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Abstract: Autism spectrum disorder (ASD) is an early onset, developmental disorder whose genetic
cause is heterogeneous and complex. In total, 70% of ASD cases are due to an unknown etiology.
Among the monogenic causes of ASD, fragile X syndrome (FXS) accounts for 2–4% of ASD cases, and
60% of individuals with FXS present with ASD. Epigenetic changes, specifically DNA methylation,
which modulates gene expression levels, play a significant role in the pathogenesis of both disor-
ders. Thus, in this study, using the Human Methylation EPIC Bead Chip, we examined the global
DNA methylation profiles of biological samples derived from 57 age-matched male participants
(2–6 years old), including 23 subjects with ASD, 23 subjects with FXS with ASD (FXSA) and 11 typical
developing (TD) children. After controlling for technical variation and white blood cell composition,
using the conservatory threshold of the false discovery rate (FDR ≤ 0.05), in the three comparison
groups, TD vs. AD, TD vs. FXSA and ASD vs. FXSA, we identified 156, 79 and 3100 differentially
methylated sites (DMS), and 14, 13 and 263 differential methylation regions (DMRs). Interestingly,
several genes differentially methylated among the three groups were among those listed in the SFARI
Gene database, including the PAK2, GTF2I and FOXP1 genes important for brain development.
Further, enrichment analyses identified pathways involved in several functions, including synaptic
plasticity. Our preliminary study identified a significant role of altered DNA methylation in the
pathology of ASD and FXS, suggesting that the characterization of a DNA methylation signature may
help to unravel the pathogenicity of FXS and ASD and may help the development of an improved
diagnostic classification of children with ASD and FXSA. In addition, it may pave the way for devel-
oping therapeutic interventions that could reverse the altered methylome profile in children with
neurodevelopmental disorders.

Keywords: DNA methylation; fragile X syndrome; autism spectrum disorder; epigenetic; CpG

1. Introduction

According to the recently revised DSM-5, ASD is defined as a neurological and a
neurodevelopmental disorder with deficits in two core symptom domains: (i) language,
social communication and interaction, and (ii) restricted, repetitive behaviors [1]. Because
of the genetic heterogeneity paired with a variable clinical presentation, ASD, with a
prevalence of 1 in 59 children, is classified as an extremely complex disorder [2]. In ASD, the
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male-to-female ratio is 4:1 and the suggested protective/male susceptibility is supported by
the observed excessive burden of de novo and inherited single nucleotide variants (SNVs),
copy-number variants (CNVs) [3,4], and biallelic mutations, in females [5]. Approximately
75% of ASD cases have no known cause [6]. Genetic causes of ASD include de novo point
mutations [7,8], common variants [9], rare de novo variants, copy number variations [10,11],
recessive mutations [12], biallelic-loss of-function and missense mutations [5], particularly
in genes involved in neurodevelopment and postzygotic mosaic mutations [13]. However,
a great proportion of ASD cases is not explained by the above mechanisms; therefore, more
studies are needed to assess the additional genetic contributions to ASD risk.

Importantly, ASD is thought to result from multiple interacting genes and epigenetic
and environmental factors. Epigenetic modifications, with DNA methylation being the most
well-characterized and studied, are pivotal to developmental and regenerative biology [14].
Several studies have suggested a key epigenetic role in the etiology of ASD, indicating
that many genes linked to ASD encode for proteins that regulate chromatin remodeling,
nucleosome assembly or DNA or histone modifications [15]. An array of ASD risk genes,
including but not limited to, methyl CpG-binding protein 2 (MECP2), protein kinase C β

gene (PRKCB1), oxytocin receptor gene (OXTR), B-cell lymphoma 2 (BCL2), retinoic acid-
related orphan receptor α (RORA), SHANK3, β-catenin and zinc finger protein 57 (ZFP57)
contribute to ASD pathogenesis when epigenetically altered [16–18]. These findings agree
with several studies in which genes with a role in epigenetic pathways were found to
represent a large percentage of the candidate genes involved in ASD [7,19,20].

