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 The current paradigm in animal organismal biology links morphology, 

performance, behavior, and Darwinian fitness in a sequence of proximate causal 

relations.  First, the combination of lower-level organismal traits (e.g., leg length, 

heart mass, muscle enzyme activities) generate performance levels (e.g., 

maximal sprint speed, maximal oxygen consumption during exercise [V̇O2max]); 

in turn, maximal performance constrain behavioral options, and the 

consequences of behavioral choices influence fitness.  Because behavior and 

performance are the last steps leading to fitness, selection acts more directly on 

them than on lower-level (subordinate) traits.  Performance and behavior are, 

therefore, pivotal points in understanding evolutionary adaptation.  A primary 

determinant of an animal's aerobic performance capacity is V̇O2max which sets 

the limit to the intensity of physical effort that can be sustained over prolonged 

periods.  Only during relatively rare occasions (e.g., during predator-prey 
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interactions) do animals perform at levels above V̇O2max; therefore, most 

activities will be constrained by their capacity to consume oxygen.  Many key 

events involve mostly aerobic levels of activity (e.g., foraging, patrolling 

territories), making V̇O2max a likely target for natural and sexual selection. 

 This dissertation investigated V̇O2max in two contexts.  In chapters one 

and two I put V̇O2max into an historical evolutionary context, evaluating the 

coadaptation of V̇O2max and ecological traits among lizard and mammal species.  

These studies revealed that V̇O2max is weakly positively correlated with home 

range area among species of mammals, that viviparous lizards have lower 

V̇O2max than non-viviparous species, and that varanids, helodermatids, and 

skinks have higher V̇O2max than other groups of lizards. 

 In the third chapter, I use a mechanistic approach to elucidate the 

proximate causes and consequences of V̇O2max at the level of among-individual 

variation.  I found that V̇O2max in adult male Sceloporus occidentalis lizards from 

Hampton Butte, Oregon during the breeding season is positively related to 

hematocrit (or hemoglobin) levels in the blood and to territorial behaviors 

(number of push-ups using two or four legs per bout of push-ups). 
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GENERAL INTRODUCTION  

 The maximal amount of oxygen an animal can consume during exercise 

(V̇O2max) is a key aspect of exercise physiology and performance.  V̇O2max is 

not a measure of locomotor performance per se (Careau & Garland, 2012), but it 

sets the upper limit to any kind of effort that needs to be sustained over relatively 

long periods (more than a minute or so; Seeherman et al., 1981; Jones & 

Lindstedt, 1993; Levine, 2008; Spurway et al., 2012).  It is tightly linked to 

maximum sustainable speed and endurance capacity, and hence may potentially 

limit activity levels during ecologically relevant tasks (e.g., patrolling a territory, 

fighting, courting, foraging).  From an evolutionary perspective (ultimate 

causation), V̇O2max varies among phylogenetic lineages in relation to their 

ecology (e.g., Clemente et al., 2009, p. 200; Killen et al., 2016).  V̇O2max also 

varies among individuals within populations, and this variation can be exploited to 

elucidate the proximate causes of variation in V̇O2max (e.g., Garland, 1984; 

Garland & Else, 1987).  

 

Ultimate causes of V̇O2max (ecological correlates among species) 

In principle, individual variation in V̇O2max should be one of numerous 

factors that contribute to variation in reproductive success.  Because V̇O2max is 

a heritable trait (Garland & Bennett, 1990; Garland et al., 1990b; Dohm et al., 

2001; Wone et al., 2015), natural and/or sexual selection across generations can 

lead to differentiation among populations, species, and eventually major 
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phylogenetic lineages.  For example, higher capacity to consume oxygen during 

exercise can be advantageous because animals would be able to maintain 

higher activity levels aerobically (Chappell & Snyder, 1984; Hayes, 1989) leading 

to the simultaneous evolution (coadaptation) of V̇O2max and activity levels.  This 

relation was empirically tested in laboratory house mice selectively bred for 

voluntary aerobic exercise (Swallow et al., 1998).  In that experiment, the four 

selected lines of mice showed significantly higher V̇O2max than the four control 

(random-bred) lines after 10 generations, providing evidence for the potential 

adaptive significance of V̇O2max to high activity levels. 

Some lineages within lizards and mammals have relatively high V̇O2max, 

possibly associated with specific ecological conditions, and higher activity levels.  

Among mammals, V̇O2max is significantly higher in canids and in Equus 

caballus, Antilocapra americana, and Phyllostomus hastatus (Dlugosz et al., 

2013), whereas among lizards, helodermatids and varanids have higher V̇O2max 

than other lineages (Beck et al., 1995; Clemente et al., 2009).  Even though 

mammals have much higher V̇O2max than lizards (approximately six-fold 

difference on average), some species of varanids show V̇O2max values almost 

as high as those of some mammals (Garland & Albuquerque, 2017). 

Several studies have investigated ecological correlates of V̇O2max among 

species or higher taxa in an attempt to describe evolutionary patterns for that 

trait.  For example, among lizards, researchers found higher V̇O2max in more 

active species in nature (e.g., active foragers) than closely related counterparts 
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that are more sedentary (Bennett et al., 1984; Clemente et al., 2009).  Among 

species of geckos, nocturnal species have lower V̇O2max, but that difference 

seems to be caused mostly by the lower temperatures at which they operate in 

nature (chapter 2; Autumn et al., 1999).  Among varanids, V̇O2max is positively 

correlated with maximal endurance and stamina, which are higher in active 

foraging species and in species from xeric environments (Clemente et al., 2009).  

Among mammals, V̇O2max is weakly, but positively, correlated with home range 

area (chapter 1, also published as Albuquerque et al., 2015b), a trait that should 

be associated with higher activity levels.  And finally, among teleost fish, V̇O2max 

is higher for pelagic species and for species from higher trophic levels (Killen et 

al., 2016). 

 

Proximate causes and consequences of V̇O2max among individual lizards 

 As for any other whole-animal performance capacity, V̇O2max arises from 

lower-level suborganismal traits, and variation in V̇O2max may in turn have 

consequences for behavior and Darwinian fitness (Garland & Kelly, 2006).  This 

flow of causal relations among levels of biological organization above and below 

whole-animal performances can be identified today as the dominant paradigm in 

organismal biology, termed the ‘ecomorphology paradigm’.  This paradigm, 

originally proposed by Arnold (1983) and subsequently expanded by other 

authors (e.g., Garland & Losos, 1994; Aerts et al., 2000; Lailvaux & Husak, 2014; 

Storz et al., 2015; Orr & Garland, 2017), structures ecomorphological relations in 
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causal steps from morphology to performance, from performance to behavior, 

and finally from behavior to Darwinian fitness.  The directionality of these causal 

links implies that an animal’s reproductive success should be proximally 

influenced (and possibly limited) by their capacities at simpler tasks, such as 

sprinting or sustaining effort.  These capacities are limited by lower-level traits 

ranging from biochemical to morphological, that in combination determine whole-

animal performance (Garland & Kelly, 2006).  Moreover, behavior may serve as 

an important "filter" between selection and performance (Garland et al., 1990b; 

Garland, 1994b; Garland & Carter, 1994; Garland & Losos, 1994). 

Morphology here is a shorthand term that refers to any lower-level, 

subordinate trait, so the pathway can be expanded and detailed as much as it 

suits the study system.  For example, one can include under “morphology” 

measures of tissue-specific enzyme activities, organ masses, or external linear 

measurements (e.g., Garland, 1984; Garland & Else, 1987; Kohlsdorf & Navas, 

2012).  Performance refers to the animal’s capacity to accomplish a task that 

requires the use of the whole body when maximally motivated (Careau & 

Garland, 2012).  To enhance ecological relevance (Arnold, 1983; Irschick & 

Garland, 2001), these performances should be directly related to key aspects of 

the animal’s ecology or day-to-day activities, such as escaping predators, 

defending territory, foraging, or searching for mates.  If they are related to these 

types of natural behaviors, then they should affect overall reproductive success 

(Darwinian fitness). 
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Very few studies have investigated the proximate causes of intraspecific 

variation in lizard V̇O2max.  In adult male Dipsosaurus dorsalis, mass-specific 

V̇O2max was positively correlated with mass-specific gastrocnemius muscle 

citrate synthase activity (John-Alder, 1983).  However, some of this positive 

correlation may have been related to effects of body mass, as residuals from 

regressions on body mass were not analyzed.  Two other studies analyzed 

residuals from regressions on body mass.  These studies included juveniles, both 

sexes, and/or lizards collected throughout the year and, consequently, 

encompassed a much wider variation in V̇O2max and its subordinate traits 

(Garland, 1984; Garland & Else, 1987).  In the first study, V̇O2max in Ctenosaura 

similis was positively related to citrate synthase activity in the liver and thigh 

muscle, lactate dehydrogenase activity in the heart, and hematocrit levels 

(Garland, 1984).  In the second study, V̇O2max in Amphibolurus nuchalis was 

negatively related to thigh pyruvate kinase, liver mass, and positively related to 

hematocrit levels (Garland & Else, 1987). 

 Garland and Losos (1994) expanded Arnold’s paradigm and included 

behavior as an additional step between performance and fitness (see also 

Garland et al., 1990b; Garland, 1994b; Garland & Carter, 1994).  Because 

performance limits constrain what an animal can do, they may constrain behavior 

in the wild.  For example, when their body temperature is too cold to attain high 

sprint speeds, some lizard species switch from running to attacking when facing 

a predator (Hertz et al., 1982; Crowley & Pietruszka, 1983; Herrel et al., 2007; 
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Barros et al., 2010).  Because performance and behavior are the last steps 

leading to fitness, natural and sexual selection act directly on them (Garland & 

Kelly, 2006), and evolutionary changes in lower-level traits (e.g., morphology, 

physiology, biochemistry) happen as a consequence.  Therefore, understanding 

performance and behavior variation and the (causal) relations between them is 

crucial to understand animal morphological and physiological adaptations. 

 Behaviors related to sexual selection (e.g., male-male disputes or 

courtship) can be costly (Daly, 1978; Höglundi et al., 1992; Mowles & Jepson, 

2015) and should be strongly affected by performance capacities.  In territorial 

iguanid lizards, activity levels increase significantly during the breeding season 

(Ruby, 1978; John-Alder, 1984b; Baird et al., 2001).  During that period, in 

addition to the everyday foraging and thermoregulatory activities, individuals 

must patrol territories, engage in disputes and chase intruders away, and invest 

in courtship and mating activities (Fitch, 1940; Stamps, 1978; Sheldahl & Martins, 

2000).  These additional activities should increase the frequency and intensity of 

movements (e.g., number of moves and distance traversed) and social 

interactions (e.g., push-up displays). 

 Finally, very few studies have tried to connect lower-level traits, 

performance, and behavior simultaneously, as mentioned by Sinervo (1995): 

"Whereas several of the chapters build on the conceptual aspects of Arnold’s 

paradigm (Garland and Losos add analysis of behavior, Chapter 10), it is clear 

that there are very few studies in which the complete paradigm has received 
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empirical treatment."  That observation is still true today.  Connecting multiple 

levels of biological organization in a single study is difficult.  Each type of variable 

requires different technical resources and trained researchers to use them.  

Observing lizard behavior requires many hours of observation to obtain reliable 

data.  Measuring performance in the laboratory requires specialized and 

expensive equipment (e.g., racetrack, oxygen analyzer).  And measurement of 

several lower-level traits requires time-sensitive procedures during dissection 

(e.g., enzyme activities, hemoglobin concentration), so multiple trained 

investigators are needed. 

 In this dissertation, I investigate the ecological correlates of V̇O2max 

among lizard and mammal species (chapters 1 and 2), casting some light on the 

possible evolutionary meaning of that trait, and I execute the first study to 

connect multiple levels of biological organization centered on variation in 

V̇O2max among individual lizards (chapter 3). 
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CHAPTER 1. - Relationship between maximal oxygen consumption 

(V̇O2max) and home range area in mammals. 

 

Abstract 

 Home range is defined as the area traversed during normal daily activities, 

such as foraging, avoiding predators, and social or antagonistic behaviors. All 

else being equal, larger home ranges should be associated with longer daily 

movement distances and/or higher average movement speeds. The maximal rate 

of oxygen consumption (V̇O2max) generally sets an upper limit to the intensity of 

work (e.g., speed of locomotion) that an animal can sustain without fatigue. 

Therefore, home range area and V̇O2max are predicted to evolve in concert 

(coadapt). 

We gathered literature data on home range and V̇O2max for 55 species of 

mammals. We computed residuals from log-log (allometric) regressions on body 

mass with two different regression models: ordinary least squares (OLS) and 

phylogenetic generalized least squares (PGLS). Residuals were weakly 

positively related for both the OLS (r = 0.278, one-tailed P < 0.05) and PGLS (r = 

0.210, P < 0.05) regressions. For V̇O2max, the PGLS regression model had a 

slightly higher likelihood than the OLS model, but the situation was reversed for 

home range area. In addition, for both home range area and V̇O2max, models 

that fit better than either OLS or PGLS were obtained by modeling residual 

variation with the Ornstein-Uhlenbeck process to mimic stabilizing selection 
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(RegOU), indicating that phylogenetic signal is present in both size-adjusted 

traits, consistent with findings of previous studies. (However, residuals from the 

RegOU models cannot be tested for correlation due to mathematical 

complexities.) We conclude that the best estimate of the residual correlation is 

probably somewhere between these two values reported above. Possible 

reasons for the low correlation between residual home range area and V̇O2max 

are discussed. 
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Introduction 

 The idea that physiological performance abilities should evolve in a 

correlated fashion (coadapt) with aspects of an organism's behavioral ecology is 

a central tenant of ecological and evolutionary physiology (Garland & Carter, 

1994; Garland & Losos, 1994; Angilletta et al., 2006). For example, among 

species of Anolis lizards, maximal sprint speed measured in the laboratory 

correlates positively with both escape speed and feeding speed measured in the 

field (Irschick & Losos, 1998). Also, among lizard species, treadmill endurance 

capacities are positively correlated with daily movement distance, the percentage 

of time spent moving, and the number of moves per minute (Garland, 1999). 

Other than those two studies, we are not aware of any that have demonstrated a 

cross-species correlation between quantitative measures of locomotor behavior 

in the field and aspects of exercise abilities through phylogenetically based 

statistical analyses. Therefore, the purpose of the present study was to take 

advantage of a recent comparative analysis of mammalian maximal oxygen 

consumption (Dlugosz et al., 2013) to test for a positive association with home 

range size, a widely reported measure of field locomotor behavior in mammals 

(Kelt & Van Vuren, 2001). 

As defined by Burt (1943), home range is the area traversed by an animal 

in its normal activities of food gathering, mating, and caring for young. All else 

being equal, a larger home range area would imply an increase in the distance 

moved per unit time (e.g., per day), the amount of time spent moving, or both. 
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For terrestrial locomotion, it is less costly to cover a greater distance by 

increasing speed rather than increasing the amount of time spent moving at a 

given speed (e.g., Rezende et al., 2009 and references therein). Moving faster to 

cover a greater distance would also minimize the amount of time spent exposed 

to predators or other environmental hazards, such as high temperatures. The 

speed of locomotion (intensity of activity) that can be sustained by an animal for 

a prolonged period of time is limited by its aerobic capacity, which, in terrestrial 

vertebrates, is typically measured as the maximal rate of oxygen consumption 

during forced treadmill exercise (Seeherman et al., 1981). In general, V̇O2max 

defines the upper limit to the rate of work that can be sustained for more than a 

brief period. If a larger home range area implies a higher average rate of 

movement, then a positive correlation between home range area and V̇O2max 

would be expected. 

To test this prediction in an evolutionary framework, we gathered literature 

data for 55 species of mammals. We computed residuals from log-log 

regressions on body mass and then tested the residuals for correlation by use of 

both conventional and phylogenetically informed statistical methods (Rezende & 

Diniz-Filho, 2012).  

 

Methods 

 All of the V̇O2max data were obtained from Dlugosz et al. (2013). We used 

various internet search tools (especially Google, Google Scholar, and Web of 
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Science) to obtain home range data for as many species as possible that were 

also included in the study by Dlugosz et al. (2013). 

We found usable home range data for 55 species. Home range area can 

be affected by several methodological factors. For example, precision of location 

data and whether it is constrained to occur on a pre-defined grid will vary among 

techniques, e.g., traps versus radio telemetry. Also, the different ways to 

calculate the home range area from location data can result in different area 

values, even if calculated from the same data set. For example, whereas 

inclusive boundary strip adds half the distance between traps as part of the home 

range, the minimum convex polygon method would only consider the area inside 

the polygon created from connecting the outermost points. Therefore, we also 

noted the method used to locate animals (direct observation, trapping, and 

telemetry [we considered radio, satellite, and radioactive telemetry as one 

category), the area calculation method (Minimum Convex Polygon, Kernell, 

inclusive/exclusive boundary strips, and 95% probability ellipses), the season in 

which the animals were captured (fall, spring, summer, winter, and all year [we 

considered the study all year if it included all seasons or both winter and 

summer), the sex (males, females, pooled), and duration of the study in months. 

These were used as cofactors when computing residual home range area. When 

body mass was not reported in the original home range study, it was taken from 

another paper with an average for the species used, or the mass from Dlugosz et 
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al. (2013) was used. For more details on how the data were treated, refer to the 

Supplementary Material.  

In Mesquite version 2.75, we trimmed the phylogenetic tree of Dlugosz et 

al. (2013) to 55 species (tips), to match the species with home range data, 

including the Arctic Fox (Alopex lagopus), which was inadvertently omitted from 

the analyses presented in that paper. Following Dlugosz et al. (2013), branch 

lengths were set by the arbitrary method of Pagel (1992) (Fig. 1.1). The 

phylogeny was exported from Mesquite as a PDI file, then imported to the DOS 

PDDIST program to create the phylogenetic variance-covariance matrix (Garland 

& Ives, 2000). 

In Matlab version 6.1, we used the Regressionv2.m program of Lavin et al. 

(2008) to regress log10 V̇O2max and log10 home range area on log10 body mass 

using Ordinary Least Squares (OLS), Phylogenetic Generalized Least Squares 

(PGLS), and a phylogenetic regression model that allows the branches to vary in 

length according to an Ornstein-Uhlenbeck process to mimic stabilizing selection 

on the residuals (RegOU). These models are discussed in detail in Lavin et al. 

(2008; see also Rezende & Diniz-Filho, 2012). Briefly, the OLS method analyzes 

the data assuming a star phylogeny with contemporaneous tips (usually called 

conventional or nonphylogenetic analysis), PGLS uses the phylogenetic tree as 

input, and RegOU allows the nodes of the tree to move between the root and tips 

of the tree and hence the tree varies continuously between a star and the original 

tree, or even a more hierarchical tree. In the RegOU model, a parameter named 
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“d” is estimated by restricted maximum likelihood, simultaneously with estimation 

of the regression parameters, to determine the optimal amount of "stretching" or 

"compressing" of the tree as the nodes move between the root and tips (Garland 

& Ives, 2000; Blomberg et al., 2003). A d value higher than 1 means that the 

nodes of the tree were pushed closer to the tips (i.e., making the tree more 

hierarchical), while a value smaller than 1, indicates the nodes were pulled 

towards the root, making it somewhat closer to a star phylogeny. In the limit, d 

can be estimated as zero, which indicates that a star phylogeny best fits the 

regression residuals. Any estimated d value greater than zero indicates the 

presence of phylogenetic signal in the residuals. 

The residuals obtained from the V̇O2max and home range regressions for 

OLS and PGLS models were then correlated (one for each regression model) in 

SPSS Version 22.0. We did not use residuals from the RegOU models because 

they are not strictly comparable when the estimated d values differ. For home 

range area, we computed two sets of regressions, one including body mass plus 

all the co-factors listed above and another set including only body mass so that it 

would be directly comparable to the V̇O2max regressions. When correlating 55 

residual data points, the nominal degrees of freedom would be 53, with a 

corresponding critical value of 0.224 for a 1-tailed test. However, it is appropriate 

to reduce d.f. to account for the parameters estimated when computing the 

regression models used to calculate residuals. For V̇O2max, only body mass was 

used as an independent variable, but for the full model used with home range 
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area an additional 10 dummy variables were included to account for variation 

related to calculation method, season, etc. The exact number of d.f. that should 

be subtracted is not entirely obvious, so we also consider significance levels as if 

we had 43 d.f., for which the 1-tailed critical value would be 0.248.  

