,
1987, pp. 151–170 (see p. 39)

[56] Giovanni Denaro, Mauro Pezzè, and Davide Tosi. “Ensuring Interoperable Service-Oriented Sys-
tems through Engineered Self-Healing” in: Proceedings 7th Joint Meeting of the European Software
Engineering Conference/ACM SIGSOFT Symposium on Foundations of Software Engineering ES-
EC/FSE’09 2009, pp. 253–262 (see pp. 192, 193)

[57] Giovanni Denaro, Mauro Pezzè, and Davide Tosi. “Test-and-Adapt: An Approach for Improving
Service Interchangeability” in: ACM Transactions on Software Engineering Methodology, 22:4 (Oct.
2013), 28:1–28:43 (see p. 193)

[58] Jack B. Dennis and Earl C. van Horn. “Programming Semantics for Multiprogrammed Computa-
tions” in: Communications of the ACM , 9:3 (Mar. 1966), pp. 143–155 (see p. 17)

[59] Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. “Declarative Policies for
Capability Control” in: Proceedings of the 27th IEEE Computer Security Foundations Symposium
CSF’14 Piscataway, New Jersey, USA: IEEE Press, Jun. 2014 (see p. 234)

[60] Tim Disney, Cormac Flanagan, and Jay McCarthy. “Temporal Higher-Order Contracts” in: Pro-
ceedings of the 16th International Conference on Functional Programming 2011, pp. 176–188 (see
pp. 239, 241, 248)

[61] Sophia Drossopoulou and James Noble. “How to Break the Bank: Semantics of Capability Poli-
cies” in: Proceedings 11th Conference on Integrated Formal Methods vol. 8739 Lecture Notes in
Computer Science Sep. 2014, pp. 18–35 (see p. 234)

[62] Sophia Drossopoulou and James Noble. “The Need for Capability Policies” in: Proceedings of the
15th Workshop on Formal Techniques for Java-like Programs FTJP 2013 New York City, New York,
USA: ACM, 2013, 6:1–6:7 (see p. 234)

254

http://curvecp.org
http://rfc.zeromq.org/spec:26

[63] Sophia Drossopoulou and James Noble. “Towards Capability Policy Specification and Verification”
http://www.doc.ic.ac.uk/~scd/CapabilityPolicies_V2.pdf Apr. 2014 (see p. 234)

[64] Sophia Drossopoulou, James Noble, and Mark S. Miller. “Swapsies on the Internet: First Steps
towards Reasoning about Risk and Trust in an Open World” http://ecs.victoria.ac.nz/foswiki/
pub/Groups/Elvis/ProgrammingLanguages/RiskAndTrust.pdf 2015 (see p. 234)

[65] André Du Bois, Phil Trindler, and Hans-Wolfgang Loidl. “mHaskell: Mobile Computation in a
Purely Functional Language” in: Journal of Universal Computer Science, 11:7 (2005), pp. 1234–
1254 (see p. 45)

[66] Danny Dubé and Marc Feeley. “BIT: A Very Compact Scheme System for Microcontrollers” in:
Higher-Order and Symbolic Computation, 18: (2005), pp. 271–298 (see p. 90)

[67] R. Kent Dybvig. The Scheme Programming Language. 4th ed. MIT Press, 2009 (see pp. 31, 216)

[68] Michel Elie. Network Interchange Language RFC 51 The Internet Society, May 1970 (see p. 36)

[69] Justin R. Erenkrantz. Computational REST: A New Model for Decentralized, Internet-Scale Appli-
cations. PhD thesis Irvine, California, USA: University of California, Irvine, Sep. 2009 (see pp. 31,
32, 62, 167)

[70] Justin R. Erenkrantz, Michael M. Gorlick, Girish Suryanarayana, and Richard N. Taylor. “From
Representations to Computations: The Evolution of Web Architectures” in: ACM SIGSOFT Sympo-
sium on The Foundations of Software Engineering FSE’07 Sep. 2007, pp. 255–264 (see pp. 14, 26,
28, 31, 61, 92, 167)

[71] Justin R. Erenkrantz, Michael M. Gorlick, and Richard N. Taylor. “Rethinking Web Services from
First Principles” in: Proceedings of the 2nd International Conference on Design Science Research in
Information Systems and Technology Pasadena, California, USA, May 2007 (see pp. 31, 62)

[72] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice-Hall,
2005 (see pp. 31, 62)

[73] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement. PhD
thesis Ithaca, New York, USA: Cornell University, Jan. 2004 (see p. 66)

[74] Michael D. Ernst. “Static and Dynamic Analysis: Synergy and Duality” in: WODA 2003: ICSE
Workshop on Dynamic Analysis WODA’03 May 2003, pp. 24–27 (see p. 198)

[75] Arthur Evans Jr. PAL (Pedagogic Algorithmic Language) A Reference Manual and A Primer Unpub-
lished Technical Report (see http://www.softwarepreservation.org/projects/lang/PAL/Pal-ref-

man.pdf) Cambridge, Massachusetts, USA: MIT Department of Electrical Engineering, Feb. 1968
(see p. 82)

[76] Joseph R. Falcone. “A Programmable Interface Language for Heterogeneous Distributed Systems”
in: ACM Transactions on Computer Systems, 5:4 (1987), pp. 330–351 (see p. 37)

[77] Marc Feeley. “Compiling for Multi-language Task Migration” in: Proceedings of the 11th Sympo-
sium on Dynamic Languages DLS’15 New York City, New York, USA: ACM, Oct. 2015, pp. 63–77
(see p. 248)

[78] Marc Feeley and Guy Lapalme. “Using Closures for Code Generation” in: Computer Languages,
12:1 (1987), pp. 47–66 (see p. 45)

[79] Matthias Felleisen. “The Theory and Practice of First-Class Prompts” in: Proceedings of the Sym-
posium on Principles of Programming Languages ACM, Jan. 1988, pp. 180–190 (see p. 61)

[80] Matthias Felleisen and Daniel P Friedman. “A Closer Look at Export and Import Statements” in:
Computer Languages, 11:11 (Jan. 1986), pp. 29–37 (see p. 82)

255

http://www.doc.ic.ac.uk/~scd/CapabilityPolicies_V2.pdf
http://ecs.victoria.ac.nz/foswiki/pub/Groups/Elvis/ProgrammingLanguages/RiskAndTrust.pdf
http://ecs.victoria.ac.nz/foswiki/pub/Groups/Elvis/ProgrammingLanguages/RiskAndTrust.pdf
http://www.softwarepreservation.org/projects/lang/PAL/Pal-ref-man.pdf
http://www.softwarepreservation.org/projects/lang/PAL/Pal-ref-man.pdf

[81] I. Fette and A. Melnikov. The WebSocket Protocol RFC 6455 Dec. 2011 (see pp. 26, 28)

[82] Zara Field, P. W. Trinder, and André Rauber Du Bois. “A Comparative Evaluation of Three Mobile
Languages” in: Proceedings of the 3rd International Conference on Mobile Technology, Applications
& Systems ACM, Oct. 2006 (see p. 45)