Fragile X syndrome (FXS) is the most common monogenic cause of ASD with ~60%
of FXS individuals presenting with autism spectrum disorder [21,22]. FXS is caused by
a long (>200) CGG trinucleotide repeat expansion, which suppresses the FMR1 gene
transcription via hypermethylation of the promoter and of the repeat located within the
5′-UTR of the gene. This results in transcriptional shut-down and the absence or reduced
expression of the encoded gene product, FMRP [23] mRNA-binding translational regulator
and a modulator of synapse maturation and plasticity [24]. Further, multiple functions
of FMRP have been validated, including editing, chromatin binding, microRNA, and
gating of ion channels [25]. In addition, the involvement of FMRP in the pathogenesis of
ASD has been demonstrated, which is consistent with the observed overlapping clinical
manifestations of FXS and ASD. It has been reported that genes harboring ASD risk
mutations are enriched in FMRP targets [26–28] and a lower FMRP expression has been
detected in several neurodevelopmental disorders [29–31].

Several studies have demonstrated that alterations in epigenetic processes can lead to
several neuropsychiatric conditions, including FXS and ASD [32,33]. In FXS, the epigenetic
silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene, specifically by DNA
methylation and histone modifications, results in the loss of the encoded protein, FMRP,
with genome-wide consequences due to the role of FMRP in regulating the expression of
several coding and non-coding RNAs [34]. As a result, the regulation of transcription of
many genes, including those playing a role in synaptic plasticity and neuronal functions, is
affected in FXS.

There is a lack of studies showing differences in the DNA methylation profile of
idiopathic ASD and FXS with ASD (FXSA). Thus, here we investigated the genome-wide
DNA methylation profiles of children with FXSA, ASD, and compared them to TD children.
Global methylation at 850,000 CpG sites spanning the whole genome was investigated to
identify differentially methylated sites (DMS) and associated genes, potentially contributing
to the pathogenesis of ASD and FXSA.

This is of importance, as it could lead to a better understanding of the pathways
involved in these disorders, to independently confirming some of the already identified risk
genes, to developing novel therapeutics approaches, and to the identification of potential
biomarkers for the early detection of these conditions.
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2. Materials and Methods
2.1. Study Participants and Samples

Biological samples were collected from 57 age-matched (2–6 years old) male partic-
ipants, including 23 subjects with a diagnosis of ASD, 23 with a diagnosis of FXSA, and
11 TD children. The mean ages were 4.1 (±1.1 SD) and 3.6 (±1.1 SD) and 3.8 (±1.3 SD), re-
spectively. Written informed consent was obtained from all individuals for the collection of
biological samples under protocols approved by the UC Davis Institutional Review Board
(IRB protocol number: 271070-4, 271070-29) following the ethical and legal regulations and
principles of the Declaration of Helsinki. To confirm ASD diagnosis, both the ADOS [35]
and the DSM-V checklist [36] were used. Demographic data, including age, CGG repeat
number, and mutation category, are shown in Table 1.

Table 1. Demographic and molecular characteristics of participants.

TD ASD FXSA
(n = 11) (n = 23) (n = 23)

Age (Years)

Mean (SD) 3.8 (1.3) 4.1 (1.1) 3.6 (1.1)

Median (Range) 4 (2–6) 4 (2–6) 4 (2–6)

CGG Repeats

Mean (SD) 28.5 (3.1) 28.7 (3.4)
(all > 200)

Median (Range) 30 (21–31) 30 (21–33)

Mutation Category

Full 0 0 12 (52.2%)

Mosaic
(Size/Methylation) 0 0 11 (47.8%)

No Mutation 11 (100%) 23 (100%) 0

2.2. CGG Allele Sizing and Methylation Status

Genomic DNA was extracted from 3 mL of peripheral blood by using the Gentra Pure-
gene Blood Kit (Qiagen, Valencia, CA, USA). The CGG repeat allele size and methylation
status were assessed using a combination of PCR and Southern blot analysis as previously
described [37]. Briefly, for the Southern blot, 10 µg of gDNA was digested with EcoRI and
NruI, run on an agarose gel, transferred on a nylon membrane, and hybridized with the
FMR1-specific dig-labeled StB12.3. Southern blot analysis was also used to determine the
methylation status of the FMR1 alleles (percent of methylation) as previously described [38].
PCR, specifically target FMR1 amplification (AmplideX PCR/CE, Asuragen, Austin, TX,
USA), was used to determine the CGG repeat length; PCR amplicons were visualized by
CE and analyzed as previously reported [39].