In principle, a better approach to test for a relation between two variables 

could be to include one (e.g., V̇O2max) as an additional independent variable in a 

multiple regression model predicting the other (e.g., home range size)(e.g., see 

Freckleton, 2002).  That would solve certain statistical issues, including the 

calculation of d.f., and also allow use of the more flexible RegOU model.  

Unfortunately, multiple regressions can be unreliable when the correlation 

between independent variables is strong (collinearity or multicollinearity).  In the 

present case, log body mass (for home range area) and log V̇O2max have a 

correlation of 0.972.  Adding log V̇O2max to the multiple regression model for log 

home range area results in a very high Variance Inflation Factor (VIF) of 21.360 

for log body mass and 21.798 for log V̇O2max.  Must statistical sources warn 

strongly about VIF values above 10, and some warn about values of even 4 or 5.  

Therefore, we not comfortable with the estimated partial correlations or P values 

for log V̇O2max in the present analysis.  In addition, we have separate estimates 

of body mass for the two traits of interest, and the multiple regression approach 

would only accommodate one, perhaps an average, but that would induce 

additional error into the estimate of body mass. 

 



16 
 

Results 

Figure 1.2A shows a scatterplot of home range area with body mass. As 

shown in Table 1.1, the ln maximum likelihood for the RegOU multiple regression 

(-60.1488) was high enough to be considered significantly better (P = 0.0159 and 

P = 0.0016, respectively) than the OLS (-63.0550) or PGLS (-65.1521) models, 

based on a ln likelihood ratio test with one degree of freedom to account for the 

additional parameter estimated in the RegOU model (Lavin et al., 2008; e.g., see 

Gartner et al., 2010). Hence, the tree used in the best-fitting model was 

intermediate between a star and the original tree (estimated OU parameter, d = 

0.337), and residual home range area contains statistically significant 

phylogenetic signal. The foregoing comparisons are based on "full" models 

predicting home range, which included additional cofactors and covariates 

related to methodology. For the models that used only body mass as an 

independent variable, the estimated d value in the RegOU model was zero, 

indicating that a star phylogeny better fit the data than did the hierarchical tree 

shown in Figure 1.1. We then compared the full model fitted by RegOU (ln 

maximum likelihood = -60.1488) with the minimal OLS model (only log body 

mass as an independent variable, ln maximum likelihood = -70.9329), and found 

that twice the difference in ln likelihoods (21.5682) would be considered 

statistically significant with 12 d.f. (P = 0.0427). Therefore, we conclude that the 

full RegOU model is the best-fitting for home range area.  
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Figure 1.2B shows that, for a given body mass, V̇O2max is much less 

variable than home range area (Fig. 1.2A). For the V̇O2max regressions (Table 

1.1), the ln maximum likelihood for the RegOU regression (9.9644) was high 

enough to be considered significantly better (P = 0.0029 and P = 0.0016, 

respectively) than the OLS (5.5224) or PGLS (6.8137) models, based on a ln 

likelihood ratio test with one degree of freedom. So, as for home range area, 

residual V̇O2max contains significant phylogenetic signal, but not as much as 

would be implied by the tree shown in Figure 1.1, similar to the findings of 

Dlugosz et al. (2013) for the larger data set. 

The correlation of OLS residuals (Fig. 1.3A) was positive (r = 0.278) and 

statistically significant (1-tailed P < 0.05 with either 53 or 43 d.f.). The correlation 

of residuals from PGLS models was lower and statistically non-significant (r = 

0.210, 1-tailed P > 0.05). Note that for home range area, the OLS model fits the 

data somewhat better than the PGLS model, based on a comparison of the 

likelihoods (Table 1.1), whereas for V̇O2max the converse is true. 

 

Discussion 

Contrary to our expectation, we found only weak evidence for a positive 

correlation between residual home range area and V̇O2max. Several 

explanations are possible, and they are not mutually exclusive. 

One possibility is that the data include too much "measurement error" (in 

the broad sense of Ives et al., 2007), which obscures any correlation. Methods 



18 
 

for calculating home range area are much more variable than for measurement 

of V̇O2max, and this difference could partly account for the much greater 

variability of home range area at any given body mass (Fig. 1.2). Indeed, the 

phylogenetic RegOU model that included additional independent variables to 

partially account for measurement-related variation fit the home range data 

significantly better. Many studies have reported variation in home range size, 

adjusting for variation in body mass, among populations of the same species of 

mammal (McNab, 1963; Grant et al., 1992; Herfindal et al., 2005). As the home 

range and V̇O2max data analyzed here did not come from the same populations 

of each species, population differences likely contributed to the "measurement 

error" in our data, as this also refers to some aspects of real biological variation 

in the trait being studied (Ives et al., 2007). Similarly, variation related to age, sex 

or season could have diluted the true correlation between home range area and 

V̇O2max. 

The d values observed in RegOU models indicate how the tree was 

altered to best fit the data in the statistical models. For both home range area 

and V̇O2max, the estimated d was significantly greater than zero, indicating that 

the variance-covariance matrix of the residuals was not the identity matrix or, 

equivalently, that the best-fitting phylogenetic tree was not a star. At the same 

time, the d values were less than one, indicating that the altered tree is 

somewhat less hierarchical than the one shown in Figure 1.1 (i.e., the nodes of 

the tree were pulled towards the root, making the tree less hierarchical). Thus, for 
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this set of species, phylogenetic signal is not as strong for home range area as it 

is for V̇O2max, a result consistent with the overall pattern documented previously 

(Blomberg et al., 2003). Whether this result means that home range is more 

biologically variable or more evolutionarily labile than V̇O2max cannot be 

addressed without a detailed consideration of measurement error in the broad 

sense (Blomberg et al., 2003; Ives et al., 2007; Revell et al., 2008), which is not 

possible with the data presently available.  

Although we have emphasized that measurement error of various types 

may have obscured a true correlation between home range size and V̇O2max, it 

is important to note that other studies have successfully identified interspecific 

correlates of home range size and V̇O2max, or related measures, with 

phylogenetically informed analyses. For example, V̇O2max has been shown to 

correlate positively with brain size among species of mammals (Raichlen & 

Gordon, 2011). Kelly et al. (2006) reported positive correlations between residual 

home range area and both residual hindlimb length and residual 

metatarsal/femur ratio in both Carnivora and ungulates (although the home range 

- leg length correlation failed to reach statistical significance in the ungulate 

sample). Among species of lizards, treadmill endurance capacity is positively 

related to daily movement distance, the percentage of time spent moving, and 

the number of moves per minute (Garland 1999). Bowman et al. (2002) found 

that dispersal distance and distance moved after translocation in mammals also 

correlate with home range area, after controlling for body size, although this 
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study used only conventional regression and correlation analyses. Harris and 

Steudel (1997) observed that residual hind-limb length in Carnivora is not 

correlated with home range or daily movement distance (contra Kelly et al. 2006), 

but is related to prey capture mode. Hence, we do not believe that the lack of 

correlation we observed reflects only high measurement error in the data for 

home range area and/or V̇O2max.  

 Finally, we note that the somewhat different correlations observed with the 

residuals obtained from conventional and phylogenetic analyses provide another 

example of how ignoring phylogenetic relationships can affect results (Garland et 

al., 1993, 2005; Rezende & Diniz-Filho, 2012; White & Kearney, 2014; 

references therein). As an example closely related to the present study, Harris 

and Steudel (1997) reported a positive correlation (r = 0.263, 2-tailed P = 0.0597) 

between home range area and residual hind-limb length that became non-

significant with use of phylogenetically independent contrasts. Examination of the 

present data (Fig. 1.3A) indicate that the more positive correlation in the non-

phylogenetic analysis may be largely attributable to Carnivora tending to have 

both large home ranges and high V̇O2max for their body size. 

Future Directions  

Home range area is not necessarily the same as an animal's territory, 

which is a smaller area, inside the home range, that is actively defended against 

conspecifics and/or interspecific intruders (Burt 1943). Possibly, a tighter 

relationship exists between V̇O2max and territory size, given that the movements 
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and attention dedicated to the territory may generally be more intense than for 

the home range as a whole. Unfortunately, information on territory size is much 

less available. 

Alternatively, daily movement distance (Garland 1983) or possibly average 

movement speed or some other metric (e.g., see Garland 1999; Perry 1999) 

might have a tighter relationship with V̇O2max than the area of the home range. 

Some animals might have a small home range area but be more active and 

move more frequently inside that area, possibly close to the maximum aerobic 

capacity (e.g., squirrels), thus requiring a higher V̇O2max, all else being equal. 

Movement distances and speeds, like home range area, will also be affected by 

such ecological factors as substrate availability, habitat type, productivity, density 

of conspecifics and other species, etc., which were not considered here. It will 

also be of interest to test for a relationship between V̇O2max and dispersal 

distance in mammals (Bowman et al. 2002). 

Finally, as more data become available, it will be important to test possible 

clade differences in relationships, as apparently is the case with Carnivora (see 

Fig. 1.3A).  
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Figure Legends 

 

Figure 1.1.  Phylogeny used to compute phylogenetic regressions (PGLS and 

RegOU).  This tree was trimmed from the original provided by Dlugosz et al. 

(2013), and we added Alopex lagopus, which was unintentionally omitted in their 

paper.  Branch lengths were then set using the arbitrary method of Pagel (1992), 

following Dlugosz et al. (2013).  The 2-character codes at the start of the 

scientific names correspond to codes in the file of raw data provided in the online 

Supplemental Material. 

 

Figure 1.2.  Scatterplots of (A) log10 home range area and (B) log10 V̇O2max 

versus log10 body mass for 55 species of mammals. 

 

Figure 1.3.  Scatterplot of residual log10 home range area versus residual log10 

V̇O2max based on (A) conventional OLS regressions and (B) phylogenetic 

generalized least squares (PGLS) models. For (A), the correlation using all data 

points (r = 0.278) is statistically significant, but for (B) it is not (r = 0.212).  
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Figure 1.1. 
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Figure 1.2.  
(A) 

 
(B) 
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Figure 1.3.  

(A) 

 
 
(B) 
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Table 1.1.  Parameter estimates for regressions of log10 V̇O2max (ml O2/hr) and log10 home range area (square 

kilometers) on log10 body mass (kilograms).  For the home range regressions, we also included covariates and 

cofactors related to methodological variation (see Methods: those additional parameter estimates are not shown 

here).  The OLS and PGLS regression models were used to compute residuals, which were then tested for 

correlation (see Results and Figure 1.3).  For both dependent variables, the best-fitting models, based on ln 

maximum likelihood ratio tests, were the RegOU (see Results).  

Dependent 
Variable Model d 

Y inter-
cept SE Slope SE 

ln max. 
likelihood 

Mean 
Squared 

Error 
SE of 

Estimate R2& 

Home Range OLS  -5.3312 1.2661 1.3204 0.1303 -63.0550 0.7593 0.8714 0.8390 

Home Range PGLS  -4.7801 1.5022 1.1421 0.1360 -65.1521 0.8195 0.9053 0.7684 

Home Range RegOU 0.3369 -5.0512 1.2501 1.2625 0.1267 -60.1488 0.6832 0.8266 0.7996 

V̇O2max OLS  1.2264 0.0673 0.8686 0.0224 5.5224 0.0497 0.2229 0.9660 

V̇O2max PGLS  1.2900 0.1807 0.8392 0.0285 6.8137 0.0474 0.2178 0.9425 

V̇O2max RegOU 0.4768 1.2597 0.0992 0.8489 0.0271 9.9644 0.0425 0.2061 0.9488 

& Values are not comparable between OLS and the phylogenetic models.  “d” is the OU transformation parameter 
that estimates the best-fitting amount of stretching or compressing of branch lengths (see Methods).  For both 
traits, these values are significantly greater than zero, based on likelihood ratio tests comparing RegOU with PGLS 
models, thus indicating the presence of phylogenetic signal in the residuals (see text).
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CHAPTER 2. - Phylogenetic analysis of maximal oxygen consumption 

during exercise (V̇O2max) and ecological correlates among lizard species 

 

Abstract 

Maximal aerobic capacity (V̇O2max), measured as the maximum amount of 

oxygen consumed during forced exercise, sets the upper limit to the rate of work 

that can be sustained over relatively long periods and, therefore can limit activity 

levels during ecologically relevant tasks.  Among ectotherms, V̇O2max is 

primarily affected by body size and body temperature, but it should also coadapt 

with behavior, ecology, and aspects of the life history.  We compiled published 

data for 58 species of lizards plus 7 populations (total 65 data points) from 11 

different families and tested whether V̇O2max was related to diet (herbivore, 

insectivore, insectivore/carnivore, carnivore, and omnivore), climate category 

(tropical, temperate, and arid), nocturnality, viviparity, or phylogenetic lineage 

(monophyletic taxonomic family or infraorder), with body mass and body 

temperature as covariates.  Preliminary analysis revealed that most of the effect 

of phylogenetic lineage was caused by Helodermatidae, Varanidae, and 

Scincidae, all with relatively high V̇O2max, in agreement with previous studies.  

We therefore analyzed models that included a set of three dummy variables 

coding for helodermatids, varanids, and skinks as compared with all other lizards.  

We fitted 48 models that included body mass, measurement temperature, and all 

possible combinations of other independent variables using both ordinary least-
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squares (OLS) and phylogenetic regressions that assume an Ornstein-

Uhlenbeck model of residual trait evolution (RegOU) (N = 96 total models).  The 

sum of Akaike weights for each independent variable revealed viviparity (∑wi = 

0.996) and the combined set of dummy variables coding for helodermatids, 

varanids and skinks (∑wi = 0.996) as the most important predictors.  Viviparity 

had a negative effect on V̇O2max, whereas helodermatids, varanids, and skinks 

all had relatively high V̇O2max.  The average allometric slope of V̇O2max from 

the top eight models (which accounted for 99% of the cumulative evidence) was 

0.803 (95% confidence interval = 0.747-0.859), which is similar to that reported 

previously for lizards and mammals in general but not for varanids or nocturnal 

geckos. 

 

 

Keywords:  aerobic capacity, allometry, comparative methods, habitat, 

phylogeny, temperature, viviparity  
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Introduction 

 Maximal aerobic capacity, measured as the maximum rate of oxygen 

consumption during forced exercise (Seeherman et al., 1981), sets the upper 

limit to the rate of work that can be sustained over relatively long periods of time 

(more than a few minutes) (Seeherman et al., 1981; Jones & Lindstedt, 1993; 

Levine, 2008; Spurway et al., 2012).  It directly affects maximal sustainable 

speed and endurance and hence may potentially limit activity levels during 

ecologically relevant tasks (e.g., patrolling a territory, fighting; courting; foraging).  

Relatively few studies have tested for coadaptation between V̇O2max and 

aspects of behavior, ecology or life history that intuitively might depend on high 

sustained metabolic rates (Bennett et al., 1984; Autumn et al., 1999; Clemente et 

al., 2009; Albuquerque et al., 2015b; Killen et al., 2016).  

 In two lizard species, Bennett et al. (1984) found that the widely foraging 

Eremias lugubris has higher V̇O2max and activity levels in the wild, as compared 

with the closely related E. lineoocellata, but two-species comparisons cannot 

provide strong evidence regarding adaptation or coadaptation (Garland & 

Adolph, 1994).  Autumn et al. (1999) compared eight species of nocturnal geckos 

with 24 species of diurnal lizards.  Nocturnal geckos are active at lower body 

temperatures, and when measured at their field-relevant body temperatures, they 

had a lower V̇O2max than diurnal lizard species.  However, assuming a Q10 of 

2.5 (from previous studies of lizards in general; Bennett, 1982, 1983), correcting 

to the same body temperature yielded similar values for nocturnal and diurnal 
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species.  Finally, in a study of 18 varanid species, Clemente et al. (2009) showed 

that V̇O2max was positively correlated with endurance, measured as maximum 

distance and time running when chased around a circular racetrack until 

exhaustion.  Endurance was higher in widely foraging species and in species 

from xeric as compared with tropical areas, but these comparisons were not 

reported for V̇O2max. 

 Variation in V̇O2max has also been studied in other taxa.  Among 

mammals, Albuquerque et al. (2015b) found that V̇O2max was marginally 

positively correlated with home range area.  All else being equal, larger home 

ranges should be associated with higher activity levels.  However, the correlation 

between home range and V̇O2max was weak (r = 0.278) and statistically non-

significant in phylogenetically based analyses.  The authors argue that 

measurement error (Ives et al., 2007), including a mismatch between the 

populations for which home range and V̇O2max were measured, and the fact that 

activity levels should be higher inside the defended portion of the home range 

(territory), might account for the weak correlation between home range and 

V̇O2max.  Killen et al. (2016) showed that size-corrected V̇O2max is higher for 

pelagic teleost fishes and for species from higher trophic levels.   

 In the present study, we tested whether V̇O2max in lizards is associated 

with diet (herbivore, insectivore, insectivore/carnivore, carnivore, and omnivore), 

which presumably relates to foraging mode, climate (tropical, temperate, and 

arid), nocturnality, and viviparity, while controlling for the effect of body mass and 
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temperature using conventional ordinary least squares and phylogenetic 

regressions to account for species relatedness.  We included viviparity because 

retaining embryos for longer gestation periods should have important impacts on 

activity levels and perhaps the intensity of effort during daily tasks.  Pregnancy 

can reduce locomotor capacities in lizards not only through the effects of added 

body mass, but also through unidentified changes in physiology (Garland & Else, 

1987; Olsson et al., 2000; Zani et al., 2008).  Therefore, all else being equal 

(e.g., in the absence of compensatory behavior: Bauwens & Thoen, 1981; 

Brodie, 1989), a higher V̇O2max may be required to maintain similar activity 

levels in viviparous versus oviparous species. 

 

Methods 

Data collection  

 We obtained V̇O2max data from scientific publications.  We started with 

the dataset provided by Garland and Albuquerque (2017) and added data for 

species outside of the 35-40ºC range used by them.  We searched for “lizard 

V̇O2max”, “lizard aerobic capacity”, and “lizard maximal metabolic rate” in Google 

Scholar and Web of Science.  We considered only studies that measured oxygen 

consumption while gradually increasing speed on a treadmill.  When the studies 

reported mass-specific V̇O2max we multiplied the reported mass-specific 

V̇O2max by the average body mass.   
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 Additionally, we measured V̇O2max for 14 adult male Sceloporus 

occidentalis from Riverside, CA, USA (California Department of Fish and Wildlife 

permit SC - 013534).  We obtained each lizard’s V̇O2max while running on a 

speed-controlled treadmill (e.g., Garland, 1984; Garland & Else, 1987).  Prior to 

each trial, animals were maintained for at least 2 hours in an environmental 

chamber at 35º C.  We placed each lizard at the rear of the treadmill belt 

between adjustable Plexiglas walls.  Lizards wore a light-weight translucent 

plastic mask through which room air was pulled and conducted along tubes to an 

S-3A Applied Electrochemistry oxygen analyzer.  Flow rate through the mask 

(500 SCCM, controlled by a mass-flow controller) was sufficient to capture all 

exhaled gas.  A set of heat lamps above the treadmill was adjusted such that 

body temperature remained near 35º C during the trial.  We stimulated lizards to 

run by gentle taps on their tails and hindlimbs as we slowly increased the 

treadmill speed while monitoring oxygen concentration from the exhaled air.  

When we observed no further decline in oxygen concentration despite increases 

in speed for at least 60 seconds, we stopped the trial.  V̇O2max was taken as the 

highest one minute of O2 consumption during the trial (e.g., Garland, 1984; 

Garland & Else, 1987).  We ran each lizard twice, once in two consecutive days, 

and used the highest trial as V̇O2max. 

 A small tube with calcium sulfate, soda lime, and calcium sulfate in series 

removed carbon dioxide and water vapor from air before it entered the oxygen 

analyzer.  A data Acquisition Module (ADAM-4019) converted the analog signal 
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from the oxygen analyzer into a digital signal sent to a Macintosh computer.  We 

used LabHelper software (WarthogSystems, www.warthog.ucr.edu) to record 

and visualize the data in real time.  We used Warthog LabAnalyst to calculate 

oxygen consumption from records of oxygen concentration using the Mask Mode 

1 conversion.   

