
UCLA
UCLA Electronic Theses and Dissertations

Title
Exploiting Modularity to Scale Verification of Network Router Configurations

Permalink
https://escholarship.org/uc/item/24k0r2gq

Author
Tang, Alan Scott

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/24k0r2gq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Exploiting Modularity to Scale Verification of Network Router Configurations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Alan Tang

2023



© Copyright by

Alan Tang

2023



ABSTRACT OF THE DISSERTATION

Exploiting Modularity to Scale Verification of Network Router Configurations

by

Alan Tang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Todd Millstein, Co-Chair

Professor George Varghese, Co-Chair

Network router configuration errors are a common cause of network failures. Verifying con-

figurations using static analysis can prevent errors from occurring, but existing verifiers,

especially for the control plane, have two problems: they cannot scale to large networks,

and they cannot localize errors to their source in the configurations. This dissertation pro-

posed the use of modular techniques for verifying control plane properties in the network.

While previous verifiers model the behavior of the network holistically, modular verification

guarantees useful network properties while executing checks on individual routers and con-

nections, allowing it to scale better and achieve better localization. First, I present Campion,

a tool for modularly checking equivalence between a pair of router configurations by looking

at corresponding components, allowing it to localize the source of the differences to lines

and structures in the configuration. Next, I present a tool that verifies network-wide BGP

properties using only local checks on configurations. The technique uses local constraints to

bridge the gap from local properties to network properties. Both of these techniques have

been deployed and have found numerous previously unknown bugs in real-world networks.
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CHAPTER 1

Introduction

The Internet provides an unbelievably wide range of services and has become an indispensable

part of modern life. As the usage of Internet services increases, it becomes more and more

important that the networks providing these services operate reliably. At the heart of the

Internet is its ability to connect thousands of independently owned networks, allowing packets

to reach from one location to another. This enables reliable communication between users

and services across the globe. However, sometimes problems arise, breaking the connections

in the Internet. When these occur, users are deprived of their access to the service, and

companies can suffer significant financial losses.

Devices determine where to send a packet through the process of routing, using one or

more routing protocols. As part of the protocol, routers exchange information about the

locations they can reach, allowing them to compute the path that a packet takes across

the network in a distributed fashion. The end result of this process is a forwarding table

installed in each router that determines which neighbor to send a packet to. The processes

and policies that produce the forwarding tables are known as the control plane, whereas the

network processes that actually forward the packets are known as the data plane.

Routing can be accomplished by computing the shortest path between different locations,

but often there are additional considerations. For example, networks may have backup paths

for reliability. They may reject messages that they believe are malicious or erroneous. Or

they may prefer some routes over others because of financial reasons. These are all handled

by the control plane. To implement the various network policies, each router is loaded
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with a configuration that defines its behavior. These are responsible for determining which

protocols the router supports and which routes and packets are rejected or propagated.

Many network failures are caused by routing errors stemming from the router configura-

tion. Typically, human operators use manual, low-level configuration directives at individual

routers to enforce complex policies for access control and routing. Manual configuration can

introduce subtle configuration errors that induce costly and disruptive outages. These have

occurred in companies like United Airlines [38], Google [32, 52], Microsoft [9], Twitter [43],

and more [12]. As the importance of the Internet and the scale of its services increases,

outages like these will become more costly for users and companies.

Often, errors occur when network operators are updating the network policies and the

configurations are being modified. To prevent this, some companies have implemented op-

erational approaches such as reviewing configuration changes or using templates to ensure

consistency among different configurations. This is combined with constant monitoring to

quickly find and fix any problems that arise. While this can help reduce and resolve problems,

it cannot completely prevent errors or the problems that they cause.

Another approach to preventing costly network configuration errors is verification. Many

verification tools have been developed to check both the data plane and the control plane us-

ing a variety of techniques. Given a set of network configurations and a specification for what

polices the network should implement, these tools can automatically check the correctness

of the configurations. While tools for checking data plane properties have been successfully

deployed, tools for verifying control plane properties have not been widely adopted, even

though many existing techniques can provide strong guarantees, frequently reasoning about

network behavior over all possible external routing announcements and/or link failures.

There are two challenges in getting network verification techniques widely adopted. The

first challenge is scalability. Previous network control plane verification tools typically model

the network holistically, implicitly or explicitly considering all possible states of the network.

These approaches fundamentally cannot scale to large networks. Verifying a system requires
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exploring a large state space that grows exponentially in the size of the network. This results

in a trade off between scalability and the types of properties that can be checked. The second

challenge is making the tool outputs usable. The end goal of verification to create robust

systems, so it is not enough to simply identify if the behavior does not match a specification.

Tools should provide the necessary information to allow users to fix errors. While researchers

have developed many verification tools that can analyze network configurations to find errors,

it is difficult to trace the results of these tools to the source of the errors since it is hard to

map back to the configuration text from the holistic models they use.

For this thesis, I propose the use of modular verification of network configurations for

checking control plane behavior. Instead of the monolithic approach used in previous verifi-

cation tools, I introduce approaches to verifying properties that use multiple simple checks,

each on smaller blocks of configuration. The combination of these checks either verifies a net-

work property or provides feedback to help operators fix errors. With a modular approach,

each individual check is limited in size. Since each check is simple, verification scales roughly

linearly in the total number of devices and links. Modular checking improves the quality of

results by being able to provide better localization. When an error is found in a local check,

it can be traced to the location that caused the error. In a real world context where inexact

specifications or implementation errors can lead to false positives, it even becomes difficult

to know whether there is truly an error.

The key insight is that networks and network policies are already designed in a modular

fashion. They are not designed in a chaotic or completely unorganized manner, as that would

make it difficult for them to be maintained by operators. Rather, each router in the network

has a particular role and a set of policies that it has to enforce. The global network policy

is a combination of individual router policies, which are each a combination of policies for

the various interfaces and protocols. Since operators configure their networks in a modular

way, it should be possible to check behaviors in a modular fashion.

The challenge of this approach is that it becomes more difficult to reason about network-
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wide behavior resulting from multiple routers, such as whether a packet can reach from one

end of the network to the other. My work overcomes this problem by showing how the

behavior of smaller modules in a network can imply behavior in a larger scope. The trade

off is that checking properties may require more local specification from the user, similar to

how users need to provide loop invariants when verifying software [21].

The remainder of this introduction gives more background on control plane verification

and summarizes my contributions. Section 1.1 explains the basics of the control plane,

routing, and configurations. Section 1.2 shows how misconfigurations may impact the net-

work and the challenges of network verification. Finally section 1.3 gives an overview to the

modular verification techniques that I develop.

1.1 Network Control Plane

1.1.1 What is the Control Plane?

In the Internet, routers typically perform two tasks: (1) routing, the process of selecting

paths through the network, and (2) forwarding, the process of sending a data packet along

its selected path. The Internet is designed to send packets from one location to another.

Packets contain headers, and these headers contain fields like the source IP address and

destination IP address that identify the sender and intended receiver of the packet. The

data plane comprises the part of the network responsible for forwarding packets. When a

router forwards packets, it uses a computed forwarding table to determine the path to send

each packet along. The forwarding table consists of a number of entries that match an IP

prefix to an outgoing interface. When a router receives a packet, it finds the longest matching

prefix in the forwarding table for that packet’s destination IP address, and it sends the packet

along the corresponding outgoing interface in the forwarding table. For example, the prefix

10.1.2.0/24 represents the set of IP address in which the first 24 bits match 10.1.2. If there

exists an entry in the forwarding table with that prefix, a packet with destination IP address

10.1.2.100 arrived at the router, and there was no longer prefix matching that address, the
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Figure 1.1: Relationship between network control and data planes

packet would get forwarded along the interface specified by the forwarding table.

Routers may additionally be configured with access control lists (ACLs) that specify

packets to be dropped. These can be used to filter packets based on destination IP, source

IP, or a few other fields. As shown in the bottom of figure 1.1, the data plane can be thought

of as a system that takes an incoming network packet and sends an outgoing packet in the

appropriate directions.

The control plane, on the other hand, comprises the part of the network responsible for

determining how packets should be routed. To determine where a packet should be sent,

routers coordinate using routing protocols to compute a path for each packet. Routing

protocols are fixed processes designed to compute a best path. Routers typically have a

number of IP prefixes that they can reach directly along an interface. As part of the protocol,

routers in a network will advertise routes to their neighbors, with each route consisting of

an IP prefix along with additional attributes. This information gets propagated through
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the network. Routers then select a best route for each prefix based on the information they

receive, and install those chosen routes into the forwarding table. The results of this routing

process can be influenced by the router configurations and the route advertisement messages

that are received. In some cases, failures can impact the computation of paths as well. As

shown in the top of figure 1.1, the control plane can be thought of as system that uses a set

of incoming route advertisements to generate a forwarding table.

Much of this thesis is devoted to verifying the control plane behavior of the network

router configurations. The problem setting for control plane verification is as follows:

1. Configurations for routers inside a network are provided. These configurations

define a number of policies, settings, and routes which impact the control plane.

2. A specification is provided. The specification indicates some desired property of

the forwarding table or of intermediate results such as the routing messages that are

sent. For example, users may specify that a particular router has a route for the prefix

10.0.0.0/8 installed.

3. All possible environments are considered. An environment consists of the set of

route advertisements received from outside the network. These can change the results

of the control plane, and verifiers must consider all possible cases.

4. The verifier returns whether the specification holds for all possible environ-

ments. In the case that the property does not hold, it produces a counterexample,

showing the inputs and relevant forwarding table states that violate the specification.

5. Failure cases may be considered. Some properties may be designed to hold even

when some links or routers in the network fail, so a verifier may reason about what

occurs during a failure.

