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Xiuwen Zheng,2 John Lane,4 Sébastian Méric de Bellefon,5 Laura M. Raffield,6 Ming-Huei Chen,7,8

Lisa R. Yanek,9 Marsha Wheeler,10 Yao Yao,3 Chunyan Ren,3 Jai Broome,2 Jee-Young Moon,11

Paul S. de Vries,12 Brian D. Hobbs,13 Quan Sun,14 Praveen Surendran,15,16,17,18 Jennifer A. Brody,19

Thomas W. Blackwell,20 Hélène Choquet,21 Kathleen Ryan,22 Ravindranath Duggirala,23

Nancy Heard-Costa,6,8,24 Zhe Wang,25 Nathalie Chami,25 Michael H. Preuss,25 Nancy Min,26

Lynette Ekunwe,26 Leslie A. Lange,27 Mary Cushman,28 Nauder Faraday,29 Joanne E. Curran,23

Laura Almasy,30 Kousik Kundu,31,32 Albert V. Smith,20 Stacey Gabriel,33 Jerome I. Rotter,34

Myriam Fornage,35 Donald M. Lloyd-Jones,36 Ramachandran S. Vasan,8,37,38 Nicholas L. Smith,39,40,41

Kari E. North,42 Eric Boerwinkle,12 Lewis C. Becker,43 Joshua P. Lewis,22 Goncalo R. Abecasis,20

Lifang Hou,36 Jeffrey R. O’Connell,22 Alanna C. Morrison,12 Terri H. Beaty,44 Robert Kaplan,11

Adolfo Correa,26 John Blangero,23 Eric Jorgenson,21 Bruce M. Psaty,39,40,45 Charles Kooperberg,1

(Author list continued on next page)
Summary
Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been

applied to clinical diagnosis of inherited disorders. Here we leveragedWGS data in up to 62,653 ethnically diverse participants from the

NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell

(RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported pre-

viously. Several of the RBC trait-variant associations (RPN1, ELL2,MIDN,HBB,HBA1, PIEZO1, andG6PD) were replicated in independent

GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are

observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a

3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene respon-

sible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin

concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified

several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site

loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the

sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene

RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse popula-

tion-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest

a continuum between complex trait and Mendelian red cell disorders.
Introduction

Red blood cells (RBCs) or erythrocytes contain hemoglo-

bin, an iron-rich tetramer composed of two alpha-globin

and two beta-globin chains. RBCs play an essential role
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in oxygen transport and also serve important secondary

functions in nitric oxide production, regulation of vascular

tone, and immune response to pathogens.1 RBC indices,

including hemoglobin (HGB), hematocrit (HCT), mean

corpuscular hemoglobin (MCH), mean corpuscular
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hemoglobin concentration (MCHC), mean corpuscular

volume (MCV), RBC count, and red blood cell width

(RDW), are primary indicators of RBC development, size,

and hemoglobin content.2 These routinely measured clin-

ical laboratory assays may be altered in Mendelian genetic

conditions (e.g., hemoglobinopathies such as sickle cell

disease [MIM: 603903] or thalassemia [MIM: 613985,

604131], hereditary spherocytosis [MIM: 182900], or

G6PD deficiency [MIM: 300908])3 as well as by non-ge-

netic or nutritional factors (e.g., vitamin B and iron

deficiency).

RBC indices have estimated family-based heritability

values ranging from 40% to 90%4,5 and have been exten-

sively studied as complex quantitative traits in genome-

wide association studies (GWASs). Early GWASs identified

common genetic variants with relatively large effects asso-

ciated with RBC indices.6–8 With improved imputation,

increased sample sizes, and deeper interrogation of coding

regions of the genome, additional common variants asso-

ciated with RBC indices with progressively smaller effect

sizes and coding variants of larger effect with lower minor

allele frequency (MAF) have been identified.9–19 However,
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the full allelic spectrum (e.g., lower frequency non-coding

variants, indels, structural variants) that explain the ge-

netic architecture of complex traits remains incomplete.9

In addition, non-European populations (including ad-

mixed U.S. minority populations such as African Ameri-

cans and Hispanics/Latinos) have been under-represented

in these studies. Since RBCs play a key role in pathogen in-

vasion and defense, associated quantitative trait loci may

be relatively isolated to a particular ancestral population

due to local evolutionary selective pressures and popula-

tion history. Emerging studies with greater inclusion of

East Asian, African, and Hispanic ancestry populations

have identified ancestry-specific variants associated with

RBC quantitative traits.15–17,20,21 These may account, at

least in part, for inter-population differences in RBC

indices as well as ethnic disparities in rates of hematologic

and other related chronic diseases.18,22

Whole-genome sequencing (WGS) data have been

generated through the NHLBI Trans-Omics for Precision

Medicine (TOPMed) program in very large and ethnically

diverse population samples with existing hematologic lab-

oratory measures. These TOPMed WGS data provide novel
rolina at Chapel Hill, Chapel Hill, NC 27599, USA; 15British Heart Founda-

ary Care, University of Cambridge, Cambridge CB1 8RN, UK; 16British Heart

e CB1 8RN, UK; 17Health Data Research UK Cambridge, Wellcome Genome

Fund Fellow, Department of Public Health and Primary Care, University of

epartment ofMedicine, University ofWashington, Seattle, WA 98105, USA;

of Biostatistics, Ann Arbor, MI 48109, USA; 21Division of Research, Kaiser

Medicine, Division of Endocrinology, Diabetes & Nutrition, University of

uman Genetics and South Texas Diabetes and Obesity Institute, University
4Department of Neurology, Boston University School of Medicine, Boston,

e, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;

S 39216, USA; 27Division of Biomedical Informatics and Personalized Med-

Aurora, CO 80045, USA; 28Department of Medicine, Larner College of Med-

t of Anesthesiology and Critical Care Medicine, Johns Hopkins University

nd Health Informatics, Children’s Hospital of Philadelphia and Department

lphia, PA 19104, USA; 31Department of Human Genetics, Wellcome Sanger

Cambridge, Cambridge CB2 0PT, UK; 33Broad Institute, Boston, MA 02142,

artment of Pediatrics, The Lundquist Institute for Biomedical Innovation at

ealth Science Center at Houston, Houston, TX 77030, USA; 36Northwestern

tive Medicine, Department of Medicine, Boston University School of Medi-

y School of Public Health, Boston, MA 02118, USA; 39Department of Epide-

nte Washington Health Research Institute, Kaiser Permanente Washington,

nter, Department of Veterans Affairs Office of Research and Development,

ublic Health, University of North Carolina at Chapel Hill, Chapel Hill, NC

ns University School of Medicine, Baltimore, MD 21205, USA; 44School of

ent of Medicine, University ofWashington, Seattle, WA 98105, USA; 46Cen-

ral Hospital, Boston, MA 02114, USA; 47Department of Pathology, Harvard

niversity School of Medicine, Stanford, CA 94305, USA; 49National Institute

Genomics, University of Cambridge, Cambridge CB1 8RN, UK; 50National

ty of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN,

s, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;

ee, WI 53205, USA; 53Departments of Biostatistics, Genetics, Computer Sci-

; 54Division of Allergy and Clinical Immunology, Department of Medicine,
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opportunities to assess rare and common single-nucleotide

and indel variants across the genome, including variants

more common in African, East Asian, or Native American

ancestry individuals that are not captured by existing

GWAS arrays or imputation reference panels. We thereby

aimed to identify previously undescribed genetic variants

and genes associated with the seven RBC indices and to

dissect association signals at previously reported regions

through conditional analysis and fine-mapping.
Subjects and methods

TOPMed study population
The analyses reported here included 62,653 participants from 13

TOPMed studies: Genetics of Cardiometabolic Health in the Am-

ish (Amish, n¼ 1,102), Atherosclerosis Risk in Communities Study

VTE cohort (ARIC, n ¼ 8,118), Mount Sinai BioMe Biobank

(BioMe, n ¼ 10,993), Coronary Artery Risk Development in Young

Adults (CARDIA, n ¼ 3,042), Cardiovascular Health Study (CHS, n

¼ 3,490), Genetic Epidemiology of COPD Study (COPDGene, n ¼
5,794), FraminghamHeart Study (FHS, n¼ 3,141), Genetic Studies

of Atherosclerosis Risk (GeneSTAR, n ¼ 1,713), Hispanic Commu-

nity Health Study - Study of Latinos (HCHS_SOL, n ¼ 7,655),

Jackson Heart Study (JHS, n ¼ 3,033), Multi-Ethnic Study of

Atherosclerosis (MESA, n ¼ 2,499), Whole Genome Sequencing

to Identify Causal Genetic Variants Influencing CVDRisk - San An-

tonio Family Studies (SAFS, n ¼ 1,153), and Women’s Health

Initiative (WHI, n ¼ 10,920). The composition of the 62,653 par-

ticipants by race/ethnicity is 54% white, 23% Black, 22% Hispan-

ic/Latino, and 1% Asian (see Table S1 and supplemental methods

for details). Further descriptions of the design of the participating

TOPMed cohorts and the sampling of individuals within each

cohort for TOPMedWGS are provided in the section ‘‘Participating

studies’’ in the supplemental methods. We analyzed each of seven

red blood cell traits separately, accounting for any unique sam-

pling features within each study. The total counts of participants,

mean age, and the count of male participants from each study

stratified by trait are shown in Table 1. All studies were approved

by the appropriate institutional review boards (IRBs), and

informed consent was obtained from all participants.

RBC trait measurements and exclusion criteria in

TOPMed
The seven RBC traits considered for analyses were measured from

freshly collected whole blood samples at local clinical laboratories

using automated hematology analyzers calibrated tomanufacturer

recommendations according to clinical laboratory standards. Each

trait was defined as follows. HCT is the percentage of volume of

blood that is composed of red blood cells. HGB is the mass per vol-

ume (grams per deciliter) of hemoglobin in the blood. MCH is the

average mass in picograms of hemoglobin per red blood cell.