 We gathered literature data on climate, diet, nocturnality, and viviparity for 

each species for which we had V̇O2max data.  We used a Google Earth layer 

based on the updated Köppen-Geiger climate classification provided by Peel et 

al. (2007) to determine the climate category for the locality where each species 

was collected.  If a species was collected in multiple localities and separate 

measures of V̇O2max were not reported, we used the climate category that 

encompassed the majority of collection sites for the individuals collected.  When 

captive species were used or when collection sites were not described in the 

original papers, we used the climate category that encompassed most of the 

distribution of the species reported in the IUCN website (IUCN, 2019). 

 Categorizing an animal’s diet can be complicated (Peters, 1977).  We 

classified species’ diet as herbivore, insectivore, insectivore/carnivore, carnivore, 

or omnivore following the 90% rule (Peters, 1977; Harestad & Bunnel, 1979; 

Perry & Garland, 2002) when studies that reported stomach contents in detail 

were available.  For those studies, if less than 10% of the volume of stomach 

contents reported was composed of plant material, then we considered the lizard 

to be primarily insectivorous.  If more than 10% of the stomach contents volume 

http://www.warthog.ucr.edu/
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was composed of plant material, the species was considered omnivorous.  

Stomach contents of exclusively carnivorous and herbivorous species might not 

be as well preserved as the contents of species that eat mostly arthropods, so 

we also considered descriptions in general ecology papers or field guides, which 

usually involve direct observations in the wild.  Finally, for one species, 

Teratoscincus przewalskii, none of the sources of information described above 

were available, so we classified the species as insectivorous based on 

descriptions of what caretakers fed the animals in captivity, as taken from 

descriptions on pet websites or forums (e.g., Good Life Herps, 2018).  We 

classified species as viviparous or oviparous and as diurnal or nocturnal 

according to the information provided in the Reptile Database (Uetz, 2019), 

Animal Diversity (Myers et al., 2019), or from data available in Mesquita et al. 

(2015). 

 

Phylogenentic tree construction 

 We used the time calibrated phylogeny provided as online supplemental 

material with Tonini et al. (2016) and removed species not present in our study.  

We then added seven new branches to represent the two populations that we 

had for Sceloporus occidentalis, Tiliqua rugosa, Varanus gilleni, Varanus gouldii, 

Varanus panoptes, Varanus rosenbergi, and Varanus tristis for which we found 

V̇O2max data.  We arbitrarily set the branch length between the two populations 

of these seven species as equal to half the shortest branch length between any 
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two species in our tree.  The shortest bifurcation in the phylogeny for our species 

was between Varanus panoptes and Varanus gouldii (5.47 million years), so we 

set the seven bifurcations to 2.74 million years (Fig. 2.1). 

 

Statistical analysis 

 We computed multiple regressions in two ways (reviewed in Garland et 

al., 2005; Lavin et al., 2008) using the Matlab REGRESSIONv2.m program 

(Lavin et al., 2008).  First, we used conventional, nonphylogenetic, ordinary least 

squares (OLS) and then regressions in which the residuals are modeled as 

having evolved via an Ornstein–Uhlenbeck process (RegOU), which is intended 

to mimic stabilizing selection on the specified phylogenetic tree.  The OLS 

models assume a “star phylogeny” with no hierarchical structure, whereas the 

RegOU models alter the branch lengths of the tree to increase or decrease its 

hierarchy (respectively, pulling nodes towards the tips of the tree or closer to the 

root).  As compared with an OLS regression, the RegOU regression model 

contains one additional parameter, d, that estimates the transformation of the 

phylogenetic tree (Blomberg et al., 2003; Lavin et al., 2008) to better fit the 

residuals obtained with a given set of independent variables.  A d-value greater 

than 1 means that the analysis altered the tree to be more hierarchical; 

conversely, values less than 1 mean that the nodes were pulled closer to the 

root, as compared to the original tree.  The minimum value for this parameter is 

zero, which would indicate that the tree was altered to a star phylogeny.  



 

37 
 

 Our dataset included V̇O2max for 58 species distributed among 11 

currently recognized monophyletic taxa (all families except for Gekkota, which is 

an infraorder) and the number of species per taxa ranged from 1 (Crotaphytidae) 

to 24 (Varanidae).  These 11 taxa (henceforth referred to as families) correspond 

to major branches in our phylogenetic tree (Fig. 2.1).  Several previous studies 

have suggested that some of these families have relatively high V̇O2max and/or 

endurance capacity (e.g., see Garland, 1994a; Beck et al., 1995; Clemente et al., 

2009).  Therefore, we initially tested for differences among the 11 families (e.g., 

see Gartner et al., 2010; Foster et al., 2018).  Preliminary analysis revealed that 

most of the effect of family was caused by Helodermatidae, Varanidae, and 

Scincidae, all with relatively high V̇O2max.  In addition, models with the 11-

category family variable had relatively high AICc (see below), suggesting that this 

variable was too fine-grained.  We therefore decided to instead use a set of three 

dummy variables coding for helodermatids, varanids, and skinks as compared 

with all other lizards.  Only models that included (or excluded) all three of these 

dummy variables were considered.  We made the a priori decision to include 

body mass and body temperature during V̇O2max trials in all models, because 

these are known to be highly influential predictors of V̇O2max (see Introduction, 

and also Garland 1994 regarding endurance capacity).   

 We fitted a total of 48 multiple regression models, including all possible 

combinations of the independent variables climate (3 categories), diet (5 

categories), nocturnality, viviparity, and either family (11 categories) or the set of 
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three dummy variables for putatively aerobic taxa (helodermatids, varanids, and 

skinks).  Note that models never included both family and the 3-dummy set.  All 

48 models were fitted by both OLS and RegOU procedures, yielding a total of 96 

regression models. 

 For each model, we report the partial regression coefficient and p-value 

for each independent variable, the d parameter (see above), the ln maximum 

likelihood (LnML) for the model, and the Akaike information criterion corrected for 

sample size {AICc = (-2 * LnML) + [2 * p * 2/(n – p – 1)]}, where p is the number 

of parameters and n is the sample size (lower AICc values indicate better model 

fit to the data) (Burnham & Anderson, 2002).   

 To assess the importance of each independent variable, we used the 

following approach: first, we calculated the Akaike weight (wi) for each model, 

which is the probability that model i would be the best fitting model, if the data 

were collected again under identical circumstances.  The sum of wi for all 96 

models equals 1.  Then, for each independent variable, we calculated the sum of 

Akaike weights (∑wi).  If an independent variable is mostly present in the best-

fitting models (the ones with lowest AICc), it would then have a high wi and would 

therefore be a relatively important variable for model fit.  We calculated a 

weighted average of the partial regression slope for body mass and the standard 

error (SE) of the coefficient using the relative importance (measured as the 

Akaike weight) of each regression model as the weighting factor (Burnham & 

Anderson, 2002).  This weighted averaging procedure allowed us to obtain the 
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average allometric scaling exponent of V̇O2max across all the models within 10 

AICc from the best (these top eight models accounted for 99% of the cumulative 

wi) while accounting for the proportional contribution of each model based on 

their AICc values.  We used the average standard error of the body mass partial 

regression coefficient to calculate the confidence intervals of the allometric slope 

of V̇O2max.  The average SE was calculated from models that ranged in degrees 

of freedom (df) from 55 to 58 (some models included more variables).  Therefore, 

we considered 55 df to calculate the boundaries of 95% confidence interval of the 

partial regression coefficient for body mass. 

 

Results 

 We obtained eight models within 10 AICc from the best (Table 2.1).  The 

difference in AICc scores from the 8th to 9th model was 5.14, which can be 

considered a large difference in model fit (Burnham & Anderson, 2002).  

Additionally, the eight best models accounted for 99% of the cumulative evidence 

(cumulative wi), so we are confident that these models encompass the most 

accurate explanation of the (co)variation in our dataset.  

 Considering these eight models, the average allometric slope for V̇O2max 

was 0.803 (95% confidence interval = 0.747-0.859).  All these models included 

the three dummy variables coding for helodermatids, varanids, and skinks.  The 

best model (based on AICc values) that included “family” (with its 11 categories) 

had an AICc of -26.94 and was placed at the 23rd position.  The best model that 



 

40 
 

did not include “family” or the three dummy variables had an AICc of -31.80 and 

was placed at the 10th position.  The allometric slope including only body mass 

and temperature was 0.861 (95% CI 0.795 to 0.927) from OLS regression and 

0.857 (95% CI 0.782 to 0.931) from RegOU (Table 2.2). 

 The most influential independent variables were viviparity (∑wi = 0.996), 

the combined set of dummy variables coding for helodermatids, varanids and 

skinks (∑wi = 0.996), and climate (∑wi = 0.734).  Nocturnality was the next most 

influential variable, but its cumulative evidence was only 0.291.  Diet and “family” 

with 11 categories had very low cumulative evidence (∑wi < 0.01 each).  The 

variables coding for viviparity, Varanidae, and Helodermatidae were always 

statistically significant (P < 0.05) in the top regression models (Table 2.1).  

Viviparity had a negative effect on V̇O2max, whereas being part of 

helodermatids, varanids, or skinks positively affected V̇O2max, including in the 

phylogenetic regressions (RegOU). 

 The best eight models included a mix of OLS and RegOU (Table 2.1).  

The d-values of the RegOU models were all below 0.013.  This value is much 

closer to 0 than it is to 1, meaning that the nodes of the tree were considerably 

moved towards the root.  Consequently, the tree that best explains the residual 

variation in this dataset is much more similar to a star phylogeny than to its 

original configuration.  For completeness, we also present full models including 

all independent variables (mass, temperature, family, diet, climate, nocturnality, 

and viviparity) in Table 2.2. 
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Discussion 

V̇O2max allometry 

 In the present study, we estimated that V̇O2max scales as mass0.803 in 

lizards, based on a sample of 58 species/populations.  This allometric slope is 

the average of 8 models that included measurement temperature (range: 20 to 

40º C) as a covariate and also different combinations of viviparity, climate, and 

nocturnality as independent variables (Table 2.1).  The average 95% confidence 

interval of the allometric slope of V̇O2max from these top eight models (0.747-

0.859) includes the 0.779 allometric exponent reported in our previous study 

restricted to lizard species measured within the 35-40º C range and estimated 

without regard to phylogeny (Garland & Albuquerque, 2017).  It also includes the 

value of 0.77 reported for 24 species of diurnal lizards (Autumn et al., 1999), but 

not the value of 0.96 for eight nocturnal species (Autumn et al., 1999) or the 0.74 

slope reported for varanids (Clemente et al., 2009).  Additionally, the allometric 

slope reported here is very similar to the value of 0.839 previously reported for a 

large size range of mammals analyzed in a phylogenetic context (Dlugosz et al., 

2013).  

 The best 8 models included four OLS and four RegOU regressions with 

identical combinations of independent variables.  These variables represented, in 

order of importance: viviparity, varanids, helodermatids, skinks, climate, and 

nocturnality and are discussed below. 
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Differences among phylogenetic groups 

 Partial regression coefficients showed that helodermatids and varanids 

had greater V̇O2max than other lizards.  These lineages, in general, are 

composed by active predators (King & Green, 1993; Beck et al., 1995; Gienger et 

al., 2014)] and their high V̇O2max has been noted previously (Beck et al., 1995; 

Clemente et al., 2009).  Most varanid species use mobile foraging strategies that 

routinely cover long distances (Clemente et al., 2009) and probably benefit from 

relatively high aerobic capacity to sustain effort.  Also, Clemente et al. (2009) 

showed that the coadaptation of high activity levels, endurance, and V̇O2max is 

probably plesiomorphic for Australian varanids (Clemente et al., 2009), so even 

though some of the species included here are sit-and-wait foragers, their high 

V̇O2max levels may be explained by evolutionary history. 

 The two living species of helodermatids (Heloderma horridum and H. 

suspectum, both included in this study) are sporadic, binge-feeders that prey on 

ephemeral and sparsely distributed food resources (Stahnke, 1950; Beck & 

Lowe, 1991; Beck, 2005).  Gienger et al. (2014) showed that H. suspectum have 

a high proportional cost of activity relative to total energy expenditure during the 

active season, although they are largely inactive for most of the year.  Previous 

studies also showed that helodermatids have relatively high endurance when 

accounting for body mass and temperature simultaneously (see Figure 11.7 in 

Garland, 1994a).  Perhaps the high V̇O2max observed in helodermatids is related 
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to relatively higher activity levels during the short period when they are active 

above ground in search of food or mates (John-Alder et al., 1983; Jones, 1983).  

However, Beck et al. (1995) also suggested that the high V̇O2max (and aerobic 

scope) of helodermatids can be attributed to strenuous male-male disputes, 

rather than foraging or activity levels.  Future studies could answer test that 

hypothesis testing for correlations between V̇O2max and foraging success or the 

outcome of male-male disputes at the level of individual variation in these 

species.  

 We also found that Scincidae tend to have higher V̇O2max than other 

lizard groups (even though that difference was not statistically significant in some 

models – Table 2.1).  The vast majority of skinks are widely foraging species 

(Huey & Pianka, 1981; Cooper, 1994a; b).  Cooper et al. (2000) showed that 

omnivorous and insectivorous skinks quickly respond to chemical cues from 

active prey, and that this behavioral trait seems to be plesiomorphic for the 

family.  The four skink species included in the present study (Tiliqua rugosa, 

Oligosoma macgregori, O. nigriplantare, Plestiodon skiltonianus) are either 

omnivores or insectivores that would probably show the same behavior.  

However data on movement patterns or foraging strategy is not available for 

these species (but see Kerr & Bull, 2006), so we cannot make direct 

comparisons of activity levels and V̇O2max.   

 



 

44 
 

Diet, climate, nocturnality, and viviparity correlates 

 Viviparity is strongly related to V̇O2max among species of lizards, with an 

overall importance of 0.996 and present in all of the top eight models (Table 2.2).  

However, contrary to our prediction, it had a negative effect on V̇O2max.  

Viviparity is estimated to have evolved independently ~115 times in squamates 

(three of these included in our tree: Figure 2.1) and it seems to originate most 

commonly in cold climates and in lizards that typically have low body 

temperatures (Shine, 2005; Meiri et al., 2013; Pyron & Burbrink, 2014; Mesquita 

et al., 2016).  However, the low V̇O2max that we observed in viviparous lizards is 

not related to low body temperature per se, as all models included measurement 

temperature as a covariate.  Additional ecological or behavioral factors (e.g., 

activity levels) may explain this negative correlation, and it would also be of 

interest to study the mechanistic underpinnings of the low V̇O2max of skinks. 

 Climate was significantly related to V̇O2max in four of the eight top 

models, but its importance was 0.734, which is below the 0.8 threshold 

suggested to be considered an influential variable in model averaging (Calcagno 

& Mazancourt, 2010).  Climate was significantly related to endurance (and 

possibly V̇O2max) among 18 species of varanids (Clemente et al., 2009).  

Inspection of the partial regression coefficient of each climate category showed 

that “temperate” had a significant negative effect on V̇O2max.  It is possible that 

some of the correlation between climate and V̇O2max in lizards is caused by 

different temperatures under which each species evolved.  The structural 
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complexity of the main habitats in each climate category (e.g., forests and 

deserts) might be related to the remaining correlation.  Arid habitats should, on 

average, be more open and, perhaps, scarcer in food resources, which could 

lead to higher activity levels associated with foraging.  Tropical habitats, such as 

ombrophilous forests, can also impose relative physical constraints on 

movements, which might increase the effort required to travel a given distance.  

Forests are also more shaded and offer fewer basking sites, creating the need 

for the lizard to move around more during thermoregulatory behavior. 

 None of the top eight models included diet (importance = 0.003), and the 

best model that did had an AICc of -31.4303, which is considerably higher than 

any of the top eight models.  These results indicate that diet, at least in the 

categories used here, is not associated with V̇O2max among species of lizards.  

Carnivorous and insectivorous lizards are higher in trophic chains and, all else 

being equal, animals that have to hunt for prey should have to move around 

more and possibly have larger home ranges (Peters, 1977; Garland et al., 1993; 

Perry & Garland, 2002).  These broad diet categories should also be related to 

ecological and behavioral traits, such as home range (Harestad & Bunnel, 1979; 

Perry & Garland, 2002), and activity levels (all else being equal, herbivores need 

to move less to obtain food).  However, expecting a simple correlation between 

diet and V̇O2max may be unrealistic because, among insectivorous and 

carnivorous lizards, a wide range of foraging strategies exist, including extreme 

sit-and-wait predators (e.g., Andrews, 1979; and to a smaller extent, Gambelia 
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wislizenii in Rose, 2004) that might move even less than herbivores and have a 

reduced need for aerobic capacities.  Perhaps, activity levels are more closely 

related to how active the prey is (Huey & Pianka, 1981).  Diet is also a 

considerably variable trait throughout seasons and among populations within 

species (Kolodiuk et al., 2009; e.g., Albuquerque et al., 2018), so a mismatch 

between the populations used for V̇O2max and diet data would reduce the 

correlation.   

 Even though nocturnality occurred in four of the top eight models, its 

overall importance was only 0.291 and it was not a significant predictor of 

V̇O2max in any of them.  Because we accounted for measurement temperature in 

all models, this result corroborates the previous finding that the lower V̇O2max in 

nocturnal lizards is mostly explained by their lower body temperatures (Autumn 

et al., 1999). 

 

Limitations of the Present Study and Future Directions 

 Several factors unmeasured in the present study can affect V̇O2max and 

add noise to the potential correlations with traits evaluated.  For example, sex 

differences may have added noise to the data, e.g., see Beck et al. 1995.  

Additionally, seasonality, especially in species with seasonal reproduction and 

territorial species, can have a significant effect on V̇O2max (John-Alder, 1984b; 

John-Alder et al., 2009).  The V̇O2max data used here came from different 

studies conducted during different seasons and using individuals from different 
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sexes (some studies report values for males and females separately, but others 

pool them together or do not report the sex).  In future studies we plan to include 

sex and season as cofactors as well as other aspects, such as home range size 

(Perry & Garland, 2002), activity levels (e.g., daily movement distances: Garland 

& Albuquerque, 2017), foraging mode, territoriality, and long-term captives vs. 

wild-caught individuals, while concomitantly measuring maximal oxygen 

consumption in new species spanning a wider range of ecological traits and 

behavioral traits.  We would also like to include more species from clades such 

as Phrynosoma, which show particularly low V̇O2max for their temperature to test 

for a general pattern in the group.  Finally, additional viviparous species and 

measures of their activity in nature would help us understand why this 

reproductive mode is associated with relatively low V̇O2max. 
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Figure Legends 

Figure 2.1 – Phylogenetic tree including 58 species of lizards of 11 different 

families for which V̇O2max data is available in the literature.  For seven of those 

species, we obtained V̇O2max data for populations in two different localities 

(represented as a “2” after the species name), so the tree has 65 tips. Time 

calibrated branch lengths were calculated using all available DNA data for 

squamates and included 7 mitochondrial and 10 nuclear genes from a fully-

sampled Squamata tree (Tonini et al., 2016) before we removed the species 

absent in our study.  Viviparous species are indicated by “(V)”, branch colors 

represent families, x-axis in million years. 

 

Figure 2.2.  Scatterplots of log10 V̇O2max on log10 body mass for 58 lizard 

species plus 7 populations (total 65 data points) and color coded by (A) 

temperature measured, (B) monophyletic taxonomic groups or “family” (but note 

that Gekkota is an infraorder), (C) viviparity, (D) climate.  
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Figure 2.2  
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Tables 

Table 2.1 - R2, likelihood, and AICc of top 8 regressions models (according to AICc scores) from models including 

all possible combinations of family, nocturnality, diet, climate, and viviparity as predictors of log10 V̇O2max among 

58 lizard species plus 7 populations (total 65 data points).  The slopes (partial regression coefficients) for log10 

body mass and for temperature always had P values < 0.001 (not shown).  