2.3. Data Processing

Data processing and analysis were performed in R (version 4.0.2) using minfi, limma,
DMRcate, ChAMP, and methylCC package. As shown in Figure S1, we removed 30,435
(3.52%) probes containing a SNP or at the single nucleotide extension, and 723 probes that
were not detected (detection p-value > 0.1) in more than 5% of the samples were excluded
from the analyses. Additionally, we removed 8155 probes with multiple annotations as
previously described [40]. After quality control, a total of 826,551 (95.46%) probes remained
for analysis. All samples successfully matched as males when comparing the predicted sex
with self-reported sex.

To eliminate between-array differences, a between-array (functional) normalization
(implemented in pre-process Funnorm function of minfi package) was performed using
control probes. After functional normalization, β values were calculated and used to
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represent DNA methylation levels, which is the ratio between the intensities of methylated
versus unmethylated probes, ranging from 0 to 1. Next, we also performed a one-way
ANOVA analysis for the PCs of β value matrix with disease status groups and possible
known batch effect variables. Figure S2 shows that the associations between PCs and array
index, and row index of the array were significantly reduced. This could indicate that the
functional normalization process improves the in-between-array differences.

2.4. Principal Component Analysis

To estimate possible batch effects, a principal component (PC) analysis was performed
using the β value matrix. Figure S3 shows that sex chromosomes are mainly attributed
to the methylation profiles differences between FXSA vs. ASD samples and ASD vs. TD.
After excluding the sex chromosomes, the samples from the three disease status groups
were jumbled all together, and there were no overall differences in their autosomal methy-
lation profiles. This could indicate that the disease status may be associated with DNA
methylation variation at a few other specific sites in the genome.

2.5. Cell Type Composition Estimates

Each sample had estimated relative cell type proportions (CD8T, CD4T, natural killer
cells, B cells, monocytes, and granulocytes cells) using a reference-free method implemented
in the methylCC package [41]. As shown in Figure S4, neutrophil cells were the most
abundant type of blood cells (on average 41.57%) in our samples. To assess whether cell
composition was associated with the disease groups, we performed a Wilcoxon test, using
the estimated cell proportions between the three diseases’, ASD, FXSA and TD, status
groups. The FXSA samples showed a relatively higher proportion of CD4T and B cells,
while the TD samples had relatively higher proportions of granulocytes. There were
no significant differences observed for CD8T, monocytes and NK cells among the three
disease groups.

2.6. Differentially Methylated Sites (DMS)

We performed differential methylation analysis with M values instead of β values, as
the M values have reportedly shown better performance [42]. First, we conducted linear
regression with M values using the R package limma as an unadjusted model. Second, we
applied linear regression with M values and included several factors as model covariates:

M~Disease Status Group + Granulocytes + CD4T + BCell + Intercept
The p-values for regression coefficients in the disease status group variable, were sub-

jected to Benjamini–Hochberg multiple-test correction, and the FDR values were obtained.
Figure S5 shows the QQ-plot indicating that, after adjusting for cell type composition, the
genomic inflation for the p-values from an unadjusted model were significantly reduced.
Moreover, the threshold of FDR <= 0.05 was used in the downstream analysis, resulting in
156, 79, and 3100 significant DMS for TD vs. ASD, TD vs. FXSA, and ASD vs. FXSA, respec-
tively. Afterward, we filtered the probes based on the observed effect size. Two thresholds
of β value between group-wise means were applied, 0.05 and 0.1, yielding DMS with the
largest effects, respectively (Table 2).