MCHC is the average mass concentration (grams per deciliter) of

hemoglobin per red blood cell. MCV is the average volume of

red blood cells, measured in femtoliters. RBC count is the count

of red blood cells in the blood, by number concentration in

millions per microliter. RDW is the measurement of the ratio of

variation in width to the mean width of the red blood cell volume

distribution curve taken at 51 CV. In studies where multiple

blood cell measurements per participant were available, we

selected a single measurement for each trait and each participant
876 The American Journal of Human Genetics 108, 874–893, May 6,
as described further in supplemental methods. Each trait was

analyzed to identify extreme values that may have been measure-

ment or recording errors and such observations were removed

from the analysis (see supplemental methods). Table 1 displays

the mean and standard deviation among participants analyzed af-

ter exclusions by study. The pairwise correlation among the seven

RBC traits is shown in Table S2.
WGS data and quality control in TOPMed
WGS was performed as part of the NHLBI TOPMed program. The

WGS was performed at an average depth of 383 by six sequencing

centers (Broad Genomics, Northwest Genome Institute, Illumina,

New York Genome Center, Baylor, and McDonnell Genome Insti-

tute) using Illumina X10 technology and DNA from blood. Here

we report analyses from ‘‘Freeze 8,’’ for which reads were aligned

to human-genome build GRCh38 using a common pipeline across

all centers. To perform variant quality control (QC), a support vec-

tor machine (SVM) classifier was trained on known variant sites

(positive labels) and Mendelian inconsistent variants (negative la-

bels). Further variant filtering was done for variants with excess het-

erozygosity and Mendelian discordance. Sample QC measures

included: concordance between annotated and inferred genetic

sex, concordance between prior array genotype data and TOPMed

WGS data, and pedigree checks. Details regarding the genotype

‘‘freezes,’’ laboratory methods, data processing, and quality control

are described on the TOPMed website and in a common document

accompanying each study’s dbGaP accession.23 Genomic coordi-

nates of variants presented here are based on the GRCh38 build.
Single-variant association analysis
Single-variant association tests were performed for each of the

seven RBC traits separately using linear mixed models (LMMs).

In each case, a model assuming no association between the

outcome and any genetic variant was first fit; we refer to this as

the ‘‘null model.’’ In the null model, covariates modeled as fixed

effects were sex; age at trait measurement; a variable indicating

TOPMed study and phase of genotyping (study_phase); indicators

of whether the participant is known to have had a stroke, chronic

obstructive pulmonary disease (COPD), or a venous thromboem-

bolism (VTE) event; and the first 11 PC-AiR24 principal compo-

nents (PCs) of genetic ancestry. A 4th degree sparse empirical

kinship matrix (KM) computed with PC-Relate25 was included to

account for genetic relatedness among participants. Additional de-

tails on the computation of the ancestry PCs and the sparse KM are

provided in the supplemental methods. Finally, we allowed for

heterogeneous residual variances by study and ancestry group

(e.g., ARIC_White), as this has been shown previously to control

inflation.26 The details on how we estimated the ancestry group

for this adjustment are in the supplemental methods. The

numbers of individuals per ancestry group per study and the

respective mean and standard deviation for each trait are shown

in Table S3.

To improve power and control of false positives when pheno-

types have a non-normal distribution, we implemented a fully

adjusted two-stage procedure for rank-normalization when fitting

the null model, for each of the seven RBC traits in turn:27

1. Fit a LMM, with the fixed effect covariates, sparse KM, and

heterogeneous residual variance model as described above.

Perform a rank-based inverse-normal transformation of

the marginal residuals, and subsequently rescale by their
2021



Table 1. Characteristics of the TOPMed samples by study

Study N (male) Age HCT HGB MCH MCHC MCV RBC RDW

Amish 1,102 (557) 50.6 5 16.9 40.6 5 3.5 13.8 5 1.2 30.9 5 1.3 34.1 5 0.8 90.7 5 3.4 4.5 5 0.4 –

ARIC 8,113 (3,577) 54.8 5 5.8 41.6 5 4.0 13.9 5 1.4 30.5 5 2.1 33.3 5 1.0 89.6 5 5.1 4.5 5 0.5 14.1 5 1.1

BioMe 10,990 (4,559) 52.1 5 13.5 39.5 5 5.2 13.1 5 1.7 30.3 5 2.8 33.7 5 1.0 89.0 5 7.2 4.4 5 0.6 14.2 5 1.8

CARDIA 3,042 (1,319) 25.0 5 3.6 42.1 5 4.4 14.2 5 1.5 29.8 5 2.1 33.8 5 1.0 88.1 5 5.4 4.8 5 0.5 –

CHS 3,490 (1,459) 72.6 5 5.4 41.8 5 3.9 14.0 5 1.3 – 33.5 5 1.0 – – –

COPDGene 5,794 (2,913) 64.8 5 8.8 42.0 5 4.1 13.9 5 1.5 30.3 5 2.3 33.2 5 1.1 91.4 5 5.8 4.6 5 0.5 –

FHS 3,140 (1,514) 58.4 5 15.0 41.6 5 4.0 14.1 5 1.3 31.1 5 1.8 33.9 5 1.0 91.9 5 4.9 4.5 5 0.5 13.1 5 1.0

GeneSTAR 1,713 (699) 43.7 5 12.9 40.9 5 3.9 13.5 5 1.4 29.6 5 2.1 33.0 5 0.8 89.5 5 5.3 4.6 5 0.4 –

HCHS/SOL 7,655 (3,186) 46.6 5 14.0 42.1 5 4.1 13.8 5 1.5 29.1 5 2.2 32.7 5 1.4 89.2 5 6.0 4.7 5 0.4 13.8 5 1.3

JHS 2,905 (1,089) 53.5 5 12.8 39.4 5 4.3 13.1 5 1.5 28.9 5 2.5 33.2 5 0.9 86.9 5 6.3 4.5 5 0.5 13.7 5 1.4

MESA 2,499 (1,211) 69.4 5 9.2 40.1 5 4.0 13.4 5 1.4 30.1 5 2.3 33.4 5 1.1 89.9 5 6.0 4.5 5 0.5 –

SAFS 1,152 (492) 40.6 5 15.9 40.3 5 4.5 13.1 5 1.5 29.0 5 2.3 32.6 5 1.4 88.9 5 5.4 4.5 5 0.5 –

WHI 10,913 (0) 66.7 5 6.8 40.2 5 2.9 13.5 5 1.0 29.9 5 2.1 32.9 5 1.1 90.9 5 5.8 4.4 5 0.4 14.2 5 1.3

Values are shown as mean 5 SD. Abbreviations are as follows: HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpus-
cular hemoglobin concentration; MCV, mean corpuscular volume; RBC, red blood cell count; RDW, red blood cell width.
variance prior to transformation. This rescaling allows for

clearer interpretation of estimated genotype effect sizes

from the subsequent association tests.

2. Fit a second LMM using the rank-normalized and re-scaled

residuals as the outcome, with the same fixed effect covari-

ates, sparse KM, and heterogeneous residual variance model

as in stage 1.

The output of the stage 2 null model was then used to perform

genome-wide score tests of genetic association for all individual

variants with minor allele count (MAC) R 5 that passed the

TOPMed variant quality filters and had less than 10% of samples

freeze-wide with sequencing read depth < 10 at that particular

variant. We tested up to 102,674,666 SNVs and 7,722,116 indels

(Table S4). Genome-wide significance was determined at the p <

5E�9 level.28 For each locus, we defined the top variant as the

most significant variant within a 2Mb window. All association an-

alyses were performed using the GENESIS software.29

Conditional analysis
Because of the very large number of variants and genomic loci that

have recently been associated with quantitative RBC traits,

following the single-variant association analyses, we systemati-

cally performed a series of conditional association analyses for

each trait to determine which genome-wide significant associa-

tions were independent of previously reported RBC variants. We

gathered the variants known to be associated with each pheno-

type from previous publications (Table S5) and matched these to

TOPMed variants using position and alleles. Then, genome-wide

conditional association analyses were performed by including

known variants as fixed effects covariates in the null model using

the same fully adjusted two-stage LMM association testing proced-

ure described above. We performed three types of conditional

analysis, namely the trait-specific, the trait-agnostic, and the iter-

ative, stepwise conditional analysis to identify a set of condition-

ally independent variants that have not been previously reported

(supplemental methods).
The Ame
Single-variant association analysis of chromosome 16
The alpha-globin gene region on chromosome 16p13.3 contains a

large, 3.7 kb structural variant (esv3637548, chr16: 173,529–

177,641) common among African ancestry individuals known to

be highly significantly associatedwith all RBC traits.15,18 This large

copy number variant is not well-tagged by SNVs in the region.