Method I.V. included R2 ML AICc Df MSE S.E.E. d 

OLS 3DumFam, viviparity, climate 0.978 33.425 -42.776 56 0.0243 0.1559 NA 

RegOU 3DumFam, viviparity, climate 0.975 34.154 -41.327 56 0.0238 0.1543 0.0034 

OLS 3DumFam, viviparity, climate, nocturnality 0.978 34.033 -41.085 55 0.0243 0.1558 NA 

OLS 3DumFam, viviparity 0.975 29.654 -40.736 58 0.0263 0.1623 NA 

RegOU 3DumFam, viviparity 0.971 30.471 -39.669 58 0.0258 0.1606 0.0079 

RegOU 3DumFam, viviparity, climate, nocturnality 0.975 34.828 -39.656 55 0.0238 0.1542 0.0013 

OLS 3DumFam, viviparity, nocturnality 0.976 29.916 -38.559 57 0.0266 0.1631 NA 

RegOU 3DumFam, viviparity, nocturnality 0.971 30.856 -37.638 57 0.0260 0.1611 0.0122 
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Table 2.1 (continued) 

Method I.V. included 
Mass 
Slope 

Mass 
SE 

Temp. 
Slope 

Temp. 
SE Diet Family 

OLS 3DumFam, viviparity, climate 0.801 0.0278 0.052 0.0040 NA NA 

RegOU 3DumFam, viviparity, climate 0.802 0.0292 0.052 0.0041 NA NA 

OLS 3DumFam, viviparity, climate, nocturnality 0.803 0.0279 0.047 0.0063 NA NA 

OLS 3DumFam, viviparity 0.803 0.0263 0.054 0.0041 NA NA 

RegOU 3DumFam, viviparity 0.810 0.0286 0.053 0.0042 NA NA 

RegOU 3DumFam, viviparity, climate, nocturnality 0.804 0.0294 0.046 0.0063 NA NA 

OLS 3DumFam, viviparity, nocturnality 0.803 0.0264 0.050 0.0064 NA NA 

RegOU 3DumFam, viviparity, nocturnality 0.810 0.0291 0.048 0.0064 NA NA 

 

Method I.V. included 
Helo. 
Slope 

Helo. 
P 

Vara. 
Slope 

Vara. 
P 

Scin. 
Slope 

Scin.  
P 

OLS 3DumFam, viviparity, climate 0.312 0.0111 0.233 0.0000 0.239 0.0255 

RegOU 3DumFam, viviparity, climate 0.306 0.0137 0.223 0.0000 0.233 0.0335 

OLS 3DumFam, viviparity, climate, nocturnality 0.279 0.0277 0.220 0.0000 0.226 0.0361 

OLS 3DumFam, viviparity 0.334 0.0090 0.227 0.0000 0.228 0.0394 

RegOU 3DumFam, viviparity 0.326 0.0121 0.217 0.0002 0.209 0.0665 

RegOU 3DumFam, viviparity, climate, nocturnality 0.269 0.0357 0.207 0.0002 0.218 0.0493 

OLS 3DumFam, viviparity, nocturnality 0.312 0.0184 0.218 0.0000 0.219 0.0498 

RegOU 3DumFam, viviparity, nocturnality 0.296 0.0283 0.204 0.0008 0.195 0.0924 
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Table 2.1 (continued) 

Method I.V. included 
Clim. 

P 
Vivi. 

Slope 
Vivi.  

P 
Noct. 
Slope 

Noct. 
P 

OLS 3DumFam, viviparity, climate 0.0388 -0.355 0.0007 NA NA 

RegOU 3DumFam, viviparity, climate 0.0446 -0.355 0.0009 NA NA 

OLS 3DumFam, viviparity, climate, nocturnality 0.0307 -0.365 0.0006 -0.096 0.3127 

OLS 3DumFam, viviparity NA -0.428 0.0001 NA NA 

RegOU 3DumFam, viviparity NA -0.432 0.0001 NA NA 

RegOU 3DumFam, viviparity, climate, nocturnality 0.0374 -0.366 0.0007 -0.105 0.2694 

OLS 3DumFam, viviparity, nocturnality NA -0.437 0.0001 -0.065 0.4994 

RegOU 3DumFam, viviparity, nocturnality NA -0.445 0.0001 -0.088 0.3644 
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Table 2.2 - R2, likelihood, and AICc of regressions models including all independent variables considered in this 

study (top four rows) and regression models including only body mass and temperature (bottom 2 rows) as 

predictors of log10 V̇O2max among 58 lizard species plus 7 populations (total 65 data points).  Family includes 11 

categorical variables refereeing to monophyletic taxonomic groups present in our tree (see methods and Fig. 2.1), 

3DumFam refer to three dummy variables coding for helodermatids, varanids, and skinks, diet includes 5 

categories (herbivore, carnivore, insectivore, carnivore/insectivore, and omnivore), climate includes three 

categories (tropical, temperate, and arid), viviparity and nocturnality are dummy variables coding for nocturnal and 

viviparous species.  The slopes (partial regression coefficients) for log10 body mass and for temperature always 

had P values < 0.001 (not shown). 

Method I.V. included R2 ML AICc Df MSE S.E.E. d 

OLS Family, climate, viviparity, nocturnality, diet 0.981 38.877 -9.659 44 0.026 0.162 NA 

RegOU Family, climate, viviparity, nocturnality, diet 0.978 39.086 -5.246 44 0.026 0.162 0.007 

OLS 3DumFam, climate, viviparity, nocturnality, diet 0.979 34.422 -29.048 51 0.0259 0.161 NA 

RegOU 3DumFam, climate, viviparity, nocturnality, diet 0.975 35.050 -26.767 51 0.0255 0.160 0.006 

OLS Only body mass and temperature 0.952 7.7653 -6.864 62 0.0483 0.2199 NA 

RegOU Only body mass and temperature 0.933 15.046 -19.076 62 0.0387 0.1966 0.179 

 

Method I.V. included 
Mass 
Slope 

Mass 
SE 

Temp 
Slope 

Temp 
SE 

Diet  
P 

Fam  
P 

OLS Family, climate, viviparity, nocturnality, diet 0.809 0.0378 0.056 0.0136 0.5104 0.0289 

RegOU Family, climate, viviparity, nocturnality, diet 0.813 0.0419 0.055 0.0139 0.6530 0.0822 

OLS 3DumFam, climate, viviparity, nocturnality, diet 0.803 0.0353 0.047 0.0067 0.8581 NA 

RegOU 3DumFam, climate, viviparity, nocturnality, diet 0.807 0.0384 0.046 0.0067 0.9890 NA 

OLS Only body mass and temperature 0.861 0.0331 0.056 0.0054 NA NA 

RegOU Only body mass and temperature 0.857 0.0373 0.052 0.0055 NA NA 
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Table 2.2 (continued) 

Method I.V. included 
Helo 
Slope 

Helo  
P 

Vara 
Slope 

Vara  
P 

Sci 
Slope 

Scin  
P 

OLS Family, climate, viviparity, nocturnality, diet NA NA NA NA NA NA 

RegOU Family, climate, viviparity, nocturnality, diet NA NA NA NA NA NA 

OLS 3DumFam, climate, viviparity, nocturnality, diet 0.301 0.0404 0.220 0.0008 0.235 0.0439 

RegOU 3DumFam, climate, viviparity, nocturnality, diet 0.284 0.0564 0.206 0.0032 0.228 0.0565 

OLS Only body mass and temperature NA NA NA NA NA NA 

RegOU Only body mass and temperature NA NA NA NA NA NA 

 

 

Method I.V. included 
Clima 

P 
Vivi 

Slope 
Vivi  
P 

Noct  
Slope Noct P 

OLS Family, climate, viviparity, nocturnality, diet 0.1348 0.002 0.0018 0.247 0.2469 

RegOU Family, climate, viviparity, nocturnality, diet 0.2237 0.003 0.0027 0.235 0.2355 

OLS 3DumFam, climate, viviparity, nocturnality, diet 0.0365 -0.350 0.0019 -0.089 0.3749 

RegOU 3DumFam, climate, viviparity, nocturnality, diet 0.0531 -0.356 0.0020 -0.098 0.3344 

OLS Only body mass and temperature NA NA NA NA NA 

RegOU Only body mass and temperature NA NA NA NA NA 
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CHAPTER 3 - Lower-level predictors and behavioral correlates of maximal 

aerobic capacity (V̇O2max) and sprint speed among adult male Sceloporus 

occidentalis during the breeding season. 

 

Abstract 

 The standard paradigm of organismal biology recognizes that lower-level, 

subordinate traits (e.g., aspects of morphology and physiology) affect organismal 

performance abilities (e.g., maximal sprint speed), which in turn constrain 

behavior.  However, few studies have simultaneously examined lower-level traits, 

performance, and behavior.  We measured key morphological and physiological 

traits (blood [hemoglobin] & hematocrit; organ masses; citrate-synthase and 

lactate dehydrogenase activity), two organismal performance traits (maximal 

sprint speed and maximal oxygen consumption [V̇O2max]), and several aspects 

of field behavior in adult male Sceloporus occidentalis lizards during the breeding 

season.  We used three, 20-min focal observations per individual to record 

movement behaviors and push-up displays in the field, then captured animals 

and returned them to the lab for measures of performance, physiology, and 

morphology.  In the lab, we also scored ecto- and endoparasites as potential 

predictors of sprint speed and V̇O2max.  We found significant individual 

repeatability of field behaviors, based on analysis of variance, but intra-class 

correlation coefficients were relatively low (range = 0.05 to 0.31).  Sprint speed 

and V̇O2max showed significant repeatability using both raw data (speed: 
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Pearson's r = 0.70, P < 0.0001; V̇O2max: r = 0.94, P < 0.0001) and residuals 

from regressions on body mass (speed: r = 0.70, P < 0.0001; V̇O2max: r = 0.88, 

P < 0.0001).  We used multiple regressions to test for relations of lower-level 

traits and parasites to performance, and of performance to behavior.  We used 

residuals from regressions on body mass for all (sub)organismal traits.  Both calf 

(standardized partial regression [path] coefficient B = 0.53) and thigh (B = -0.37) 

muscle masses were significant predictors of sprint speed; hemoglobin 

concentration (B = 0.42) was a significant predictor of V̇O2max.  In turn, V̇O2max 

predicted the maximum number of 4-legged push-ups per bout (B = 0.39).  In 

path analysis, log likelihood ratio tests indicated that the best-fitting model did not 

include any direct path from lower-level traits to behavior.  Overall, our results 

show that aspects of individual variation in field behaviors can be related to 

whole-organismal performance abilities, which in turn reflect differences in 

morphology and physiology, although not parasite load, for this population of 

lizards.  Moreover, given the low repeatability of behavior in the field, some of the 

relationships between behavior and performance may be stronger than 

suggested by our results.  
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Introduction 

 A prevailing view in organismal biology is that lower-level subordinate 

traits (e.g., morphology, physiology) affect organismal performance abilities (e.g., 

maximal sprint speed), which in turn constrain behavior (Arnold, 1983; Garland & 

Losos, 1994; Storz et al., 2015).  Many whole-organism performance traits, such 

as maximal sprint speed and endurance capacity, are potentially relevant for 

many natural behaviors, including foraging, escaping from predators, territorial 

defense, courtship, and mating.  Two key measures of whole-animal 

performance are maximal sprint speed and maximal oxygen consumption 

(V̇O2max) (Garland & Losos, 1994; Albuquerque et al., 2015a; b).  These 

measures are ‘fueled’ via different metabolic pathways (crudely, anaerobic 

versus aerobic, respectively) and should be important for the ability to engage in 

different types of behavior that – intuitively, at least – seem likely to be 

ecologically relevant. 

 On the anaerobic side, maximal sprint speed should be important for short 

and intense ‘burst’ activities, such as escaping from predators, chasing 

conspecific intruders or capturing insect prey.  In male Sceloporus occidentalis 

lizards, maximal sprint speed is positively correlated with dominance during 

staged territorial disputes in the laboratory (Garland et al., 1990a).  If that pattern 

holds for other territorial iguanids, then it could explain why faster Crotaphytus 

collaris individuals are better at defending their territories and also sire more 

offspring (Husak et al., 2006, 2008).   



 

59 
 

 On the aerobic end, V̇O2max sets the upper limit for the intensity of work 

that can be sustained over longer periods (minutes or more), so it can be used as 

a predictor of maximal aerobic speed or stamina in various activities (Garland & 

Losos, 1994; Autumn, 1999; Clemente et al., 2009).  In male lizards of two 

species (Dipsosaurus dorsalis and Sceloporus undulatus), V̇O2max increases 

during the breeding season, when activity levels are also at their peak (John-

Alder, 1984b; John-Alder et al., 2009).  During the breeding season, males in 

these and other species of lizards (Ruby, 1978; Baird et al., 2001) increase 

activity levels, home range size, the frequency of interactions with females, and 

the intensity and frequency of male-male agonism.  Comparisons among species 

of lacertid lizards also indicate a positive relation between V̇O2max and activity 

levels (e.g., Bennett et al., 1984), and varanids, many of whom are highly active, 

have relatively high V̇O2max (Clemente et al., 2009 and references therein). 

 In some organisms, behaviors related to sexual selection (e.g., male-male 

disputes or courtship) can be energetically costly and/or physically demanding 

(Daly, 1978; Höglundi et al., 1992; Mowles & Jepson, 2015).  For example, 

territorial disputes among male S. occidentalis can be long and apparently 

strenuous, with durations of up to 45 minutes (Fitch, 1940).  During these 

disputes, lizards perform push-up displays and head bobs.  Push-up displays are 

a conspicuous, sexually selected signal used during courtship, male-male 

disputes, or broadcasting to an unknown audience in S. occidentalis and other 

iguanian (Pyron et al., 2013) lizards (Carpenter & Ferguson, 1978; Stamps, 
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1978).  The number of push-ups performed in sequence (hereafter called a bout 

of push-ups), the number of legs flexed (zero, two, or four legs), and the addition 

of body postures to the display (arched back, lateral flattening, raised tail and 

gular extension) are indicators of the intensity of the interaction (Carpenter & 

Ferguson, 1978; Martins, 1993).  In the case of male-male disputes, lizards will 

move closer, perform more push-ups, and use more legs as the dispute 

intensifies.  If a winner is not established by then, lizards will engage in fighting, 

and finally chasing (Carpenter, 1962; Martins, 1994; Baird et al., 2003), but that 

seems to occur very rarely (Sheldahl & Martins, 2000).  Thus, maximal sprinting 

abilities or stamina might be related to the success of an individual lizard in male-

male agonistic interactions.  In support of this expectation, Baird at al. (2003) 

found a positive correlation between display frequency and copulation rate in 

Crotaphytus collaris lizards.  In further studies, Baird and colleagues also 

observed that display frequency, intensity, and duration are correlated with 

reproductive success in males (Baird et al., 2007; Baird, 2013).   

 The first goal of the present study was to test whether movement rates or 

aspects of the push-up display, measured in the field, reflect individual variation 

in maximal sprint speed and/or V̇O2max in adult males of the lizard S. 

occidentalis, for which a wealth of background information exists.  The second 

goal was to explore the mechanistic basis of variation in organismal performance 

by examining relevant suborganismal traits (e.g., blood hematocrit and 

hemoglobin levels; heart and calf muscle masses; citrate synthase and lactate 
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dehydrogenase activity in thigh muscle, heart, and liver).  Third, we tested 

whether organismal performance might be associated with parasite counts 

(number of ticks, intracellular parasites in red blood cells, free living nematodes 

in blood and digestive tract).  Finally, we used path analytic models to test for the 

presence of unmeasured aspects of performance that might mediate relations 

between lower-level traits and field behavior, as well as the presence of direct 

paths from lower-level traits to behavior.  Few studies have been able to 

measure the relationship among traits at all three of these hierarchical levels for 

the same set of individuals.     

 

Materials and methods 

Field site and behavior observations  

 We conducted field work in a sagebrush – juniper woodland in the 

municipality of Hampton Buttes, Oregon.  The landscape was dominated by 

small and medium sized bushes (Artemisia tridentata, Ribes sanguineum, 

Ericameria nauseosa, Bromus tectorum, and Achnatherum hymenoides).  The 

field site included three rock cliffs of approximately 20 meters height and 

spanning over a total of approximately 1,500 meters in length.  A population of 

Sceloporus occidentalis inhabits rock outcrops in that area, especially near cliffs 

or the cliff walls.  The density of juniper trees and rock outcrops increased with 

proximity to the cliffs providing abundant shelter and thermoregulation sites for 

the lizards. 
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 We performed focal observations between 8 am and 3 pm Pacific Time 

from 26 May to 29 June 2017.  The first observation each day started at least an 

hour after we found the first lizard, to avoid observing non-active lizards.  We 

gave each lizard an identification number represented by a unique combination 

of toe clips (Tinkle, 1967) and wrote that number on the animal’s back with 

Painters® acrylic paint markers to allow identification from a distance.  We 

started observations a week after toe-clipping.  We observed each lizard for 20 

minutes from at least 5 meters with binoculars.  If the lizard moved out of sight for 

less than five minutes, then we extended the observation period to obtain a total 

of 20 minutes.  If the lizard was out of sight for more than 5 five minutes, then we 

ended the focal.  We used a digital recorder to register the number of moves, 

distance moved, number of push-ups using no legs, and the number of 2- and 4-

legged push-ups during each bout of push-ups, as described in several ethogram 

studies for the genus (e.g., Carpenter & Ferguson, 1978; Martins, 1994).  Events 

were transcribed from the recordings, and we calculated the number of moves 

per minute, distance moved per minute, number of push-ups per minute, number 

of push-ups per bout, and average, maximum, and standard deviation of the 

distance per move and number of push-ups per bout.   

 We considered as a bout of push-ups any continuous sequence of push-

ups (even if they included only one push-up).  If the lizard stopped for more than 

3 seconds after the last push-up or if it altered its position (e.g., performing 180 

degrees turn or moving a few centimeters), then we considered that as the end of 
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the bout.  Because push-ups on different number of legs should represent a 

different amount of effort, we analyzed the data for each separately.  

Regressions of each behavioral trait on total observation time revealed a 

significant positive relation only for the number of bouts of 4-legged push-ups per 

minute.  As 4-legged push-ups were relatively rare, and some individuals were 

observed for as few as 20 min (see below), this likely reflects inadequate 

sampling for the individuals with low total observation time.  When we used only 

the lizards with 60 or more minutes of observation, the relationship was not 

statistically significant, so we excluded lizards with less than three focals (60 

minutes of observation) from analyses that involved this behavior.  During some 

bouts, lizards started doing push-ups using all four legs but switched to only two 

legs halfway through the bout (as if getting tired).  Therefore, we excluded those 

bouts when calculating the number of push-ups and bouts of push-ups per 

minute to assure statistical independence. 

 We performed an average of 3.26 (1 - 5) focal observations on 57 lizards.  

From those, 44 were captured by noose, over the last 2 days of the field work, 

and kept in cloth bags protected from high temperatures until transported to the 

University of California, Riverside.  There, we housed lizards individually in 10-

gallon terraria and gave them a 2-day acclimation period with ad lib access to 

water, plus misting on the first day, but no food.  We performed sprint speed trials 

on days 3 and 4 and the V̇O2max trials on days 7 to 10 (lizards were transferred 

to the terraria on day 1).  On day 5, lizards were given ad lib access to crickets, 
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but were fasted during day 6, allowing for >24 hours until the first V̇O2max trial 

(most lizards did not eat during the fifth day, and no feces were found in cloth 

bags during V̇O2max trial days). 

 

Sprint speed and V̇O2max trials  

 We measured sprint speed (e.g., Garland, 1985; Albuquerque et al., 

2015a) four times per individual lizard (twice per day with at least 4 hours 

between runs) on a 12-meter racetrack with photocell sensors spaced every 0.5 

meters.  We used the fastest consecutive 1 meter as the maximal sprint speed of 

that trial and the fastest of all four trials as the maximal sprint speed of each 

individual.  Prior to all trials, animals were maintained for at least 2 hours in an 

environmental chamber at 35 C. 

 We measured V̇O2max twice (once per day, with one rest day between 

trials) per individual lizard on a speed-controlled treadmill (e.g., Garland, 1984; 

Garland & Else, 1987).  Prior to each trial, animals were maintained for at least 2 

hours in an environmental chamber at 35 C.  We placed the lizard on the rear of 

the treadmill belt between adjustable Plexiglas walls, while they wore a light-

weight translucent plastic mask over their heads through which room air was 

pulled and conduced along tubes to an S-3A Applied Electrochemistry oxygen 

analyzer.  A set of heat lamps above the treadmill warmed the moving belt and 

lizard.  Soda lime and calcium sulfate removed the carbon dioxide and water 

vapor, respectively, from the air before it entered the oxygen analyzer.  An 
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ADAM-4019 data Acquisition Module converted the analog signal from the 

oxygen analyzer into a digital signal sent to a personal computer.  We used the 

LabHelper software (WarthogSystems, www.warthog.ucr.edu) to record and 

visualize the data in real time.  We used Warthog LabAnalyst to calculate oxygen 

consumption from records of oxygen concentration using Mask Mode 1.  We 

stimulated lizards to run by gentle taps on their tails and hindlimbs as we slowly 

increased the treadmill speed and monitored the oxygen consumption.  When we 

observed no increase in oxygen consumption despite increases in speed for at 

least 60 seconds, we stopped the trial.  Because V̇O2max trials take longer than 

sprint speed trails, we ran half (22) of the lizards on the 7th and 9th day and the 

other half on the 8th and 10th day (while the first half rested). 