Table 2. Number of Differentially Methylated Sites (DMS) identified by the adjusted model.

TD vs. ASD TD vs. FXSA ASD vs. FXSA

FDR ≤ 0.05 156 79 3100

FDR ≤ 0.05 &
BetaAbsDiff ≥ 0.05 53 60 545

FDR ≤ 0.05 &
BetaAbsDiff ≥ 0.1 14 38 42
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2.7. Differential Methylated Regions (DMR)

Regions that were differentially methylated were characterized using M-values and R
package DMRcate that first identified and combined DMS further calculates p-values (Stouf-
fer’s method) with the Benjamini–Hochberg correction. The threshold of HMFDR ≤ 0.05
and the number of significant differential methylation sites within a genomic region ≥ 10
were used in the downstream analysis.

2.8. Gene Set Enrichment Analysis

We used 53, 60 and 545 significant DMS with an absolute effect size of β values at
least 0.05 for gene set enrichment with the methylglm function from the methylGSA R
package [43]. The FDR threshold was set to 0.001. We used REVIGO to summarize the GO
terms [44].

2.9. Measurements of mRNA Expression Levels

Transcript expression levels for a subset of genes were measured by real time quantita-
tive RT-PCR based on (a) their significant differential methylation in children with ASD
and FXSA compared to TD, (b) their involvement in brain functions and the pathology
of neurological disorders, and (c) their association with the promoter regions. Total RNA
from whole blood was isolated using either Tempus tubes (Applied Biosystems, Waltham,
MA, USA) or PAX gene tubes (Qiagen, Valencia, CA, USA) according to the manufacturer’s
instructions. Total RNA quantification was performed using Nanodrop (Thermo Fisher
Scientific, Waltham, MA, USA).

cDNA synthesis was performed in 100 µL aliquots containing 1 × PCR buffer (20 mM
Tris-HCl, pH 8.4, 50 mM KCl) (Gibco/BRL), 5.5 mM MgCl2, 1 mM each dNTP, 5 µM
random sequence deoxyoligonucleotide hexamers (Gibco/BRL), 0.4 U RNAse inhibitor
(Gibco/BRL), and 2.5 U Moloney murine leukemia-virus RT (Gibco/BRL). At least three
concentrations of total RNA (500 ng, 250 ng, and 125 ng per 100 µL reaction) were used for
each sample, to ensure the linearity of the RT-PCR response. The RT temperature profile
was as follows: 25 ◦C for 10 min, 48 ◦C for 40 min, 95 ◦C for 5 min, and final cooling to 4 ◦C.
As a control for genomic contamination, 500 ng total RNA was treated as described above,
with the exception that the RT was omitted.

Assays on demand for the selected genes (Applied Biosystems, Waltham, MA, USA)
were used to measure their mRNA expression levels. Custom designed TaqMan primers
and probe assays (Thermo Fisher Scientific, Waltham, MA, USA) were used to mea-
sure the expression levels of three internal control genes for normalization including
β-glucuronidase (GUS), glyceraldehyde-3-fosfato dehydrogenase (GAPDH) and hypoxan-
thine phosphoribosyltransferase 1 (Hprt1).

2.10. Measurement of Protein Expression Levels

Plasma samples stored at−80 ◦C were thawed at room temperature and the expression
levels of NF2 (Neurofibromin 2) and C11ORF31proteins were measured using human
Neurofibromin/Merlin (NF2) ELISA Kit (MBS9331611) (MyBioSource, San Diego, CA,
USA) and human Selenoprotein H (SelH) ELISA Kit (MBS9312777) (MyBioSource, San
Diego, CA, USA respectively. Briefly, standard dilutions were made according to the
manufacturer’s instruction. Samples and standards were incubated in a 96-well plate
containing primary antibody for one hour at room temperature. This was followed by
treatment with HRP conjugated secondary antibody and incubation with chromogen
solutions whose absorbance was measured at 450 nm using the Biotek Synergy HT plate
reader. The concentration of the unknown samples was measured using the slope of the
linear standard curve.
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3. Results
3.1. Subjects