A number of factors make the control plane verification difficult. One of the difficulties of

this is dealing with the large number of possible environments. The routers in a network can
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receive route advertisements from each of its neighbors, and the combinations of routes that

the network receives can greatly affect the route that is ultimately selected. This is because

routing protocols choose a single best route for each prefix. This is different from the data

plane, where the result of handling each packet is independent of the result of handling

other packets. Another difficulty is that verifying the control plane requires reasoning about

the result of routing protocols. As described below, routing protocols, especially BGP,

can perform complex computation and can be configured in a number of different ways,

complicating the task of control plane verification. Verifying the data plane, in contrast, is a

much easier task. Each packet is forwarded independently, and while routers perform some

computation using ACLs and forwarding tables, it is considerably simpler than the routing

protocols and configured policies in the control plane.

1.1.2 Network Routing Protocols and BGP Operation

Network routing protocols are a major part of the control plane. During the routing process,

each router learns routes to various different IP prefixes. That information is installed into

the Routing Information Base (RIB) or routing table. Each entry in a RIB consists of a

IP prefix, a next-hop, and other protocol-specific fields. This information is then used to

generate the forwarding table, which has less information and faster processing times. Routes

in the RIB can come from a few different sources. Each router initially installs a connected

route for each destination reachable along an interface, and operators can configure static

routes to be directly installed into the RIB. However, a large number of routes are learned

through routing protocols.

The Internet is divided into thousands of autonomous systems (ASes), which are each

managed separately. These are typically controlled by different organizations with their

own management goals. Routing protocols either operate within a single AS or between

different ASes. In both cases, routers announce information about the IP addresses that

they can reach, and that information is used to determine how packets get forwarded. When
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Figure 1.2: BGP operation in a single router.

routing within a single AS, networks typically use an interior gateway protocol such as Open

Shortest Path First (OSPF) or Intermediate System to Intermediate System (IS-IS). These

use a distributed algorithm such as link-state routing or distance-vector routing to compute

the shortest path to each destination in the network.

Routing between ASes, on the other hand, uses the Border Gateway Protocol (BGP),

which allows routers to route based on more complex policies. This allows organizations to

have more control over how routes to and from other organizations are handled. In BGP,

routers have neighbors and they are allowed to send route advertisements to those neighbors.

In BGP, a route advertisement consists of a prefix along with a number of attributes such

as next-hop, AS Path, local preference, multi-exit discriminator (MED), and communities.

Each BGP speaker selects the best route advertisement it receives for each prefix and installs

it into its RIB. The route selection is a standard procedure that depends on the attached

route attributes. For example, the AS path attribute is a record of the ASes that the route has

been propagated along, and shorter AS paths are preferred by the route selection procedure.

What makes BGP different from other protocols like OSPF is the ability for operators
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Figure 1.3: Using BGP to influence routing between ASes

to specify complex policies to influence route selection and route propagation1. Operators

can specify import policies that are applied to each received route advertisement before

a best route is selected, and they can specify export policies that can transform a route

advertisement before it is sent to a neighbor. This is shown in figure 1.2. As defined in

RFC4271[45], routers receive a route, apply the import policy, select the best route to be

installed, and then apply the export policies before propagating the route to neighbors.

Using these, operators can implement a variety of policies. For example, operators can

specify policies to reject certain prefixes. They can influence route selection using the local

preference or MED attributes. By assigning a higher local preference to routes from one

neighbor and lower local preference to another, operators can specify that the former is

preferred.

Figure 1.3 shows a more complex example of BGP policies that can be implemented. A

standard policy that networks can implement is the no-transit policy, in which any routes

learned from one ISP are not advertised to another while routes from customers can be

advertised to either. This can be implemented in several ways. One possible way is to use

the community attribute, which allows route advertisements to be tagged with 32-bit integer

values, typically expressed as A:B where A is the upper 16 bits and B is the lower 16 bits.

1OSPF does allow operators to specify link costs and policies controlling redistributed routes, but these
are typically not as complex as BGP policies.
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The import and export policies can then be defined with the following behavior:

1. R1’s import policy marks received routes from ISP1 with a BGP community 100:1

2. R2’s export policy filters routes tagged with 100:1 when advertising to ISP2, and

3. no other import or export policy strips community 100:1 from routes that it advertises.

In this case, the community 100:1 acts as a kind of state, signaling that this route should

not be advertised to ISP2. Note that the above mechanism depends on policies at multi-

ple locations in the network, and it only works assuming other routers in the network act

correctly.

In summary, routing with BGP depends on the route advertisements that a router re-

ceives from its neighbors and the import and export policies that the operators specify.

Together, these determine the routes that are installed into the routing table, which ulti-

mately determines forwarding behavior. Operators can configure import and export policies

to customize the way that they handle routes coming from other ASes. This gives BGP

a lot of power and flexibility. However, this flexibility comes with a significant increase in

the complexity of configurations. The fact that BGP is also used to share critical routing

information across the Internet means that BGP configuration errors can have devastating

consequences.

1.1.3 Router Configurations

The routing protocols that compute routes in the Internet are standard, but operators can

influence the results of these protocols through configurations. Routers can be configured

issuing text commands into the router’s command-line interface or by loading a configuration

from a file.

Figure 1.4 shows an excerpt of a configuration written in the Cisco IOS format. This

example illustrates some of the flexibility and complexity involved in configuring BGP. In
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this excerpt, lines 1-12 define the BGP policy. Line 2 sets the router ID which uniquely

identifies this BGP speaker in the network. Lines 3-6 declare two neighbors 10.12.11.1

and 10.12.11.3 as part of the same peer-group with similar policy named as1. Lines 9-11

declare the policies that are applied to those neighbors for IPv4 routes. Specifically, the

prefix 1.0.0.0/8 is announced, communities are sent to the neighbors, and the route map

POL is the import filter applied on all routes received from the two neighbors.

The route map POL is defined in lines 22-27 and refers to other named structures defined

in lines 16-20. It defines three clauses that are executed in order. The first rejects routes with

prefixes matching the prefix list NETS (defined in lines 16-17). The second rejects routes with

communities match the community list COMMS (defined in lines 19-20), and the last clause

accepts all other routes after setting the local preference value to 30.

There are a few things to note about this example. First is the number of different

pieces necessary to get a working configuration. Just focusing on the BGP policy, operators

need to correctly configure a number of route maps, prefix lists, and other structures while

applying them to the correct neighbors. This involves specifying many different constants

for IP addresses, prefixes, and community values. Combining this with the configuration of

static routes, other routing protocols, and other features results in configurations that are

hundreds of lines long defining fairly complex behavior. Given that a large network may

have hundreds of routers, it is no wonder that configuration mistakes will occur.

Another point to note is that while the Cisco configuration language cannot describe

arbitrary computation the way that a general-purpose programming language can, config-

urations do follow a structure that is in some respects similar to programs. Prefix lists,

community lists, and route maps can be thought of as functions that can be applied at

multiple locations.

Lastly, different vendors offer different configuration languages. Figure 1.5 shows an

example of BGP configuration for Juniper routers running JUNOS. It uses a noticeably

different syntax from the Cisco configuration format, but still allows many of the same
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1 router bgp 2

2 bgp router -id 2.1.1.1

3 neighbor as1 peer -group

4 neighbor as1 remote -as 1

5 neighbor 10.12.11.1 peer -group as1

6 neighbor 10.12.11.3 peer -group as1

7 !

8 address -family ipv4

9 network 1.0.0.0 mask 0.255.255.255

10 neighbor as1 send -community

11 neighbor as1 route -map POL in

12 neighbor 10.12.11.1 activate

13 neighbor 10.12.11.3 activate

14 exit -address -family

15 !

16 ip prefix -list NETS permit 10.9.0.0/16 le 32

17 ip prefix -list NETS permit 10.100.0.0/16 le 32

18 !

19 ip community -list standard COMM permit 10:10

20 ip community -list standard COMM permit 10:11

21 !

22 route -map POL deny 10

23 match ip address NETS

24 route -map POL deny 20

25 match community COMM

26 route -map POL permit 30

27 set local -preference 30

Figure 1.4: Cisco BGP configuration example

features specifying neighbor properties and applying import polices. There are features

supported by some vendors or routers and not supported by others, and there can be subtle

differences between the different configuration formats. For example, Cisco routers do not

send communities unless configured to do so (line 10 in figure 1.4), whereas Juniper routers

send communities by default. These differences can result in configuration errors as well.

1.2 Configuration Errors and Verification

1.2.1 Real-world Error

As with programming languages, it is easy for operators to make mistakes when configuring

networks, and the mistakes can have fairly large impact, potentially taking down Internet

12



1 protocols {

2 bgp {

3 group AS1 {

4 type external;

5 peer -as 1;

6 local -address 2.1.1.1;

7 family inet {

8 unicast;

9 }

10 import POL;

11 local -as 2;

12 neighbor 10.12.11.1;

13 neighbor 10.12.11.3;

14 }

15 }

16 }

Figure 1.5: Juniper BGP configuration example

services. On June 21, 2022, Cloudflare suffered an outage that disrupted traffic in 19 of

their data centers for more than half an hour. These 19 data centers were repsonsible for a

significant portion of their global traffic. A number of other websites and services rely on

Cloudflare, and many of these were impacted as well. This incident was detailed in a blog

post [47]. Because of an error during a configuration change, much of their services were

brought down, and it took over an hour to completely recover.

In their description of what occurred, they stated that they were modifying their BGP

configurations to standardize the communities being attached to the routes that they ad-

vertise within their network. Unfortunately, when they were creating the change, they

accidentally reordered some of the clauses in one of their policies. Just like how POL in the

figure 1.4 contains multiple clauses that are executed in order, their policy contained multiple

clauses that allow different sets of prefixes to get advertised with different attributes. When

their clauses were reordered, this resulted in many routers losing connectivity to a number

of locations in their network.

This is a fairly simple error, but it was not caught by their peer review system or any

of the operation procedures that they followed. As a result, it managed to disrupt global
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Internet traffic. This is not an isolated incident. Errors from BGP configuration were the

cause of numerous other Internet outages. The goal of control plane verification is to be able

to catch these types of errors before they occur using check on the configurations.