Therefore, we performed genotype calling for the alpha-globin

3.7 kb CNV in 52,772 available TOPMed whole genomes using

MosDepth.30 Since the chromosome 16 alpha-globin CNV calls

were available for only a subset of the samples in the primary an-

alyses, to assess the effect of conditioning on the alpha-globin

CNV, the same set of analyses described above were run for chro-

mosome 16 restricted to the sample set with alpha-globin CNV

calls. The most probable alpha-globin copy number was included

as a categorical variable to allow for potential non-linear effects on

the phenotype.
Proportion of variance explained
For each trait, we estimated the proportion of variance explained

(PVE) by the set of LD-pruned known associated variants, by the

final set of conditionally independent variants we identified

following the iterative stepwise conditional analysis, and by

both sets together. These cumulative PVE values were estimated

jointly from the stage 2 null model using approximations from

multi-parameter score tests, thus accounting for covariance be-

tween the variant effect size estimates. The PVE estimates were

calculated using the full sample set and did not include the

alpha-globin CNV as a known variant but did include the set of

conditionally independent SNVs and indels identified on chromo-

some 16 after conditioning on the alpha-globin CNV. More details

are provided in the supplemental methods.
Replication studies for single-variant association

findings
We sought replication of the lead variants at genome-wide signifi-

cant loci identified in the trait-specific conditional analysis in
rican Journal of Human Genetics 108, 874–893, May 6, 2021 877



independent studies including the INTERVAL study, the Kaiser-Per-

manente Genetic Epidemiology Research on Aging (GERA) cohort,

samples from the Women’s Health Initiative - SNP Health Associa-

tion Resource (WHI-SHARe)31 not included in TOPMed, European

ancestry samples from phase 1 of the UK BioBank (UKBB),9 and Af-

rican and East Asian ancestry samples from phase 2 of UKBB.21

WGS data were used in INTERVAL while genotyping on various ar-

rays and imputation to TOPMedWGS data or 1000Genomes Phase

3 reference panels were performed in Kaiser, WHI-SHARe, and

UKBB. Residuals were obtained by regressing the harmonized

RBC traits on age, sex, the first 10 PCs in each study stratified by

ancestry, followed by association analyses testing each genetic

variant with the inverse-normalized residual values. Summary sta-

tistics from each study were combined through fixed-effect in-

verse-weighting meta-analysis using METAL.32
Aggregate variant association analysis of rare variants

within each gene
Association tests aggregating rare variants by gene were performed

for each RBC trait in order to assess the cumulative effect of rare

variants within each gene and associated regulatory regions. We

applied five strategies for grouping and filtering variants. Three

of them aggregated coding variants and two of them aggregated

coding and non-coding regulatory variants. For each aggregation

strategy we filtered variants using one or more deleterious predic-

tion scores creating relatively relaxed or stringent sets of variants

(see details in supplemental methods). The five strategies are

referred to as C1-S, C1-R, C2-R, C2-RþNC-S, and C2-RþNC-R by

abbreviating coding to ‘‘C,’’ non-coding to ‘‘NC,’’ stringent to

‘‘S,’’ and relaxed to ‘‘R.’’ For all aggregate units, only variants

with MAF < 0.01 that passed the quality filters and had less

than 10% of samples with sequencing read depth < 10 were

considered. The aggregate association tests were performed using

the Efficient Variant-Set Mixed Model Association Test

(SMMAT).33 The SMMAT test used the same fully adjusted two-

stage null model as was fit for the single variant association tests,

therefore adjusting for the same covariates, kinship, and residual

variance structure as the single variant association analyses. For

each aggregation unit, SMMAT efficiently combines a burden

test p value with an asymptotically independent adjusted ‘‘SKAT-

type’’ test p value using Fisher’s method. This testing approach is

more powerful than either a burden or SKAT34 test alone and is

computationally more efficient than the SKAT-O test.35 Wu

weights34 based on the variant MAF were used to upweight rarer

variants in the aggregation units. Significance was determined us-

ing a Bonferroni threshold, adjusting for the number of gene-

based aggregation units tested genome-wide with cumulative

MAC R 5. Two types of conditional analysis were run (‘‘trait-spe-

cific’’ and ‘‘trait-agnostic), conditioning previously reported RBC

trait-associated variants as well as those discovered in the TOPMed

single variant tests (Table S5). In addition, any previously reported

RBC trait-associated variants and the set of conditionally indepen-

dent variants identified in our single variant analyses were

excluded from the gene-based aggregation units.
Predicted loss-of-function variants and predicted gene

knockouts and their association with RBC traits
Our analyses of predicted loss-of-function (pLoF) variants in

TOPMed freeze 8 focused on variants annotated by ENSEMBL’s

Variant Effect Predictor (VEP) as nonsense, essential splice site,

and frameshift insertion-deletion (indel) variants. From this list,
878 The American Journal of Human Genetics 108, 874–893, May 6,
we excluded variants that map to predicted transcripts36 and also

variants located in the first and last 5% of the gene as these variants

aremore likely to give rise to transcripts that escape nonsense-medi-

ated mRNA decay.37 We used a method previously described to

identify predicted gene knockouts (pKO).38 Briefly, we considered

individuals that were homozygotes for LoF variants, but also indi-

viduals who inherited two different LoF variants in trans using

available phased information (compound heterozygotes).

We analyzed each study-ethnic group separately, adjusting for

sex, age, and smoking status. We then normalized the residuals

with each group using inverse normal transformation. We per-

formed association testing per ethnic group with EPACTS. We

adjusted all analyses using the first ten PCs and a kinship matrix

(EMMAX) calculated using 150,000 common variants in LD. For

pLoF, we tested an additive genetic model. For pKO, we coded in-

dividuals as ‘‘0’’ if they were not a pKO and as ‘‘1’’ if they were a

pKO. We meta-analyzed association results using METAL.32 We

excluded variants located in the alpha-globin region in self-re-

ported African-ancestry individuals. The genome-wide significant

threshold for each ancestral groupwas defined as p< 0.05/number

of variants. Sensitivity analyses testing hemoglobin levels with

LoF variants on chromosome 11 showed that adjustment for

smoking status has minimal impact on the association results

(Pearson’s correlation of p values > 0.99).

Lentivirus packaging
HEK293T cells (ATCC, cat# CRL-3216) were cultured with DMEM

with 10% fetal bovine serum and 1%penicillin-streptomycin solu-

tion (10,000 U/mL stock). To produce lentivirus, HEK293T cells

were transfected at 70%–80% confluence with 13.3 mg psPAX2,

6.7 mg VSV-G, and 20 mg of the lentiviral construct plasmid of in-

terest using 180 mg of linear polyethylenimine in 15 cm tissue cul-

ture dishes. Lentiviral supernatant was collected at both 48 h and

72 h post-transfection and concentrated by ultracentrifugation at

24,000 rpm for 4 h at 4�C with a Beckman Coulter SW 32 Ti rotor.

HUDEP-2 cell and human CD34þ hematopoietic stem

and progenitor cells (HSPCs) culture
HUDEP-2 cells39 were generously shared by Ryo Kurita (Japanese

Red Cross) and Yukio Nakamura (RIKEN BioResource Research

Center, University of Tsukuba, Japan) and cultured as previously

described.40 Expansion phase medium for HUDEP-2 cells consists

of SFEM (StemCell Technologies, Inc. #09650) base medium sup-

plemented with 50 ng/mL recombinant human SCF (R&D systems

#255-SC), 1 mg/mL doxycycline (Sigma Aldrich #D9891), 0.4 mg/

mL dexamethasone (Sigma Aldrich #D4902), 3 IU/mL EPO (Epoe-

tin Alfa, Epogen, Amgen), and 1% penicillin-streptomycin solu-

tion (10,000 U/mL stock). Human CD34þ HSPCs from mobilized

peripheral blood of deidentified healthy donors were obtained

from Fred Hutchinson Cancer Research Center, Seattle, Washing-

ton. CD34þ cells were maintained in SFEM supplemented with

13 StemSpan CD34þ expansion supplement (Cat# 02691, STEM-

CELL Technology).

Generation of AncBE4max-SpRY-expressing stable

HUDEP-2 cell lines
The lentiviral plasmid forAncBE4max-SpRY41was generatedby sub-

cloning the coding sequence of nSpRY(D10A) into the AgeI and

XcmI restriction sites of pRDA_257 (pLenti-BPNLS-AncBE4-gsXTEN

gs-nSpCas9-gs-UGI-gs-BPNLS-P2A-Puro), generously provided by

JohnDoench(Broad Institute). Lentiviruswasproducedasdescribed
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above. HUDEP-2 cells were transduced with lentivirus, and 1 mg/mL

puromycin was added into culture medium 2 days after lentiviral

transduction. After 2-week positive selection, AncBE4max-SpRYed-

iting efficiency was tested usingmultiple sgRNAswith variable PAM

sequence.

C-to-T base editing at the rs112097551 locus in HUDEP-2

cells
The sequence of single-guide RNA targeting rs112097551

(chr3:128,603,774, GenBank: NC_000003.12, g.128603774G>A)

is summarized in Table S6. Oligos (from GENEWIZ company)

were annealed and ligated into LentiGuide-Puro (Addgene

plasmid 52963). Following lentiviral production and transduction

into cell lines with stable SpCas9 expression, 1 mg/mL puromycin

were added to select for sgRNA integrants in HUDEP-2 cells

expressing AncBE4max-SpRY. C-to-T editing efficiency was deter-

mined in bulk cells 10 days after lentiviral delivery into AncBE4-

max-SpRY-expressing HUDEP-2 cells (Figure S1). Briefly, genomic

DNA was extracted using the QIAGEN Blood and Tissue kit.

Genomic region surrounding the sgRNA targeting site was ampli-

fied using HotStarTaq DNA polymerase (QIAGEN, Cat# 203203)

for other PCR reactions strictly following the manufactory instruc-

tions with variable annealing temperature. PCR products were

subject to Sanger sequencing and then EditR analysis to estimate

the editing efficiency based on sequencing chromatograms.42 Sin-

gle HUDEP-2 cells were plated to obtain highly edited clones.

Primers for PCR were summarized in Table S7.

CRISPR-Cas genome editing in CD34þ HSPCs
CD34þ cells were thawed and maintained in SFEM supplemented

with 13 StemSpan CD34þ expansion supplement (Cat# 02691,

STEMCELL Technology) for 24 h before electroporation. 100,000

cells per condition were electroporated using the Lonza 4D nucle-

ofector with 100 pmol 3xNLS-SpCas943 protein and 300 pmol

modified sgRNA targeting the locus of interest. In addition to

mock treated cells, ‘‘safe-targeting’’ RNPs were used as experi-

mental controls as indicated in each figure legend. After electropo-

ration, cells were differentiated to erythroblasts as described

previously.44 4 days after electroporation, genomic DNA was iso-

lated from an aliquot of cells, the sgRNA targeted locus was ampli-

fied by PCR. PCR products were subject to Sanger sequencing and

then TIDE analysis to quantify indel mutations.45 Meanwhile, to-

tal RNA was extracted from bulk cells and expression of genes of

interest was determined by real time RT-qPCR as described below.

Determination of target gene expression
Total RNA was extracted from cell cultures 4 days after electropo-

ration using the RNeasy Plus Mini Kit (QIAGEN) and reverse tran-

scribed using the iScript cDNA synthesis kit (Biorad) according to

the manufacturer’s instructions. Expression of target genes was

quantified using real-time RT-qPCR with GAPDH (MIM: 138400)

as an internal control. All gene expression data represent the

mean of at least three biological replicates. Primers for PCR are

summarized in Table S7.