 We measured cloacal temperature with an Amprobe TMD-52 

thermocouple thermometer immediately after sprint speed trials and both before 

and after V̇O2max trials.  We used the average of the body temperature before 

and after trials to evaluate the effect of temperature over V̇O2max.  All body 

temperatures fell within 33.7 to 35.5 C for sprint speed trials (only one trial lower 

than 34 C) and within 34.5 to 36.9 C for V̇O2max trials (only 4 trials higher than 

35.9).  Regressions of each performance measure on body mass and body 

temperature revealed no significant effect of temperature on either performance, 

so we excluded body temperature from further analysis.   

 

http://www.warthog.ucr.edu/
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External morphology and dissections  

 After the last V̇O2max trial, we measured hindlimb span, forelimb span, 

snout-vent length, and tail length (Garland, 1985) with a ruler and placed lizards 

back in terraria with ad lib water and food.  We also misted lizards and terraria 

with water to avoid dehydration.  The day after the last V̇O2max trial (day 11), we 

sacrificed lizards by decapitation and obtained blood samples directly from the 

neck into a weight boat containing sodium heparin powder.  From the weight 

boat, we collected two 75 µl microcapillary tubes for hematocrit measures and 

pipetted two 20 µl samples into 5 ml of Drabkin’s reagent (SIGMA product 

number D5941-6VL) for hemoglobin measures.  The microcapillary tubes were 

centrifuged at 11,700 RPM for 5 minutes and hematocrit data consisted of the 

proportion of red blood cells (red area at the bottom of tubes) to total volume of 

blood, measured with a ruler.  We placed the mixture of blood plus Drabkin’s 

reagent in a refrigerator (approximately 5 °C)  protected from light after 15 

minutes at room temperature and measured their absorbance 540 nm 

wavelength after we finished dissections.  The absorbance value was used to 

calculate hemoglobin levels based on a regression using known hemoglobin 

concentrations (Fisher Scientific catalog number AAJ6383814) in milligrams per 

milliliter.  Dissections followed immediately after decapitation, and we weighed 

heart (ventricle mass, after blotting to remove blood, and free of atria), liver, lung, 

calf, and thigh muscles on a precision scale (0.0001g) and then immediately 

froze tissues in liquid nitrogen.  Heart, liver, and thigh were dissected and frozen 
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within 10 minutes to minimize the chance of enzyme degradation.  We then 

stored all tissues in a -80ºC freezer for enzyme analysis. 

 

Parasite inspection  

 Because malaria parasites (Plasmodium mexicanum) affect behavior, 

blood hemoglobin level, and potentially maximal aerobic capacity in a S. 

occidentalis population from northern California (Schall et al., 1982; Schall & 

Dearing, 1987; Schall & Sarni, 1987), we tested for the presence of P.  

mexicanum in our lizards.  We fixed 2-4 blood smears per lizard with methanol 

and stained with Giemsa to look for P.  mexicanum and other parasites.  We 

found no P.  mexicanum in any of the blood smears.  We looked for intracellular 

parasites in red blood cells on 10 evenly spaced areas containing similar density 

of cells on each blood smear at 1000x magnification and counted all free-living 

nematodes by scanning the entire blood smear at 10x magnification.  We 

counted the number of nematodes inside stomach and intestines, and the 

number of ticks attached to the skin.   

 

Enzyme assays  

 Before enzyme assays, we removed tissues from the -80 freezer and kept 

them in liquid nitrogen until homogenization started.  We homogenized tissue 

samples using a Biospec Tissue Tearor model 985370-395 in a small glass vial 

placed on ice and containing 1 part tissue in 19 parts homogenization buffer.  We 
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used the lowest speed (5090 RPM) for no more than 10 seconds continuously to 

avoid buildup of heat or frothing.  Each 10-second cycle was repeated until no 

solid particles were visible.  The homogenization buffer consisted of 100 mM 

potassium phosphate and 5 mM EDTA buffer containing 0.1% Triton-x, final pH 

7.4 (Suarez et al., 1990).  We split the homogenates into two 1.5 ml 

microcentrifuge tubes (one to be used for citrate synthase and the other for 

lactate dehydrogenase assays), then we refroze them in liquid nitrogen.  We 

thawed the citrate synthase homogenates on ice and refroze them in liquid 

nitrogen three times.  After the third freeze-thaw cycle, we sonicated 

homogenates for 10 seconds three times, with a 10 second interval in between, 

using a Fisher Scientific Sonic Dismembrator model 100, also keeping samples 

on ice.  Finally, we vortexed homogenates, aliquoted to final assay dilution, 

centrifuged the aliquot at 15000 RPM for 5 minutes at 2ºC and used a sample of 

the supernatant for assays (Garland, 1984; Suarez et al., 1986, 1990; Garland & 

Else, 1987). 

 We determined citrate synthase (CS) and lactate dehydrogenase (LDH) 

activities in liver, heart, and mixed thigh muscle tissues spectrophotometrically, 

following the procedures described by Srere (1969) and by Somero and 

Childress (1980), respectively.  Assays were performed at 35 °C with nonlimiting 

concentrations of substrates and co-factors.  CS assay starting solutions 

contained 50 mM Tris-HCL buffer pH8.0, 0.3 mM acetyl-coA (Sigma product 

number A2181), 0.1 mM DTNB, and the tissue sample.  We measured the 
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increase in absorption at 412 nm wavelength for 3 minutes and used the slope of 

the last minute as a baseline to account for endogenous levels of thiol or 

deacetylase activity.  We then started the reaction by adding 0.5 mM 

oxaloacetate (Sigma product number O4126) and followed the increase in 

absorption for 7 minutes.   

 We measured LDH activity in the pyruvate reductase direction (production 

of lactate) by following the decrease in absorption at 340 nm wavelength for 7 

minutes.  The assay mixture contained 50 mM Tris-HCl buffer pH 7.5, 100 mM 

KCl, 150 mM NADH, and 2 mM pyruvate, and we started reactions by adding 

homogenate samples.  For both CS and LDH, we used the steepest slope (either 

positive or negative) of the change in absorption during 60 consecutive seconds 

after we started the reaction to calculate maximum activity.  Enzyme activities are 

expressed as micromoles of product per minute per gram of wet tissue at 35ºC.  

We ran duplicates for all assays.  If the absorption graphs varied substantially 

between duplicates (e.g.  no reaction or much slower change in absorption in one 

of the graphs), then we repeated the assay for that sample. 

 

Statistical analysis  

 We used SPSS v24 for most analyses.  The data file for field observations 

consisted of one row for each lizard for each event (either a move or a bout of 

push-ups).  From these data, we calculated individual behavioral values for each 

lizard based on all minutes of observation (i.e., pooling data from all focal 
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periods).  Specifically, we computed the mean, standard deviation, and maximum 

(longest move and bout with the greatest number of push-ups).  We also 

computed rates for each behavior (e.g., number moves divided by total minutes 

of observation) for each lizard.   

 For field behavior traits, we used the intra-class correlation (ICC) as a 

measure of repeatability.  We calculated ICCs as the proportion of the total 

variance represented by the variation among individuals from one-way ANOVAs 

(Lessells & Boag, 1987), using individual lizard as the factor and each move or 

bout of push-ups as replicates, following the procedure described on Box 9.1 in 

Sokal and Rohlf (1994).  Thus, we did not examine repeatability at the level of 

among-focal observation periods. 

 We calculated Pearson correlation coefficients among the mean values for 

all behavioral traits.  Several of the observed or calculated behavioral traits 

should be correlated simply because of mathematical interdependence (e.g., 

mean and maximum values will be positively correlated in samples drawn from a 

normal distribution).  In these cases, the usual null hypothesis of zero correlation 

is not appropriate.  One way to determine whether traits are correlated for 

biological (as opposed to simply mathematical) reasons is to calculate correlation 

coefficients from simulated data and compare them to the coefficients obtained 

from the observed data.   

 To check if the correlation coefficients among the behavioral traits were 

purely mathematical or caused by biological factors, we sampled behavior events 
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(movement distances or bouts of push-ups) from normal distributions with the 

same mean and standard deviation as for our real data.  For example, we 

observed 1,555 movement events, with distances that ranged from 0.01 to 15 m 

per move.  As these data were highly right-skewed, they were transformed as log 

base 10.  On the log10 scale, movements ranged from -2 to 1.18, with a mean of -

0.4548 and a S.D. of 0.67442 (Table 3.1).  We thus sampled 1,555 values from a 

normal distribution with mean and S.D. as indicated from the observed real data 

on the log10 scale, and then truncated any that exceeded the range of values 

observed for the real data.  We then sampled from this simulated data set, 

without replacement, to obtain data sets for each of 57 lizards, matching the 

number of moves per lizard as observed for the real data set.  In other words, 

some of the simulated lizard data sets had only two values, whereas one 

simulated lizard data set had 97 values, with an overall mean of 27.3 (see Table 

3.1 and 3.2).  For these 57 values, we then calculated the correlation between, 

for example, mean log10 distance per move by maximum log10 distance per 

move.  We then repeated this procedure 20 times and calculated the mean 

correlation (Table 3.3, right column).  We repeated the process for push-ups 

using no legs, 2-legged push-ups, and 4-legged push-ups (Table 3.3).  We 

applied the same transformations to the simulated dataset as used on the 

observed data (log and rank when necessary for some traits). 

  We used the mean correlation coefficients from the simulated data as our 

null hypothesis.  We calculated 95% confidence intervals of the correlation 
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coefficients from our observed dataset using the “cor.test” function in R version 

3.4.3 and compared them to the correlation coefficients obtained from the 

simulated data.  If the 95% confidence interval of the correlations from the 

observed lizards did not include the correlation coefficient from the simulated 

data, then we considered the observed correlations to be biologically significant. 

 For laboratory measures of performance (sprint speed, V̇O2max), and 

associated body masses, we calculated repeatability as the Pearson correlation 

between the first and second measures, and we tested for significant differences 

between days using a paired t-test.  For sprint speed, we used the highest value 

of days 1 and 2 as the two replicates.   

 We used multiple regressions (both forward entry and backward 

elimination) to explore the predictive ability of lower-level traits (enzyme activities, 

organ masses, and external morphology) and parasite scores for whole-animal 

performances (sprint speed, V̇O2max). The multiple regression predicting 

V̇O2max included the five parasite scores (intracellular parasites in red blood 

cells, free living nematodes in blood, stomach and intestines, and ticks) along 

with heart, liver, lung, thigh and calf muscle masses, upper and forearm dry 

muscle masses, hemoglobin concentration in blood, and citrate synthase activity 

in the heart, liver and thigh muscle.  We used canonical correlation to test for 

relations between parasites and behavioral traits. 

 Analyses of sprint speed require further explanation.  One lizard was 

uncooperative during sprint speed trials and so was excluded.  Two lizards had 
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lost their longest hind limb digits, which might reduce performance, so they also 

were excluded from analysis of sprint speed.  Finally, of the 41 lizards with 

reliable sprint speed data, 8 had broken but fully regenerated tails, 5 had partially 

regenerated tails, and 8 lost a small portion of their tail while in cloth bags before 

sprint speed trials.  Because lizards can use their tails during locomotion, or the 

lost mass can affect sprint speed (Daniels, 1983; McElroy & Bergmann, 2013; 

Jagnandan et al., 2014), we used dummy variables coding for each tail condition 

listed above.  The final data set used in the multiple regressions predicting sprint 

speed included the parasite scores as well as calf and thigh muscle masses, 

upper and forearm dry muscle masses, hind limb span, lactate-dehydrogenase 

activity in the thigh muscle and heart, citrate synthase activity in the thigh (all 

residuals from regressions with body mass), and 3 dummy variables coding for 

damaged tail condition. 

 We calculated coefficients of variation (CV) of traits that did not scale with 

body mass (behavior traits) by dividing the standard deviation of each trait by 

their mean.  For traits that scaled with body mass, we calculated residuals from 

regressions of each log10 -transformed trait on log10 transformed body mass, then 

multiplied the standard deviation of the residuals by 2.3026 (See details in 

Garland, 1984, 1985; Garland & Else, 1987).   

 We used multiple regressions to measure the predictive ability of sprint 

speed and V̇O2max for the behavior variables (number of moves, distance 

moved, number of push-ups, number of bouts of push-ups per minute, and 
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number of push-ups per bout).  Again, push-ups performed using no legs, two 

legs, or four legs were analyzed separately.   

 We used the results from the regressions described above to build an 

initial path model that included all of the statistically significant (P < 0.05) 

relationships identified from lower-level traits to the two measures of organismal 

performance, and from performance to behavior (Fig. 3.2).  We used this model 

(herein called model 1.00) as a starting point from which to add or remove paths.  

We set the starting values of all path coefficients to 0.5 and used maximum 

likelihood to estimate the final path coefficients in Onyx (Oertzen et al., 2014).  

Then, we tested if removing or adding single paths significantly changed the 

model by log likelihood ratio tests with 1 d.f., and by examining standard errors of 

the path coefficients.  We tried to simplify the model by removing correlations or 

causal paths between variables one at a time.  However, we never removed the 

correlation paths between sprint speed and V̇O2max or between hemoglobin and 

calf muscle mass (all residuals).  We also made the model more complicated by 

adding paths from each lower-level trait directly to behavior (see discussion in 

Garland & Losos, 1994). 

 

Results 

Behavior in the field  

 We observed a total of 57 lizards for a grand total of 59 hours and 58 

minutes.  Pooling all observations and considering each move or bout of push-
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ups as one independent event yields 2,424 total events (= rows in the data set).  

The total observation time per lizard averaged 63.1 min (range = 20 – 100 min).  

During these observations, we recorded 1,555 moves and 869 bouts of push-

ups.  The majority of push-up bouts were performed using two legs (53.4%), 

followed by push-ups using no legs (or head bobs - 29.1%) and four legs 

(14.3%).  In 28 bouts (3.2%), lizards started on four legs and switched to two legs 

about halfway through the bout. 

 During field work, we observed a 24-minute long intense combat between 

two males that were already fighting when we first saw them.  We performed 20-

minute focals on each, then moved on to find other lizards before the combat 

was over, so we do not know the total length of their interaction.  During the fight, 

the lizards would align their bodies side-to-side with snouts pointing in opposite 

directions and try to bite each other on their tails, hindlimbs or trunk.  When a 

successful bite was connected to the hindlimb or lateral portion of the trunk, the 

aggressor would try to flip the other lizard on its back or throw it into the air 

(sometimes successfully).  If the bite was connected to the tail, the aggressor 

would hold the tail and make abrupt movements sideways, apparently trying to 

break the opponent's tail.  Lizards moved frequently during this interaction while 

chasing each other.  Most moves were short (under 30 cm) but during a few 

moves the lizards traversed distances of up to 2 m.  Very few resting periods in 

between movements and attacks were longer than 60 seconds and most were 

shorter than 30 seconds.  Both focal observations were included in the analyses 
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described below, and values for these two observations included the most 

extreme number of moves per minute (2.68) and the 4th most extreme value 

(1.50). 

 

Variability of movements 

 Lizards averaged 0.43 moves per minute (1,555 moves/59 hours and 58 

minutes).  Movement lengths ranged from 0.01 to 15 m (Table 3.1), with a mean 

of 0.99 ± 1.65 (± S.D.) meters, but lizards used short moves much more 

frequently, resulting in a highly right-skewed distribution (Fig. 3.1) (median = 

0.30, mode = 0.1 m).  A log10-transformation of movement distances yielded an 

approximately normal distribution, but with a peak corresponding to log10 of 0.1 m 

(Fig. 3.1).  Examination of the frequency of movement distances for individual 

lizards also indicated right-skewed distributions for most animals (only 3 lizards 

were not skewed, but each of these had <7 moves).  For most individuals (50 of 

57), a log10-transform again yielded distributions closer to normal.  Therefore, we 

used the mean and standard deviation of log10-transformed values as two 

indicators of individual movement behavior.  For each individual, we also 

obtained its maximum movement distance, distance moved per minute (total 

distance/total observation time), and number of moves per minute (total 

distance/total observation time), and number of moves per minute (total 

moves/total observation time).  Histograms of these values (maximum distance, 

moves per minute, and distance per minute) were also right skewed and so we 
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again analyzed log10-transformed values.  The maximum movement distance for 

each lizard was positively correlated with body mass (r = 0.38, P = 0.031818).  

Table 3.2 provides descriptive statistics of movement traits among individuals.  

The movement trait with lowest coefficient of variation was the standard deviation 

of distance per move (CV = 0.26) and the highest was the distance moved per 

minute (CV = 0.66). 

 

Variability of push-up displays 

 Overall, we observed 14.4 bouts of push-ups per hour (869 bouts/59 

hours and 58 minutes).  Considering only bouts performed using no legs (N = 

253, Table 3.1), the mean number of push-ups per bout was 4.85 ± 3.40 (1 – 17), 

but with a right-skewed distribution (Fig. 3.1, median = 4, mode = 1).  We did not 

observe enough bouts of push-ups per lizard to decide if the number of push-ups 

per bout within individuals were normally distributed, so for each individual, we 

calculated the mean,  standard deviation, and maximum number of push-ups per 

bout, the number of push-ups per minute, and the number of bouts of push-ups 

per minute from raw values.  To improve normality of these behaviors, we rank-

transformed the number of push-ups per minute and the number of bouts per 

minute prior to subsequent correlation and regression analyses with other traits.  

Coefficients of variation varied from 0.47 for the mean number of push-ups per 

bout and 0.60 for the standard deviation of the number of 0-legged push-ups per 

bout (Table 3.2). 
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 Considering 2-legged bouts (N = 492), the mean number of push-ups per 

bout was 7.18 ± 2.62 (1 - 14) with a normal distribution.  Coefficients of variation 

varied from 0.24 for the maximum number of push-ups per bout and 0.32 for the 

standard deviation of the number of push-ups per bout (Table 3.2).  Considering 

4-legged bouts (N = 151), the mean of push-ups per bout was 8.01 ± 2.79 (1 - 

16), also with a normal distribution.  For both 2- and 4-legged push-up bouts, we 

calculated the same variables as for 0-legged push-up bouts.  Coefficients of 

variation varied from 0.32 for the standard deviation of the number of push-ups 

per bout and 0.40 for the maximum number of push-ups per bout (Table 3.2).  To 

improve normality of these behaviors, we rank-transformed the number of push-

ups per minute and the number of bouts of push-ups per minute. 

 

Repeatability of behavioral traits 

 Based on 1-way ANOVAs, all behavioral traits differed significantly among 

individuals (Table 3.1, all P < 0.001).  Intra-class correlation (ICC) coefficient for 

the log10 distance travelled per move was only 0.05, whereas the number of 

push-ups per bout had higher values (push-ups using no legs = 0.15; two legs = 

0.19; four legs = 0.31, Table 3.1). 

  

Correlations among behavior traits 

After accounting for correlations caused by purely mathematical dependence 

among traits, we identified several significant correlations among movement 
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traits and among each type of push-up traits (Table 3.3).  Because we calculated 

a large number of correlations on related data, which inflates the possibility of 

Type 1 errors, we emphasize correlations for which the significance level was 

0.01 or less .   

 Both movement rates (log10 number of moves per minute and log10 

distance moved per minute) were positively correlated with the maximum 

distance moved and the standard deviation of log10 distance per move showed 

positive correlation, but lower than expected from simulations (see Table 3.3 for 

coefficients).  Standard deviation of log10 movement distances and log10 moves 

per minute show negative correlation (r = -0.295), also lower than expected (r = 

0.174) from simulations.  The log10 number of moves per minute and the log10 

distance moved per minute were also less positively correlated (r = 0.649) than 

expected from simulations (r = 0.886). 