[83] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD
thesis California, USA: University of California, Irvine, 2000 (see p. 26)

[84] Roy T. Fielding et al. RFC 2616 Hypertext Transfer Protocol HTTP/1.1 IETF Jun. 1999 (see pp. 28,
93)

[85] Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern Web Architecture” in:
Proceedings of the 22nd International Conference on Software Engineering IEEE Limerick, Ireland,
May 2000, pp. 407–416 (see p. 28)

[86] Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern Web Architecture” in:
ACM Transactions on Internet Technology, 2:2 (May 2002), pp. 115–150 (see pp. 28, 29, 31, 61)

[87] Robert Bruce Findler and Matthias Blume. “Contracts As Pairs of Projections” in: Proceedings of
the 8th International Conference on Functional and Logic Programming FLOPS 2006 Berlin/Hei-
delberg, Germany: Springer-Verlag, 2006, pp. 226–241 (see p. 241)

[88] Robert Bruce Findler and Matthias Blume. Contracts as Pairs of Projections Technical Report
TR-2006-01 Chicago, Illinois, USA: University of Chicago, 2006 (see p. 241)

[89] Matthew Flatt and Robert Bruce Findler. “Kill-Safe Synchronization Abstractions” in: Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
PLDI 2004 New York, New York, USA: ACM, Jun. 2004, pp. 47–58 (see p. 223)

[90] Michael Fogus and Chris Houser. The Joy of Clojure. 2nd ed. Cherry Hill, New Jersey, USA: Manning
Publications, 2014 (see p. 102)

[91] Michael Fogus and Chris Houser. The Joy of Clojure: Thinking the Clojure Way. Manning Publica-
tions, Apr. 2011 (see p. 102)

[92] Philip W. L. Fong. Viewer’s Discretion: Host Security in Mobile Code Systems Technical Report 1998-
19 Burnaby, British Columbia, Canada: School of Computing Science, Simon Fraser University,
Nov. 1998 (see pp. 83, 85)

[93] Anders Fongen. Intrusion Tolerant Systems FFI-Rapport 2007/02611 Norwegian Defence Research
Establishment, Dec. 2007 (see p. 33)

[94] Bryan Ford and Russ Cox. “Vx32: Lightweight User-level Sandboxing on the x86” in: USENIX 2008
Annual Technical Conference USENIX ACT’08 Berkeley, California, USA: USENIX Association,
2008, pp. 293–306 (see p. 16)

[95] Foundation for Intelligent Physical Agents (FIPA) http://www.fipa.org Jan. 2013 (see p. 47)

[96] Cédric Fournet and Georges Gonthier. “The Join Calculus: A Language for Distributed Mobile
Programming” in: Proceedings of the Applied Semantics Summer School APPSEM’00 Springer-
Verlag, 2000, pp. 268–332 (see p. 45)

[97] Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages. 3rd ed. Cambridge,
Massachusetts, USA: MIT Press, 2008 (see p. 42)

[98] Matthew Fuchs. Dreme: for Life in the Net. PhD thesis New York City, New York, USA: New York
University, Sep. 1995 (see p. 42)

256

http://www.fipa.org

[99] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. “Understanding Code Mobility” in: IEEE
Transactions on Software Engineering, 24:5 (1998), pp. 342–361 (see pp. 19, 127)

[100] FUSE: Filesystem in Userspace http://fuse.sourceforge.net/ Oct. 2004 (see p. 16)

[101] Jesse James Garrett. Ajax: A New Approach to Web Applications http://www.adaptivepath.com/
ideas/ajax-new-approach-web-applications/ Feb. 2005 (see p. 28)

[102] David Gelernter, Suresh Jagannathan, and Thomas London. “Environments as First Class Ob-
jects” in: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of programming
languages New York City, New York, USA: ACM, 1987, pp. 98–110 (see pp. 83, 157)

[103] Guillaume Germain, Marc Feeley, and Stefan Monnier. “Concurrency Oriented Programming
in Termite Scheme” in: Scheme and Functional Programming Workshop 2006, pp. 125–136 (see
pp. 44, 48)

[104] Guillaume Germain, Marc Feeley, and Stefan Monnier. “Concurrency Oriented Programming in
Termite Scheme” in: Proceedings of Scheme and Functional Programming Workshop Sep. 2006,
pp. 125–136 (see p. 99)

[105] Matias Giorgio, Michael M. Gorlick, Kari Nies, and Richard N. Taylor. “Capability Accounting in De-
centralized Systems as a Means to Achieve Architectural Accountability” unpublished manuscript
Mar. 2015 (see p. 239)

[106] Matias Giorgio and Richard N. Taylor. Accountability Through Architecture for Decentralized Sys-
tems: A Preliminary Assessment Technical Report UCI-ISR-15-2 http://isr.uci.edu/sites/isr.

uci.edu/files/techreports/UCI-ISR-15-2.pdf University of California, Irvine: Institute for Soft-
ware Research, Oct. 2015 (see pp. 239, 240, 242, 246)

[107] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. “Safe and Automatic Live Update
for Operating Systems” in: Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems ASPLOS’13 New York City, New York,
USA: ACM, 2013, pp. 279–292 (see pp. 177, 187)

[108] Cristiano Giuffrida and Andrew S. Tanenbaum. “Cooperative update: a new model for dependable
live update” in: Proceedings of the 2nd International Workshop on Hot Topics in Software Upgrades
HotSWUp’09 ACM, 2009 (see p. 187)

[109] Adele Goldberg and Alan Kay. Smalltalk-72 Instruction Manual Technical Report SSL 76-6 Avail-
able as http://bitsavers.trailing- edge.com/pdf/xerox/parc/techReports/Smalltalk- 72_

Instruction_Manual_Mar76.pdf Palo Alto, California, USA: Xerox Palo Alto Research Center, Mar.
1976 (see p. 102)

[110] Michael M. Gorlick, Justin R. Erenkrantz, and Richard N. Taylor. The Infrastructure of a Computa-
tional Web Technical Report UCI-ISR-10-3 University of California, Irvine: Institute for Software
Research, May 2010 (see pp. 5, 14, 31, 32)

[111] Michael M. Gorlick, Samuel D. Gasster, Grace S. Peng, and Michael McAtee. “Flow Webs: Ar-
chitecture and Mechanism for Sensor Webs” in: Proceedings of the Ground Systems Architecture
Workshop Manhattan Beach, California, USA, Mar. 2007 (see p. 31)

[112] Michael M. Gorlick and Rami R. Razouk. “Using Weaves for Software Construction and Analysis”
in: Proceedings of the 13th International Conference on Software Engineering ICSE’91 Austin, Texas
USA, 1991, pp. 23–34 (see pp. 18, 55, 60, 129, 166)

[113] Michael M. Gorlick, Kyle Strasser, and Richard N. Taylor. “COAST: An Architectural Style for
Decentralized On-Demand Tailored Services” in: WICSA/ECSA’12 Aug. 2012, pp. 71–80 (see pp. 9,
32, 61, 175, 189)