1.2.2 Control Plane Verification Challenges

There are many technical challenges in designing a practical control plane verifier. These

include the modeling the complexity of the routing process, scaling to the large number

of routers and policies used in real networks, and localizing errors to their location in the

configurations.

Complexity of routing: A verifier has to model the unique behavior of routing proto-

cols. As described in section 1.1, in BGP, a router considers the messages it receives from

each of its neighbors and selects a best route based on the configured policies and the BGP

route selection mechanism. This best route then gets propagated to all the router’s neigh-

bors. While individual import and export policies are simpler than traditional programs,

the route propagation makes it difficult to reason about the order of computation, and the

best route selection process makes it more difficult to guarantee that a particular route will

reach its destination, since it is possible that the route was not chosen as a best route. The

combination of these factors makes the behavior of routing in the whole network complex.

In fact, it has been shown that BGP is Turing complete [14] in that it is possible to construct

networks that can perform arbitrary computation.

Scaling to large networks: Another challenge is that verifiers must be able to scale

to large networks. This is difficult because verifiers must reason about all inputs and the

states of the network that can result from them, and the space of all inputs and network

states is extraordinarily large. A single network may have several neighbors, each sending

route advertisements with a number of different attributes. All of these may get propagated

through the network in varying degrees, resulting in different resulting states at each router.

Verifying the control plane requires searching through all of these inputs and resulting states
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and finding ones that violate a particular specification. For larger networks with hundreds

of routers, it is impossible to naively search through this state space, so a more intelligent

approach is needed in order to scale control plane verification.

Localizing errors: In order to be usable to operators, a control plane verifier has to

provide actionable results. The goal of verification is to find errors in configurations without

running them on real routers. Thus, if a network does not meet its specification, it is not

enough to indicate that that it does not work. Ideally, verifiers should be able to point the

user in the right direction by indicating which router configuration and which component

the error occurs in, for example, indicating the route maps, ACLs, or other configuration

components that resulted in the erroneous behaviour. Pointing out the exact cause of every

error is likely not possible, especially given the large number of components in the network,

but narrowing down the potential locations and providing additional information about the

error is certainly necessary for any practical verification system.

1.2.3 Previous Control Plane Verification Tools

Several previous tools have been created to verify the network control plane. Each of them

tackles the previously mentioned challenges in different ways, but each of them makes com-

promises, limiting their usefulness. Some are limited to fixed environments or are limited in

terms of the properties they can prove, and none can scale to large networks while verifying

a variety of properties and localizing errors to configurations.

One approach to reasoning about the control plane was to use simulation. Batfish [19]

simulates routing protocols for a fixed environment, that is, one particular set of incoming

route announcements. Batfish produces forwarding tables which can then be used with data

plane verification techniques. In a similar vein, Microsoft’s Crystalnet [34] emulates networks

using real device firmware, allowing for greater accuracy when simulating network changes

before they occur. This approach can scale but it can only handle a fixed environment, so

it cannot show correctness for arbitrary environments. Thus, it is a form of testing rather
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than verification as it cannot handle all possible inputs.

Another approach is symbolic modeling. Existing tools that use this method can pro-

vide strong guarantees, checking specifications for all inputs and environments, but have

difficulty scaling to large networks. Minesweeper [6] and Bagpipe [53] use SMT approaches

to model the control plane, allowing them to consider different environments and reason in

the presence of link failures. Other approaches [20, 42, 3, 7] build on these techniques or

use alternative techniques to speed up computation. However these tools also have difficulty

scaling since they model the network holistically, or they use optimizations that prevent

them from reasoning about arbitrary environments (figure 3.1).

Moreover, these control plane analyzers typically do not produce easily usable results.

Minesweeper, for example, has two key limitations. Since it uses an SMT-based approach,

it only returns a single counterexample if there is an error. Second, the provided counterex-

ample consists of a concrete packet whose forwarding exhibits a behavioral difference in the

two configurations, leaving to the operator the difficult tasks of identifying the set of pack-

ets that is impacted and the specific configuration lines that caused the difference. In other

words, Minesweeper cannot localize errors. It is even difficult to distinguish between network

configuration errors and limitations in Minesweeper’s modeling. Other tools similarly model

the network as a whole and do not provide any additional capabilities for localizing errors,

so they have the same problems.

In summary, no previous tool can check a variety of control plane properties while scaling

and localizing errors to the configuration lines that cause them.

1.3 Thesis Statement and Contributions

In this work, I propose new techniques that allow for checking control plane properties while

being scalable and allowing for localization of errors. My thesis is that modular checking,

which takes advantage of the way operators structure and design networks, can be used to

scale control plane verification and localize errors.
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1.3.1 Structure within Networks

The key insight is that networks are configured in a structured manner. This is what allows

networks to be manageable despite their size and complexity. Leveraging this structure

allows for more efficient and usable verification. Some of the ways that configurations are

organized include:

1. Components within configurations: Configurations are typically organized into

components responsible for different aspects of the router’s behavior. For example,

BGP, OSPF, static routes, route maps, and prefix lists are all configured separately,

though the behavior of some of these may depend on others. Most previous verifiers

have to deal with this form of structure when they parse the configurations, but they

often discard it after creating a model of the network.

2. Roles within a network: Routers fulfil specific roles in the network, and usually there

are many routers that have the same or similar roles. For example, large networks have

multiple border routers that connect to routers in other networks and filter incoming

traffic, and they have multiple core routers with large routing tables that handle routing

within the network, sending traffic in the correct direction. All of the routers that fulfil

a specific role will have similar but not identical configuration.

3. Modularity of policy: Operators want to implement policies with their configura-

tions, such as the no-transit policy shown in section 1.1. These policies depend on

the interaction of multiple routers in different locations. To handle these, part of a

policy has to be implemented in one location, and a separate part of the policy has to

be implemented in another location. Thus, there is a relationship between the local

policies at different locations in the network even when they have different roles and

different local behavior.

In the rest of this thesis, I describe some of the techniques I developed for exploiting the
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structure of network configurations.

1.3.2 Localizing Router Differences

In chapter 2, I focus on how to localize errors in the specific case of comparing two router

configurations that are intended to be behaviorally equivalent. This task arises often in

large networks. First, it is common for pairs of routers from different manufacturers to

serve as backups for one another in case of failure. Whenever one router in the pair is

updated, the other must be consistently updated, which is non-trivial if they use different

configuration formats. A second important use case is router replacement. Routers are

periodically upgraded from one manufacturer (e.g., Juniper) to one another (e.g., Arista)

with better features, cost, or performance.

Previous tools for network control-plane verification, such as Minesweeper [6], can be used

to verify behavioral equivalence of two router configurations. However, while these tools can

detect equivalence violations, they provide very little help in debugging such errors. Existing

tools have two key limitations that my work aims to address. First, they cannot identify

the scope of the error since they can only produce a single counterexample. Second, they

cannot identify the lines of the configuration that cause the error. When they provide a

counterexample, it consists of a concrete packet whose forwarding exhibits a behavioral

difference in the two configurations, leaving to the operator the difficult tasks of identifying

the configuration lines that caused the difference. Handling these two limitations requires

localization to relevant message headers and configuration texts.

To allow for better localization, I introduce the novel approach of comparing router be-

havior modularly at the level of configuration components. This was implemented in the tool

Campion. Instead of modeling entire routers monolithically, corresponding router configura-

tion components, such route maps, access control lists (ACLs), OSPF costs, are compared.

This immediately improves localization since any difference found can immediately be traced

to the relevant component.
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However the localization and efficiency is improved further by considering the structures

and behaviors of specific configuration components. Many configuration components have

the property that any structural difference implies a possible behavioral difference. For

example, two OSPF link costs are only guaranteed to be behaviorally equivalent, for all

possible configurations, if they are identical. For these configuration components, I compare

them with a simple structural equivalence check.

A few other configuration components, specifically ACLs and route maps, encode sophis-

ticated policies, so there are many possible structures for the same behavior, especially when

considering multiple vendors. For these configuration components, I compare them with a

semantic equivalence check. To identify all differences, I model the two components C1 and

C2 as small programs (e.g., an ACL is a program taking a packet and returning a boolean)

and consider the paths in C1 and C2 that each input may take. If some input results in

the execution paths p1 in C1 and p2 in C2 and these result in different behavior, then I

can return a difference with the relevant paths that caused that difference. This algorithm

is conceptually similar to prior approaches to checking equivalence in C functions [44] and

network data planes [16]. To our knowledge ours is the first approach that can precisely

check equivalence of network control-plane structures, notably route maps.

Campion was evaluated on the network configurations of a large cloud provider and a

large university campus. The operators of the cloud provider were in the process of replacing

30 Cisco routers with Juniper routers due to a corporate policy decision. This required them

to manually translate the original Cisco IOS configurations to JunOS. They used Campion

to proactively check equivalence, identifying four configuration errors that they fixed before

they could cause service disruption, including one error that would have been a severe outage.

In the university network, there were a pair of core routers and a pair of border routers from

different device vendors and intended to be backups of one another. Campion identified

and localized configuration errors across these two pairs. These errors have been present

in the configurations for nearly three years, and the operators said that they were “highly
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unlikely” to detect them by “just eyeballing the configs.” Campion only takes a few seconds

to compare a pair of routers.

1.3.3 Modular Verification of Network-wide Control Plane Properties

While Campion could provide fairly precise localization, it does so for the specific property

of router equivalence, which does not need to consider how policies in one router interact

with policies in another. In the subsequent chapters, I develop an approach to proving

network wide BGP properties using modular checks. I characterize two classes of BGP

network properties, one class consisting of safety properties and another consisting of liveness

properties. I then show how these can be verified using a combination of local checks on

individual BGP policies. These techniques were implemented in the tool Lightyear.