A total of 57 samples collected from 11 TD, 23 ASD, and 23 FXSA male participants
were included in this study. Fragile-X DNA testing ruled out the presence of an FMR1
CGG expansion in both TD (n = 11) and ASD (n = 23) participants. Among the FXSA
confirmed to have an FMR1 allele with greater than 200 CGG repeats, 52.2% (n = 12) had a
hypermethylated full mutation while 47.8% (n = 11) were mosaics for the presence of both
methylated and unmethylated alleles (Table 1). Among the mosaics, 45.4% (n = 5) were
methylation mosaics (methylated and unmethylated alleles spanning the entire expanded
range), and 54.5% (n = 6) were size mosaics [with a premutation (55-200 CGG repeats) and
a full mutation allele].

3.2. Differentially Methylated Sites (DMS)

The data analysis pipeline is shown in Figure S1. All samples were subjected to
preprocessing and normalization aiming on minimizing technical variation and between-
array differences. As a result, 39,313 (4.54%) probes were eliminated by various quality
control criteria and 826,551 high-quality probes were retained for the downstream analysis.
Functional normalization, as implemented in the minfi package [45], was used to remove
between-array variance. After normalization, PCA analysis of the β values shows that the
samples from the three disease status groups were jumbled all together, and there were
no overall differences in autosomal methylation profiles of these three groups’ samples
(Figure S2). This could indicate that disease status is associated with DNA methylation
variation at few specific sites. Moreover, we estimated the cell type proportions of our
whole blood samples and analyzed differences in the immune cell composition between
the three disease status groups. Significant differences were identified in CD4T, B cell,
and granulocytes. Correlation analysis confirmed variations in cell type compositions
as a strong confounding factor (Figures S3 and S4). Finally, we included the cell type
proportions in the linear regression model for the identification of DMS.

We performed differential methylation analysis with M values, as it is considered
to have a better performance [42]. We assessed genomic inflation by the QQ-plot and
observed that (Figure S5) after adjusting cell type proportions, the genomic inflations of
the unadjusted model were effectively reduced. After applying a conservative discovery
rate threshold (FDR ≤ 0.05), we identified 156 DMS between TD vs. ASD samples, 79 DMS
between TD vs. FXSA samples, and 3100 DMS between ASD vs. FXSA samples (Table 2,
Figure 1). To identify the DMS of greatest interest, we computed the absolute differences
in mean methylation β-values between disease status groups, applying two effect size
thresholds 0.05 and 0.1, and this identified a set of DMS with a large effect size (Table 2,
Figure 2).
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ylated regions. In total, 14 DMRs (differentially methylated regions) were identified be-
tween TD vs. ASD samples, 13 DMRs between TD vs. FXSA samples, and 263 DMRs be-
tween ASD vs. FXSA samples. The regions included the FMR1 gene, consistent with the 
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Figure 2. Venn diagram comparison of DMS among the different disease groups. The left Venn
diagram shows the DMS, which were identified by FDR ≤ 0.05. On the right, the Venn diagram
shows the DMS, identified by FDR ≤ 0.05 and absolute difference of beta value ≥ 0.05.

3.3. Differentially Methylated Regions (DMR)

To analyze the presence of neighborhoods of differential methylation, sites were tested
for agglomeration of individual methylation sites into discrete, differentially methylated
regions. In total, 14 DMRs (differentially methylated regions) were identified between
TD vs. ASD samples, 13 DMRs between TD vs. FXSA samples, and 263 DMRs between
ASD vs. FXSA samples. The regions included the FMR1 gene, consistent with the methyla-
tion status of this locus. Among other regions identified as the most significantly differ-
entially methylated among the groups, there were loci associated with homeobox genes,
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which play important roles in embryonic development and cell differentiation and have
been implicated in human diseases and neurodegeneration [46,47].