257

http://fuse.sourceforge.net/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://isr.uci.edu/sites/isr.uci.edu/files/techreports/UCI-ISR-15-2.pdf
http://isr.uci.edu/sites/isr.uci.edu/files/techreports/UCI-ISR-15-2.pdf
http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/Smalltalk-72_Instruction_Manual_Mar76.pdf
http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/Smalltalk-72_Instruction_Manual_Mar76.pdf

[114] Michael M. Gorlick and Richard N. Taylor. “Communication and Capability URLs in COAST-
based Decentralized Services” in: REST: Advanced Research Topics and Practical Applications ed.
by Cesare Pautasso, Erik Wilde, and Rosa Alarcon New York City, New York, USA: Springer, Jan.
2014, pp. 9–25 (see p. 32)

[115] Michael M Gorlick and Richard N. Taylor. Motile: Reflecting an Architectural Style in a Mobile Code
Language Technical Report UCI-ISR-13-1 Institute for Software Research, University of California,
Irvine, Jun. 2013 (see p. 234)

[116] Robert S. Gray. “Agent Tcl: A Flexible and Secure Mobile-Agent System” in: Proceedings of the 4th
Conference on USENIX Tcl/Tk Workshop TCLTK’96 Berkeley, California, USA: USENIX Association,
1996 (see p. 46)

[117] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus. “D’Agents: Security in a Multiple-
Language, Mobile-Agent System” in: Mobile Agents and Security ed. by Giovanni Vigna Springer-
Verlag, 1998, pp. 154–187 (see p. 90)

[118] Matthew Green. Cryptographic obfuscation and “unhackable” software
http://blog.cryptographyengineering.com/2014/02/cryptographic-obfuscation-and.html Feb.
2014 (see p. 75)

[119] GStreamer: open source multimedia framework http://gstreamer.freedesktop.org Feb. 2012
(see p. 100)

[120] Sabine Habert and Laurence Mosseri. “COOL: Kernel Support for Object-Oriented Environments”
in: SIGPLAN Notices, 25:10 (1990), pp. 269–275 (see p. 41)

[121] David Alan Halls. Applying Mobile Code to Distributed Systems. PhD thesis Cambridge, UK: Uni-
versity of Cambridge, Jun. 1997 (see pp. 30, 42)

[122] Norm Hardy. “The Confused Deputy: (or why capabilities might have been invented)” in: SIGOPS
Operating Systems Review, 22:4 (1988), pp. 36–38 (see p. 17)

[123] Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. “Effi-
cient, General-purpose Dynamic Software Updating for C” in: ACM Transactions on Programming
Languages and Systems (TOPLAS), 36:4 (Oct. 2014), 13:1–13:38 (see p. 187)

[124] Carl Hewitt, Peter Bishop, and Richard Steiger. “A Universal Modular ACTOR Formalism for Artifi-
cial Intelligence” in: Proceedings of the 3rd International Joint Conference on Artificial Intelligence
IJCAI 1973 San Francisco, California, USA: Morgan Kaufmann Publishers Inc., 1973, pp. 235–245
(see p. 102)

[125] Michael Hicks. Dynamic Software Updating. PhD thesis Philadelphia, Pennsylvania, USA: Com-
puter and Information Science, University of Pennsylvania, 2001 (see pp. 165, 170)

[126] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media, Mar. 2013 (see p. 69)

[127] Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty Asynchronous Session Types” in:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages POPL 2008 New York City, New York, USA: ACM, 2008, pp. 273–284 (see p. 247)

[128] Kohei Honda, Raymond Hu, Rumyana Neykova, et al. “Structuring Communication with Ses-
sion Types” in: Concurrent Objects and Beyond ed. by Gul Agha et al. vol. 8665 Lecture Notes in
Computer Science Berlin/Heidelberg, Germany: Springer, 2014, pp. 105–127 (see p. 247)

[129] Vincent C. Hu et al. Guide to Attribute Based Access Control (ABAC) Definition and Considerations
Special Publication 800-162 U.S Department of Commerce: National Institute of Standards and
Technology (NIST), Jan. 2014 (see p. 76)

258

http://blog.cryptographyengineering.com/2014/02/cryptographic-obfuscation-and.html
http://gstreamer.freedesktop.org

[130] Galen C. Hunt and James R. Larus. “Singularity: Rethinking the Software Stack” in: ACM SIGOPS
Operating Systems Review, 41:2 (Apr. 2007), pp. 37–49 (see p. 18)

[131] Graham Hutton. Programming in Haskell. Cambridge University Press, Jan. 2007 (see p. 45)

[132] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes. “The implementation
of Lua 5.0” in: Journal of Universal Computer Science, 11:7 (Jul. 2005), pp. 1159–1176 (see p. 89)

[133] Suresh Jagannathan. “Dynamic Modules in Higher-Order Languages” in: Proceedings of the IEEE
International Conference on Computer Languages May 1994, pp. 74–87 (see pp. 61, 88)

[134] Suresh Jagannathan. “Metalevel Building Blocks for Modular Systems” in: ACM Transactions on
Programming Languages and Systems, 16:3 (May 1994), pp. 456–492 (see p. 83)

[135] Paul James. A RESTful Web service, an example http://www.peej.co.uk/articles/restfully-

delicious.html Oct. 2005 (see pp. 193, 199, 209, 211)

[136] Yves Jaradin, Fred Spiessens, and Peter Van Roy. SCOLL: A Language for Safe Capability Based
Collaboration Technical Report Louvain-la-Neuve, Belgium: Université catholique de Louvain,
2005 (see p. 140)

[137] Erik Jul, Henry Levy, Norm Hutchinson, and Andrew Black. “Fine-Grained Mobility in the Emerald
System” in: ACM Transactions on Computer Systems, 6:1 (Feb. 1988), pp. 109–133 (see pp. 39, 101,
128)

[138] Neeran M. Karnik and Anand R. Tripathi. “Security in the Ajanta Mobile Agent System” in: Soft-
ware - Practice and Experience, 31:4 (Apr. 2001), pp. 301–329 (see p. 47)

[139] Neeran Karnik and Anand R. Tripathi. “Agent Server Architecture for the Ajanta Mobile-Agent
System” in: Proceedings of the 1998 International Conference on Parallel and Distributed Processing
Techniques and Applications PDPTA’98 1998, pp. 66–73 (see p. 47)

[140] Daniel J. Kaufman. “An Analytical Framework for Cyber Security” in: Colloquium on Future Direc-
tions in Cyber Security Defense Advanced Research Projects Agency, Nov. 2011 (see p. 2)

[141] Alan Kay. “Computer Software” in: Scientific American, 251:3 (1984), pp. 53–59 (see p. 45)

[142] Richard A. Kelsey and Jonathan A. Rees. “A Tractable Scheme Implementation” in: LISP and
Symbolic Computation, 7:4 (Dec. 1994), pp. 315–335 (see p. 89)

[143] Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5 Report on the Algorithmic
Language Scheme Feb. 1998 (see pp. 64, 141, 142, 160)

[144] Taesoo Kim and Nickolai Zeldovich. “Practical and Effective Sandboxing for Non-root Users” in:
Proceedings of the 2013 USENIX Annual Technical Conference USENIX ATC’13 Berkeley, California,
USA: USENIX Association, 2013, pp. 139–144 (see p. 16)