Proving network-wide properties using local checks scales significantly better than pre-

vious approaches. The lack of scalability in previous tools is fundamentally caused by a

shared limitation of earlier approaches: they model and reason about network behavior

monolithically. As the size of the network grows, the number of possible network states

grows exponentially, limiting their ability to scale. By contrast, verification has scaled to

large systems in other domains, like software or hardware, through modular checking. In this

style, subsystems (e.g., a software function or hardware module) are verified independently

to meet local specifications (e.g., a precondition/postcondition pair) that together imply a

desired global property [21, 26, 41]. Prior work has used modularity to scale data-plane

analysis [23], but modularizing control-plane verification is more challenging due to complex

routing protocols and policies.

Like prior verifiers, Lightyear takes as input a network’s configuration and a global prop-

erty to verify. To ensure the property, Lightyear additionally requires the user to provide

local constraints that should hold on individual routers and edges. It then automatically

produces a set of local checks on individual nodes and edges that 1. verify the user’s local

constraints and 2. ensure that these constraints imply the given end-to-end property.
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To do so, it target two specific classes of properties: safety properties on individual

routers, which intuitively ensure that “bad” routes never reach a particular node, and live-

ness properties, which intuitively ensure that a “good” route will eventually be accepted

or forwarded at a particular location. The former includes common properties like filtering

bogons, preventing transit between peers, and ensuring isolation. The latter includes many

control-plane reachability queries: for example that a route received from one neighbor will

be sent to another.

Lightyear’s approach has the following benefits:

1. Scalability: Lightyear performs a linear number of checks in the network size (num-

ber of nodes and edges). Each check’s runtime depends only on the complexity of

an individual node’s configured policy. Hence Lightyear scales roughly linearly with

network size. Prior approaches that reason about the joint behavior of all nodes’ poli-

cies scale at least quadratically, if not exponentially. Lightyear’s local checks are also

trivially parallelizable and enable incremental re-checking when configurations change.

2. Strong Guarantees: If all of Lightyears’s local checks are satisfied, then the specified

network property is guaranteed to hold for all possible external route announcements

from neighbors. Further, for safety properties our guarantees will hold even in the

presence of arbitrary node or link failures, though this is not true in general for liveness

properties.

3. Localization: While prior approaches identify incorrect behavior, the resulting coun-

terexample is a global snapshot, making it difficult to determine which router and policy

is erroneous. By contrast, a local-check violation in Lightyear directly indicates the

erroneous router and policy.

Lightyear’s main tradeoff is that users must specify local constraints. However, this does

not make the task of creating specifications significantly more difficult. Most networks are
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designed in a modular and structured fashion, so many desired end-to-end properties can

only require a few simple constraints. Network nodes are commonly partitioned into roles,

such as border or core, each with its own responsibilities, and nodes in the same role will

typically have similar local constraints.

Chapter 3 describes how safety properties are checked. To bridge between checks on

individual routers and network properties, I introduce the idea of network invariants, which

are similar to loop invariants used in program verification. The central idea is that BGP

configurations establish and maintain an invariant for certain parts of the network. By

specifying the invariants for the network, it is possible to determine the checks needed to

prove safety properties in the network.

Chapter 4 describes how liveness properties are checked. These are more difficult to reason

about than safety properties, since they require showing that routes will get propagated

through the network. This requires reasoning about the best routes selected at each router.

Building on the framework in chapter 3, I show the constraints that need to be provided and

the checks that need to be performed.

Chapter 5 shows the results from evaluating Lightyear. Lightyear was used to verify mul-

tiple properties for BGP in a large cloud provider’s wide-area network, which has hundreds

of routers and tens of thousands of BGP peerings. To my knowledge no prior verification

tool that reasons about all possible external route announcements has been demonstrated

at this scale. I also ran tests on synthetic networks to show how well Lightyear scales.

1.4 Comments

The work in this thesis is a revised and extended presentation of research developed through

collaborative work. Chapter 2 presents research on modular equivalence is based on prior

work presented at SIGCOMM 2021 [48]. The work presented in chapters 3, 4, and 5 is based

on work that has been accepted at SIGCOMM 2023.
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CHAPTER 2

Checking Modular Equivalence of Routers

This chapter presents an approach for debugging two router configurations that are intended

to be equivalent. This is a comparatively simple task, but it has common applications in large

networks. First, this can be used to check correctness of backup routers which should have

the same behavior but may be configured from different manufacturers. These have to be

consistently updated which can be easy to difficult when they have different configuration

formats. Second, routers are often upgraded or replaced from one vendor to another for

features, cost, or performance. This requires manual rewriting of configurations, which is

difficult and can result in configuration errors. Third, configurations are often updated, but

updates are usually limited in scope. In this case, the behavior difference is usually minimal.

All cases require a tool that can check equivalence and report differences between router

behaviors.

Existing tools for network control-plane verification, such as Minesweeper [6], can be used

to verify behavioral equivalence of two router configurations. However, while these tools can

detect equivalence violations, they provide very little help in debugging such errors. In

particular, existing tools have two key limitations that my work aims to address. First, they

provide only a single counterexample and hence identify only a single behavioral difference

between the two configurations. Second, the provided counterexample consists of a concrete

packet whose forwarding exhibits a behavioral difference in the two configurations, leaving

to the operator the difficult tasks of identifying the set of packets that is impacted and

the specific configuration lines that caused the difference. I call the first challenge header
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localization and the second text localization.

This chapter presents the tool Campion, which performs localization through a novel

approach. Rather than representing the behavior of each router configuration monolithi-

cally, for example as a set of SMT constraints [6], Campion compares pairs of corresponding

components between the two configurations (route maps, ACLs, OSPF costs, etc., see ta-

ble 2.1) separately. Performing equivalence checks on a per-component basis immediately

helps: every pair of components that are not behaviorally equivalent is reported, and each

such violation is by construction localized to the relevant configuration components.

In the context of modular checking, two configuration components C1 and C2 are consid-

ered equivalent if any configuration containing C1 could instead use C2 without changing the

configuration’s behavior. How should each pair of components be checked for equivalence?

Observe that there are two distinct types of configuration components from the point of view

of modular checking.

Many configuration components have the property that any structural difference implies

a possible behavioral difference. For example, two OSPF link costs are only guaranteed to be

behaviorally equivalent, for all possible configurations, if they are identical. The same is true

for static routes in two configurations. These configuration components can be compared

with a simple structural equivalence check that I call StructuralDiff. This check is

efficient, reports and localizes all behavioral differences — all structural mismatches — and

makes it trivial for users to understand the error.

On the other hand, a few configuration components, specifically ACLs and route maps,

encode complex behaviors. There are many possible ways to write an ACL or route map for

the same behavior, especially when considering multiple vendors. For example, Juniper and

Cisco route maps are structured in very different ways. For these configuration components,

I compare them with a semantic equivalence check that I call SemanticDiff. To identify

all differences semantically, I model the two components C1 and C2 as small programs. For

example, an ACL can be thought of as a program that takes a packet header and returns a
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boolean for whether the packet is dropped or not, and there is a form of control flow in the

match statements, which branch depending on values in the header. Using static analysis to

find behavioral differences, the tool considers each path p1 through C1 and p2 through C2 and

checks whether there is some input that traverses along p1 and p2 through their respective

components and exhibits a behavioral difference. If there is a difference, this result can be

returned along with the relevant paths that produced these behaviors, allowing operators

to see which lines of configuration affected the difference. This algorithm is conceptually

similar to prior approaches to checking equivalence in C functions [44] and network data

planes [16]. To my knowledge this is the first approach that can precisely check equivalence

of network control-plane structures, notably route maps.

The SemanticDiff algorithm localizes each behavioral difference to a specific path

through each component. To help users understand the difference, I also introduce a novel

algorithm called HeaderLocalize that localizes each difference to the relevant space of

inputs. In the implementation, SemanticDiff produces the impacted set of inputs I as

a binary decision diagram (BDD). Given this BDD and the original configurations, Head-

erLocalize produces a representation of all destination IP addresses in I in terms of the

constants (prefixes or prefix ranges) that appear in the configurations, and does so in a

minimal way.

Perhaps surprisingly, Campion is protocol-free: it does not need to model routing pro-

tocols like BGP and OSPF. my modular approach obviates the need for such reasoning,

as equivalence of each corresponding pair of configuration components implies that those

protocols will behave identically on the two routers. I formally prove this theorem, thereby

justifying my approach. A potential downside of my modular approach is that it can pro-

duce false positives: it is possible for two configuration components to cause a behavioral

difference for some configuration, and hence be flagged as erroneous by Campion, but still

be behaviorally equivalent in the context of the two given router configurations. However,

my experiments indicate that false positives are rare. Intuitively this makes sense because
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Feature Check Used

ACLs SemanticDiff

Route Maps (BGP, Route Redistribution) SemanticDiff

Static Routes StructuralDiff

Connected Routes StructuralDiff

Other BGP Properties StructuralDiff

OSPF Properties (costs, areas, etc.) StructuralDiff

Administrative Distances StructuralDiff

Table 2.1: Components supported by Campion and the check used for each.

configurations are created and maintained in a modular fashion, with different aspects of the

configuration responsible for different aspects of the behavior. Moreover, for management

reasons, it may even be desirable to prefer clear correspondences between the components,

so even a false positive may still be of interest to operators.

I evaluated Campion on the network configurations of a large cloud provider and a large

university campus. First, the operators of the cloud provider were in the process of replacing

30 Cisco routers with Juniper routers due to a corporate policy decision. This required them

to manually translate the original Cisco IOS configurations to JunOS. They used Campion

to proactively check equivalence, identifying four configuration errors that they fixed before

they could cause service disruption, including one error that would have been a severe outage.

Second, the university network has a pair of core routers and a pair of border routers from

different device vendors and intended to be backups of one another. Campion identified

and localized configuration errors across these two pairs. These errors have been present

in the configurations for nearly three years, and the operators said that they were ”highly

unlikely” to detect them by ”just eyeballing the configs.” Campion only takes a few seconds

to compare a pair of routers.

To summarize, the contributions of this chapter are:

• A modular approach that identifies all behavioral differences between two configura-

tions and localizes them to the relevant configuration lines (section 2.2). For each con-
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figuration component, I determine whether a full semantic analysis (SemanticDiff)

is needed or a simple structural equivalence check (StructuralDiff) suffices (see sec-

tion 2.1). I also describe a novel algorithm for localizing the relevant inputs (HeaderLocalize).