 Mean and standard deviation of the number of push-ups using no legs per 

bout (r = 0.767) show higher than expected (r = 0.321) positive correlation.  The 

ranked number of push-ups per minute and ranked number of bouts per minute (r 

= 0.805) show lower than expected (r = 0.908) positive correlation.  The 

correlation between mean and maximum number of 4-legged push-ups (r = 

0.892) was higher than expected (r = 0.718).  The mean number of 4-legged 

push-ups and the rank number of bouts per minute (r = 0.397), also show higher 

than expected correlation (r = 0.044).  
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 Considering the traits that are mathematically independent, we found 

significant positive correlations between the distance moved per minute and the 

rank number of 2-legged bouts per minute (r = 0.371), the standard deviation of 

push-ups using no legs per bout and the log10 standard deviation of 4-legged 

push-ups per bout (r = 0.648).  The maximum number of 4-legged push-ups per 

bout and the ranked number of 2-legged push-ups per minute are positively 

correlated (r = 0.397).  Finally, all ranked number of 2- and 4- legged push-ups 

per minute and bouts of push-ups per minute are positively correlated (not shown 

here). 

  

Variability of locomotor performances  

 Considerable variation existed in maximal sprint speed (average = 2.27 

m/s ± 0.26 S.D.) and maximal aerobic capacity (average = 23.63 ml O2 per hour 

± 4.36 S.D. - Table 3.4).   Sprint speed was not significantly affected by body 

mass (P = 0.89), whereas V̇O2max significantly scaled as M0.70 (Table 3.5).  After 

removing the effect of body mass, the highest V̇O2max value was approximately 

2 times the lowest and the fastest lizard was 1.63 times faster than the slowest. 

The coefficient of variation for residual sprint speed was 15% and for V̇O2max it 

was 13%. 

Repeatability and correlation of locomotor performances  

 Sprint speed was repeatable (r = 0.70, P < 0.0001), with no significant 

difference between the fastest trials from the two days (paired t-test P = 0.16).  
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Because the relationship of the highest sprint speed trial with body mass was 

close to significant (P = 0.077), we also calculated repeatability of speed 

residuals from regressions on body mass, using the fastest trials from each day 

(r = 0.70, P < 0.0001).  V̇O2max values were highly repeatable (r = 0.94, P < 

0.0001) with a small but significant (P = 0.011), increase of 3.09% on the second 

day.  V̇O2max residuals from regressions on body mass were also correlated 

between the first and second trials (r = 0.88, P < 0.0001), showing significant 

repeatability of mass-independent V̇O2max.  Residual sprint speed and residual 

V̇O2max were uncorrelated (r = 0.07, P = 0.46).  

 

Variability of lower-level traits 

 All organ masses and external morphology measures showed significant 

positive relationships with body mass (Tables 3.4, 3.5); therefore, we used 

residuals from regressions on body mass in subsequent analyses.  All mass-

specific enzyme activities had a positive, but non-significant, relationship with 

body mass, except for heart lactate dehydrogenase, which scaled negatively as 

body mass-0.28 (P = 0.0003).  The coefficient of variation for anatomical and 

physiological traits varied from 0.02 for hind limb span to 0.16 for hemoglobin 

concentration.  Enzyme assays had higher CV, ranging from 0.08 for heart 

lactate dehydrogenase activity to 0.25 for liver lactate dehydrogenase activity. 
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Correlations between replicates 

 Both hematocrit and hemoglobin had high Pearson correlations for their 

replicate measures.  The coefficient for hematocrit was 0.935 (P < 0.0001) with 

raw values and 0.955 (P < 0.0001) with residuals from regressions on body 

mass.  The coefficient for hemoglobin concentration was 0.941 (P < 0.0001) with 

raw values and 0.937 (P < 0.0001) with residuals from regressions on body 

mass.   

Correlations among lower-level traits 

 We found several significant correlations among performances and lower 

level traits .  Hematocrit and hemoglobin levels were positively correlated (r = 

0.90, P < 0.001).  To avoid using redundant information and causing 

multicollinearity issues during regressions (Slinker & Glantz, 1985), we avoided 

using both traits in subsequent analysis.  Residual hindlimb and fore limb span 

were also positively correlated (r = 0.74, P < 0.001). 

 We found positive relations between heart CS and thigh CS (r = 0.46, P = 

0.002), heart CS and thigh LDH (r = 0.33, P = 0.03), thigh CS and thigh LDH (r = 

0.42, P = 0.005), and a negative correlation between heart LDH and liver LDH (r 

= -0.49, P = 0.001).  Correlations using residuals from body mass regressions 

provided similar results (not shown) . 

Effects of parasites 

 We found no evidence of P. mexicanum infection. Multiple regressions 

revealed no significant effect of the number of ticks, intracellular parasites in red 
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blood cells, and free-living nematodes in the blood, stomach, or intestines on 

hematocrit, blood hemoglobin levels, sprint speed, V̇O2max, or any of the 

behavioral traits.  

 

Multiple regressions: morphology to performance 

 Multiple regressions of residual performance traits on residual lower-level 

morphological, physiological, and biochemical traits revealed residual calf muscle 

mass (B = 0.53, P = 0.0022) and residual thigh muscle mass (B = -0.37, P = 

0.027) as predictors of residual sprint speed (R² = 0.28), and residual blood 

hemoglobin concentration (B = 0.42, P = 0.009) as a significant predictor of 

residual V̇O2max (R² = 0.17). 

 

Multiple regressions: performance to behavior 

 Residual sprint speed was negatively related to all two-legged push-up 

traits, but never statistically significant.  Residual V̇O2max predicted the average 

number of 2-legged (r = 0.32, P = 0.044) and 4-legged (r = 0.36, P = 0.033) 

push-ups per bout, as well as the maximum number of 4-legged push-ups in one 

bout (r = 0.39, P = 0.018).  Multiple regressions of each of the behavioral traits on 

both residual sprint speed and V̇O2max did not reveal any cases in which both 

independent variables were significant predictors. 
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Path models: morphology, performance, and behavior 

 The starting model (model 1.00) included the significant relationships 

found in multiple regressions between lower-level traits and performance, and 

between performance and behavior (Fig. 3.2).  However, model 1.00 excluded 

the mean number of 4-legged push-ups per bout due to the high correlation with 

the maximum number of 4-legged push-ups per bout (r = 0.89, P < 0.0001, 

respectively).  We included the correlation paths between each pair of lower level 

traits (hemoglobin, thigh and calf muscle masses) on model 1.00 and we did not 

remove them in subsequent alterations of the model (Petraitis et al., 1996).  We 

also included the correlation between residual sprint speed and residual V̇O2max 

because we were specifically interested in testing for possible trade-offs between 

these two performance measures.  Model 1.00 had a log likelihood of 218.375 

and did not exhibit lack of fit (χ2 = 3.915, restricted d.f. = 11, P = 0.97).  We 

subtracted or added paths, one at a time, to create a total of 12 additional models 

(Table 3.6) and performed likelihood ratio tests (critical χ2 with 1 d.f. = 3.841) 

between each and the starting model (Fig. 3.2).  Based on chi-square tests, none 

of these additional models lacked significance, but removing any causal path 

from model 1.00 significantly reduced model fit according to likelihood ratio tests.  

Removing the correlation between the average number of 2-legged push-ups 

and the maximum number of 4-legged push-ups did not affect significance.  

Adding paths from lower-level traits directly to behavior did not improve model fit. 
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 Overall, results of the path analysis supported the bivariate and multiple 

regression analyses described above.  In model 1.00, all causal paths would be 

considered different from zero, based on twice their estimated standard errors.  

The same is not true for all correlation paths.  Twice the standard error of the 

residual thigh muscle mass and residual calf muscle mass does not overlap zero.  

However, twice the standard error of the correlations between residual calf 

muscle mass and residual hemoglobin concentration, between residual sprint 

speed and residual V̇O2max, between mean number of 2-legged push-ups per 

bout and maximum number of 4-legged push-ups per bout, and between residual 

thigh and residual hemoglobin concentration all overlap zero (Fig. 3.2). 

 

Discussion 

Variation and repeatability  

 Variability of the measured traits followed this general rule: behavior in the 

field showed larger amounts of individual variation, performances showed an 

intermediate level, and morphological traits were the least variable, as indicated 

by coefficients of variation (Tables 3.2 and 3.4).  However, we note a few 

exceptions to this pattern.  Among behavioral traits, the mean numbers of 2- and 

4-legged push-ups are less variable than are push-ups using no legs or mean 

movement distances.  Push-up displays in iguanids are "stereotyped" behaviors 

(Carpenter & Ferguson, 1978) and have a recognizable repeated sequential 

pattern (Tinbergen & Iersel, 1947; Pantin, 1996).  As stereotyped behaviors, 
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push-up displays would be expected to vary less than movement traits, which 

can be strongly influenced by environmental conditions (e.g., home range 

physical characteristics and resource quantity or quality). 

 The mean number of push-ups using no legs may be more variable 

because this behavior is more likely to be used during broadcast displays 

(Martins, 1993; Decourcy & Jenssen, 1994; Baird, 2013), which are used in the 

presence of an unknown audience, not during direct conflicts.  When no direct 

dispute is taking place, the consequences of “imperfect” performances during 

displays should be less severe.  In contrast, 2- and 4-legged push-ups are more 

frequently used during courtship or male-male disputes (Martins, 1993), which 

determine access to important resources such as territories and their associated 

basking sites, food, and access to females.  Further studies should explicitly 

compare displays performed during courtships or male-male disputes with 

broadcast displays to determine where each falls on the spectrum ranging from 

highly stereotyped to highly variable (Wainwright et al., 2008). 

 Secondly, hemoglobin concentration showed higher CV than all other 

traits, except for some enzyme activities (Table 3.4).  Perhaps the high variability 

of hemoglobin concentration compared to that of other traits involved in the 

oxygen transport pathway can explain why that is the only significant predictor of 

V̇O2max.  In Amphibolurus nuchalis, hemoglobin concentrations also have higher 

CV than V̇O2max and other lower-level traits, except for liver mass, (Garland & 

Else, 1987) but not in Ctenosaura similis, which has higher CV for V̇O2max and 



 

87 
 

liver (Garland, 1984).  Both studies found hemoglobin concentration as a 

significant predictor of V̇O2max. 

 Finally, most mass-specific enzyme activities also showed high CV 

compared to other lower-level traits (Table 3.4).  Citrate synthase and lactate 

dehydrogenase activities measured with similar methods in other lizard species 

showed similar, or even higher, variation (Garland, 1984; Garland & Else, 1987).  

Liver wet mass can vary due to differences in glycogen or lipid storage, which 

could inflate variation in enzyme activities expressed per unit mass of wet tissue.  

Mixed thigh muscles contain multiple separate muscles, with variable fiber type 

composition (Gleeson et al., 1980).  Even considering a single muscle, the 

iliofibularis, we can find very high coefficients of variation in the proportion of fast 

glycolytic, fast oxidative glycolytic, and slow oxidative fiber types [0.39 in 

Sceloporus species and up to 0.62 in other lizards, calculated directly from Table 

2 in Bonine (2005)]).  Each muscle fiber type has somewhat different contractile 

properties and mass-specific enzyme activities (Peter et al., 1972), which would 

tend to increase variability among individuals. 

 Repeatability generally showed the opposite pattern to CV.  Traits with 

high CV (e.g., behavioral traits, Table 3.1) had lower repeatability, whereas traits 

with relatively lower CV (e.g., performance traits) had higher repeatability.  

Among behavioral traits, movement distances had the lowest repeatability, 

measured as the intraclass correlation coefficient (ICC).  Movement distances 

should be more affected by specific environmental circumstances, such as 
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ambient temperature or the intensity of the stimulus from a conspecific.  For 

example, we can expect male lizards to move longer distances per move when 

they are chasing intruders than when they are foraging.  Because we did not 

make any distinction between moves performed under different circumstances 

(e.g., running to chase another male vs. to catch prey), we expected movement 

distances to be more variable than 2- and 4-legged push-ups, which are used in 

specific situations.   

 Consistent with previous studies of lizard exercise physiology (e.g., 

Garland, 1985; Garland & Else, 1987; Albuquerque et al., 2015a), we observed 

significant repeatability in both maximal sprint speed and maximal aerobic 

capacity using either raw values or residuals from regressions with body mass.  

The high repeatability indicates consistent variation in locomotor performance 

among individuals.  As a result, locomotor performance traits can be used to test 

hypotheses related to the effects of maximal performances on individual variation 

in ecology, behavior, reproductive success, or other direct or indirect correlates 

of fitness.  Repeatability of V̇O2max (r = 0.94) was considerably higher than that 

of sprint speed (r = 0.68), but both values are consistent with the repeatability 

range found in the literature (e.g., Garland, 1985; John-Alder et al., 1986; 

Garland & Else, 1987). 
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Correlations among traits within levels of biological organization  

 Considering only push-ups using no legs, lizards with higher means also 

had higher standard deviations of the number of push-ups per bout, suggesting 

that individuals that do many push-ups per bout still perform some bouts with few 

push-ups.  Additionally, the lower than expected positive correlation between 

push-ups per minute and bouts of push-ups per minute suggest that lizards are 

not performing consistent numbers of push-ups per bout, so push-ups per minute 

and bouts per minute are not as tightly correlated as expected under the null 

hypothesis calculated by simulations (Table 3.3).  

 The higher than expected positive correlation between mean number of 4-

legged push-ups per bout and number of 4-legged push-ups per minute suggests 

that for 4-legged push-ups, lizards that do more push-ups in one bout also 

engage in more frequent bouts.  Because lizards use 4-legged pushups during 

intense interactions (Carpenter & Ferguson, 1978; Martins, 1993), this correlation 

might reflect variation in physiological factors (e.g., circulating hormone levels) 

that affect aspects of "personality," with some individuals consistently showing 

more aggressive behavior and reacting more readily to conspecifics (Careau et 

al., 2008; Réale et al., 2010; Careau & Garland, 2012).  Such a set of 

relationships could also help explain the positive correlations found between 2- 

and 4-legged behavioral traits.  These two displays are more frequently used 

during conspecific interactions, and more aggressive lizards would likely increase 

frequency and intensity of both behaviors.  Future studies should investigate 
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possible costs of high levels of aggressiveness and the relative reproductive 

success of possible alternative "strategies" (e.g., Husak et al., 2008). 

 Among lower-level traits, the high correlation between hematocrit and 

hemoglobin levels (r = 0.90) suggests that little variation exists in the average 

size of red blood cells or in mean corpuscular hemoglobin content.  The positive 

correlation (r = 0.74) between residual fore and hindlimb lengths indicate that 

even after the effect of body size is removed, limb lengths are still positively 

associated.  Similar results have been observed in several lizard species (Jaksić 

et al., 1980; Garland, 1985; Christian & Garland, 1996), and those authors 

suggested that independent development of hindlimbs and forelimbs might be 

somewhat constrained during ontogeny.  The significant positive correlation 

between thigh CS and thigh LDH (r = 0.42) has also been observed in 

Ctenosaura similis (Garland, 1984).  In Amphibolurus nuchalis, a similar 

relationship was observed but between CS and pyruvate kinase, which is also 

involved in anaerobic metabolism (Garland & Else, 1987).  These relationships 

may arise from variation in muscle fiber type composition (e.g., Bonine et al., 

2001, 2005), and suggest a general pattern in thigh muscles in which both 

aerobic and anaerobic capacities increase together. 

 

Relationships with body mass 

 Behavioral traits were not significantly related to body mass during the 

breeding-season in adult male S. occidentalis lizards at our study site (e.g., we 
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found no evidence for differential levels of activity in relation to body size).  

Among species of lizards (and among species of mammals), both home range 

area and daily movement distances increase with body size, as would be 

expected, but these comparisons obviously involve a much larger range of body 

sizes than represented by the lizards studied here (Perry & Garland, 2002; 

Albuquerque et al., 2015b; Garland & Albuquerque, 2017). 

 Geometric similarity is often used as a null model for animal scaling 

relationships (e.g., Hill, 1950; Schmidt-Nielsen, 1984).  For geometrically similar 

animals, linear dimensions should scale as mass to the power of 0.33, organ 

masses and metabolic rates should scale as mass to the power of one (at least 

for small ectotherms because the differences in the necessity to lose metabolic 

heat caused by differences in body size are probably negligible), and mass or 

volume specific measurements (e.g., hemoglobin and enzyme activities) should 

have no significant relation with mass (mass exponent = 0).  If twice the standard 

error of the slope of regression lines of log10 traits on log10 body mass did not 

include those values, then we considered the trait to deviate from isometry.  We 

recognize, however, that measurement error present in the independent variable 

(body mass) causes the slopes of least-squares regressions to underestimate 

the true functional relations.  This underestimation is best dealt with through 

measurement-error models  (e.g., see Ives et al., 2007), but we lacked 

comparable estimates of error variance for many of our traits. 
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 Under geometric similarity, A. V. Hill argued that "similar animals of 

different size should be able to run or swim at the same linear speed" (Hill 1950, 

p. 215).  Since Hill's classic paper, numerous theoretical and empirical studies 

have addressed the scaling of maximal sprint speed with body size (Garland, 

1983; Kram & Roberts, 2016).  Among species of lizards and mammals, the 

scaling of sprint speed does not follow a simple pattern: speed is related to body 

mass in a curvilinear fashion, with the fastest species being of intermediate body 

size (Van Damme & Vanhooydonck, 2001; Garland & Albuquerque, 2017; 

references therein).  In the present sample of adult male S. occidentalis, maximal 

sprint speed was positively but not significantly related to body mass with a 

shallow slope of 0.179 and P-value equal 0.076, so perhaps a wider range of 

body masses would have revealed a significant relation.  The ontogenetic 

allometry or static allometry of sprint speed has been reported for several other 

species of lizards, with some showing no statistical relationship with body size  

(Garland, 1984; Losos, 1990; Peterson & Husak, 2006), and many others a 

positive relationship (references in Garland & Losos, 1994).  Additionally, another 

lizard species, Varanus panoptes, show a negative quadratic relationship with 

body mass (Clemente et al., 2012).  In those cases, speed is highest at an 

intermediate body size.  If sprint speed in S. occidentalis from our study site is 

affected by body mass in a similar manner, then we may have observed no 

correlation because we included only adult male lizards in our study, and the 

observed range in body size (10 to 22 grams) may correspond approximately to 
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the optimal size range for maximal sprint speed.  The same explanation might 

apply to Crotaphytus collaris studied by Peterson and Husak (2006), but not to 

Amphibolurus nuchalis or Ctenosaura similis studied by Garland (1984, 1985), as 

the latter studies included juveniles and therefore covered a much wider range of 

body masses (1.3 to 48 and 12 to 866 grams, respectively).   

 V̇O2max showed negative allometry.  The V̇O2max scaling exponent we 

found (0.71) is lower than the intraspecific exponent for other lizard species 

(scaling = 0.90 in Garland, 1984; 0.80 and 0.95 in John-Alder, 1984b; a; and 0.96 

in Garland & Else, 1987), but some of those studies had a wider range of body 

sizes and/or used considerably larger-bodied species.   

  Among lower-level traits, hematocrit and hemoglobin concentrations had 

positive allometry.  Tail length, liver, lung, thigh muscle, calf muscle, upper arm 

muscle, and forearm muscle masses scaled isometrically.  Heart lactate 

dehydrogenase, heart mass, SVL, and hind- and forelimb spans, had negative 

allometry (Table 3.2).  Some of these results are different from other studied 

lizard species.  For example, Ctenosaura similis does not show positive allometry 

of hematocrit or hemoglobin concentration, negative allometry of hindlimb span, 

and positive allometry for heart mass (Garland, 1984).  On the other hand, 

Amphibolurus nuchalis shows positive allometry of thigh muscle mass and of all 

mass specific enzyme activities measured here (Garland & Else, 1987). 
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Predictors of sprint speed and V̇O2max 

 Residual calf muscle mass was a positive predictor of residual sprint 

speed, whereas residual thigh muscle mass had a negative effect.  Reilly (1995) 

studied the contribution of hindlimb muscles to locomotion in Sceloporus clarki.  