[145] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. “The Orc Programming Lan-
guage” in: Proceedings of FMOODS/FORTE 2009 Springer, Jun. 2009, pp. 1–25 (see p. 100)

[146] Gerwin Klein, June Andronick, Kevin Elphinstone, et al. “seL4: Formal Verification of an Operating-
System Kernel” in: Communications of the ACM , 53:6 (Jun. 2010), pp. 107–115 (see p. 18)

[147] Leif Tobias Kornstäedt. Design and Implementation of a Programmable Middleware. PhD thesis
Saarbrüken, Germany: Universität des Saarlandes, Apr. 2006 (see p. 141)

[148] Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings. “Decentralized Approaches
for Self-Adaptation in Agent Organizations” in: ACM Transactions on Autonomous and Adaptive
Systems, 7:1 (May 2012), 1:1–1:28 (see p. 47)

259

http://www.peej.co.uk/articles/restfully-delicious.html
http://www.peej.co.uk/articles/restfully-delicious.html

[149] David Kotz, Robert Gray, Saurab Nog, Daniela Rus, Sumit Chawla, and George Cybenko. “Agent
Tcl: Targeting the Needs of Mobile Computers” in: IEEE Internet Computing, 1:4 (Jul. 1997),
pp. 58–67 (see p. 46)

[150] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace RFC
4122 IETF, Jul. 2005 (see p. 69)

[151] Ole Lensmar. Is REST losing its flair – REST API Alternatives http://www.programmableweb.com/

news/rest-losing-its-flair-rest-api-alternatives/analysis/2013/12/19 Dec. 2013 (see p. 22)

[152] Xavier Leroy et al. The OCaml system: Documentation and User’s Manual 4.0 http://caml.inria.

fr/pub/docs/manual-ocaml-4.00/index.html Institut National de Recherche en Informatique et
en Automatique (INRIA) Lille, France, Jul. 2012 (see p. 45)

[153] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. 2nd ed. Prentice-Hall, Apr.
1999 (see p. 89)

[154] Sam Lindley and J. Garrett Morris. “Lightweight Functional Session Types” Available as http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.713.9156&rep=rep1&type=pdf Feb. 2015
(see p. 247)

[155] B. Liskov, R. Atkinson, T. Bloom, E. Moss, Schaffert J. C., R. Scheifler, and A. Snyder. CLU Reference
Manual. vol. 114 Lecture Notes in Computer Science New York City, New York, USA: Springer-
Verlag, 1981 (see p. 38)

[156] Pu Liu. Mobile Code Enabled Web and Grid Services. PhD thesis Binghamton, New York, USA:
Computer Science Department, Binghamton University, Aug. 2006 (see p. 191)

[157] Pu Liu and Michael J. Lewis. “Mobile Code Enabled Web Services” in: Proceedings of IEEE/ACM
International Conference on Web Services ICWS’05 Jul. 2005, pp. 161–174 (see p. 191)

[158] Martin Logan, Eric Merritt, and Richard Carlsson. Erlang and OTP in Action. Manning Publica-
tions, Nov. 2010 (see pp. 102, 170)

[159] Sergio Maffeis, John C. Mitchell, and Ankur Taly. “Object Capabilities and Isolation of Untrusted
Web Applications” in: Proceedings of the IEEE Symposium on Security and Privacy Washington,
D.C., USA: IEEE Computer Society, May 2010, pp. 125–140 (see pp. 224, 226, 227, 238)

[160] Jacob Matthews, Robert Bruce Findler, Paul Graunke, Shriram Krishnamurthi, and Matthias
Felleisen. “Automatically Restructuring Programs for the Web” in: Automated Software Engi-
neering, 11:4 (Oct. 2004), pp. 337–364 (see pp. 28, 30)

[161] David May. The XMOS XS1 Architecture XMOS Limited, Bristol, UK, 2009 (see p. 90)

[162] Molly McHugh. Slack Is Overrun With Bots. Friendly, Wonderful Bots http://www.wired.com/2015/
08/slack-overrun-bots-friendly-wonderful-bots/ Aug. 2015 (see p. 24)

[163] Nenad Medvidovic and Richard N. Taylor. “Software Architecture: Foundations, Theory, and
Practice” in: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering
vol. 2 ICSE’10 May 2010, pp. 471–472 (see p. 3)

[164] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, et al. “Flap-
jax: A Programming Language for Ajax Applications” in: Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications OOPSLA’09 Oct.
2009, pp. 1–20 (see pp. 28, 101)

[165] James S. Miller and Guillermo Juan Rozas. “Free Variables and First-Class Environments” in: Lisp
and Symbolic Computation, 4:2 (Apr. 1991), pp. 107–141 (see p. 83)

260

http://www.programmableweb.com/news/rest-losing-its-flair-rest-api-alternatives/analysis/2013/12/19
http://www.programmableweb.com/news/rest-losing-its-flair-rest-api-alternatives/analysis/2013/12/19
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/index.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/index.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.713.9156&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.713.9156&rep=rep1&type=pdf
http://www.wired.com/2015/08/slack-overrun-bots-friendly-wonderful-bots/
http://www.wired.com/2015/08/slack-overrun-bots-friendly-wonderful-bots/

[166] Mark S. Miller. Promise Pipelining: Distributed Programming Made Practical http://zesty.ca/
promises.pdf Nov. 2004 (see p. 102)

[167] Mark S. Miller and Jonathan S. Shapiro. “Paradigm Regained: Abstraction Mechanisms for Access
Control” in: Eighth Asian Computing Science Conference ASIAN’03 Available as http://www.hpl.

hp.com/techreports/2003/HPL-2003-222.pdf Springer-Verlag, Dec. 2003, pp. 224–242 (see p. 102)

[168] Mark S. Miller, Bill Tulloh, and Jonathan S. Shapiro. “The Structure of Authority: Why Security
Is not a Separable Concern” in: Multiparadigm Programming in Mozart/Oz ed. by Peter Van Roy
vol. Lecture Notes in Computer Science 3389 Springer, 2005, pp. 2–20 (see p. 102)

[169] Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability Myths Demolished Technical Report
SRL2003-02 Systems Research Laboratory, Johns Hopkins University, 2003 (see p. 228)

[170] Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis Baltimore, Maryland, USA: Johns Hopkins University, May 2006
(see pp. 3, 17, 18, 47, 56, 91, 128, 140, 224, 226, 235)

[171] Mark S. Miller, Mike Samuel, et al. Safe active content in sanitized JavaScript http://google-

caja.googlecode.com/files/caja-spec-2008-06-07.pdf Jun. 2008 (see pp. 18, 233)

[172] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge, UK: Cambridge
University Press, 1999 (see p. 55)

[173] MIT/GNU Scheme 9.0.1 http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-

ref/ Massachusetts Institute of Technology 2010 (see p. 157)

[174] James H. Morris Jr. “Protection in Programming Languages” in: Communications of the ACM , 16:1
(Jan. 1973), pp. 15–21 (see p. 102)