3.4. Risk Genes for Autism Are Differentially Methylated and among Those Identified in the
Three Groups

To determine if the genes associated with 53, 60, and 545 DMS (with high effect size,
Table 2) identified in our analysis were associated with ASD, we checked if they were listed
on the SFARI Gene database (which contains genes associated with ASD). Two genes, PAK2
and FANCD2 differentially expressed in TD vs. ASD, three genes, DNMT3A, FOXP1, and
GTF2I differentially expressed in TD vs. FXSA, and seven genes, including PAK2, RASSF9,
ITIH1, ASH1L, SND1, AHNAK, and MINK1, differentially expressed in ASD vs. FXSA, were
among those listed in the SFARI Gene database. In addition, the FMR1 gene, as expected,
was found differentially expressed in both the comparisons between TD vs. FXSA and
ASD vs. FXSA groups.

3.5. Functional Implications of Differentially Methylated Sites

The FMR1 gene showed strong hypermethylation in the FXSA samples, consistent
with the epigenetic silencing observed in FXS. GO (gene ontology) and KEGG enrichment
pathways analyses were carried out for the 53, 60, and 545 DMS (with high effect size).
Surprisingly, there were no significant GO terms and KEGG pathways found for ASD-
related DMS. However, we observed that there were some GO terms that were significantly
enriched with DMS in the FXSA group, including the regulation of cellular protein catabolic
process, regulation of synaptic plasticity, synaptic vesicle exocytosis and regulation of
synaptic vesicle cycle.

3.6. Validation of Gene Expression of a Subset of Differentially Methylated Genes

Gene expression was measured in 14 selected genes that had a significant differential
methylation profile among the 3 groups. Of those, ZNf587, NF2, and C11orf31 genes had
an RNA expression profile in line with their methylation status. The mRNA expression
of ZNf587 was significantly higher in children with ASD (n = 16, p = 0.027) and FXS-
ASD (n = 16, p = 0.054) compared to TD (n = 8) children, who confirmed the observed
hypomethylation profile of ZNf587 in both children with ASD and FXS-ASD compared to
TD. Further, the expression of NF2 mRNA was significantly lower in participants with ASD
(n = 16) than the expression in TD children (n = 8, p = 0.045) and children with FXS-ASD
(n = 16, p = 0.012), which also agreed with the hypermethylation status of CpG sites within
the gene observed in children with ASD compared to TD. Finally, the expression of C11orf31
was significantly higher in FXS-ASD subjects (n = 16) compared to TD (n = 8, p = 0.04) or
ASD (n = 16, p = 0.02), which also agreed with the CpG hypomethylated status observed
in children with FXS-ASD compared to ASD and TD subjects. We further determined
the plasma amount of the C11orf31 and NF2 proteins in the three groups, ASD (n = 23),
FXS-ASD (n = 21), and TD (n = 10), using an ELISA approach. Although there was a trend
of higher expression of C11orf31 protein in FXS-ASD compared to TD and ASD, in line
with the corresponding RNA expression profile, the difference did not reach the statistical
significance. However, NF2 protein was significantly less expressed in ASD compared to
both FXS-ASD (p = 0.055) and TD (p = 0.036), consistent with its lower mRNA expression
levels and with the hypermethylated DNA profile.

4. Discussion

In recent years, research suggests that complex neurodevelopmental disorders, such
as ASD, due to their high heritability, necessitate the involvement of multifactorial causes,
likely an interplay between both genetic and environmental factors. Epigenetics links
genetic and environmental influences, contributing to the alteration of neurodevelopmental
processes [17,48,49].
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Hence, researchers studying ASD and FXS have started delving deeper into the possi-
ble epigenetic mechanisms that might contribute to the clinical phenotypes characterizing
children with these disorders. Usually, studies to identify disease-associated epigenetic
markers aim at determining the role of an identified biomarkers as diagnostic factors,
descriptors, or modulators for the risk and prognosis of the disorder in patients and to
elucidate their roles in the pathogenesis of the disorder [50]. In this study, we used an
epigenetics approach to obtain a global methylation profile in three groups of children,
ASD, FXSA, and TD, matched by age (2–6 years) and gender.