He measured the activity of four muscles in the thigh and three in the calf during 

locomotion at constant speed (0.83 m/s).  He showed these seven muscles had 

high peaks in activity during the stance phase (propulsion phase), but most of 

them were also active during the swing phase (limb recovery phase), contributing 

to limb cycling and acting as co-contracting antagonists keeping the joints fixed 

as the limb travelled in the air.  When comparing the electromyography results to 

the videotaped movement of the lizard, Reilley concluded that plantar flexion 

(which is created by the contraction of calf muscles) plays a major role in 

generating thrust.  Years later, Higham et al. (2011) showed that individual 

variation in maximal sprint speed and acceleration in Sceloporus woodi is 

positively correlated with the percentage and diameter of fast glycolytic fibers in 

the gastrocnemius, a propulsion-generating calf muscle, but not with fiber 

composition in the iliofibularis, a small thigh muscle active during the swing-

phase.  If this pattern also holds in S. occidentalis, then relatively larger calf 

muscles would allow lizards to generate greater force exertion (and consequently 

higher speed), whereas relatively small thigh muscles could reduce leg mass, 

thus allowing them to move the limb faster during the swing-phase (assuming 

that the power available for recovery was not compromised).   
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 According to our results, blood hemoglobin concentration is the only 

significant predictor of V̇O2max, suggesting that blood oxygen carrying capacity 

is the limiting factor for maximal aerobic capacity in this population during the 

breeding season.  Hemoglobin (or hematocrit) level is also a significant predictor 

of V̇O2max in Amphibolurus nuchalis and Ctenosaura similis (Garland, 1984; 

Garland & Else, 1987).  However, contrary to what we found, those studies also 

reported other lower-level traits as significant predictors of V̇O2max in those 

species.  In Amphibolurus nuchalis, liver mass and thigh pyruvate kinase (an 

enzyme not measured in our study) are negative predictors, whereas in 

Ctenosaura similis CS thigh, CS liver, and LDH heart are positive predictors of 

V̇O2max.  Note that when the same dataset obtained for C. similis was analyzed 

using path models, including all significant relationships as causal paths, CS 

thigh was not a significant predictor (Garland & Losos, 1994).  Blood O2 carrying 

capacity (measured as hematocrit or hemoglobin content in blood) is also a 

significant predictor of lizard endurance capacity (Garland, 1984; Garland & Else, 

1987), a trait intimately related with V̇O2max in Cnemidophorus tigris and 

Ctenosaura similis (Garland, 1993; Garland & Losos, 1994) and shown to be 

correlated among lizard species (Bennett et al., 1984; Clemente et al., 2009). 

 

Predictors of behavior 

 Sprint speed is positively correlated with social dominance in paired 

laboratory tests of males in two species of lizards, Sceloporus occidentalis and 
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Urosaurus ornatus (Garland et al., 1990a; Robson & Miles, 2000; but see Perry 

et al., 2004), but not in the distantly related Anolis cristatellus (Perry et al. 2004).  

Male sprint speed is also positively associated with territory size and the number 

of offspring sired in Crotaphytus collaris (Husak et al., 2006; Peterson & Husak, 

2006).  In the present study, sprint speed showed no statistically significant 

relationship with any of the movement or push-up behavioral traits when 

analyzed with multiple regressions.  Perhaps higher sprint speed allows lizards to 

chase after intruders or cover the territorial area more effectively (cf. Peterson 

and Husak 2006), supporting the “better defenders” hypothesis (Husak et al., 

2008), but it plays no evident role in the individual capacity to perform displays in 

our study population of S. occidentalis.  The social dominance test used by 

Garland et al. (1990a) was performed with size-matched pairs of lizards in small 

enclosures for one hour with one basking source (similar methods were used by 

Robson and Miles 2000 and Perry et al. 2004).  This type of setup is useful to 

determine an immediate winner, but a much more complex scenario exists in 

nature where lizards can have multiple basking sites to thermoregulate until they 

are ready to fight, or they can retreat during the fight and come back at later time, 

increasing the chance of gaining territorial space (Stamps & Krishnan, 1995).  

Additionally, combats in Sceloporus occidentalis can involve multiple individuals 

(Fitch, 1940). 

 In this study V̇O2max was an important predictor of the maximum number 

of 4-legged push-ups per bout, suggesting that it affects (and possibly limits) the 
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effort that lizards can sustain during 4-legged displays.  Push-ups using two and 

four legs are frequently observed during conspecific interactions, especially 

during male-male territorial disputes (Fitch, 1940; Martins, 1993; Sheldahl & 

Martins, 2000).  Even though these interactions can be brief (e.g., when one 

lizard is much larger than the other), sometimes they can last for long periods 

(Stamps & Krishnan, 1997) and escalate to long and intense fights, as once seen 

during our field work (see beginning of Results section).  During that 24-minute 

long combat, rest periods between movements and attacks were rarely longer 

than 30 seconds.  In the experiment performed by Perry et al. (2004), which 

found a positive correlation between dominance, assertive displays, and 

endurance, lizard interactions lasted up to 8 hours.  Fitch (1940) also reported a 

45-minute long interaction and added comments about individuals “showing 

evidence of fatigue at later stages of the fight.”  Both observations suggest that 

aerobic and anaerobic capacities were involved during these disputes.   

 Additionally, the frequency and intensity of push-up displays increase 

considerably during the breeding season when males establish their territories 

(Stamps & Krishnan, 1997; Sheldahl & Martins, 2000), which is when we 

conducted field observations.  Therefore, lizards may use these displays 

frequently throughout the day at that time of the year, instead of only during rare 

and short bursts of intense display activity.  In fact, the frequency of bouts of 2- 

and 4-legged push-ups during our observations was as high as once every two 

minutes (2-legged) or once every five minutes (4-legged), respectively (Table 
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3.2).  If S. occidentalis are under similar selection favoring higher frequency of 

push-up displays and territorial defense as Crotaphytus collaris (Baird et al., 

2003, 2007; Baird, 2013), then it is possible that frequent repetition of this 

behavior, especially during the hours of high activity, increases its dependency 

on aerobic metabolism.   

 Biro et al. (2018) suggest that the variability of behavioral activity should 

be positively associated with aerobic scope (the difference between minimal and 

maximal metabolic rates).  We did not measure standard or resting oxygen 

consumption, and so cannot calculate aerobic scope per se, but we did not find 

any relationship between V̇O2max and the variability (SD) of any behavioral trait. 

 

Complete path models  

 Path analysis indicated that when the three levels of biological 

organization (lower-level traits, performance, and behavior) are evaluated 

simultaneously, the significant relations found between each pair separately 

(e.g., from lower-level traits to performance) still hold.  Removing any of the 

causal paths found from multiple regressions reduced the overall fit of the model, 

showing that all the variables included in the models are contributing to explain 

the variation in the observed traits. 

 Additionally, including direct paths from any of the significant lower-level 

traits (residual calf muscle mass, residual thigh muscle mass, or residual 

hemoglobin concentration) to the maximum number of 4-legged push-ups did not 
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increase model fit.  Our results suggest that, when the appropriate performances 

are measured, lower-level traits do not have a direct effect on behavior.   

However, we did not test whether large differences in body size would affect the 

decision to display or fight, as suggested by Garland and Losos (1994). 

 

Concluding Remarks 

 Our results show that aspects of individual variation in field behaviors can 

be related to whole-organism performance abilities, which in turn reflect 

differences in morphology and physiology, although not parasite load, at least for 

this sample of lizards.  Moreover, the high variability of behavior in the field might 

reduce the statistical power to detect correlations with performance and 

therefore, some of the relationships between behavior and performance may be 

stronger than suggested by our results (Adolph & Hardin, 2007).  One 

improvement for future studies would be to obtain more fine-grained data on field 

behaviors, such as rates of movement during specific activities (e.g., foraging or 

moving near conspecifics) or push-ups directed to males and females separately.  

Greater durations of observations for each individual would also improve 

accuracy and precision of estimates of individual differences in means and 

variabilities.  New measures of performance that might directly relate to the 

capacity to do push-ups should also be included, such as clinging capacity. 
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Figure Legends 

Figure 3.1 – Histograms of behavior traits calculated from each event 

independently. 

 

Figure 3.2 – Starting path model (model 1.00) including significant variables from 

multiple regressions from morphological and physiological traits to performance 

and from performance to behavior traits. * indicates 2 X S.E. does not overlap 

zero. 
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Figures 

Figure 3.1 
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Figure 3.2 
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Table 3.1. Descriptive statistics and repeatability (ICC) of movement distances, 
log10 movement distances, (log10)number of push-ups per bout using no legs 
[(L)leg0Push], two legs (Leg2Push), and four legs (Leg4Push) in Sceloporus 
occidentalis from Hampton Buttes, OR.  One event = one move or one bout of 
push-ups.   
 
 

Variable 
name  

N 
Events 

min N 
events 
/lizard 

max N 
events 
/lizard 

N 
events 
/lizard 

Event 
Min 

Event 
Max 

MovDist 1555 2 97 27.28 0.01 15 

LMovDist 1555 2 97 27.28 -2 1.18 

Leg0Push 253 1 18 5.06 1 17 

LLeg0Push 253 1 18 5.06 0 1.23 

Leg2Push 492 1 41 9.65 1 14 

Leg4Push 151 1 15 3.68 1 16 

 

Variable 
name  

Event 
Mean 

Event 
S.E. 

Event 
S.D. 

Event 
Skew ICC 

One-way 
ANOVA P 

MovDist 1.01 0.04 1.67 3.58 - - 

LMovDist -0.45 0.02 0.67 -0.06 0.05 0.00022 

Leg0Push 4.85 0.21 3.40 0.99 - - 

LLeg0Push 0.57 0.02 0.34 -0.33 0.15 <0.0001 

Leg2Push 7.18 0.12 2.62 -0.22 0.19 <0.0001 

Leg4Push 8.06 0.22 2.74 0.13 0.31 <0.0001 
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Table 3.2. Descriptive statistics of number of moves (MovesNum), distance per 
move (MovDist), and bouts of push-ups using no legs (Leg0), two legs (Leg2) 
and four legs (Leg4) among individual lizards of S. occidentalis from Hampton 
Buttes, OR.  Coefficients of variation (C.V.) were calculated as the standard 
deviation of residuals from regressions on body mass multiplied by 2.3026, see 
methods section for details. Variable names meaning: “Tot” = total, “Max” = 
maximum, “R” = residual from regressions on body mass using log10 transformed 
data (base 10), “SD” = standard deviation of movement distances or number of 
push-ups per bouts within individual lizards, “Rank” = rank transformed data, 
“BPmin” = bouts per minute. 
 

Variable Name  N Min Max Means S.E. S.D. Skew C.V. 

TotFocNum 57 1 5 3.26 0.16 1.19 -0.67 - 

FocDurTot 57 20 100 63.11 3.01 22.76 -0.64 - 

MovesNum 57 2 97 27.28 2.40 18.11 1.48 - 

MovesPMin 57 0.08 1.20 0.45 0.04 0.27 1.11 - 

RMovesPMin 44 -0.64 0.52 0 0.04 0.25 -0.40 0.58 

MeanMovDist 55 0.25 2.38 1.04 0.07 0.50 0.75 - 

MeanLMovDist 55 -0.81 -0.06 -0.46 0.03 0.19 0.16 - 

RMeanLMovDist 43 -0.39 0.36 0 0.03 0.20 0.03 0.46 

MaxMovDist 57 1 15 5.82 0.45 3.41 1.11 - 

RMaxMovDist 44 -0.67 0.42 0 0.04 0.24 -0.54 0.56 

SDMovDist 55 0.20 3.87 1.53 0.11 0.84 1.09 - 

SDMovDist 55 0.29 0.95 0.66 0.02 0.13 -0.25 - 

RSDMovDist 43 -0.32 0.30 0 0.02 0.11 -0.25 0.26 

DistPMin 57 0.09 1.06 0.43 0.03 0.25 0.73 - 

RDistPMin 44 -0.59 0.48 0 0.04 0.28 -0.24 0.66 

TotLeg0Bouts 57 0 18 4.44 0.59 4.44 1.48 - 

MeanLeg0PerBout 50 1 9 4.45 0.30 2.10 0.29 0.47 

MaxLeg0PerBout 50 1 17 7.24 0.57 4 0.45 0.55 

SDLeg0PerBout 41 0 5.66 2.48 0.23 1.50 0.17 0.60 

Leg0PMin 57 0 2.35 0.34 0.06 0.47 2.48 - 

RankLeg0PMin 57 4 57 29 2.20 16.58 0.01 - 

Leg0BPMin 57 0 0.40 0.07 0.01 0.08 2.13 - 

RankLeg0BPMin 57 4 57 29 2.20 16.58 0.01 - 
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Table 3.2 (cont.) 

Variable Name  N Min Max Means S.E. S.D. Skew C.V. 

TotLeg2Bouts 57 0 41 8.63 1.08 8.15 1.69 - 

MeanLeg2PerBout 50 3.80 11 7.06 0.24 1.71 -0.03 0.24 

MaxLeg2PerBout 50 5 14 10 0.32 2.23 -0.44 0.2231 

SDLeg2PerBout 47 0.55 4.15 2.29 0.11 0.74 0.27 0.32 

Leg2PMin 57 0 4.18 0.95 0.12 0.87 1.54 - 

RankLeg2PMin 57 3.50 57 29 2.20 16.59 0.01 - 

Leg2BPMin 57 0 0.51 0.13 0.01 0.11 1.16 - 

RankLeg2BPMin 57 3.50 57 29 2.20 16.59 0.01 - 

TotLeg4Bouts 57 0 15 2.65 0.46 3.44 2.02 - 

MeanLeg4PerBout 41 1 12.50 7.46 0.41 2.60 -0.35 0.35 

MaxLeg4PerBout 41 1 16 9.02 0.57 3.65 -0.24 0.40 

SDLeg4PerBout 26 0.71 5.69 2.03 0.23 1.17 1.33 - 

RLSDLeg4PerBout 23 -0.26 0.26 0 0.03 0.14 -0.01 0.32 

Leg4PMin 38 0.00 1.28 0.37 0.06 0.38 1.09 - 

RankLeg4PMin 38 3.00 38.00 19.50 1.80 11.10 0.01 - 

Leg4BPMin 38 0.00 0.19 0.05 0.01 0.05 1.37 - 

RankLeg4BPMin 38 3.00 38.00 19.50 1.80 11.10 0.01 - 
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Table 3.3. Correlation coefficients (Pearson's r) and 95% confidence intervals 

(CI) for behavioral traits that can be related simply by mathematical 

interdependence (see Methods).  Bold values indicate cases in which the 95% 

CIs for the real data did not include the mean correlation coefficient from 

simulated data (see Methods).  Such cases are deemed to be biologically 

significant, rather than simply reflecting mathematical relationships.   

Behavior traits 
Observed 

r  
Observed 
lower CI 

Observed 
Upper CI 

Simulated  
r 

MeanLMovDistPL by LMaxMovDistPL 0.447 0.170 0.614 0.391 

MeanLMovDistPL by SDLMovDistPL 0.093 -0.179 0.352 -0.002 

MeanLMovDistPL by LMovesPMinPL -0.072 -0.372 0.152 0.039 

MeanLMovDistPL by LDistPMinPL 0.552 0.341 0.716 0.354 

MaxMovDistPL by SDLMovDistPL 0.501 0.186 0.624 0.569 

LMaxMovDistPL by LMovesPMinPL -0.033 -0.344 0.173 0.520 

LMaxMovDistPL by LDistPMinPL 0.529 0.326 0.702 0.814 

SDLMovDistPL by LMovesPMinPL -0.295 -0.543 -0.065 0.174 

SDLMovDistPL by LDistPMinPL 0.059 -0.233 0.297 0.418 

LMovesPMinPL by LDistPMinPL 0.649 0.349 0.715 0.886 

Leg0 Mean vs Max 0.799 0.669 0.881 0.676 

Leg0 Mean vs SD 0.767 0.601 0.869 0.321 

Leg0 Mean vs RankPM 0.509 0.194 0.646 0.418 

Leg0 Mean vs RankBPM -0.046 -0.323 0.238 0.045 

Leg0 Max vs SD 0.831 0.704 0.907 0.706 

Leg0 Max vs RankPM 0.810 0.592 0.849 0.772 

Leg0 Max vs RankBPM 0.427 0.166 0.632 0.551 

Leg0 SD by RankPM 0.520 0.158 0.661 0.222 

Leg0 SD by RankBPM 0.128 -0.192 0.422 0.095 

Leg0 RankPM by RankBPM 0.805 0.614 0.860 0.908 
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Table 3.3 (cont.) 

Behavior traits 
Observed 

r  
Observed 
lower CI 

Observed 
Upper CI 

Simulated  
r 

Leg2 Mean vs Max 0.684 0.501 0.809 0.607 

Leg2 Mean vs SD 0.138 -0.155 0.409 0.087 

Leg2 Mean vs RankPM 0.346 0.077 0.571 0.209 

Leg2 Mean vs RankBPM 0.079 -0.204 0.350 -0.036 

Leg2 Max vs SD 0.531 0.288 0.710 0.599 

Leg2 Max vs RankPM 0.633 0.370 0.744 0.616 

Leg2 Max vs RankBPM 0.431 0.173 0.633 0.445 

Leg2 SD by RankPM 0.028 -0.322 0.252 0.046 

Leg2 SD by RankBPM -0.024 -0.309 0.265 0.020 

Leg2 RankPm by RankBPM 0.919 0.886 0.962 0.924 

Leg4 Mean vs Max 0.892 0.805 0.941 0.718 

Leg4 Mean vs LogSD 0.047 -0.331 0.441 -0.047 

Leg4 Mean vs RankPM 0.705 0.270 0.723 0.394 

Leg4 Mean vs RankBPM 0.397 0.062 0.652 0.044 

Leg4 Max vs LogSD 0.560 0.252 0.791 0.508 

Leg4 Max vs RankPM 0.852 0.567 0.856 0.787 

Leg4 Max vs RankBPM 0.657 0.405 0.816 0.602 

Leg4 LogSD by RankPM 0.168 -0.157 0.577 0.065 

Leg4 LogSD by RankBPM 0.092 -0.224 0.571 0.074 

Leg4 RankPM by RankBPM 0.918 0.888 0.972 0.936 
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Table 3.4. Descriptive statistics of sprint speed (m/s), V̇O2max (ml O2 per hour), hemoglobin concentration (mg/ml), 
organ masses (g), external morphology (mm), and tissue specific enzyme activities (micromoles per gram of wet 
tissue) of S. occidentalis from Hampton Buttes, OR.  Variables starting with “R” refers to residuals calculated from 
regressions on body mass using log transformed data (base 10). 

Trait  N Min Max Mean SE SD Var Skew C.V. 
(%) Body mass (sprint speed) 44 10.300 22.100 14.861 0.422 2.798 7.828 0.42  

Sprint speed 41 1.768 3.113 2.312 0.053 0.342 0.117 0.45 14.81 

Residual Sprint speed 41 -0.112 0.134 0.000 0.010 0.064 0.004 0.15 14.64 

V̇O2max 44 15.852 33.671 23.666 0.652 4.326 18.713 0.00  

Residual V̇O2max 44 -0.128 0.150 0.000 0.009 0.058 0.003 -0.06 13.31 

Hemoglobin 44 60.889 140.082 99.709 2.639 17.507 306.488 -0.04  

Residual Hemoglobin 44 -0.187 0.125 0.000 0.011 0.073 0.005 -0.68 16.71 

Heart mass 44 0.022 0.043 0.032 0.001 0.006 0.000 0.11  

Residual Heart mass 44 -0.081 0.077 0.000 0.006 0.037 0.001 -0.25 8.61 

Liver mass 44 0.107 0.287 0.177 0.006 0.041 0.002 0.66  

Residual Liver mass 44 -0.084 0.089 0.000 0.007 0.047 0.002 0.38 10.79 

Thigh muscle mass 44 0.231 0.508 0.367 0.011 0.073 0.005 0.02  

Residual Thigh muscle mass 44 -0.064 0.045 0.000 0.004 0.025 0.001 -0.45 5.80 

Calf muscle mass 42 -1.004 -0.664 -0.844 0.013 0.086 0.007 -0.06  

Residual Calf muscle mass 42 -0.042 0.061 0.000 0.004 0.025 0.001 0.43 5.83 

Upper arm muscle mass 44 0.015 0.039 0.025 0.001 0.006 0.000 0.29  

Residual Upper arm muscle mass 44 -0.110 0.095 0.000 0.007 0.047 0.002 0.07 10.74 

Forearm muscle mass 43 -2.022 -1.654 -1.824 0.014 0.091 0.008 -0.27  

Residual Forearm muscle mass 43 -0.075 0.060 0.000 0.005 0.032 0.001 -0.63 7.33 

Lung mass 42 0.048 0.139 0.085 0.003 0.020 0.000 0.63  

Residual Lung mass 42 -0.129 0.092 0.000 0.008 0.051 0.003 -0.08 11.72 

Fore limb span 44 83.000 99.000 88.909 0.524 3.476 12.085 0.65  

Residual Fore limb span 44 -0.016 0.023 0.000 0.001 0.009 0.000 0.48 2.12 

Hind limb span 42 109.000 126.000 116.262 0.584 3.787 14.344 0.18  

Residual Hind limb span 42 -0.020 0.019 0.000  0.001 0.009 0.000 0.06 1.96 
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Table 3.4 (cont.) 
 