[175] Derek G. Murray et al. “CIEL: A Universal Execution Engine for Distributed Data-Flow Computing”
in: Networked Systems Design and Implementation NSDI’11 USENIX Association, 2011 (see p. 101)

[176] Derek G. Murray and Steven Hand. “Scripting the Cloud with Skywriting” in: Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing HotCloud’10 USENIX Association,
2010 (see p. 101)

[177] Bruce Jay Nelson. Remote Procedure Call. PhD thesis Pittsburgh, Pennsylvania, USA: Carnegie
Mellon University, 1981 (see pp. 31, 37)

[178] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, et al. “You Are What You Include: Large-
scale Evaluation of Remote Javascript Inclusions” in: Proceedings of the 2012 ACM Conference on
Computer and Communications Security CCS 2012 New York City, New York, USA: ACM, Oct. 2012,
pp. 736–747 (see p. 233)

[179] Elth Ogston and Frances Brazier. “AgentScope: Multi-Agent Systems Development in Focus”
in: The 10th International Conference on Autonomous Agents and Multiagent Systems AAMAS’11
International Foundation for Autonomous Agents and Multiagent Systems, 2011, pp. 389–396 (see
p. 47)

[180] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998 (see pp. 59,
132)

[181] Wouter van Oortmerssen. The Bla Language: Extending Functional Programming with First-
Class Environments. Available at http://strlen.com/bla-language. MA thesis University of
Amsterdam, Netherlands, May 1996 (see p. 157)

261

http://zesty.ca/promises.pdf
http://zesty.ca/promises.pdf
http://www.hpl.hp.com/techreports/2003/HPL-2003-222.pdf
http://www.hpl.hp.com/techreports/2003/HPL-2003-222.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/
http://strlen.com/bla-language

[182] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory Johnson,
Nenad Medvidovic, Alex Quilici, and David Rosenblum. “An Architecture-based Approach to
Self-Adaptive Software” in: IEEE Intelligent Systems, 14:3 (May 1999), pp. 54–62 (see pp. 18, 187)

[183] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. “Architecture-Based Runtime Software
Evolution” in: Proceedings of the 20th International Conference on Software Engineering ICSE’98
Kyoto, Japan, Apr. 1998, pp. 177–186 (see pp. 18, 60)

[184] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. “Runtime Software Adaptation: Frame-
work, Approaches, and Styles” in: Companion of 30th International Conference on Software Engi-
neering ICSE Companion 2008 ACM, May 2008, pp. 899–910 (see p. 60)

[185] Peyman Oreizy and Richard N. Taylor. “On the Role of Software Architectures in Runtime Sys-
tem Reconfiguration” in: Proceedings of the International Conference on Configurable Distributed
Systems CDS’98 Washington, D.C., USA: IEEE Computer Society, 1998 (see p. 166)

[186] OTP Design Principles User’s Guide, Version 5.9.2 Ericsson AB Sep. 2012 (see p. 170)

[187] John K. Ousterhout, Jacob Y. Levy, and Brent B. Welch. “The Safe-Tcl Security Model” in: Mobile
Agents and Security Springer-Verlag, 1998, pp. 217–234 (see p. 46)

[188] Dimokritos Michael Papadopoulos and Kenneth Folmer-Petersen. Porting the LAN-based dis-
tributed system Emerald to a WAN. MA thesis Copenhagen, Denmark: DIKU, Department of
Computer Science, University of Copenhagen, 1993 (see p. 39)

[189] Sean Peisert, Ed Talbot, and Matt Bishop. “Turtles All The Way Down: A Clean-Slate, Ground-Up,
First-Principles Approach to Secure Systems” in: New Security Paradigms Workshop NFS’12 Sep.
2012, pp. 15–25 (see p. 223)

[190] W. Michael Petullo, Xu Zhang, Jon A. Solworth, Daniel J. Bernstein, and Tanja Lange. “MinimaLT:
Minimal-latency Networking Through Better Security” in: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security CCS’13 New York City, New York, USA:
ACM, 2013, pp. 425–438 (see p. 69)

[191] Simon Peyton-Jones and Jean-Marc Eber. “How to Write a Financial Contract” in: The Fun of
Programming ed. by Jeremy Gibbons and Oege de Moor Cornerstones of Computing Palgrave
Macmillan, Jun. 2005 (see p. 54)

[192] Adrien Piérard and Marc Feeley. “Towards a Portable and Mobile Scheme Interpreter” in: Pro-
ceedings of the Scheme and Functional Programming Workshop Sep. 2007, pp. 59–68 (see pp. 44,
99)

[193] Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. “Secure Attribute-based
Systems” in: Proceedings of the 13th ACM Conference on Computer and Communications Security
CCS’06 ACM, Oct. 2006, pp. 99–112 (see p. 76)

[194] Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. “Type-Based Verification of Web Sand-
boxes” in: Journal of Computer Security, 22:4 (Jul. 2014), pp. 511–565 (see p. 233)

[195] James Purtilo. A Software Interconnection Technology to Support Specification of Computational
Environments. PhD thesis Urbana, Illinois, USA: University of Illinois, Urbana-Champaign, 1986
(see p. 166)

[196] James Purtilo. “The Polylith Software Bus” in: ACM Transactions on Programming Languages and
Systems, 16: (1991), pp. 151–174 (see p. 166)

[197] Christian Queinnec. “The Influence of Browsers on Evaluators or, Continuations to Program Web
Servers” in: Proceedings of the Fifth ACM International Conference on Functional Programming
ICFP’00 ACM New York City, New York, USA: ACM, Sep. 2000, pp. 23–33 (see pp. 28, 30)

262

[198] Christian Queinnec and David de Roure. “Sharing Code through First-Class Environments” in:
Proceedings of the First ACM SIGPLAN International Conference on Functional Programming New
York City, New York, USA: ACM, Jun. 1996, pp. 251–261 (see p. 83)

[199] Jonathan A. Rees. A Security Kernel Based on the Lambda Calculus. PhD thesis Cambridge, Mas-
sachusetts, USA: Massachusetts Institute of Technology, Feb. 1995 (see pp. 102, 228, 235)

[200] Jonathan A. Rees, Norman I. Adams, and James R. Meehan. The T Manual 4th ed. Computer
Science Department, Yale University New Haven, Connecticut, 1984 (see p. 82)

[201] Brian Reid. PostScript and Interpress: a Comparison https://groups.google.com/forum/?fromgroups=

#!msg/fa.laser-lovers/H3us4h8S3Kk/-vGRDirzDV0J Mar. 1985 (see p. 36)

[202] Steven P. Reiss. “Connecting Tools Using Message Passing in the FIELD Environment” in: IEEE
Software, 7:4 (Jul. 1990), pp. 57–67 (see pp. 18, 166)

[203] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert Smolka. “Alice
Through the Looking Glass” in: Trends in Functional Programming vol. 5 Bristol, UK: Intellect
Books, Feb. 2006 (see p. 247)