Immunophenotyping of human CD34þHSPCs xenograft

from NBSGW mice
NOD.Cg-KitW-41J Tyr þ Prkdcscid Il2rgtm1Wjl (NBSGW) mice

were obtained from Jackson Laboratory (Stock 026622). CD34þ

HSPCs were maintained and edited as described above. After elec-

troporation, cells were allowed to recover for 24–48 h in SFEMme-
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dium with 13 StemSpan CD34þ expansion supplement (Cat#

02691, STEMCELL Technology). Cells were then washed twice

by PBS, resuspended in 200 mL DPBS per million cells, and then

infused by retro-orbital injection into non-irradiated NBSGW fe-

male mice. 16 weeks post transplantation, mice were euthanized,

and bone marrow was collected and analyzed as previously

described.45 Analysis of bone marrow subpopulations was per-

formed by flow cytometry. Antibodies for flow cytometry included

Human TruStainFcX (422302, BioLegend), TruStainfcX (anti-

mouse CD16/32, 101320, BioLegend), anti-mouse CD45 (30-

F11), anti-human CD45 (HI30), and Fixable Viability Dye eFluor

780 for live/dead staining (65-0865-14, Thermo Fisher). Percent-

age human engraftment was calculated as hCD45þ cells/

(hCD45þ þ mCD45þ cells). Cell sorting was performed on a

FACSAria II machine (BD Biosciences).
Results

Single-variant association analysis

In the single-variant association analyses, the genomic

inflation factors ranged from 1.015 to 1.038, indicating

adequate control of population stratification and related-

ness (Table S8). A total of 69 loci reached genome-wide sig-

nificance for any of the seven RBC traits (p < 5E�9,

Figure S2 and Table S9). Of the 69 loci, 9 (HBB, HBA1,

RPN1, ELL2, EIF5-MARK3, MIDN, PIEZO1, TMPRSS6, and

G6PD [MIM: 141900, 141800, 180470, 601874, 601710,

606700, 611184, 609862, 305900, respectively]) remained

significant in the conditional analysis after accounting for

RBC trait-specific known loci. In addition, three more loci

reached genome-wide significance following RBC trait-spe-

cific conditional analysis (19q12, 10q26, and SHANK2

[MIM: 603290], p < 5E�9, Figure S3). Therefore, a total of

12 loci showed genome-wide significance for association

with at least one of the seven RBC traits in the trait-specific

conditional analysis, indicating signals independent of pre-

viously reported variants (p < 5E�9) (Figure S4, Table 2).

At the12significant loci identified in the trait-specificcon-

ditional analyses which have not been reported previously,

the number of genome-wide significant variants ranged

from 1 to 162 (Figure S4 and Table S10). Six loci harbored

more than one genome-wide significant variants (HBB,

HBA1, ELL2, MIDN, TMPRSS6, andG6PD). The lead variants

for each trait at each of these 12 loci (including, across the 7

traits, 14 distinct variants [12 SNVs and 2 small indels]) are

shown in Table 2. Notably, only two lead variants (MIDN-

rs73494666, chr19: 1,253,643, GenBank: NC_000019.10,

g.1253643C>T and TMPRSS6-rs228914, chr22: 37,108,

472, GenBank: NC_000022.11, g.37108472C>A) had MAF

>5%inTOPMed.Mostof these14 leadvariantswere located

within non-coding regions of the genome and most were

low frequency (n ¼ 3 between MAF 0.1% and MAF 2%) or

rare (n ¼ 9 with MAF < 0.1%). The latter category included

three loci (SHANK2-rs535577177 [chr11: 70,462,791, Gen-

Bank: NC_000011.10, g.70462791G>A], 10q26-rs98641

5672 [chr10: 131,440,166, GenBank: NC_000010.11,

g.131440166C>T], and 19q12-rs136850044 [chr19: 28,868,
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Table 2. Genome-wide significant loci identified in the trait-specific conditional analysis in TOPMed

Trait Variant Chr:Pos (GRCh38) Gene CA/NCA CAF(%) N Beta SE p pconditional1
a pconditional2

b

HCT rs11549407 11: 5,226,774 HBB A/G 0.026 62,487 �4.94 0.67 1.68E�13 3.43E�13 1.55E�12

HGB rs11549407 11: 5,226,774 HBB A/G 0.026 62,461 �2.14 0.23 2.86E�21 4.76E�21 1.75E�20

rs1368500441 19: 28,868,893 19q12 A/G 0.005 62,461 2.65 0.46 1.02E�8 2.49E�9 6.64E�8

MCH rs112097551 3:128,603,774 RPN1 A/G 0.398 62,461 0.78 0.12 4.01E�10 4.27E�11 4.08E�10

rs116635225 5: 95,989,447 ELL2 A/G 1.307 46,241 �0.43 0.07 3.37E�9 1.18E�11 2.58E�11

rs986415672 10: 131,440,166 10q26 T/C 0.006 46,241 �4.26 0.82 2.16E�7 3.06E�9 2.49E�9

rs34598529 11: 5,227,100 HBB C/T 0.083 46,241 �4.31 0.29 1.06E�49 1.37E�52 1.03E�53

rs535577177 11: 70,462,791 SHANK2 A/G 0.008 46,241 �4.72 0.82 1.04E�8 8.28E�10 3.38E�9

rs370308370 14: 103,044,696 EIF5/MARK3 A/G 0.011 46,241 �4.35 0.74 3.15E�9 1.42E�9 5.49E�9

rs868351380 16: 55,649 HBA1/2 C/G 0.022 37,917 �3.19 0.51 4.85E�10 8.87E�11 1.49E�11

rs73494666 19: 1,253,643 MIDN T/C 16.5 46,241 �0.16 0.03 1.11E�9 4.27E�11 9.00E�9

rs228914 22: 37,108,472 TMPRSS6 A/C 89.0 46,241 �0.09 0.02 3.76E�5 6.53E�10 2.76E�8

MCHC rs11549407 11: 5,226,774 HBB A/G 0.028 52,648 �1.79 0.18 4.79E�23 1.21E�23 1.87E�23

rs763477215 16: 88,717,174 PIEZO1 A/ATCT 0.070 52,648 0.66 0.11 1.57E�9 2.66E�9 1.74E�9

MCV rs112097551 3:128,603,774 RPN1 A/G 0.405 48,830 1.98 0.31 1.09E�10 7.65E�12 6.28E�10

rs11549407 11: 5,226,774 HBB A/G 0.028 48,830 �16.5 1.08 3.52E�53 1.00E�54 1.31E�55

rs868351380 16: 55,649 HBA1/2 C/G 0.022 39,107 �7.99 1.31 1.19E�9 2.17E�10 3.20E�11

rs73494666 19: 1,253,643 MIDN T/C 16.7 48,830 �0.42 0.07 3.90E�10 2.72E�10 1.77E�11

rs228914 22: 37,108,472 TMPRSS6 A/C 89.1 48,830 �0.20 0.06 3.80E�4 9.53E�10 2.52E�6

RBC rs34598529 11: 5,227,100 HBB C/T 0.084 44,470 0.55 0.06 3.59E�22 1.48E�25 1.91E�23

rs372755452 16: 199,621 HBA1/2 A/AG 0.010 36,430 1.27 0.18 1.55E�12 6.08E�10 3.95E�9

RDW rs34598529 11: 5,227,100 HBB C/T 0.092 29,385 1.96 0.22 4.44E�19 1.35E�20 2.16E�20

rs76723693 X: 154,533,025 G6PD G/A 0.297 29,385 �0.91 0.10 2.38E�19 2.97E-20 2.99E�15

Conditional analysis at the HBA1/2 locus was performed in a subset of TOPMed samples with available alpha-globin CNV data. Abbreviations are as follows: Chr,
chromosome; Pos, position; CA, coded allele; NCA, non-coded allele; CAF, coded allele frequency; HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; RBC, red blood cell count; RDW, red blood cell width.
aIn the first conditional analysis, trait-specific reported variants were adjusted in the model.
bIn the second conditional analysis, all reported variants regardless of associated traits were adjusted in the model.
893, GenBank: NC_000019.10, g.28868893G>A]) in which

the lead variant was extremely rare with MAF < 0.01%.

Several of the lead variants showed large allele frequencydif-

ferences between race/ethnicity groups as assessed from the

genome aggregation database or gnomAD (Table S11). The

RPN1-rs112097551 (chr3: 128,603,774, GenBank: NC_000

003.12, g.128603774G>A), HBB-rs34598529 (chr11: 5,227,

100, GenBank: NC_000011.10, g.5227100T>C), G6PD-

rs76723693 (chrX: 154,533,025, GenBank: NC_000023.11,

g.154533025A>G, NP_001346945.1, p.Leu323Pro), MIDN-

rs73494666 (chr19: 1,253,643, GenBank: NC_000019.10,

g.1253643C>T), and ELL2-rs116635225 (chr5: 95,989,447,

GenBank: NC_000005.10, g.95989447G>A) variants are

found disproportionately among individuals of African

ancestry. The EIF5/MARK3-rs370308370 (chr14: 103,044,

696, GenBank: NC_000014.9, g.103044696G>A) and chro-

mosome 16p13.3 alpha-globin locus (rs372755452, chr16:

199,621, GenBank: NC_000016.10, g.199622del) variants

are found only among East Asians. The alpha-globin locus

variant rs868351380 (chr16: 55649, GenBank: NC_000
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016.10, g.55649G>C) and PIEZO1 variant rs763477215

(chr16: 88,717,174, GenBank: NC_000016.10, g.88717

175_88717177TCT[4],GenBank:NP_001136336.2, p.Lys21

69del) are more common among Hispanics/Latinos and Eu-

ropeans, respectively.