• A theorem (section 2.2.4) that shows my modular approach to equivalence checking of

configuration components suffices to ensure router behavioral equivalence, despite not

reasoning about the network protocols.

• A tool, Campion (section 2.3), that localizes behavioral differences between router con-

figurations. Campion supports all of the routing and forwarding components modeled

by Minesweeper. Campion is available as open-source software.1

• An experimental evaluation of Campion on routers from a large cloud vendor and a

university network.(section 2.4).

2.1 Example

This section shows two examples of Campion’s output that identified behavioral differences

in routers from a large university network. I present one case involving differences be-

tween BGP route maps, which Campion identified and localized using SemanticDiff and

HeaderLocalize, and a second case involving differences in static routes, which Campion

identified and localized using StructuralDiff. In both cases, I also demonstrate the ad-

vantages of Campion by comparing its output to that of Minesweeper [6], a state-of-the-art

network configuration verification tool.

2.1.1 Route Map Diffs via Semantic Checks

Figure 2.1 shows simplified versions of route maps from two core routers in a large university

network (see section 2.4.2). The two route maps are intended to be behaviorally identical,

1https://github.com/atang42/batfish/tree/rm-localize
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with the first written for a Cisco router and the second for a Juniper router. Both configu-

rations define a prefix list NETS to match a specific set of IP prefixes (lines 1-2 in figure 2.1a

and 1-4 in figure 2.1b), as well as a community list COMM to match the community tags 10:10

and 10:11 (4-5 in figure 2.1a and 5 in figure 2.1b). The remainder of each snippet defines a

route map POL for each router, which rejects route advertisements that match prefixes from

NETS or are tagged with communities from COMM and accepts all other advertisements (7-12

in figure 2.1a and 6-21 in figure 2.1b).

Despite the superficial similarity of the two configurations, there are large behavioral dif-

ferences. Campion uses SemanticDiff and HeaderLocalize to find and localize these

differences. Table 2.2 shows Campion’s output when given the two route maps in figure 2.1.

The output has two results, each of which represents a distinct configuration error. For each

error, Campion identifies all the route advertisement prefixes that are treated differently by

the two route maps, namely route advertisements for prefixes that are in the set Included

Prefixes but not the set Excluded Prefixes. I call the process of identifying and repre-

senting all problematic inputs header localization. Further, Campion also shows the action

that each route map takes on these advertisements as well as the configuration lines respon-

sible for that action. I call the process of identifying all relevant lines of the configuration

text localization.

In the output shown in table 2.2a, the Action and Text rows indicate that advertisements

for the relevant prefixes match the NETS prefix list in the Cisco route map and are therefore

rejected, but these prefixes fall through to the last term in the Juniper route map and are

accepted. Careful inspection reveals the problem: in the Cisco route map, NETS matches

prefixes with lengths between 16 and 32, while in the Juniper route map it only matches

prefixes with lengths of exactly 16. Thus, a prefix like 10.9.1.0/24 is matched by the Cisco

route map but not by the Juniper route map.

The second result that Campion produces (table 2.2b) identifies a second, unrelated

configuration difference. The Included Prefixes and Excluded Prefixes rows show that
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cisco router juniper router

Included
Prefixes

10.9.0.0/16 : 16-32

10.100.0.0/16 : 16-32

Excluded
Prefixes

10.9.0.0/16 : 16-16

10.100.0.0/16 : 16-16

Policy Name POL POL

Action REJECT
SET LOCAL PREF 30

ACCEPT

Text
route-map POL deny 10

match ip address NETS

rule3 {
then {
local-preference 30;

accept;

}
}

(a) Difference 1

cisco router juniper router

Included
Prefixes

0.0.0.0/0 : 0-32

Excluded
Prefixes

10.9.0.0/16 : 16-32

10.100.0.0/16 : 16-32

Community 10:10

Policy Name POL POL

Action REJECT
SET LOCAL PREF 30

ACCEPT

Text
route-map POL deny 20

match community COMM

rule3 {
then {
local-preference 30;

accept;

}
}

(b) Difference 2

Table 2.2: Campion result when checking equivalence of configurations in figure 2.1 using a
Semantic Check
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1 ip prefix -list NETS permit 10.9.0.0/16 le 32

2 ip prefix -list NETS permit 10.100.0.0/16 le 32

3 !

4 ip community -list standard COMM permit 10:10

5 ip community -list standard COMM permit 10:11

6 !

7 route -map POL deny 10

8 match ip address NETS

9 route -map POL deny 20

10 match community COMM

11 route -map POL permit 30

12 set local -preference 30

(a) Excerpt from the Cisco route map

1 prefix -list NETS {

2 10.9.0.0/16;

3 10.100.0.0/16;

4 }

5 community COMM members [10:10 10:11];

6 policy -statement POL {

7 term rule1 {

8 from prefix -list NETS;

9 then reject;

10 }

11 term rule2 {

12 from community COMM;

13 then reject;

14 }

15 term rule3 {

16 then {

17 local -preference 30;

18 accept;

19 }

20 }

21 }

(b) Excerpt from the Juniper route map

Figure 2.1: Cisco and Juniper route maps with subtle differences

this difference occurs for advertisements of all prefixes other than those in the ranges of the

NETS prefix list. While Campion can find all differences and identify all relevant IP prefixes,

for other fields of the route advertisement it currently provides a single example. In this

case, the output indicates that this difference occurs when the route advertisement contains
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Route received (Cisco) Prefix: 10.9.0.0/17

Route received (Juniper) Prefix: 10.9.0.0/17

Packet dstIp: 10.9.0.0

Forwarding
Juniper router forwards (BGP)

Cisco router does not forward

Table 2.3: Minesweeper result when checking equivalence of configurations from figure 2.1

only the community 10:10. The Action and Text rows show that the Cisco route map

matches the advertisement against the community list COMM and rejects it, while the Juniper

route map again falls through to the last rule. This difference reveals a subtle error: COMM in

the Cisco route map matches route advertisements containing either the community 10:10

or 10:11, whereas COMM in the Juniper route map erroneously matches only advertisements

tagged with both communities.

Campus network operators confirmed both of the above behavioral differences as config-

uration errors. Further, the errors are subtle and have existed since at least July 2017. The

network operator commented, ”your config-analysis tool is great. It’s highly unlikely anyone

would detect the functional discrepancies just by eyeballing the configs.” As described in

section 2.4.2, Campion found additional differences that have been removed here to keep the

example simple.

Comparison with Minesweeper. Minesweeper [6] builds a logical representation of the

network behavior, modeling the routing process and forwarding behavior. It then uses a

satisfiability modulo theories (SMT) solver to answer verification queries. Minesweeper sup-

ports a behavioral equivalence check of individual routers, but it does so by checking that

the logical representation of both routers’ entire configurations are equivalent. A major

drawback of this monolithic approach is the difficulty to diagnose the source of the error —

any identified difference could be caused by BGP configuration, OSPF configuration, ACLs,

or static routes.

In order to make the comparison more fair, I adapted Minesweeper to only check be-
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havioral equivalence of two route maps. Specifically, Minesweeper checks that its logical

representations of the two route maps are equivalent: whenever they receive the same set of

route advertisements, they produce the same forwarding behavior for all packets. Table 2.3

shows the output of this modified version of Minesweeper on the above example. There is a

single counterexample indicating that, when both routers receive a route advertisement with

prefix 10.9.0.0/17, they will produce different rules for forwarding packets with destination

IP address 10.9.0.0: the Juniper router will forward them, while the Cisco router will not.

Minesweeper’s output identifies a behavioral difference between the two route maps that

corresponds to Campion’s output shown in table 2.2a. However, Minesweeper’s output is

lacking in several important ways. (1) It only provides information about a single behavioral

difference. However, as explained earlier, there are actually two unrelated configuration

differences between these route maps (table 2.2a and table 2.2b). (2) For the error that

Minesweeper does identify, it only provides a single concrete example, with a specific route

advertisement and destination IP prefix. To fully fix the problem of unintended differences

between the two route maps, operators must understand the set of all route advertisements

that produce this behavioral difference. Having this set explicitly also provides an indication

of the scope of the problem. (3) Minesweeper provide no information about what parts of

the route maps are responsible for the behavioral difference.

It is possible to modify Minesweeper again, this time to produce multiple concrete ex-

amples. This can be done by simply querying the SMT solver multiple times, each time

including additional logical constraints that disallow previously generated counterexamples.

This approach could potentially alleviate the first two issues described in the previous para-

graph, but my experiments with this approach illustrate that it is not very effective. On

the above example, running Minesweeper does provide counterexamples from both classes

of differences from table 2.2 but it takes 7 counterexamples in order to have at least one for

each prefix range that is relevant for Difference 1. Further, the approach is fragile: when I

replaced the number 32 in the second line of the Cisco configuration (figure 2.1a) with 31,
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cisco router juniper router

Prefix 10.1.1.2/31

Next Hop 10.2.2.2 None

Admin. Distance 1 None

Text
ip route 10.1.1.2

255.255.255.254 10.2.2.2
None

Table 2.4: Campion result when checking equivalence of static routes using a Structural
Check

it took 27 counterexamples for Minesweeper to provide a violation of Difference 1 instead of

Difference 2.

2.1.2 Static Route Diffs via Structural Checks

Campion detects differences in configuration components such as static routes and OSPF

costs using a structural equivalence check. For example, for static routes Campion simply

considers the set of static routes in each router and identifies all structural differences: cases

where a route is present in one set but not the other, or where a route is present in both but

with different attributes such as the next hop and administrative distance. This technique

illustrates another advantage of my modular approach. Because I are checking configuration

components in isolation from the rest of the configurations, for many components a simple

structural check is as precise as a behavioral check via a semantic representation, while

providing better localization and understandability for users.