[204] Andreas Rossberg, Guido Tack, and Leif Kornstaedt. “Status Report: HOT Pickles, and How to
Serve Them” in: Proceedings of the 2007 Workshop on Workshop on ML ML’07 New York City, New
York, USA: ACM, Oct. 2007, pp. 25–36 (see pp. 141, 247)

[205] Volker Roth and Mehrdad Jalali-Sohi. “Concepts and Architecture of a Security-Centric Mobile
Agent Server” in: Proceedings of the Fifth International Symposium on Autonomous Decentralized
Systems ISADS’01 IEEE Computer Society, Mar. 2001, pp. 435–441 (see p. 47)

[206] Sam Ruby, Dave Thomas, and David Heinemeier Hansson. Agile Web Development with Rails
(Fourth Edition). Pragmatic Bookshelf, Mar. 2011 (see p. 100)

[207] Jeff Rulifson. Decode-Encode Language (DEL) RFC 5 The Internet Society, Jun. 1969 (see p. 36)

[208] Jerome H. Saltzer. “Protection and the Control of Information Sharing in Multics” in: Communi-
cations of the ACM , 17:7 (Jul. 1974), pp. 388–402 (see p. 17)

[209] Martin Scheffler. E Capabilities http://wiki.erights.org/wiki/Walnut/Secure_Distributed_

Computing/E_Capabilities Jul. 2009 (see p. 223)

[210] Bruce Schneier. Liars and Outliers: Enabling the Trust that Society Needs to Thrive. John Wiley &
Sons, Feb. 2012 (see p. 2)

[211] Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. “Computational Contracts” in: Sci-
ence of Computer Programming, (2013) (see pp. 197, 240, 241)

[212] Z. Cliffe Schreuders, Tanya McGill, and Christian Payne. “The State of the Art of Application
Restrictions and Sandboxes: A Survey of Application-Oriented Access Controls and their Shortfalls”
in: Computers & Security, 32: (Feb. 2013), pp. 219–241 (see p. 16)

[213] Jonathan S. Shapiro and Norman Hardy. “EROS: A Principle-Driven Operating System from the
Ground Up” in: IEEE Software, 19:1 (Jan. 2002), pp. 26–33 (see p. 18)

[214] Alan Shieh, Andrew C. Myers, and Emin G. Sirer. “Trickles: A Stateless Network Stack for Improved
Scalability, Resilience, and Flexibility” in: Proceedings of Symposium on Networked Systems Design
and Implementation vol. 2 NSDI’05 USENIX Association, May 2005, pp. 175–188 (see p. 28)

[215] Alan Shieh, Andrew C. Myers, and Emin Gün Sirer. “A Stateless Approach to Connection-Oriented
Protocols” in: ACM Transactions on Computer Systems, 26:3 (Sep. 2008), 8:1–8:50 (see p. 30)

263

https://groups.google.com/forum/?fromgroups=##!msg/fa.laser-lovers/H3us4h8S3Kk/-vGRDirzDV0J
https://groups.google.com/forum/?fromgroups=##!msg/fa.laser-lovers/H3us4h8S3Kk/-vGRDirzDV0J
http://wiki.erights.org/wiki/Walnut/Secure_Distributed_Computing/E_Capabilities
http://wiki.erights.org/wiki/Walnut/Secure_Distributed_Computing/E_Capabilities

[216] Alex Shinn, John Cowan, and Arthur R. Gleckler (Editors). Revised7 Report on the Algorithmic
Language Scheme Jul. 2013 (see pp. 130, 141, 142, 160–162, 239)

[217] Olin Shivers. A Scheme Shell Technical Report MIT-LCS-TR-635 Cambridge, Massachusetts, USA:
MIT Laboratory for Computer Science, Apr. 1994 (see p. 89)

[218] Jonathon M. Smith. Reflections on Active Networking Technical Report MS-CIS-03-05 University
of Pennsylvania, Department of Computer and Information Science, Jan. 2003 (see p. 36)

[219] Jon A. Solworth and Wenyuan Fei. “sayI: Trusted User Authentication at Internet Scale” https:

//www.ethos-os.org/~solworth/sayIgroups-20130614.pdf Jun. 2013 (see p. 68)

[220] Alfred Spiessens. Patterns of Safe Collaboration. PhD thesis Louvain-la-Neuve, Belgium: Univer-
site Catholique de Louvain, Feb. 2007 (see pp. 140, 224, 235)

[221] Fred Spiessens, Yves Jaradin, and Peter Van Roy. Using Constraints To Analyze And Generate Safe
Capability Patterns https://www.info.ucl.ac.be/~pvr/rr2005-11.pdf 2005 (see p. 140)

[222] Fred Spiessens and Peter Van Roy. “The Oz-E Project: Design Guidelines for a Secure Multi-
paradigm Programming Language” in: Proceedings of the Second International Conference on Mul-
tiparadigm Programming in Mozart/Oz MOZ 2004 Berlin/Heidelberg, Germany: Springer-Verlag,
2005, pp. 21–40 (see p. 235)

[223] A. Spinks. The NODAL system (software) training lecture given by G. Shering CERN-SPS-Tech-Note
77-015-AOP Geneva, Switzerland: CERN, 1977 (see p. 36)

[224] Michael B. Spring. Electronic Printing and Publishing. in: CRC Press, Apr. 1991, pp. 174–178 (see
p. 36)

[225] Michal Srb. Haskell-Like S-Expression-Based Language Designed for an IDE Individual Project
Implementation available at https://github.com/xixixao/Shem London, UK: Department of
Computing, Imperial College, Jun. 2015 (see p. 247)

[226] James W. Stamos and David K. Gifford. “Implementing Remote Evaluation” in: IEEE Transactions
on Software Engineering, 16:7 (Jul. 1990), pp. 710–722 (see pp. 38, 99)

[227] James W. Stamos and David K. Gifford. “Remote Evaluation” in: ACM Transactions on Program-
ming Languages and Systems, 12:4 (Oct. 1990), pp. 537–564 (see pp. 19, 31, 38)

[228] James William Stamos. Remote Evaluation. (MIT Technical Report MIT/LCS/TR-354) PhD thesis
Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, Jan. 1986 (see pp. 19, 20,
26, 31, 38, 84)

[229] Bjarne Steensgaard and Eric Jul. “Object and Native Code Thread Mobility Among Heterogeneous
Computers” in: In Proceedings of the 15th ACM Symposium on Operating Systems Principles 1995,
pp. 68–78 (see pp. 39, 90)

[230] Dafydd Stuttard and Marcus Pinto. The Web Application Hacker’s Handbook: Finding and Exploit-
ing Security Flaws. 2nd edition John Wiley & Sons, Sep. 2011 (see pp. 26, 33, 194)

[231] Alexander J. Summers and Peter Müller. “Actor Services: Modular Verification of Message Passing
Programs” in: Programming Languages and Systems: 25th European Symposium on Programming
ESOP 2016 Berlin/Heidelberg, Germany: Springer, Apr. 2016, pp. 699–726 (see p. 235)

[232] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen.
“Is Sound Gradual Typing Dead?” in: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages POPL’16 New York City, New York, USA: ACM,
2016, pp. 456–468 (see p. 247)