The comparison between the TD group and the ASD group identified an abnormal
methylation pattern of a number of genes, including two genes, PAK2 and the FANCD2, that
were significantly differentially methylated. The PAK2 gene encodes for a serine/threonine
protein kinase; it is highly expressed in the fetal brain, plays a role in a variety of different
signaling pathways, it is activated by the Rho family GTPases, Rac, and Cdc42, and it is a
regulator of the actin cytoskeleton remodeling dynamic [51]. PAK2 is important for brain
development, and its haploinsufficiency leads to autism-related behavior [7,52] and its
inhibition partially restores several synaptic fragile X syndrome phenotypes in the Fmr1
KO mice [53]. Our findings of haploinsufficiency (hypermethylation) of PAK2 in ASD
compared to TD and FXSA, is consistent with the above reports. This suggests a potential
cause leading to the observed defects in spine morphogenesis and altered synaptic function
and could have significant therapeutic implications for this disease.

FANCD2 is a component of the Fanconi anemia (FA) DNA repair pathway, and its
nuclease activity has been shown to have a protective role against expansion in an HD cell
model [54]. Interestingly, the interaction between activated FANCD2 and DNMT1 has been
demonstrated, indicating that, perhaps, the recruitment of DNMT1 by FANCD2 could lead
to the methylation modification of genomic DNA [54].

The comparison between the TD group and the FXS group identified three genes in the
SFARI database that were differentially methylated. The GTF2I gene, a transcription factor
TFII-I highly expressed in the brain, plays a role in brain development, and its haploin-
sufficiency has been implicated in the etiology of language-related disorders [55–57]. This
transcription factor, when activated [58], can enhance or suppress DYX1C1, a transcription
factor, which binds to nuclear ESR1 and ESR2, and promotes their proteasomal degradation,
negatively regulating, therefore, their function [59]. Interestingly, ESR1 and ESR2, as well
as the FMR1 gene, are involved in activating ERK1/2 [59,60], and elevated ERK signaling
has been reported in several studies and in brain tissue derived from both human and
Fmr1 knockout mice [61]. ERK activation through downstream signaling guides to changes
in the cytoskeletal organization, which ultimately leads to the stimulation of neurite out-
growth [62,63]. The FOXP1 gene, which was hypomethylated in FXSA, compared to TD,
encodes for a transcription factor important for early brain development and, interestingly,
variants, deletions, missense mutations FOXP1 are causative for severe forms of ASD,
often comorbid with intellectual disability, language deficits, and congenital anomalies,
including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities [64].

Among the seven genes differentially expressed in the comparison between ASD vs.
FXSA, there were PAK2, described above, differentially methylated in ASD vs. TD, and
RASSF9, a member of the Ras-association domain family (RASSF), whose biological and
physiological role is currently unknown. It is expressed in multiple organs, including the
testis and brain, and is associated with the recycling of endosomes [65]. Hypermethylation
of this gene was observed in the FXSA group compared to the ASD group. In recent
studies, the AHNAK gene, a multifunctional protein in the brain, was found to be one
of the neurodevelopmental disorder risk genes [66], potentially modulating depressive
behavior [67].

The clinical relevance of our and others’ findings regarding these genes as part of
pathways that are altered in these diseases should be further investigated, as a better
understanding of the molecular complexity will contribute to potential novel intervention
sites for the development of novel molecular targets for therapeutics in FXS and autism.
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Finally, it is worth noting that we carried out a validation of a subset of differen-
tially methylated genes that confirmed that two genes, NF2 and C11orf31, had an RNA
expression profile significantly in line with their methylation status. Indeed, significantly
decreased expression levels of NF2 mRNA were detected in the ASD group (hypermethy-
lation was detected at the RNA level) compared to the TD and the FXSA group, while
significantly increased expression levels of C11orfF31 mRNA were detected in the FXSA
group (hypomethylation was measured at the RNA level), compared to TD and ASD.
Further, expression levels of the proteins encoded by these two genes were found to be
consistent with the transcription data, although only the NF2 reached significance.