Replication of single-variant discoveries

We sought replication for each of the 14 discovered vari-

ants in INTERVAL, the Kaiser Permanente GERA Study,

the WHI-SHARe study, and UKBB phase 1 European and

phase 2 African and East Asian samples (Table S12). Several

of the rare variants (SHANK2-rs535577177, 10q26-

rs986415672, 19q12-rs1368500441, EIF5/MARK3-rs37030

8370, and HBB-rs11549407 [chr11: 5,226,774, GenBank:

NC_000011.10, g.5226774G>A, GenBank: NP_000509.1,

p.Gln40Ter]) were not available for testing in any of the

replication studies due to low frequency, population

specificity, and/or poor imputation quality. For eight of

the nine lead variants with available genotype data for

testing, we successfully replicated each of the trait-specific
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associations for HBB-rs34598529, HBA1-rs868351380

(chr16: 55,649, GenBank: NC_000016.10, g.55649G>C),

HBA1-rs372755452 (chr16: 199,622, GenBank: NC_000

016.10, g.199622del), RPN1, ELL2, PIEZO1, G6PD, and

MIDN (meta-analysis p < 5.6E�3, 0.05/9 loci, with consis-

tent directions of effect). The replication p value for the

lead variant at TMPRSS6 did not reach the predetermined

significance threshold, but the association was direction-

ally consistent. We further note that several of our identi-

fied TOPMed single variant-RBC trait associations (RPN1,

HBB-rs11549407 and -rs34598529, and MIDN) reached

genome-wide significance in recently published very large

European ancestry or multi-ethnic imputed GWASs.19,21,46

Relationship of single variants discovered in TOPMed to

previously known RBC genetic loci

Several of the variants we discovered in the single-variant

association analysis (particularly those replicated in inde-

pendent samples) in Table 2 are located within genomic re-

gions known to harbor common variants associated with

RBC quantitative traits and/or variants responsible for

Mendelian blood cell disorders, such as hemoglobinopa-

thies (HBB, HBA1/HBA2 [MIM: 141850]) and various he-

molytic or non-hemolytic anemias (G6PD, PIEZO1,

TMPRSS6, and GATA2-RPN1 [MIM: 137295]). At the HBB

locus, the lead variant associated with lower HCT, HGB,

MCHC, and MCV is a LoF variant (rs11549407 encoding

p.Gln40Ter, MAF ¼ 0.026%) while the lead variant associ-

ated with lower MCH and higher RBC, and higher RDW is

a variant located within the HBB promoter region

(rs34598529, MAF ¼ 0.083%). At the HBA1/HBA2 locus,

the lead variant for MCH and MCV, rs868351380 (MAF ¼
0.022%), is located �125 kb upstream of HBA1/HBA2 in

an intron of SNRNP25, and the lead variant for RBC,

rs372755452 (MAF ¼ 0.010%), is located �30 kb down-

stream of HBA1/HBA2 in an intron of LUC7L (MIM:

607782). The GATA2-RPN1 locus, which contains variants

previously reported for association with MCH and RDW in

a European-only analysis (rs2977562 [chr3:128,387,424,

GenBank: NC_000003.12, g.128387424A>G] and

rs147412900 [chr3:128,575,268, GenBank: NC_000003.

12, g.128575268G>A]),13 was associated with MCH and

MCV in TOPMed (lead variant rs112097551, p ¼
4.27E�11). The MAF of the lead variant at the GATA2-

RPN1 locus in all TOPMed samples is 0.4% but is 5.9 times

more common among African than non-African samples

according to gnomAD. At the G6PD locus, the lead variant

associated with lower RDW was a missense variant

rs76723693, which encodes p.Leu323Pro. At the PIEZO1

locus, the most significant variant was an in-frame 3 bp

deletion rs763477215 (p.Lys2169del) associated with

higher MCHC. While the index SNP rs228914 at TMPRSS6

has not been previously associated with RBC parameters,

rs228914 is a cis-eQTL for TMPRSS6 and an LD surrogate

rs228916 (chr22: 37,109,512, GenBank: NC_000022.11,

g.37109512C>T) has been previously associated with

serum iron levels.47 The remaining genetic loci (SHANK2,
The Ame
ELL2, 19q12, 10q26, EIF5/MARK3, and MIDN) have less

clear functional relationships to RBC phenotypes. More-

over, the lead variants at EIF5/MARK3 and MIDN for

MCH and the lead variant at TMPRSS6 for MCH and

MCV were partially attenuated in the trait-agnostic condi-

tional analysis.

Iterative conditional analysis identifies extensive allelic

heterogeneity at HBB locus

We next performed stepwise conditional analysis to dissect

association signals within each of the six loci harboring

more than one genome-wide significant variants in the

RBC trait-specific conditional analysis. One of the six re-

gions (HBB) was found to have multiple, genome-wide sig-

nificant variants independent of previously reported loci.

The largest number of independent signals were observed

for association with MCH (11 signals, Table S13). All inde-

pendent variants at the HBB locus had MAF < 1%. No

secondary independent signals were discovered in other re-

gions (HBA1/2, ELL2, MIDN, TMPRSS6, and G6PD). For

each RBC trait, we estimated the PVE by the set of LD-

pruned known variants, by the conditionally independent

variants identified in stepwise conditional analysis, and by

both sets together (Table S14). In total, the PVE ranged

from 3.4% (HCT) to 21.3% (MCH). The identified set of ge-

netic variants that have not been described previously ex-

plained up to 3% of phenotypic variance (for MCH and

MCV).

Rare variant aggregated association analysis

We next examined rare variants with MAF < 1% in

TOPMed, aggregated based on protein-coding and non-

coding gene units from GENCODE. To enrich for likely

causal variants in the aggregation units, we used five

different variant grouping and filtering strategies based

on coding sequence and regulatory (gene promoter/

enhancer) functional annotations (see supplemental

methods). After accounting for all previously reported

RBC trait-specific single variants, a total of five loci were

significantly associated with one or more RBC traits using

various aggregation strategies (Tables 3 and S15). These

include genes encoding HBA1/HBA2, TMPRSS6, G6PD,

and CD36 (MIM: 173510), as well as several genes and

non-coding RNAs within the beta-globin locus on chromo-

some 11p15 (HBB, HBG1 [MIM: 142200], CTD-264317.6

[MIM: 604927], OR52H1, RF60021, and OR52R1). Some

of the gene units in the chromosome 11p15 beta-globin re-

gion (HBG1, OR52R1, and RF00621) became non-signifi-

cant after further adjustment for all known RBC variants

in the trait-agnostic conditional analysis (Table 3). After

additionally accounting for all 11 independent single-

variant signals identified in TOPMed at the HBB locus in

stepwise conditional analysis (Table S13), as well as all

trait-specific known variants, five coding genes remained

significant (HBA1/HBA2, HBB, TMPRSS6, G6PD, and

CD36, Table S16) and two additional genes (TFRC [MIM:

190010] and SLC12A7 [MIM: 604879]) reached
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Table 3. Genome-wide significant genes in the aggregated association analysis in TOPMed

Trait
Chr
(GRCh38)

Start
(GRCh38)

End
(GRCh38) Gene

No. of
variants MAC p pconditional1

a pconditional2
b

HCT 11 5225464 5229395 HBB 15 76 1.27E�23 1.35E�23 5.91E�18

11 5224309 5225461 AC104389.6 94 1,395 1.85E�13 6.23E�15 3.32E�11

HGB 11 5225464 5229395 HBB 15 76 2.06E�35 8.99E�30 7.44E�29

11 5224309 5225461 AC104389.6 94 1,394 1.29E�18 2.43E�17 1.05E�23

MCH 11 5224309 5225461 AC104389.6 83 1,078 6.76E�100 2.87E�104 5.51E�95

11 5225464 5229395 HBB 34 126 9.53E�76 2.76E�78 3.11E�75

11 5224448 5224639 RF00621 588 12,096 1.93E�20 4.02E�20 1.28E�12

11 5544489 5548533 OR52H1 8 441 6.15E�16 6.13E�17 9.82E�18

11 5248079 5249859 HBG1 526 7,852 9.95E�09 8.61E�9 8.36E�4

16 176680 177522 HBA1 16 30 4.97E�6 5.95E�9 1.98E�9

22 37065436 37109713 TMPRSS6 243 3,317 6.77E�07 9.92E�12 1.16E�9

X 154531391 154547572 G6PD 59 599 2.32E�06 6.59E�7 2.50E�7

MCHC 11 5224309 5225461 AC104389.6 88 1,225 2.37E�64 5.01E�40 8.73E�39

11 5225464 5229395 HBB 36 136 4.07E�34 1.04E�33 2.65E�31

11 5544489 5548533 OR52H1 8 502 3.88E�07 2.12E�6 7.50E�7

MCV 11 5224309 5225461 AC104389.6 86 1,148 2.29E�153 1.40E�148 4.75E�108

11 5225464 5229395 HBB 35 130 4.10E�82 6.02E�86 1.11E�81

11 5224448 5224639 RF00621 597 12,848 3.11E�37 1.56E�30 2.74E�16

11 5544489 5548533 OR52H1 8 468 1.07E�19 3.29E�19 4.50E�22

11 5248079 5249859 HBG1 546 8,321 4.46E�15 5.71E�8 1.79E�2

16 176680 177522 HBA1 16 30 5.11E�4 2.03E�6 9.24E�7

22 37065436 37109713 TMPRSS6 252 3,567 8.61E�06 9.11E�10 9.90E�8

X 154531390 154547572 G6PD 82 732 2.19E�12 2.70E�13 7.06E�14

RBC 11 5224309 5225461 AC104389.6 81 1,036 9.51E�57 5.47E�60 2.55E�44

11 5225464 5229395 HBB 34 113 2.24E�24 5.35E�28 6.06E�25

11 5224448 5224639 RF00621 576 11,551 6.13E�15 7.39E�15 7.31E�7

11 4803433 4804380 OR52R1 72 1,551 4.48E�09 1.87E�9 9.37E�2

11 5248079 5249859 HBG1 517 7,502 2.74E�07 4.09E�8 3.49E�1

X 154531390 154547572 G6PD 58 574 1.29E�06 2.99E�9 3.49E�8

RDW 7 80369575 80679277 CD36 178 1,537 3.28E�4 6.45E�7 2.46E�6

11 5224309 5225461 AC104389.6 73 702 1.55E�29 1.19E�30 2.84E�24

11 5225464 5229395 HBB 13 54 2.06E�24 9.07E�27 1.14E�24

11 5544489 5548533 OR52H1 7 300 1.20E�08 4.55E�9 7.08E�9

11 5224448 5224639 RF00621 480 8,119 1.80E�08 1.21E�8 2.01E�4

22 37065436 37109713 TMPRSS6 72 614 2.89E�07 1.38E�7 4.86E�8

X 154531390 154547572 G6PD 47 449 2.13E�24 6.71E�27 8.33E�21

Conditional analysis at the HBA1/2 locus was performed in a subset of TOPMed samples with available alpha-globin CNV data. Abbreviations are as follows: Chr,
chromosome; MAC, minor allele counts; HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin con-
centration; MCV, mean corpuscular volume; RBC, red blood cell count; RDW, red blood cell width.
aIn the first conditional analysis, trait-specific reported variants were adjusted in the model. All genes that reached genome-wide significance in the trait-specific
conditional analysis were presented.
bIn the second conditional analysis, all reported variants regardless of associated traits were adjusted in the model.
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significance threshold (Table S16). AC104389.6, a non-