264

https://www.ethos-os.org/~solworth/sayIgroups-20130614.pdf
https://www.ethos-os.org/~solworth/sayIgroups-20130614.pdf
https://www.info.ucl.ac.be/~pvr/rr2005-11.pdf
https://github.com/xixixao/Shem

[233] Ankur Taly, Úlfar Erlingsson, John C. Mitchell, Mark S. Miller, and Jasvir Nagra. “Automated Anal-
ysis of Security-Critical JavaScript APIs” in: Proceedings of the 2011 IEEE Symposium on Security
and Privacy IEEE, May 2011, pp. 363–378 (see p. 233)

[234] Paul Tarau and Veronica Dahl. “High-Level Networking with Mobile Code and First-Order AND-
Continuations” in: Theory and Practice of Logic Programming, 1:3 (May 2001), pp. 359–380 (see
p. 30)

[235] Joseph Tardo and Luis Valente. “Mobile Agent Security and Telescript” in: Proceedings of the 41st
IEEE International Computer Conference COMPCON’96 Washington, D.C., USA: IEEE Computer
Society, 1996, pp. 58–63 (see p. 46)

[236] Richard N. Taylor. “Software Architecture: Many Faces, Many Places, Yet a Central Discipline” in:
Proceedings of the the 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering ESEC/FSE’09 Amsterdam,
The Netherlands, Aug. 2009, pp. 303–304 (see p. 31)

[237] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead Jr., and Jason E.
Robbins. “A component- and message-based architectural style for GUI software” in: Proceedings
of the 17th International Conference on Software Engineering ICSE’95 1995, pp. 295–304 (see p. 18)

[238] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Architecture: Foundations,
Theory, and Practice. John Wiley & Sons, Jan. 2010 (see pp. 3, 19, 236)

[239] Richard N. Taylor, Nenad Medvidovic, and Peyman Oreizy. “Architectural Styles for Runtime
Software Adaptation” in: Proceedings of the Eighth Joint Working IEEE/IFIP Conference on Software
Architecture and Third European Conference on Software Architecture IEEE Computer Society,
2009, pp. 171–180 (see pp. 18, 19, 166, 167)

[240] Richard N. Taylor, Nenad Medvidovic, et al. “A Component- and Message-Based Architectural
Style for GUI Software” in: Transactions on Software Engineering, (Jun. 1996), pp. 390–406 (see
p. 99)

[241] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, et al. “A Component- and Message-
based Architectural Style for GUI Software” in: Proceedings of the 17th International Conference on
Software Engineering ICSE’95 New York City, New York, USA: ACM, 1995, pp. 295–304 (see p. 166)

[242] Telescript Language Reference http://bitsavers.informatik.uni- stuttgart.de/pdf/generalMagic/

Telescript_Language_Reference_Oct95.pdf Sunnyvale, California, USA: General Magic Inc., Oct. 1995
(see p. 46)

[243] Telescript Programming Guide, Version 0.5 (ALPHA) https://www.cis.upenn.edu/~bcpierce/

courses/629/papers/Telescript-ProgGuide.ps.gz Sunnyvale, California, USA: General Magic,
Inc., Oct. 1995 (see pp. 41, 46)

[244] Aaron Timms. The Race to Topple Bloomberg http://www.institutionalinvestor.com/Article/

3303623/The-Race-to-Topple-Bloomberg.html Jan. 2014 (see p. 24)

[245] Davide Tosi, Giovanni Denaro, and Mauro Pezzé. Experimental data on service interchangeability
Technical Report LTA:2008:01 University of Milano-Bicocca, Sep. 2008 (see pp. 193, 194)

[246] Jeffrey Travis and Jim Kring. LabVIEW for Everyone: Graphical Programming Made Easy and Fun
(3rd Edition). Prentice Hall, Aug. 2006 (see p. 101)

[247] E. Dean Tribble, Mark S. Miller, Norm Hardy, and David Krieger. Joule: Distributed Application
Foundations Agorics Technical Report ADd003.4P http://www.erights.org/history/joule/index.

html Los Altos, California, USA: Agorics, Inc., Dec. 1995 (see p. 102)

265

http://bitsavers.informatik.uni-stuttgart.de/pdf/generalMagic/Telescript_Language_Reference_Oct95.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/generalMagic/Telescript_Language_Reference_Oct95.pdf
https://www.cis.upenn.edu/~bcpierce/courses/629/papers/Telescript-ProgGuide.ps.gz
https://www.cis.upenn.edu/~bcpierce/courses/629/papers/Telescript-ProgGuide.ps.gz
http://www.institutionalinvestor.com/Article/3303623/The-Race-to-Topple-Bloomberg.html
http://www.institutionalinvestor.com/Article/3303623/The-Race-to-Topple-Bloomberg.html
http://www.erights.org/history/joule/index.html
http://www.erights.org/history/joule/index.html

[248] Anand R. Tripathi, Neeran M. Karnik, Manish K. Vora, Tanvir Ahmed, and Ram D. Singh. “Mobile
Agent Programming in Ajanta” in: Proceedings of the 19th International Conference on Distributed
Computing Systems ICDCS’99 1999, pp. 190–197 (see p. 47)

[249] David Ungar and Randall B. Smith. “Self: The Power of Simplicity” in: SIGPLAN Notices, 22:12
(1987), pp. 227–242 (see p. 40)

[250] Ruben Vandamme. Implementing Concurrency Abstractions for Programming Multi-Core Embed-
ded Systems in Scheme. MA thesis Vrije Universiteit Brussel, 2010 (see p. 90)

[251] Steven R. Vegdahl. “Moving Structures Between Smalltalk Images” in: Conference Proceedings on
Object-Oriented Programming Systems, Languages and Applications OOPLSA’86 New York City,
New York, USA: ACM, 1986, pp. 466–471 (see p. 40)

[252] Steve Vinoski. “Convenience Over Correctness” in: IEEE Internet Computing, 12:4 (Jul. 2008),
pp. 89–92 (see p. 26)

[253] Steve Vinoski. RPC and its Offspring: Convenient, Yet Fundamentally Flawed
http://qconlondon.com/london-2009/ Mar. 2009 (see p. 26)

[254] Steve Vinoski. “RPC Under Fire” in: IEEE Internet Computing, 9:5 (Sep. 2005), pp. 93–95 (see p. 26)

[255] Dimitris Vyzovitis and A. Lippman. MAST: A Dynamic Language for Programmable Networks
Technical Report MIT Media Laboratory, May 2002 (see pp. 30, 43, 103, 125, 157)

[256] David W. Wall. “Messages as Active Agents” in: Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages POPL 1982 New York City, New York, USA:
ACM, 1982, pp. 34–39 (see p. 36)

[257] Brett Keith Watson. Network Protocol Design with Machiavellian Robustness. PhD thesis Sydney,
Australia: Macquarie University, Nov. 2010 (see pp. 96, 109)

[258] Webster’s New World Dictionary of the American Language, College Edition. The World Publishing
Company, 1962 (see p. 15)