The NF2 gene is involved in the regulation of neurogenesis and neuronal projection
development, and is considered, therefore, one of the key contributors to brain devel-
opment. It maintains a definite balance between the production of post-mitotic neurons
and glia cells and the expansion of the neural progenitor pool. The absence of NF2 leads
to the expansion of neural progenitor cells of the hippocampal primordium and other
brain regions, resulting in severe malformation of the hippocampus in the NF2 mutant
mice model [68]. The hypermethylation of NF2 and consequent decreased mRNA and
protein expression observed in the ASD group in our study may contribute to the reduced
hippocampal connectivity and structural and synaptic deficits in hippocampal regions
observed in children with ASD.

C11orf31 encodes for selenoprotein-H which is known for its antioxidant function
in the brain [8]. The increased C11orf31 expression in FXSA might be attributed to a
feedback neuroprotective mechanism trying to counteract the oxidative stress documented
in FXSA [69]. Additionally, selenoprotein-H was found to play a role in tumorigenesis
prevention [70], and the increased expression we observed in FXSA could also represent
one of the protective mechanisms against cancer proposed in individuals with FXS [71].

This study has several limitations. First, the sample size warrants confirmatory study
in a larger cohort. Second, although we presented our findings taking into consideration
blood cell heterogeneity, a DM profile could be tissue specific and could have the potential
of confounding DNA methylation measurements. Third, intergenic regions are known
to have a significant regulatory impact on the expression of various genes. Since 40–60%
of DMs in the three-comparison group are located within the intergenic regions, our
preliminary observations from this study will require further investigations to understand
the impact and the role of DM profiles in the pathogenesis of ASD and FXS.

Overall, in this study, we used an epigenetics approach to obtain a global methylation
profile in three groups of children, ASD, FXSA and TD, matched by age (2–6 years) and
gender. We characterized the methylome profile in the three groups which distinguishes
them, suggesting a potential role for altered DNA methylation in the pathology of these
disorders. Additionally, these findings may help in the diagnostic classification of children
with ASD and FXSA and may pave the way for developing novel treatment modalities that
could reverse the altered methylome profile in children with neurodevelopmental disorders.

5. Conclusions

This study profiled methylome variations in ASD and FXSA and showed a potential
role for altered DNA methylation in the pathology of these disorders, suggesting that
epigenetic mechanisms may mediate some components of the disease during early neu-
rodevelopment. These findings may help in the diagnostic classification of children with
ASD and FXSA and may pave the way for developing novel treatments.

Supplementary Materials: Supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/genes13101795/s1, Figure S1. Analysis pipeline. Probes with a high detection
p value (>0.01), probes with a low success rate (missing in > 5% samples) and probes with SNPs were
excluded for further analysis; Figure S2. Principal component analysis plots (PC1 and PC2) for all
normalized probes (beta values). (A) all CpG probes across samples. (B) autosome CpG probes across
samples. (C) top 1000 most variable CpG probes across samples. (D) top 1000 most variable autosome
CpG probes across samples. PCA plots showing the samples from 3 disease status groups were

https://www.mdpi.com/article/10.3390/genes13101795/s1
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jumbled all together; Figure S3. Correlation (Pearson) matrix between estimated cell type proportions
and PCs. Positive correlations are represented in red, while negative correlations are in blue. The
cell type proportions correlate strongly with PC1; Figure S4. Cell type composition estimated by
methylation data. Boxplots are used to visualize the cell type proportion by each disease group. We
observed that the proportion of CD4T and CD8T were slightly higher than normal samples. Statistical
significances of differences were tested by Wilcoxon test; Figure S5. QQ-plots showing the association
test inflation levels. Upper panel, before adjust cell type proportion, inflation coefficient ranges
1.479–2.208. Lower panel, after adjust cell type proportion, inflation coefficient ranges 1.200–1.646.
The QQ-plots showing that after adjustment of cell type proportion, inflation is reduced.
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