coding gene 2 bp downstream of HBB, was also found sig-

nificant in the aggregation approach where we included

upstream regulatory variants, but the variants including

in this unit are predominately the same ones tested in

the HBB gene unit and hence we have not reported this

gene unit as a distinct signal.

Notably, each of the seven genes (HBA1/HBA2, HBB,

TMPRSS6, G6PD, CD36, TFRC, and SLC12A7) identified

in rare variant aggregate analyses are known to harbor

common non-coding or coding variants previously associ-

ated with RBC traits or disorders. We further explored the

overall patterns of association, individual rare variants

driving the associations, and their annotations (Figure S5

and Table S17). Several observations are noteworthy. (1)

In general, for each gene, there are multiple rare missense

and small indel (frameshift or stop-gain) variants contrib-

uting to the aggregate association signals, rather than a

single strongly associated variant. (2) The patterns of

phenotypic association are generally uni-directional and

consistent with the biologic contribution of these genes

to inherited RBC disorders: HBA1 and HBB variants are

associated with lower MCV/MCH, with HBB variants

additionally associated with lower HCT/HGB and higher

RBC/RDW, consistent with ineffective erythropoiesis and

shortened red cell survival in alpha and beta thalassemia;

TMPRSS6 variants associated with lower MCH/MCV (Fig-

ures S5C16-19 and S5E13-14) and higher RDW

(Figure S5G14), consistent with iron-refractory iron defi-

ciency anemia. On the other hand, for G6PD rare variants,

a bi-directional pattern of phenotypic association was

observed for MCH, MCV, RBC, and RDW. (3) Several of

the variants contributing to the HBA1, HBB, TMPRSS6,

andG6PD signals are known to be pathogenic for inherited

RBC disorders. Other variants that appear to contribute to

the gene-based phenotypic effect are classified in ClinVar

as variants of uncertain significance (VUSs) or have con-

flicting evidence to support their pathogenicity. (4) Three

of the genes (CD36, TFRC, and SLC12A7) are located

within regions of the genome containing common vari-

ants previously associated with RBC traits but have less

clear relation to RBC biology. The presence of rare coding

or LoF variants within these genes provides additional

fine-mapping evidence that these three genes are causally

responsible for RBC phenotypic variation.

pLoF and pKO variants associated with RBC traits

Predicted loss-of-function (pLoF) and predicted gene

knockout (pKO) variants were examined in European, Afri-

can, Hispanic, and Asian ancestry populations in TOPMed.

The European ancestry population subset had the largest

sample size and the largest number of both pLoF and

pKO variants (Table S18). Two pLoF variants reached

genome-wide significance, namely CD36-rs3211938

(chr7:80,671,133, GenBank: NM_000072.3, c.975T>G,

GenBank: NP_000063.2, p.Tyr325Ter) for RDW in African

participants and HBB-rs11549407 for multiple RBC traits
The Ame
in Hispanic and European participants (Table S19), which

have been reported in previously published studies. No

pKO variant reached genome-wide significance in any of

the ancestral groups (Table S20). All pLoF and pKO variants

with p < 1E�4 are presented in Tables S19 and S20.

Gene editing in human erythroid precursors and

xenotransplantation of edited primary HSPCs identifies

RUVBL1 as likely target gene of RPN1-rs112097551

In silico functional annotation of the RPN1-rs112097551

variant revealed a CADD-PHRED score of 20.4 and that

the variant lies in a putative enhancer element bound by

erythroid transcription factors GATA1 and TAL1. We there-

fore undertook additional experiments to investigate the

causal gene underlying the association signal. First, we

used cytosine base editing to modify the rs112097551

reference G to alternative A allele in HUDEP-2 erythroid

precursor cells. Since there was no appropriately posi-

tioned NGG PAM motif, we utilized the recently described

near-PAMless SpCas9 variant cytosine base editor AncBE4-

max-SpRY,41 achieving 33% G-to-A conversion efficiency

(Figure 1A). Analysis of erythroblast promoter capture Hi-

C datasets showed that the SNP interacts with RUVBL1

(MIM: 603449) which is 500 kb upstream but not with

intervening genes which include RPN1 and the hemato-

poietic transcription factor GATA2 (Figure 1B). In five G/

A heterozygous HUDEP-2 clones compared to G/G clones,

we observed significantly reduced expression of RUVBL1

without significant change in expression of four more

proximal genes EEFSEC (MIM: 607695), GATA2, RPN1,

and RAB7A (MIM: 602298) (Figure 1C). Next, we per-

formed SpCas9 nuclease editing to produce indels adjacent

to rs112097551 in CD34þ hematopoietic stem/progenitor

cell (HSPC) derived primary erythroid precursors (Figures

1D and 1E). Cells bearing these short insertions and dele-

tions centered 3 bp from the rs112097551 position

demonstrated significantly reduced RUVBL1 expression

compared to control cells, while RPN1 and RAB7A expres-

sion was unchanged (Figure 1F). Together, these base and

nuclease editing results suggest that rs112097551-G con-

tributes to a regulatory element that exerts long-range con-

trol of RUVBL1 expression. Prior work has shown the

mouse homolog of RUVBL1 is required for murine hemato-

poiesis.48 To test the role of RUVBL1 in human hematopoi-

esis, we performed gene editing studies in CD34þ HSPCs in

which we targeted indels to coding sequences at RUVBL1.

We observed 96.1% indels at RUVBL1 compared to 84.2%

indels in control cells targeted at a neutral locus. We

infused edited HSPCs to immunodeficient NBSGW mice

and analyzed bone marrow after 16 weeks for engrafting

human hematopoietic chimerism and gene editing.

Compared to CD34þHSPCs edited at a neutral locus which

showed 91.6% mean human chimerism, human CD34þ

HSPCs edited at RUVBL1 demonstrated only 7.7% mean

chimerism (Figures 1G–1I). Engrafting human cells were

marked by frequent gene edits (60.1%) when targeted at

the neutral locus but only 4.8% gene edits after RUVBL1
rican Journal of Human Genetics 108, 874–893, May 6, 2021 883
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Figure 1. Gene editing implicates RUVBL1 in rs112097551 association
(A) TheMCV/MCH-associated variant rs112097551 was targeted by cytosine base editing in HUDEP-2 cells expressing AncBE4max-SpRY
and sgRNA to convert G-to-A. Sequencing chromatogram and heatmap of bulk edited HUDEP-2 cells generated by EditR analysis.
(B) Promoter capture Hi-C from ChiCP analysis49 of erythroblasts.50

(C) Gene expression measured by RT-qPCR in rs112097551-G/G (n ¼ 5) and -G/A (n ¼ 5) HUDEP-2 base edited clones. Expression
normalized to mean of G/G clones for each gene.
(D) Representative allele table demonstrating type and frequency of indels following nuclease editing in CD34þHSPCs following 3xNLS-
SpCas9:sgRNA electroporation. Indels analyzed by TIDE analysis.45

(E) Indel frequency measured by Sanger sequencing with TIDE analysis in CD34þ HSPCs 4 days following 3xNLS-SpCas9:sgRNA electro-
poration with indicated sgRNA (n ¼ 3 biological replicates).
(F) Gene expression measured by RT-qPCR in CD34þ HSPCs 4 days following 3xNLS-SpCas9:sgRNA targeting adjacent to rs112097551
compared to neutral locus. Expression of EEFSEC and GATA2 was undetectable in HSPCs.

(legend continued on next page)
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editing, indicating that RUVBL1 edited cells inefficiently

engrafted. Together these results suggest rs112097551-G

contributes to long-range enhancement of RUVBL1 expres-

sion, which in turn supports human hematopoiesis.
Discussion

We report here a WGS-based association analysis of RBC

traits in an ethnically diverse sample of 62,653 participants

from TOPMed. We identified 14 association signals across

12 genomic regions conditionally independent of previ-

ously reported RBC trait loci and replicated eight of these

(RPN1, ELL2, PIEZO1, G6PD, MIDN, HBB-rs34598529,

HBA1-rs868351380, and HBA1-rs372755452) in indepen-

dent samples with available imputed genome-wide geno-

type data. The replicated association signals are described

further below. Stepwise, iterative conditional analysis of

the beta-globin gene regions on chromosomes 11 addi-

tionally identified 12 independent association signals at

the HBB locus. Further investigation of aggregated rare var-

iants identified seven genes (HBA1/HBA2, HBB, TMPRSS6,

G6PD, CD36, TFRC, and SLC12A7) containing significant

rare variant association signals independent of previously

reported and unreported discovered RBC trait-associated

single variants. For the RPN1 locus, we used base and

nuclease editing to demonstrate that the sentinel variant

rs112097551 acts through a cis-regulatory element that ex-

erts long-range control of the gene RUVBL1which is essen-

tial for hematopoiesis.