[259] Danny Weyns and Tom Holvoet. “An Architectural Strategy for Self-Adapting Systems” in: Proceed-
ings of the 2007 International Workshop on Software Engineering for Adaptive and Self-Managing
Systems SEAMS’07 IEEE Computer Society, 2007 (see p. 47)

[260] James E. White. Mobile Agents White Paper http://www.cis.upenn.edu/~bcpierce/courses/629/
papers/White-Telescript.ps.gz Sunnyvale, California, USA: General Magic Inc., 1996 (see p. 46)

[261] James E. White. “Mobile Agents” in: Software Agents, (Apr. 1997) ed. by Jeffrey M. Bradshaw,
pp. 437–472 (see p. 46)

[262] Adam Wick and Matthew Flatt. “Memory Accounting Without Partitions” in: Proceedings of the
4th International Symposium on Memory Management ACM, Oct. 2004, pp. 120–130 (see pp. 16,
223)

[263] Michael Wilde et al. “Swift: A Language for Distributed Parallel Scripting” in: Parallel Computing,
37:9 (2011), pp. 633–652 (see p. 101)

[264] Steven Willmot. Progress in the API Economy http://www.3scale.net/2014/04/reflecting-

progress-api-economy/ Apr. 2014 (see pp. 22, 23)

[265] www.programmableweb.com. Growth in Web APIs Since 2005
http://www.slideshare.net/programmableweb/web-api-growthsince2005 Apr. 2014 (see p. 23)

[266] Edward Z. Yang and David Mazières. “Dynamic Space Limits for Haskell” in: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation PLDI’14
New York City, New York, USA: ACM, 2014, pp. 588–598 (see p. 223)

266

http://qconlondon.com/london-2009/
http://www.cis.upenn.edu/~bcpierce/courses/629/papers/White-Telescript.ps.gz
http://www.cis.upenn.edu/~bcpierce/courses/629/papers/White-Telescript.ps.gz
http://www.3scale.net/2014/04/reflecting-progress-api-economy/
http://www.3scale.net/2014/04/reflecting-progress-api-economy/
www.programmableweb.com
http://www.slideshare.net/programmableweb/web-api-growthsince2005

[267] Bennet Yee, David Sehr, Greg Dardyk, Brad Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. “Native Client: A Sandbox for Portable, Untrusted x86 Native
Code” in: Communications of the ACM , 53:1 (Jan. 2010), pp. 91–99 (see p. 89)

[268] Bennet Yee, David Sehr, Greg Dardyk, Brad Chen, Robert Muth, et al. “Native Client: A Sandbox
for Portable, Untrusted x86 Native Code” in: Proceedings of the 30th IEEE Symposium on Security
and Privacy IEEE, May 2009, pp. 79–83 (see p. 89)

[269] Steve Yegge. Stevey’s Google Platforms Rant https://plus.google.com/112678702228711889851/

posts/eVeouesvaVX Oct. 2011 (see p. 25)

[270] Aydan R. Yumerefendi and Jeffrey S. Chase. “The Role of Accountability in Dependable Distributed
Systems” in: Proceedings of the First Conference on Hot Topics in System Dependability HotDep’05
Berkeley, CA, USA: USENIX Association, Jun. 2005 (see pp. 33, 236)

[271] Jens Zander. Multitasking FORTH Implementation for the 6809, Users Manual Technical Report
LiTH-ISY-I-0577 Stockholm, Sweden: Linkoping University, Dec. 1982 (see p. 36)

[272] Jens Zander and Robert Forchheimer. Preliminary Specifications for a Distributed Radio Packet
Network for Computer and Radio Amateurs Technical Report LiTH-ISY-0424 Stockholm, Sweden:
Linkoping University, Jan. 1980 (see p. 36)

[273] Jens Zander and Robert Forchheimer. “SOFTNET—an approach to high-level packet communi-
cation” in: 2nd ARRL Amateur Radio Computer Networking Conference San Francisco, California:
www.tapr.org, 1983 (see p. 36)

[274] Jens Zander and Robert Forchheimer. “The SOFTNET project: a retrospect” in: Eurocon: Area
Communication—Proceedings of the 8th European Conference on Electrotechnics Stockholm, Swe-
den, Jun. 1988, pp. 343–345 (see p. 36)

267

https://plus.google.com/112678702228711889851/posts/eVeouesvaVX
https://plus.google.com/112678702228711889851/posts/eVeouesvaVX

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	INTRODUCTION
	Computation Exchange — From Idiom to Style
	Thesis and Claims
	Architecture Can Induce Security
	Architecture Can Induce Adaptation
	Capability Confines Risk
	Computation Exchange: A Historical Perspective
	Security for Computation Exchange
	Summary

	COAST Roots — A Brief History of Mobile Code
	Early History of Mobile Code (1960–1985)
	Remote Function Evaluation (1987)
	Remote Evaluation (1986)
	Mobile Objects
	Functional Mobile Code Languages (1995–2007)
	Mobile Agents
	Mobility Semantics (1996)
	COAST Dictates Language Semantics and Infrastructure

	Computational State Transfer: The Style
	The Threat Model of Computation Exchange
	The Communication Model of COAST
	The COAST Architectural Style
	COAST Scenarios
	A Notional COAST Infrastructure
	Capability URLs in Detail
	Computations and Identity
	Summary

	Obligations of the COAST Style
	Obligations of the COAST Services Rule
	Obligations of the COAST Execution Rule
	Obligations of the COAST Messaging Rule
	Obligations of the COAST Interpretation Rule
	What the COAST Style Leaves Unsaid
	Summary

	Motile: Reflecting the Style
	Frameworks
	Domain-Specific Languages (DSLs)
	Architectural Style-Specific Languages
	Lessons Learned
	Motile Binding Semantics
	Islets and Message Passing
	Decentralized Promises
	Spawning
	Example: A Client Computation for Palindromes
	Remote Evaluation
	Summary

	How Mobile is Motile and Why?
	Weakness is a Greater Good
	Intra- versus Inter-island Messaging
	Intra-Island Messaging
	Is Intra-Island Messaging COAST-Compliant?
	Summary

	Motile: The Details
	Expressions
	Derived Expressions
	Macros
	Standard Procedures
	Persistent Functional Data Structures
	Syntax

	Evaluation: Live Update
	Evaluation Criteria
	Exploiting Binding Environments for Live Update
	CURL-based Live Update
	More General Forms of Live Update
	Live Update for COAST
	Related Work
	Summary

	Evaluation: Web API Design
	Web Service Design from a COAST Perspective
	The Delicious API
	Delicious as a COAST-Based Service
	A Motile API for Delicious
	Client-defined Extensions of the Motile API for Delicious
	Performance
	Summary

	Evaluation: Security
	COAST is Authority-Safe
	Motile/Island is Capability-Safe Hence Authority-Safe
	Related Work
	Summary

	Evaluation: Architectural Accountability
	Approach: Capability is in Plain Sight
	Early Experimental Evidence
	Related Work
	Summary

	Summary
	Future Work
	Types for Live Computations
	Extending Execution Engines
	Service Discovery as a COAST Service
	Pervasive Live Update
	Fractalware
	Integration with Existing Legacy Systems
	Simplifying Motile/Island

	References