An example of an output produced by Campion when checking static routes is shown

in table 2.4. This output shows that in the Cisco router, a static route exists that sends

packets destined to 10.1.1.2/31 to 10.2.2.2, but there is no such route in the Juniper

router. Differences like this were found in both the university and cloud networks.

Table 2.5 shows the output that Minesweeper produces for the same example. Minesweeper

can identify that the forwarding was caused by a static route, but it does not determine the

prefix of the static route, the other relevant fields like the administrative distance, or the
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Packet dstIp: 10.1.1.2

Forwarding
Cisco router forwards (static)

Juniper router does not forward

Table 2.5: Minesweeper result when checking equivalence of static routes

lines of the configuration. Hence operators have to search through a potentially large set

of static routes and determine which one would affect the routing of packet to a 10.1.1.2.

Further, if there were multiple static-route differences, Minesweeper would only find one,

while Campion would identify all.

2.2 Design and Algorithms

I describe Campion’s design and core algorithms. Campion’s overall algorithm for identifying

and localizing behavioral differences between configurations C1 and C2 is as follows:

1 func ConfigDiff (C1, C2)
2 result ← [ ]
3 pairs ← MatchPolicies(C1, C2)
4 for (p1, p2) ∈ pairs do
5 differences ← Diff(p1, p2)
6 for d ∈ differences do
7 result ← result.append(Present(d, {C1, C2}))
8 end for
9 end for
10 return result

This algorithm consists of three main parts:

1. The corresponding components (ACLs or BGP route maps) for C1 and C2 are paired up

by the MatchPolicies function. This can be done with heuristics such as matching

components by name or matching components that relate to the same neighboring

node, or this information can be provided by the user.

2. For each component pair, the Diff function invokes either SemanticDiff or Struc-

turalDiff to produce a set of differences, each of which can include a set of inputs,

the actions taken by each component, and the locations in the configurations.
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3. The Present function formats the results for output to the user, including invoking

HeaderLocalize on the results of SemanticDiff in order to produce an under-

standable representation of the set of inputs.

I now describe SemanticDiff, HeaderLocalize, and StructuralDiff in more

detail. I then discuss the general applicability of SemanticDiff and StructuralDiff

and show how my modular approach can find and localize behavioral differences across entire

router configurations.

2.2.1 SemanticDiff

SemanticDiff takes a pair of configuration components as input and returns a list of all

behavioral differences. The same basic algorithm applies to both ACLs and route maps.

Each difference is a quintuple of the form: (i, a1, a2, t1, t2). In this quintuple, i refers to

a set of inputs to the components, represented as a logical formula over message headers.

For dataplane ACLs the inputs are sets of packets, and for route maps they are route

advertisements. a1 and a2 are the respective actions taken by the two components when

given an input from i. The action for ACLs is either accept or reject, but for route maps the

accept action can also set fields such as local preference. t1 and t2 are the respective lines of

text from the two components that process inputs from i and result in a1 and a2.

The SemanticDiff algorithm has two main steps. First, for each configuration com-

ponent, the space of inputs is divided into equivalence classes, based on their paths through

the component. Both ACLs and route maps can be viewed as a sequence of if-then-else

statements, so two inputs are in the same equivalence class if and only if they take the same

set of branches through these statements. Each equivalence class is represented symboli-

cally as a logical predicate on the input (either a packet header or route advertisement).

my implementation uses BDDs to represent these predicates. Each equivalence class is also

associated with the text lines that are on the corresponding path as well as the action taken.
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This step consequently produces two lists of triples:

L1 = [(i1,1, a1,1, t1,1), (i1,2, a1,2, t1,2), . . . , (i1,m, a1,m, t1,m)]

L2 = [(i2,1, a2,1, t2,1), (i2,2, a2,2, t2,2), . . . , (i2,m, a2,m, t2,m)]

Figure 2.2 shows the equivalence classes for the example route map from figure 2.1a. NETS

and COMM correspond to the names of the attribute filters — NETS for prefix filters and COMM

for communities. I use JNETSK to denote the set of accepted prefixes, and similarly JCOMMK to

denote the set of accepted communities. I also denote the complement of a set X as ¬ X.

There are three equivalence classes, one per clause in the route map — the first clause is

associated with the space JNETSK, the second clause is associated with ¬ JNETSK ∩ JCOMMK,

the space of routes matching JCOMMK but not JNETSK, and the third clause is for all remaining

routes. Each equivalence class is also associated with whether it accepts or rejects routes

and what fields are set.

route-map POL deny 10 Inputs: JNETSK
match ip address NETS Action: Reject

route-map POL deny 20 Inputs: ¬ JNETSK ∩ JCOMMK
match community COMM Action: Reject

route-map POL permit 30 Inputs: ¬ JNETSK ∩ ¬ JCOMMK
set local-preference 30 Action: Accept, local-pref=30

Figure 2.2: Partitioning the space of route advertisements based on route map definitions.

Once the inputs are partitioned into equivalence classes for both components, the Seman-

ticDiff algorithm then performs a pairwise comparison to identify behavioral differences.

For each pair of equivalence classes (i1,i, a1,i, t1,i) and (i2,j, a2,j, t2,j) from the two components,

if i1,i and i2,j have a non-empty intersection and the actions a1,i and a2,j differ, then there is
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a behavioral difference. In that case, I add

(i1,i ∩ i2,j, a1,i, a2,j, t1,i, t2,j)

to the list of differences returned by SemanticDiff.

2.2.2 HeaderLocalize

SemanticDiff produces the set of packets that exhibit behavioral differences as a logical

predicate. The HeaderLocalize algorithm produces a more human-understandable rep-

resentation in terms of the constants (e.g. IP prefixes) that appear in the configuration,

handling the header localization problem. Specifically, HeaderLocalize produces a com-

pact representation of the set of all destination IP addresses relevant to an ACL difference

and the set of all IP prefix ranges relevant to a route map difference. For ease of presenta-

tion, I only describe finding prefix ranges relevant to route map differences, but the process

for ACLs is analogous. In principle, HeaderLocalize can also be extended to other route

fields such as communities, but I have not yet done so. Currently, instead of producing all

communities relevant to a route map difference, Campion outputs a single example.

For route maps, sets of IP prefixes are represented by prefix ranges, each of which is a

pair of a prefix and a range of lengths. For example, (1.2.0.0/16, 16-32) is a prefix range

where the prefix is 1.2.0.0/16 and the length range is 16-32. A prefix p is a member of a

prefix range R if both of the following hold:

1. The IP address of p matches the prefix of R

2. The length of p is included inside the range of R

For example, 1.2.3.0/24 is a member of the prefix range (1.2.0.0/16, 16-32),

(0.0.0.0/0, 0-32) is the set of all prefixes, and (1.0.0.0/8, 24-24) is the set of all pre-

fixes with length 24 and 1 as the first octet. I say that a prefix range R1 is contained in

another prefix range R2, denoted R1 ⊂ R2, if the members of R1 are a subset of those of R2.
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The input to HeaderLocalize is a BDD S representing the set of messages affected

by an identified policy difference, along with the original configurations C1 and C2. The

output is a representation of S’s prefix ranges in terms of the prefix ranges that are in the

two configurations. First, all prefix ranges from the two configurations are extracted to get

the set R = {R1, R2, . . . Rn}. If the set of all prefixes (0.0.0.0/0, 0-32), which I will

call U , is not in R, then it is added. Furthermore, R is extended so that it is closed under

intersection. Since each line of a route map can allow or reject route advertisements based on

prefix ranges in the configuration, it is always possible to represent the set S as a combination

of complements, unions, and intersection of sets from R. The goal of HeaderLocalize is

to identify the minimal such representation.

To find this minimal representation, HeaderLocalize builds a directed acyclic graph

(DAG) that relates the prefix ranges in R to one another. This data structure is analogous

to the ddNF data structure previously used for packet header spaces [13], but here I associate

each node with prefix ranges rather than tri-state bit vectors representing data-plane packets.

HeaderLocalize’s ddNF data structure consists of a set of nodes N , a set of edges E ⊆

N × N , a labeling function l mapping nodes to prefix ranges, and a root node. It satisfies

the following properties:

1. The root node is labeled with U , the set of all prefixes, and all other nodes are reachable

from it.

2. Each node has a unique label (and thus in the following explanation, I will sometimes

refer to a node by its prefix range or vice versa).

3. The set of prefix ranges used as labels contains R and is closed under intersection.

4. For any nodes m,n ∈ N , there is an edge (m,n) ∈ E exactly when l(n) ⊂ l(m) and

there is no node m′ such that l(n) ⊂ l(m′) ⊂ l(m).

An example DAG is shown in figure 2.3 for a set of seven prefix ranges. There is one

node per prefix range, and each node’s prefix range is a subset of those of its ancestors. For
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A: (0.0.0.0/0, 0-32)

B: (1.0.0.0/8, 8-32) C: (2.0.0.0/8, 8-32)

D: (1.2.0.0/16, 16-32) E: (1.3.4.0/24, 24-32)

F : (2.0.0.0/8, 24-32)

G: (2.5.6.0/24, 24-32)

Remainder: A−B − C

Remainder: B −D − E Remainder: C − F

Remainder: F −G

✕

✕

✕

✓ ✓

✓✓

Figure 2.3: DAG created from prefix ranges. Green (✓) nodes represent leaves or remainders
contained in a set S, and red (✕) nodes represent those that are not. S can be represented
by the union of B −D, C − F , and G

example D is contained in B and A. The DAG is built by inserting one prefix range at

a time, starting with U [13]. I also associate each internal node, with prefix range R and

outgoing edges to nodes labeled C1, C2, . . . , Ck, with the set of prefixes R−C1−C2 · · ·−Ck.

I call this set the remainder set, as it is the set of prefixes that remain in R after prefixes

of the children nodes are removed. For example, the remainder set of node B in figure 2.3

is B − D − E. The remainder and leaf node sets are all disjoint from one another, and

their union is U . Importantly, because the set S of interest was created through unions,

intersections, and complements of the prefix ranges in R, each remainder set and leaf prefix

range has the property that either it is contained in S or disjoint from S.