Our study highlights the benefits of increasing partici-

pant ethnic diversity and coverage of the genome in ge-

netic association studies of complex polygenic traits.

Among the 24 unique independent variants we identified

in the single variant association analyses, 21 showed

MAF < 1% in all TOPMed samples and 18 were monomor-

phic in at least one of the fourmajor contributing ancestral

populations in our analysis (European, African, East Asian,

and Hispanic). These low-frequency or ancestry-specific

variants were most likely missed by previous GWAS anal-

ysis using imputed genotype data or focusing on one

ancestral population (Table S13).
GATA2-RPN1

Here we report and replicate a distinct low-frequency

variant (MAF ¼ 0.4% overall but considerably higher fre-

quency among African [0.94%] than European [0.07%]

ancestry individuals) associated with higher MCH and

MCV in TOPMed (rs112097551). The region between

GATA2 and RPN1 on chromosome 3q21 contains several
(G) Indel frequency following 3xNLS-SpCas9:sgRNA targeting RUVBL
RNP electroporation or engrafted bone marrow samples 16 weeks af
(H) Representative flow cytometry of human and mouse CD45þ cells
tative of 3 mice).
(I) Mean human hematopoietic chimerism determined by hCD45þ/
infusion (n ¼ 3 mice per group).
Student’s t test (two-tailed test). ***p < 0.001; **p < 0.01; *p < 0.0
deviation.

The Ame
common variants previously associated with various

WBC-related traits in European, Asian, and Hispanic

ancestry individuals and two variants previously associ-

ated with MCH and RDW in Europeans (rs2977562 and

rs147412900).13 GATA2 is a hematopoietic transcription

factor and heterozygous coding or enhancer mutations of

GATA2 are responsible for autosomal-dominant hereditary

mononuclear cytopenia (MIM: 614172), immunodefi-

ciency and myelodysplastic syndromes (MIM: 614286),

as well as lymphatic dysfunction51,52 (MIM: 137295).

There was no evidence of association of the TOPMed

MCH/MCV-associated rs112097551 variant with WBC-

related traits in TOPMed (data not shown), though the

variant was associated with higher monocyte count and

percentage in Astle et al.,9 but was not conditionally inde-

pendent of other variants in the region. The MCV/MCH-

associated rs112097551 variant lies in a putative enhancer

element bound by erythroid transcription factors GATA-1

and TAL-1 and demonstrates physical interaction in eryth-

roblasts with RUVBL1 500 kb away. Our results from gene

editing of RUVBL1 in primary human HPSCs and xeno-

transplantation suggest that RUVBL1 plays a role in human

hematopoiesis, consistent with data from mouse models

suggesting that RUVBL1 (which encodes the protein prod-

uct pontin) to be essential for murine hematopoietic stem

cell survival.48 This finding also highlights the complexity

and importance of experimentally validating the causal

gene(s) underlying GWAS signals for complex traits, which

are often assigned according to physical proximity (RPN1)

or assumed on the basis of biologic function (GATA2).
ELL2

The chromosome 5q15 non-coding variant rs116635225

associated with lower MCH also has a low frequency in

TOPMed (1.3%) and is considerably more common among

African ancestry individuals (3.9%). The rs116635225

variant is located �27 kb upstream of ELL2, a gene respon-

sible for immunoglobulin mRNA production and tran-

scriptional regulation in plasma cells. Coding and regula-

tory variants of ELL2 have been associated with risk of

multiple myeloma in European and African ancestry indi-

viduals as well as reduced levels of immunoglobulin A and

G in healthy subjects.53–55 Another set of genetic variants

located �200 kb away in the promoter region of GLRX or

glutaredoxin-1 (rs10067881 [chr5:95,826,771, GenBank:

NC_000005.10, g.95826771G>A], rs17462893 [chr5:95,

827,733, GenBank: NC_000005.10, g.95827733A>G],

rs57675369 [chr5:95,826,714, GenBank: NC_000005.10,

g.95826714_95826715insG]) have been associated with
1 coding sequence or neutral control locus in input cell 4 days after
ter infusion to NBSGW mice.
from NBSGW bone marrow 16 weeks after cell infusion (represen-

total CD45þ cells from NBSGW bone marrow 16 weeks after cell

5; ns, not significant. All error bars indicate mean and standard
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higher reticulocyte count in UKBB Europeans.9 Glutare-

doxin-1 is a cytoplasmic enzyme that catalyzes the revers-

ible reduction of glutathione-protein mixed disulfides and

contributes to the antioxidant defense system. Congenital

deficiencies of other members of the glutaredoxin enzyme

family (GLRX5 [MIM: 609588]) have been reported in pa-

tients with sideroblastic anemia (MIM: 300751).56–58

Notably, our ELL2 rs116635225 MCH-associated variant

remained genome-wide significant after conditioning on

the myeloma or reticulocyte-related variants. Therefore,

the precise genetic regulatory mechanisms of the red cell

trait associations in this region remain to be determined.

MIDN

The chromosome 19p13 African variant rs73494666 asso-

ciated with lower MCV/MCH is located in an open chro-

matin region of an intron of MIDN, which encodes the

midbrain nucleolar protein midnolin. The gene-rich re-

gion on chromosome 19p13 also includes SBNO2 (MIM:

615729), STK11 (MIM: 602216), CBARP, ATP5F1D (MIM:

603150), CIRBP (MIM: 602649), EFNA2 (MIM: 602756),

and GPX4 (MIM: 138322). However, none of these genes

have clear relationships to hematopoiesis or red struc-

ture/function. Other variants in the region have been asso-

ciated with MCH and RBC count (rs757293, chr19:

1,277,428, GenBank: NC_000019.10, g.1277428T>C)13

or reticulocytes (rs35971149, chr19:1,164,199, GenBank:

NC_000019.10, g.1164199del).9 The MIDN- rs73494666

variant overlaps ENCODE cis-regulatory elements for

CD34 stem cells and other blood cell progenitors.

PIEZO1

Mutations in the mechanosensitive ion channel PIEZO1

on chromosome 16q24 have been reported in patients

with autosomal-dominant hereditary xerocytosis (MIM:

194380), a congenital hemolytic anemia associated with

increased calcium influx, red cell dehydration, and potas-

sium efflux along with various red cell laboratory

abnormalities including increased MCHC, MCH, and

reticulocytosis.59,60 Most reported hereditary xerocytosis

PIEZO1missensemutations are associated with at least par-

tial gain-of-function and are located within the highly

conserved C-terminal region near the pore of the ion chan-

nel. In some individuals carrying PIEZO1 missense muta-

tions, mild red cell laboratory parameter alterations

without frank hemolytic anemia have been reported.61

The PIEZO1 3 bp short tandem repeat (STR) rs763477215

in-frame coding variant (p.Lys2169del) associated with

higher MCHC in TOPMed is extremely rare in all popula-

tions except for the Ashkenazi Jewish population (fre-

quency of 1.5% in gnomAD), has not been previously asso-

ciated with hereditary xerocytosis, and therefore has been

reported as ‘‘benign’’ in ClinVar. The p.Lys2169del variant

is located in a highly basic -Lys-Lys-Lys-Lys- motif near the

C terminus of the 36 transmembrane domain protein

within a 14-residue linker region between the central ion

channel pore and the peripheral propeller-like mechano-
886 The American Journal of Human Genetics 108, 874–893, May 6,
sensitive domains important for modulating PIEZO1 chan-

nel function.62,63 Interestingly, another 3 bp in-frame dele-

tion of PIEZO1 (E756del) reported to be highly enriched in

prevalence among African populations was recently associ-

ated with dehydrated red blood cells and reduced suscepti-

bility tomalaria.64,65 In TOPMed, however, we were unable

to confirm any association between the rs59446030

(chr16:88,733,965, GenBank: NM_001142864.4, c.2247_

2249GGA[7], GenBank: NP_001136336.2, p.Glu756del)

putative malaria-susceptibility allele variant and pheno-

typic variation in MCHC (p value for trait-specific condi-

tional analysis ¼ 0.42).

TMPRSS6

TMPRSS6 on chromosome 22q12 encodes matriptase-2, a

transmembrane serine protease that downregulates the

production of hepcidin in the liver and therefore plays

an essential role in iron homeostasis.66 Rare mutations of

TMPRSS6 are associated with iron-refractory iron defi-

ciency anemia (MIM: 206200)67 characterized by micro-

cytic hypochromic anemia and low transferrin saturation.

Several common TMPRSS6 variants have been associated

with multiple RBC traits through prior GWASs. The com-

mon TMPRSS6 intronic variant associated with TMPRSS6

expression and lower MCH/MCV in TOPMed (rs228914/

rs228916) was previously reported to be associated with

lower iron levels,47 and therefore likely contributes to

lower MCH and MCV via iron deficiency. In rare variant

aggregated association testing, we were able to identify

several additional rare codingmissense, stop-gain, or splice

variants that appear to drive the gene-based association of

TMPRSS6 with lower MCH/MCV and higher RDW. At least

one of these variants at exon 13 rs387907018

(chr22:37,073,550, GenBank: NC_000022.11, g.370735

50C>T, GenBank: NP_705837.1, p.Glu522Lys, missense

mutation) has been reported in a compound heterozygous

iron-refractory iron deficiency anemia (IRIDA [MIM:

206200]) patient,68 suggesting that inheritance of this or

similar LoF variants in the heterozygote state may

contribute to mild reductions in MCV/MCH or increased

RDW.67

G6PD

X-linked G6PD mutations (glucose-6-phosphate dehydro-

genase) are the most common cause worldwide of acute

and chronic hemolytic anemia. The G6PD-rs76723693

low-frequency missense variant (p.Leu323Pro, referred to

asG6PDNefza69) is common in persons of African ancestry

and is associated with lower RDW in TOPMed. In persons

of African ancestry, the p.Leu323Pro variant is often co-in-

herited with another G6PD missense variant, p.As-

n126Asp, encoded by rs1050829 (chrX:154,535,277, Gen-

Bank: NC_000023.11, g.154535277T>C, GenBank:

NP_001346945.1, p.Asn126Asp). The 968C/376G haplo-

type in African ancestry individuals constitutes one of

several forms of the G6PD variant A-.70–73 Functional

studies of the p.Leu323Pro, p.Asn126Asp, and the double
2021



mutant suggest the p.Leu323Pro variant is the primary

contributor to reduced catalytic activity.74 In the US,

another African ancestryG6PDA- variant is due to the hap-

lotypic combination of rs1050829 and rs1050828

(chrX:154,536,002, GenBank: NC_000023.11, g.154536

002C>T, GenBank: NP_001346945.1, p.Val68Met), which

has an allele frequency of �12%. Our finding that

rs76723693 is significantly associated with lower RDW af-

ter conditioning on rs1050828 is consistent with the inde-

pendence of effects of the G6PD Nefza and A- variants on

red cell physiology and morphology. Importantly, both

rs76723693 and rs1050828G6PD variants were recently re-

ported to have the effect of lowering hemoglobin A1c

(HbA1c) values and therefore should be considered when

screening African Americans for type 2 diabetes (MIM:

125853).75

In gene-based analyses, several additional G6PD

missense variants contributed to the aggregated rare

variant association signals for MCH, MCV, RBC, and

RDW, including the class II Southeast Asian Mahidol

variant p.Gly163Ser (rs730880992, chr12:112,453,349,

GenBank: NC_000012.12, g.112453349G>A, GenBank:

NP_002825.3, p.Gly163Cys)76 and the class II Union

variant p.Arg454Cys (rs398123546, chrX:154,532,390,

GenBank: NC_000023.11, g.154532390G>A, GenBank:

NP_001035810.1, p.Arg454Cys).77 For a third previously

reported variant associated with G6PD deficiency, the

East Asian class II Gahoe variant p.His32Arg

(rs137852340, chrX: 154,546,061, GenBank: NM_001360

016.2, c.95A>G, GenBank: NP_001346945.1, p.His32

Arg),78 there is conflicting evidence of pathogenicity in

ClinVar. Of the two female rs137852340 variant allele car-

riers in TOPMed, one has a normal RDW and one has an

elevated RDW. These findings add to the further geno-

typic-phenotypic complexity and clinical spectrum of

G6PD deficiency, which is influenced by its sex-linkage

and zygosity, residual G6PD variant enzyme activity and

stability, genetic background, and environmental expo-

sures.79

HBB

Heterozygosity for the common African HBB-rs334 hemo-

globin S (chr11:5,227,002, GenBank: NC_000011.10,

g.5227002T>A, GenBank: NP_000509.1, p.Glu7Val) or

rs33930165 hemoglobin C (chr11:5,227,003, GenBank:

NC_000011.10, g.5227003C>T, GenBank: NP_000509.1,

p.Glu7Lys) beta-globin structural variants have recently

been associated with alterations in various red cell labora-

tory parameters including lower hemoglobin, MCV,

MCH, and RDW, along with higher MCHC, RDW, and

HbA1c.17,18,20,80–82 In TOPMed, we were able to identify

at least ten additional low-frequency or rare variants

within the HBB locus independently associated with

HGB, RBC, MCV, MCH, MCHC, and/or RDW. Notably,

six of the ten variants correspond to HBB 50 UTR and

promoter regions previously identified in patients with

beta-thalassemia: rs34598529 (chr11:5,227,100, GenBank:
The Ame
NC_000011.10, g.5227100T>C or �29A>G);83 rs339442

08 (chr11:5,227,159, GenBank: NC_000011.10, g.5227

159G>A or�88C>T);84–86 splice site rs33915217 (chr11:5,

226,925, GenBank: NC_000011.10, g.5226925C>G or

IVS1-5G>C);84,87 rs33945777 (chr11:5,226,576, GenBank:

NC_000011.10, g.5226576C>T or IVS2-1G>A);84,87 rs350

04220 (chr11:5,226,820, GenBank: NC_000011.10, g.522

6820C>T or IVS-I-110 G->A),88,89 and nonsense muta-

tions rs11549407 (chr11:5,226,774, GenBank: NC_0

00011.10, g.5226774G>T, GenBank: NP_000509.1, p.Gln

40Lys or p.Gln40Ter).90,91 These findings confirm the

very mild phenotype and clinically ‘‘silent’’ nature of the

heterozygote carrier state of these beta-globin gene vari-

ants.92 Several of these mutations occur more commonly

in populations of South Asian (rs33915217), African

(rs34598529, rs33944208), or Mediterranean (rs115494

07) ancestry. Four additional association signals in the re-

gion—rs73404549 (HBG2, chr11:5,299,424, GenBank:

NC_000011.10, g.5299424C>T), rs77333754 (chr11:5,00

1,853, GenBank: NC_000011.10, g.5001853T>C), rs1189

661759 (chr11:5,183,128, GenBank: NC_000011.10, g.51

83128C>A), and rs539384429 (chr11:5,106,319, Gen-

Bank: NC_000011.10, g.5106319A>G)—are all rare non-

coding variants without obvious functional consequences.

In addition to the HBB protein-coding variants identified

in single-variant analyses, several of the rare variants

driving the aggregate HBB gene-based association with

lower HGB/HCT and MCH/MCV/MCHC and higher

RBC/RDW are similarly previously reported missense,

frameshift, or nonsense mutations previously identified

in beta-thalassemia patients and categorized as pathogenic

in ClinVar (Figure S5 and Table S17).

HBA1/HBA2

Several common DNA polymorphisms located in the

alpha-globin gene cluster on chromosome 16p13.3 have

been associated with red cell traits in large GWASs,7,8,93

including heterozygosity for the common African ances-

tral 3.7 kb deletion which contributes to quantitative

RBC phenotypes among African Americans and His-

panics/Latinos. In TOPMed, we identified two low-fre-

quency variants in single-variant testing associated with

MCH, MCV, and/or RBC count, independently of the 3.7

kb deletion. The rs868351380 variant is found primarily

among Hispanics/Latinos while the rs372755452 variant

is found primarily among East Asians. Neither of these

two non-coding variants is located in any known alpha-

globin regulatory region, and therefore requires further

mechanistic confirmation. By contrast, in gene-based rare

variant analysis, we identified several known alpha-globin

variants associated in aggregate with lower MCH andMCV

including the South Asian variant Hb Q India (HBA1,

rs33984024, chr16:177,026, GenBank: NM_000558.5,

c.193G>C, GenBank: NP_000549.1, p.Asp65His)94–96 and

the African variant Hb Groene Hart (HBA1, rs63750751,

chr16:177,340, GenBank: NM_000558.5, c.358C>T, Gen-

Bank: NP_000549.1, p.Pro120Ser).97–99 In homozygous or
rican Journal of Human Genetics 108, 874–893, May 6, 2021 887



compound heterozygous forms, these latter variants have

been reported in probands with alpha-thalassemia,

whereas heterozygotes generally have mild microcytic

phenotype. Several additional variants contributing to

the HBA1 gene-based rare variant MCH/MCV signal (e.g.,

a 1 bp indel causing frameshift p.Asn79Ter, rs767911847,

chr16:177,070, GenBank: NM_000558.5, c.237del, Gen-

Bank: NP_000549.1, p.Asn79fs) may represent previously

undetected alpha-thalassemia mutations.

CD36, TFRC, and SLC12A7

The presence of rare coding or LoF variants within CD36,

TFRC, and SLC12A7 provides evidence that these genes

are causally responsible for RBC phenotypic variation. A

common African ancestral null variant of CD36

(rs3211938 or p.Tyr325Ter) has been previously associated

with higher RDW and with lower CD36 expression in

erythroblasts.100 In TOPMed, additional CD36 rare coding

variants were associated in aggregate with higher RDW in-

dependent of rs3211938, including several nonsense and

frameshift or splice acceptor mutations, which have been

previously classified as VUSs. Further characterization of

the genetic complexity of the CD36-null phenotype (com-

mon in African and Asian populations) may provide infor-

mation relevant to the tissue-specific expression of this re-

ceptor on red cells, platelets, monocytes, and endothelial

cells and its role in malaria infection and disease

severity.101 TFRC encodes the transferrin receptors (TfR1),

which is required for iron uptake and erythropoiesis.102

While common non-coding variants of TFRC have been

associated with MCV and RDW, the only known TFRC-

related Mendelian disorder is a homozygous p.Tyr20His

(rs863225436, chr3:196,075,339, GenBank: NM_00112

8148.3, c.58T>C, GenBank: NP_001121620.1, p.Tyr20His)

substitution reported to cause combined immunodefi-

ciency affecting leukocytes and platelets but not red

cells.103 Common variants of SLC12A7 encoding the po-

tassium ion channel KCC4 have been associated with

RDWand other RBC phenotypes. While KCC4 is expressed

in erythroblasts,104 its role in red blood cell function is not

well described.105 Further characterization of KCC4 LoF

variants may illuminate the role of this ion transporter in

red cell dehydration with potential implications for treat-

ment of patients with sickle cell disease.106

In summary, we illustrate that expanding coverage of the

genome using WGS as applied to large, population-based

multi-ethnic samples can lead to discovery of variants asso-

ciated with quantitative RBC traits that have not been

described before. Most of the discovered variants were of

low frequency and/or disproportionately observed in

non-Europeans. We also report extensive allelic heteroge-

neity at the chromosome 11 beta-globin locus, including

associations with several known beta-thalassemia carrier

variants. The gene-based association of rare variants within

HBA1/HBA2, HBB, TMPRSS6, G6PD, CD36, TFRC, and

SLC12A7 independent of known single variants in the

same genes further suggest that rare functional variants
888 The American Journal of Human Genetics 108, 874–893, May 6,
in genes responsible for Mendelian RBC disorders

contribute to the genetic architecture of RBC phenotypic

variation among the population at large. Together these re-

sults demonstrate the utility of WGS in ethnically diverse

population-based samples for expanding our understand-

ing of the genetic architecture of quantitative hematologic

traits and suggest a continuum between complex traits and

Mendelian red cell disorders.
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