Trait  N Min Max Mean SE SD Var Skew C.V. 
(%) Heart LDH actv. 40 442.430 724.847 575.487 9.046 57.213 3273.312 0.53  

Residual Heart LDH actv. 40 -0.095 0.066 0.000 0.006 0.036 0.001 -0.29 8.28 

Thigh LDH actv. 44 390.876 678.564 550.690 9.358 62.076 3853.406 -0.18  

Residual Thigh LDH actv. 44 -0.134 0.081 0.000 0.007 0.049 0.002 -0.49 11.33 

Liver LDH actv. 44 117.335 360.768 236.657 8.659 57.436 3298.855 0.01  

Residual Liver LDH actv. 44 -0.263 0.205 0.000 0.017 0.111 0.012 -0.53 25.48 

Heart CS actv. 44 58.789 138.287 93.696 2.572 17.060 291.055 0.65  

Residual Heart CS actv. 44 -0.188 0.170 0.000 0.012 0.077 0.006 0.21 17.79 

Thigh CS activ 44 4.735 10.842 7.710 0.217 1.439 2.072 -0.08  

Residual Thigh CS activ 44 -0.198 0.159 0.000 0.012 0.082 0.007 -0.34 18.91 

Liver CS activ 44 3.826 8.326 5.854 0.135 0.897 0.805 0.27  

Residual Liver CS activ 44 -0.160 0.152 0.000 0.010 0.066 0.004 -0.18 15.27 

 
 



 

 
 

1
1

0
 

Table 3.5. Allometric equations for maximal sprint speed, maximal oxygen consumption (V̇O2max), organ masses, 
external morphology, and lactate dehydrogenase (LDH) enzyme activity in the heart, for Sceloporus occidentalis 
from Hampton Buttes, OR. 

Trait N Intercept 
Intercept 
95% C.I. 

lower 

Intercept 
95% C.I. 
upper 

Slope 
Slope 

95% C.I. 
lower 

Slope 
95% C.I. 
upper 

R² SEE P 

Sprint speed 41 0.146 -0.085 0.378 0.179 -0.020 0.379 0.082 0.048 0.0770 

V̇O2max 44 -1.206 -1.450 -0.961 0.699 0.484 0.913 0.506 0.058 <0.0001 

Hematocrit  44 -0.946 -1.195 -0.697 0.307 0.087 0.526 0.163 0.059 0.0073 

Hemoglobin 44 1.539 1.230 1.848 0.401 0.128 0.673 0.173 0.073 0.0049 

Heart mass 44 -2.410 -2.569 -2.251 0.806 0.666 0.946 0.762 0.038 <0.0001 

Liver mass 44 -1.950 -2.149 -1.750 1.051 0.875 1.227 0.776 0.047 <0.0001 

Thigh muscle mass 44 -1.614 -1.721 -1.507 1.035 0.940 1.130 0.921 0.025 <0.0001 

Calf muscle mass 42 -1.938 -2.046 -1.830 0.968 0.873 1.063 0.913 0.026 <0.0001 

Upper arm dry muscle mass 44 -2.853 -3.051 -2.654 1.096 0.921 1.271 0.792 0.047 <0.0001 

Forearm dry muscle mass 43 -2.987 -3.123 -2.850 1.027 0.907 1.148 0.879 0.032 <0.0001 

Lung mass 42 -2.273 -2.491 -2.055 1.054 0.862 1.246 0.755 0.052 <0.0001 

Snout-vent length 44 1.606 1.557 1.655 0.256 0.212 0.299 0.771 0.012 <0.0001 

Fore limb span 44 1.757 1.718 1.796 0.169 0.135 0.204 0.699 0.009 <0.0001 

Hind limb span 42 1.907 1.869 1.945 0.140 0.107 0.174 0.637 0.009 <0.0001 

Tail length 23 1.685 1.571 1.799 0.293 0.195 0.390 0.650 0.017 <0.0001 

Heart LDH 40 3.078 2.913 3.243 -0.283 -0.429 -0.137 0.289 0.036 0.0003 

Thigh LDH 44 2.598 2.388 2.807 0.124 -0.061 0.309 0.042 0.050 0.1824 

Liver LDH 44 2.039 1.569 2.510 0.284 -0.131 0.700 0.043 0.112 0.1747 

Heart CS 44 1.880 1.551 2.209 0.075 -0.215 0.365 0.006 0.078 0.6042 

Thigh CS 44 0.610 0.261 0.960 0.238 -0.070 0.547 0.055 0.083 0.1267 

Liver CS 44 0.615 0.332 0.897 0.131 -0.118 0.380 0.026 0.067 0.2950 
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Table 3.6. Number of estimated parameters (E.P.), chi-square (χ²), log likelihood, 
and AICc for 8 path models connecting size corrected lower-level traits [thigh 
muscle mass (ThighG), blood hemoglobin content (Hb), calf muscle mass (Calf)], 
performance [sprint speed (SPT) and maximal aerobic capacity (V̇O2max)], and 
behavior traits [maximum number of push-ups using four legs (MaxLeg4) in 
Sceloporus occidentalis from OR. N = 44. P-values refer to comparisons between 
each model and model 1.00 using log likelihood ratio tests according to a chi-
square distribution. All variables are residuals calculated from regressions on 
body mass, except for MaxLeg4 and MeanLeg2.   

Model Altered path E.P. D.f. χ² LL P AICc 

1.00  -  17 11 3.92 218.38  -  -402.75 

Removing causal paths 

0.99 MeanLeg2 <-> MaxLeg4 16 12 5.81 217.43 0.1683 -402.85 

0.98 RV̇O2 -> MaxLeg4 16 12 9.91 215.38 0.014 -398.75 

0.97 RV̇O2 -> MeanLeg2 16 12 8.48 216.10 0.033 -400.19 

0.96 RCALFG -> RSPT 16 12 15.92 212.37 0.001 -392.74 

0.95 RTHIGHG -> RSPT 16 12 10.64 215.01 0.009 -398.02 

0.94 RLHBIN -> RV̇O2 16 12 12.46 214.10 0.003 -396.20 

Adding causal paths 

1.01 RTHIGHG -> MaxLeg4 18 10 3.39 218.64 0.469 -401.27 

1.02 RCALFG -> MaxLeg4 18 10 3.82 218.42 0.754 -400.85 

1.03 RLHBIN -> MaxLeg4 18 10 3.77 218.45 0.699 -400.90 

1.04 RTHIGHG -> MeanLeg2 18 10 3.30 218.68 0.434 -401.36 

1.05 RCALFG -> MeanLeg2 18 10 3.88 218.39 0.850 -400.79 

1.06 RLHBIN -> MeanLeg2 18 10 3.88 218.39 0.858 -400.78 

 

 

  



 

112 
 

SUMMARY AND CONCLUSIONS 

 My goal with this dissertation was to improve our understanding of the 

ecological and evolutionary importance of maximal oxygen consumption (a 

measure of aerobic capacity) in lizards and mammals.  Most previous efforts 

studying whole-animal performances related to locomotion in these groups 

focused on maximal sprint speed capacity (Garland, 1983; Van Damme & 

Vanhooydonck, 2001; Garland & Albuquerque, 2017) and, for lizards, on 

maximal endurance capacity (Garland, 1999; e.g., Albuquerque et al., 2015a).  

These two performances are ‘fueled’ via different metabolic pathways (crudely, 

anaerobic versus aerobic, respectively) and should be important for the ability to 

engage in different types of behavior (e.g., escaping predators, foraging, 

defending territories) that – intuitively, at least – seem likely to be ecologically 

relevant.  However, relatively few studies focused on direct measures of maximal 

oxygen consumption during exercise (V̇O2max), possibly due to the logistical 

difficulties involved in the method (see Seeherman et al., 1981). 

   Maximal aerobic capacity, measured as the maximum rate of oxygen 

consumption during forced exercise (Seeherman et al., 1981), sets the upper 

limit to the rate of work that can be sustained over relatively long periods (more 

than a minute or so) (Seeherman et al., 1981; Jones & Lindstedt, 1993; Levine, 

2008; Spurway et al., 2012).  It directly affects maximal sustainable speed and 

endurance, and hence may potentially limit activity levels during ecologically 

relevant tasks (e.g., patrolling a territory, fighting, courting, foraging).  Among 
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mammal species, V̇O2max is significantly higher in canids and in Equus caballus, 

Antilocapra americana, and Phyllostomus hastatus (Dlugosz et al., 2013) and is 

positively correlated with home range size (chapter 1, also published as 

Albuquerque et al., 2015b).  Among lizard species, V̇O2max is significantly higher 

in some evolutionary lineages such as varanid and helodermatid  lizards (Beck et 

al., 1995; Clemente et al., 2009) and is related to foraging mode in lizards 

(Bennett et al., 1984; Clemente et al., 2009), but apparently not to nocturnality 

(Autumn, 1999).  Within species of lizards, V̇O2max covaries positively with 

activity (and circulating hormone levels) levels (John-Alder, 1984b; John-Alder et 

al., 2009) and appears to be limited most frequently by blood oxygen-carrying 

capacity, but also by enzyme activities in specific tissues (Garland, 1984; 

Garland & Else, 1987; Garland & Losos, 1994).   

 In this dissertation, I expand the knowledge about V̇O2max for lizards and 

mammals.  Chapters one and two focus on evolutionary correlates of V̇O2max 

among species of mammals and lizards, whereas the third chapter examines 

among-individual variation and the correlates of V̇O2max (and sprint speed) at 

the suborganismal and behavioral levels of biological organization 

simultaneously (Garland & Kelly, 2006).  

 In the first chapter, I show that V̇O2max is weakly but positively correlated 

with home range size among species of mammals.  This positive correlation 

suggests that both traits might have evolved concomitantly, presumably because 

they were under correlated selection (coadaptation).  All else being equal, larger 
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home range areas imply longer distances travelled per day on average.  Moving 

faster is relatively cheaper for terrestrial animals (Taylor et al., 1982; Rezende et 

al., 2009) and allows them to quickly cover a longer distance, saving energy and 

time (Kenagy & Hoyt, 1989).  Higher V̇O2max would allow animals to maintain 

higher speeds without fatiguing when traveling around their home range. 

  However, the correlation is not significant when phylogenetic statistical 

methods are used.  We offer two non-mutually exclusive explanations for this 

result that would also explain the weak positive correlation found when using 

regular statistics.  First, when analyzing the data for this chapter, we immediately 

noticed that home range area varies much more than V̇O2max.  The calculation 

of home range areas might include considerable amounts of measurement error 

(Ives et al., 2007), increasing its variability, reducing its repeatability and, 

consequently, reducing the correlation coefficient with any other biologically 

related trait.  Second, home range areas can be significantly affected by sex, 

seasons, or environmental conditions, such as food availability and predator 

density, creating considerable variation among populations.  The mismatch 

between the populations for which V̇O2max and home range data were available 

in the literature might have introduced variation caused by different 

environmental (and researcher) conditions for each population.  Considering 

these two explanations, the ‘real’ correlation coefficient between home range 

area and V̇O2max is probably higher than the one observed. 
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 In the second chapter, I correlated V̇O2max data for 58 lizard species 

(seven of those included two populations, creating a total of 65 data points) with 

diet, climate, nocturnality, viviparity, and phylogenetic lineage, while controlling 

for body mass and temperature.  The evolutionary allometric slope of V̇O2max 

among lizards was 0.803, which is very similar to the 0.839 slope reported 

previously for mammals (Dlugosz et al., 2013).  Both phylogenetic and traditional 

regressions indicate that viviparous species have lower V̇O2max and that 

varanids, helodermatids, and skinks have higher V̇O2max than other lizard 

species.  The reason why viviparous species have lower V̇O2max is unclear.  

Pregnancy imposes negative effects on locomotor capacities in lizards (Garland 

& Else, 1987; Olsson et al., 2000; Zani et al., 2008), and viviparous species 

thermoregulate more intensely during a relatively longer gestation period.  

Therefore, I expected to find higher V̇O2max in those species, which would allow 

them to maintain adequate activity levels even with the negative effects caused 

by extended pregnancies.  Perhaps changes in V̇O2max occur only in females 

during pregnancy (all measurements were from non-pregnant individuals), or 

changes in behavior that compensate for the locomotor impairment during that 

period (e.g., Bauwens & Thoen, 1981; Brodie, 1989) reduce the need for 

adaptive changes in V̇O2max. 

 Other studies have shown that varanids and helodermatids have higher 

V̇O2max than other lizards (Beck et al., 1995; Autumn, 1999; Clemente et al., 

2009).  Clemente et al. (2009) also showed that high activity levels, endurance, 
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and V̇O2max are plesiomorphic in varanids and that, within the group, active 

foragers have higher endurance and V̇O2max than sit-and-wait foragers.  So, the 

high oxygen consumption capacity in varanids seems to be related to high 

activity levels in nature.  Similarly, helodermatids have high endurance capacities 

(see Figure 11.7 in Garland, 1994a) and usually travel long distances during the 

active season (John-Alder et al., 1983; Jones, 1983).  However, Beck et al 

(1995) also noted that males, which show significantly higher V̇O2max and 

aerobic scope than females, engage in strenuous agonistic interactions, which 

could also require high aerobic capacity.  Finally, I also observed high V̇O2max 

for skinks.  Similar to varanid and helodermatids, most skins are active predators 

(Huey & Pianka, 1981; Cooper, 1994a; b) and the omnivore and insectivore 

species quickly respond to chemical cues from their prey (Cooper et al., 2000).  

All species included in this study are omnivores or insectivores, which probably 

show similar behavior patterns. 

 In the third chapter, I investigated the proximate causes and behavioral 

correlates of variation in sprint speed and V̇O2max capacities in adult male 

Sceloporus occidentalis lizards during the breeding season.  This is one of few 

studies in which lower-level suborganismal traits, performance, and behavior 

have been analyzed in the same individuals.  Multiple regressions revealed 

residual calf muscle mass as a positive predictor of sprint speed and residual 

thigh muscle mass as a negative predictor of sprint speed, whereas residual 

hemoglobin concentration in blood was the only significant (positive) predictor of 
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residual V̇O2max.  Reilly (1995) showed that both thigh and calf muscles are 

active during the propulsion phase of the stride but that “plantar flexion” (which is 

created by the contraction of calf muscles) “plays a major role in generating 

thrust” in Sceloporus clarki.  Years later, Higham et al. (2011) showed that 

individual variation in maximal sprint speed and acceleration in Sceloporus woodi 

is positively correlated with the percentage and diameter of fast glycolytic fibers 

in the gastrocnemius, a propulsion-generating calf muscle, but not with fiber 

composition in the iliofibularis, a small thigh muscle active during the swing-

phase.  If this pattern also holds in S. occidentalis, then relatively larger calf 

muscles would allow lizards to generate greater force exertion (and consequently 

higher speed), whereas relatively small thigh muscles could reduce leg mass, 

thus allowing them to move the limb faster during the swing-phase (assuming 

that the power available for recovery was not compromised).   

 Blood oxygen carrying capacity (measured as hematocrit level or 

hemoglobin concentration) is a common intraspecific predictor of V̇O2max in 

lizards among all studies done so far (Garland, 1984; Garland & Else, 1987; 

Garland & Losos, 1994).  However, these studies also reported other lower-level 

traits (e.g., liver mass, heart lactate dehydrogenase, liver citrate-synthase 

activity) as significant.  These studies included juveniles and both sexes, 

whereas in this study I only analyzed adult males collected during the peak of the 

breeding season.  Sexual dimorphism, ontogenetic development, and seasonal 

changes in physiology can increase variation in performance and lower-level 
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traits considerably (John-Alder, 1984b; Garland & Else, 1987; Dohm et al., 1998), 

which might explain the difference in predictors. 

 When evaluating the effect of performance on behavior, residual sprint 

speed did not predict any of the behavioral traits measured in breeding-season 

observations of free-living males from a population in Hampton Butte, Oregon. 

However, residual V̇O2max significantly predicted the average number of 2-

legged and 4-legged push-ups per bout and the maximum number of 4-legged 

push-ups in one bout.  In several lizard species, sprint speed is significantly 

correlated with sexually selected behaviors, such as social dominance and 

territory size in males (Garland et al., 1990a; Robson & Miles, 2000; Peterson & 

Husak, 2006).  However, even though the push-up displays are used during 

territorial disputes, sprint speed does not seem to be related to individual display 

capacities among breeding male S. occidentalis from Hampton Butte.  The 

correlation between V̇O2max and push-ups using two or four legs per bout, 

instead of per unit of time, might seem counter intuitive at first.  One bout of 

push-ups does not last more than several seconds and probably does not tax the 

animal aerobically.  However, the antagonistic interactions during which they 

occur can last for long periods of time in nature.  During field work, I observed a 

24-minute combat with very brief resting periods (see description in results) and 

Fitch (1940) also reported a 45-minute long interaction and added comments 

about individuals “showing evidence of fatigue at later stages of the fight.”  

Higher aerobic capacities would allow the individual to maintain higher overall 
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exercise intensity during these interactions.  Additionally, field observations took 

place during the peak of the breeding season, when the frequency and intensity 

of push-up displays increase considerably (Stamps & Krishnan, 1997; Sheldahl & 

Martins, 2000).  During that period, lizards may use these displays frequently 

throughout the day, instead of only during rare and short bursts of intense display 

activity. 

 Finally, I built a path model including all the significant causal relations 

from the multiple regressions.  Adding or removing any of the causal paths 

significantly reduced model fit and adding paths from lower-level traits directly to 

behavior did not improve model fit.  Therefore, results of the path analysis 

including all levels of biological organization supported the results obtained from 

the multiple regression analyses. 

 In this dissertation, I have attempted to expand our knowledge of both the 

ultimate (Bennett et al., 1984; Autumn et al., 1999; Clemente et al., 2009; Killen 

et al., 2016) and proximate (Garland, 1984; Garland & Else, 1987) causes of 

variation in V̇O2max of lizards and mammals.  At the ultimate level, ecological 

correlates offer insights about how natural and sexual selection might have 

shaped aerobic capacity according to how it interacts with behavior, life history, 

and the environment.  My results confirm previous findings of high V̇O2max in 

some phylogenetic lineages (varanids and helodermatids) and expand the list of 

significantly correlated traits to include viviparity for lizards and home range size 

for mammals.  Additionally, I also identified skinks as a group of lizards with high 
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V̇O2max.  These results reinforce the importance of V̇O2max as a trait related to 

the evolution of high activity levels, but also suggest new possibilities for 

investigation, such as the unexpected negative association with viviparity in 

lizards. 

 At the proximate level, I provide additional evidence that blood oxygen 

carrying capacity is a common limiting factor for V̇O2max among individual 

lizards.  Previous studies included juveniles and/or both sexes, which may have 

expanded the range of variation, but in my study of only adult males collected 

during a specific time of the year (the peak of the breeding season), hemoglobin 

concentration or hematocrit were also significant predictors of individual variation 

in V̇O2max.  Additionally, I show that behaviors related to territorial defense and 

courtship might be limited by V̇O2max in these lizards, suggesting that these 

behaviors are costly and that V̇O2max can influence reproductive success in 

iguanid lizards. 

 Future studies among lizard species should test for correlations with 

foraging mode and home range area, whereas future studies among individuals 

within a population should focus on quantifying the duration and intensity of 

territorial behaviors in nature or perhaps try to measure the energetic cost of 

these behaviors in the laboratory.  These studies should also investigate the 

seasonality of V̇O2max and related traits (hematocrit, hemoglobin, organ masses, 

and tissue-specific enzyme activities) (see also John-Alder, 1984b; Garland & 

Else, 1987).  
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