Next HeaderLocalize uses the DAG to produce a representation of S in terms of

the prefix ranges in R. This is done by traversing the DAG with the recursive function

GetMatch shown below. If the current node is a leaf, then its prefix range R is included

in the result if that range is contained in S. If the current node is internal, then there are

two cases. If the node’s remainder is contained in S, then its prefix range R should be

included in the result, after removing any of the node’s child prefixes in the DAG that are

not contained in S. This latter process is done through a recursive call to GetMatch with

the complement set of S. if the node’s remainder is not contained in S, then I simply recurse

on the children and union the results.

The GetMatch algorithm produces a representation of S that is a union of terms of
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1 func GetMatch (S, node)
2 C ← Children(node)
3 R ← PrefixRange(node)
4 if IsLeaf(node) then
5 if R ⊆ S then
6 return {R} ▶ node is a leaf, and R ⊆ S

7 else
8 return ∅ ▶ node is a leaf, and R ∩ S = ∅
9 end if
10 end if
11 if Remainder(node, C) ⊆ S then ▶ checks if R− C1 − C2 . . . Ck ⊆ S

12 nonmatches ←
⋃

k∈C GetMatch(¬ S, k)
13 return {R− nonmatches} ▶ returns {R−X1 −X2 . . . Xm}
14 else
15 return

⋃
k∈C GetMatch(S, k) ▶ returns {X1, X2 . . . Xn}

16 end if

the form R −X1 −X2 − . . . Xk, where R is a prefix range, but each Xj is also in the form

R−X1−X2− . . . Xk. For example, running GetMatch on the DAG in figure 2.3 produces

{B −D,C − (F −G)}, and the nodes in the figure are colored to illustrate the algorithm’s

process. As a final simplification step, I remove all nested differences from the result through

a single pass over it. In my example, the result C− (F −G) is transformed into {C−F,G},

so the final representation of the set S is {B −D,C − F,G}.

2.2.3 StructuralDiff

It would be possible to use a semantic approach like SemanticDiff to reason about all

configuration components, just as I do for route maps and ACLs. However, I observe that

other configuration components typically have a very stylized structure, as a single atomic

value (e.g., integer or boolean) or a simple collection of such values. Hence, when considered

modularly, the equivalence of two such components is tied to their structure.

That is, two components are behaviorally equivalent, for all possible configurations, if and

only if their structural representation is identical. Thus I can use a simple structural check

without incurring additional false positives versus a semantic approach. Since the structural
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approach does not require logical modeling, it is more efficient. Further, localization is trivial

since the structural check directly identifies the portions of the two components that differ.

my StructuralDiff function implements this approach. All components are repre-

sented as atomic values, tuples, or unordered sets. Atomic values are tested for equality.

Tuples are compared by testing that the corresponding values are equal. Finally, sets are

compared using set difference.

For example, to check two OSPF configurations are equivalent (excluding route redistri-

bution which is handled by SemanticDiff), it suffices to check equivalence for all corre-

sponding attributes on all corresponding links. That means both routers must have OSPF

edges to the same peers, and the corresponding edges are configured with the same costs,

areas, passive status, etc. I can think of the configuration of each OSPF link as a tuple of its

configured attributes and check each corresponding attribute. The same approach works for

BGP properties not implemented with route maps, such as which edges are to route reflector

clients and whether communities are propagated.

Other components that affect routing include connected and static routes. Connected

routes are formed by the set of subnets connected to the router’s interfaces, and the difference

between routers is the set of such subnets present in one router but not the other. Similarly, a

single static route can be represented as a tuple consisting of a destination prefix, a next-hop,

an administrative distance, and optional fields like tags; so the difference is the set of tuples

present in one router but not the other. Administrative distances can also be compared as

values configured per protocol.

As mentioned earlier, localization for these components is straightforward because the

equivalence check is performed directly on the components’ structures. Further, unlike route

maps and ACLs, these components have no explicit notion of input. Hence there is no need

for, or analogue to, HeaderLocalize for such differences.
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Figure 2.4: Basic features of routing and forwarding. Blue nodes(✓) represent fixed pro-
cesses. Yellow nodes (incoming ) are inputs and green nodes (outgoing ) are outputs.
Unmarked (brown) nodes represent configurable entities.

2.2.4 Debugging an Entire Router

I now formalize my approach to checking full router equivalence. I observe that many

crucial parts of routing, such as the route selection process, are fixed. They are implemented

according to a standard and depend only on the provided inputs and configurations. All of

the various processes in figure 2.4 need to be modeled to fully simulate a router or network,

but only the configured aspects (shown in brown) need to be modeled to find behavioral

differences.

Figure 2.4 provides a flow diagram illustrating the processes supported by Campion. For

routing, there is both a BGP process (top of figure) and an OSPF process (middle of fig-

ure), as these are the most common inter-domain and intra-domain routing protocols; other

protocols could be added similarly. The bottom of the figure shows the router’s process for

forwarding routes. The brown (unmarked) nodes represent parts of the router configuration,

while the other components are fixed processes like routing protocols (in blue (✓)), or input
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routes and packets (in yellow (incoming ) ), or outputs and byproducts like selected routes

and forwarded packets (in green (outgoing )).

Assuming that these are the only routing components used in the configurations being

compared, then Campion is a sound verifier for router configuration equivalence: If Campion

identifies no differences, then the two router configurations are behaviorally equivalent. I

formalize the fact that behavioral equivalence can be verified without reasoning about the

routing protocols as follows (my formalization considers behavioral equivalence of entire

networks, but it therefore also applies to the special case of individual routers).

Definition 1. A network N = (T,R, CP ,FP ,⪯P) is a topology T = (V , E) of vertices and

edges, a set of routes R, a family of configuration functions CP : E → Ω that maps each edge

in the topology to a configuration Ω, a family of transfer functions FP : Ω×E ×R → R that

transforms a route along an edge for a protocol, and a protocol preference relation ⪯P : R×R

that compares two routes for a protocol.

Definition 2. For two networks N = (T,R, CP ,FP ,⪯P) and N ∗ = (T ∗,R, C∗P ,F∗
P ,⪯P) and

an isomorphism I between T and T ∗, I say that the two networks are locally equivalent if for

all protocols p ∈ P, edges e ∈ E, and routes r ∈ R then Fp(Cp(e), e, r) = F∗
p (C∗p(I(e)), I(e), r).

[Soundness] If networks N and N ∗ are locally equivalent for isomorphism I, then they

have the same set of routing solutions.

Proof. The proof is by a reduction to the stable routing problem [7] and is described in the

appendix.

2.3 Implementation and Limitations

Campion operates on a vendor-independent representation produced by Batfish [19]. Real

routers support an enormous number of features. For Campion, I have focused on the most

common components used for routing and forwarding. Campion currently supports all of

the configuration components and features that are supported by Minesweeper (table 2.1).
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This includes common features of BGP route maps, like communities, local preference, and

MEDs, as well as other configurable aspects of BGP like route redistribution. It also includes

configurable OSPF attributes like link cost and areas, static routes, and ACLs. Sets of pack-

ets and route advertisements are represented by BDDs that are handled with the JavaBDD

library, extending code from Bonsai [7] used to encode import filters, output filters, and

ACLs.

As mentioned in the previous section, it is sometimes necessary to match up correspond-

ing components between two routers. I used a few simple heuristics instead of manually

specifying matching components. For BGP properties and route maps, I match up connec-

tions with the same neighbor id, and I report the neighbors that occur in one router but

not the other. I match ACLs with the same name. For OSPF attributes, I match interfaces

using a combination of their interface names, Batfish’s inferred topology, and their IP ad-

dress masks. This is necessary since interfaces in backup routers usually have different IP

addresses. While these heuristics are not perfect, they allow Campion to be run quickly and

easily.

Campion can identify differences and perform header localization for any vendor format

that Batfish supports. However, currently Campion can only output exact text lines for

configurations in Cisco IOS and Juniper JunOS formats, since I must write unparsers to

convert Batfish’s representation back to the original configuration text. For other formats,

Campion does not produce exact text lines, but it still provides substantial localization

information, including the component name, affected headers, and actions. Similarly, for

some formats I do not show the exact text lines for StructuralDiff results, for example

OSPF costs. But in these cases the localization information that Campion provides typically

allows operators to find the relevant lines with simple text searches.

HeaderLocalize for route maps currently only provides exhaustive information for

IP prefix ranges. For other relevant parts of a route advertisement such as community

tags, Campion provides a single example. It is possible to extend HeaderLocalize to
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provide exhaustive information across multiple parts of a route advertisement, but doing so

increases the complexity both of the algorithm and of its output. The current approach has

been sufficient for operators to understand Campion’s results and localize the errors.

2.4 Evaluation

I applied Campion to debug router configuration differences from a large cloud provider and

the campus network of a large university, both of which employ a diversity of hardware

router vendors. my experiments demonstrate Campion’s ability to identify cross-vendor

configuration differences and to provide actionable localization information to operators.

2.4.1 Differencing in a large Data Center

Network A is from a global cloud vendor that uses routers from different manufacturers. I

tested Campion on a data center network from vendor A that employs a Clos topology with

hundreds of routers and thousands of servers. All routers are either Juniper or Cisco, whose

configuration languages are supported by Campion. The data center network uses eBGP,

iBGP, OSPF, static routes, ACLs, and route redistribution for the layer-3 routing topology.

It carries business traffic for multiple global services. Each router configuration is thousands

of lines.

Scenarios. I asked the network operators to employ Campion on three frequent, real

and challenging tasks:

Scenario 1: Debugging redundant routers. Some routers (e.g., Top-of-Rack) are config-

ured to be backups of one another with equivalent modular policies handling BGP, OSPF and

static routes. For diversity, the operators deploy redundant routers from different vendors

(e.g., Juniper, Cisco). Because network A took months to build, its current configuration

comprises fragments written by different operators for diverse purposes, making hidden in-

consistencies likely. It is important to not only ensure equivalence of multi-vendor, redundant

routers, but also to quickly localize the root causes of any errors. Network A is constantly

45



being reconfigured as more policies are added for upcoming production traffic. Campion

allows greater agility by allowing new policies to be more quickly deployed in diverse backup

routers. The operators used Campion to compare all pairs of backup routers.

Scenario 2: Router replacement. Network A has an important update called router

replacement, where operators replace a router from one vendor with one from a different

vendor. Such replacements occur several times a month to take advantage of the price,

performance, and newer features. For example, the operators of network A might replace

lower-version Cisco routers with higher-version Juniper routers in order to avoid a Cisco bug.

Router replacement is one of the riskiest update operations in network A, since operators

must manually rewrite the old configurations to the new format; many critical errors have

occurred as a result. The operators used Campion to check for differences between old and

new configurations before performing a scheduled replacement, in order to proactively detect

errors.

Scenario 3: Access control in gateway routers. In network A, many ACL rules are applied

in gateway routers for traffic control. All of network A’s gateway routers should have identical

access-control policies, but it is difficult for network A’s operators to guarantee this since:

(1) the number of ACL rules is very large, and (2) the use of nested ACL rules makes their

logic complex. The operators used Campion to check the equivalence of ACL rules in the

gateway routers of the data center network.

Output evaluation. Note that network A’s operators used Campion and its user inter-

face without any feedback or help from us in interpreting results. The operators gave us very

positive feedback on the practicality and usability of Campion. By using Campion, they

found several risky, hidden configuration errors, as summarized in table 2.6. All differences

that Campion found were unintentional and considered to be errors by the operators. The

network configurations had recently undergone a standardization process to replace ambigu-

ous and “uncommonly-used” configuration commands with unambiguous and standard ones.

Hence any differences found by Campion were likely to be erroneous, and indeed this was
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Scenario Component Structural or Semantic Differences

Scenario 1
BGP Semantic 5

Static Routes Structural 2

Scenario 2 BGP Semantic 4

Scenario 3 ACLs Semantic 3

Table 2.6: Data Center Network Results

borne out by the lack of any false positives.

Scenario 1: Debugging redundant routers. Campion detected seven configuration bugs

across all of the redundant router pairs that it analyzed. Five of the bugs represent missing

fragments of BGP policy, and two of them were incorrect next hops in static routes. For four

BGP bugs, Campion was able to accurately localize the difference. For example, Campion

pointed out that a prefix for an import filter was missing in the primary router but present

in the backup one. Why were these bugs not detected by customers or real-time monitoring

systems? This was because the missing prefixes had not been used for production traffic

yet, but would have been in the near future. Once a service using this prefix is enabled, a

service problem would have occurred. Thus, Campion proactively prevented a future service

disruption.

The fifth BGP error that Campion detected used a version of the Cisco IOS format

which Campion does not fully support yet. Campion still detected the error and produced

useful localization information, such as the relevant input space and the actions taken by

each router, but the output configuration text was inaccurate. Due to this inaccuracy, the

operator reported the need to spend more time to understand the precise bug location, but

they still said that it was easy to spot the deviant configuration lines from Campion’s output.

The two static route errors Campion detected were misconfigured next hops. Backup

routers in network A should forward the same prefix to the same next hop, but Campion

detected that they were configured to forward a particular prefix p to different next hops.
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This is very dangerous: a cascading failure would have triggered when the production traffic

corresponding to p is turned on in the near future. Campion accurately pointed out non-

equivalent next hops of this kind in two pairs of backup routers.

Scenario 2: Router replacement. I used Campion to test more than 30 router replace-

ments. Campion successfully detected four bugs: one was an incorrect community number

and three were incorrect local preferences. One local preference bug was for the replacement

of a reflector device for iBGP. If this bug were not detected, the proposed replacement would

have caused a severe outage.

Further, network A’s operators also tested Campion on a synthetic case based on a static

route replacement which resulted in a significant outage one year ago. The tags of two static

routes were configured differently due to a misunderstanding of the semantics of the two

vendors. Campion accurately pointed out the difference between the static routes. In other

words, a significant outage could have been avoided if Campion had been used a year ago.

Scenario 3: Access control in gateway routers. Campion successfully detected three ACL

differences between gateway routers from Cisco and Juniper. Table 2.7 shows Campion’s

output for one of these differences.2 Campion’s text localization identified the exact line in

the Cisco ACL where traffic was rejected. The Juniper ACL equivalent is divided into terms,

and Campion’s text localization was able to locate which term accepted the traffic. Further,

Campion’s header localization also identified header information like the relevant source IP

prefix.

Running Time. For each of the above three scenarios, although the configuration files

of each device in network A contains thousands of lines, Campion finished its localization

task within five seconds for each pair of routers.

Comparing Campion with an existing tool. While provider A has its own home-

grown verification system that has been used for 1.5 years, this system can only tell whether

2The IP addresses and ACL name in this figure have been anonymized for confidentiality reasons.
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Router 1 (current) Router 2 (reference)

Included
Packets

srcIP: 9.140.0.3/32

dstIP: 0.0.0.0/0

Excluded
Packets

srcIP: 9.140.0.3/32

dstIP: 0.0.0.0/0

protocol: ICMP

+28 more

ACL Name VM FILTER 1 VM FILTER 1

Action REJECT ACCEPT

Text
2299 deny ipv4 9.140.0.0

0.0.1.255 any

set firewall family inet

filter VM FILTER

term permit whitelist

Table 2.7: An example for ACL rules debugging. Router 1 and Router 2 are Cisco and
Juniper routers, respectively.

the network configuration meets operator intent, but does not provide any error localization

capability. Thus, network A’s operators spend considerable time localizing bugs even when

the existing tool identifies bugs in the network. Campion therefore provides a new capability

that can potentially reduce debugging time considerably for network A’s operators.

Localization efficiency. For the configurations checked, all localization results were

less than five lines of configuration code. The configuration files tested vary in size from 300

lines to more than 1000 lines. Of these, the number of lines that are part of an ACL or route

map definition is typically more than 100. Campion thus drastically reduces the amount of

configuration that operators must search through to debug a difference.

2.4.2 Differencing in a University Network

The university network consists of approximately 1400 devices, including border routers that

connect to external ISPs, backbone core routers and building routers.

I ran Campion to compare the policies for a pair of core routers and a pair of border

routers. In each pair, one used Cisco configuration format and the other used Juniper format.

I chose these two pairs because they are the only Cisco-Juniper backup pairs with routing

49



policy. The Cisco configurations and the Juniper core router configuration contain about

1800 lines of text. The Juniper border router configuration contains about 3500 lines of text.

The results are shown in table 2.8.

I match route maps that are applied to the same BGP neighbor. In total, there were five

pairs of operator-defined export route maps, and one pair of operator-defined import route

maps. The differences that Campion found are summarized in table 2.8a.

The prefix ranges, communities, and text lines produced by Campion made it straightfor-

ward to identify these discrepancies. The list of issues that I sent to the operators does not

exactly correspond to the raw output of my tool. For example, since Campion divides sets

of advertisements based on which lines process them, it is possible that a single underlying

difference in the configuration results in multiple lines of outputted differences. In table 2.8a,

the Outputted Difference column reports the number of raw outputs produced by Campion,

whereas the Differences Reported column reports how many distinct issues I reported to

the operators. I categorize a reported difference as Confirmed if the operator indicated that

the identified difference was both an actual difference and unintentional. The last column

indicates the number of reported differences whose status is unknown at this time.

As shown in the table, the operators confirmed that most of the differences Campion

identified were in fact errors. Based on earlier snapshots, the differences have been present

since at least July 2017.

The route maps shown earlier in figure 2.1 illustrate two issues from a pair of core-router

route maps (labeled Export 1 in table 2.8a). These were differences in the definitions of a

prefix list and a community set and were confirmed as unintentional discrepancies. For the

difference in the prefix lists, the operator agreed it was a misconfiguration, but was not sure

whether the Cisco or Juniper router was correct. For the community difference, the operator

wrote: “The community group is an obvious mistake on my part. The Juniper config is

wrong. I followed the wrong Juniper doc when configuring the community group.”
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Router Pair Route Map
Outputted
Differences

Differences
Reported

Confirmed Pending

Core
Routers

Export 1 5 5 4 1

Export 2 1 1 1 0

Border
Routers

Export 3 1 1 1 0

Export 4 1 1 1 0

Export 5 2 1 1 0

Import 0 - - -

(a) SemanticDiff results on route maps

Router Pair Component Classes of Errors
Differences
Reported

Confirmed Pending

Core
Routers

Static Routes 2 1 0 0

BGP Properties 1 1 0 0

(b) StructuralDiff results

Table 2.8: University Network Results

In addition to the differences shown in figure 2.1, the actual route maps contained different

definitions for their third clause, with the Juniper router performing a match on communities

that was not done in the Cisco router. They also have different redistribution behavior for

certain addresses. Further, the two routers have different fall-through behaviors (accept

vs. deny) when handling advertisements that fail to match any clause, which causes two

additional behavioral differences. Operators confirmed all but the last of these issues, which

is still pending. When asked about the difference between the third clauses of each route

map, the operator replied: “The Juniper config is correct and the intent is obvious because of

the English-language syntax. The Cisco config we’re not sure what change should be made,

if any.” This demonstrates the challenge for operators when dealing with multi-vendor

backups, and the need for a tool like Campion to ensure consistency and localize errors.

Export 2, the other core router policy, also had the difference in prefix lists mentioned

previously for Export 1 but did not have any other issues. The differences in the border router

policies similarly affected the matched prefixes and communities but were of a different
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nature: there were differences in two regular expressions used to match communities for

Export 3 and Export 4. Campion reported that advertisements with a certain community

were accepted in the Cisco router but not the Juniper router. For Export 5, there was one

prefix that was absent in a prefix list in the Juniper router but present in the Cisco router

list. These were also confirmed as errors by the operators.

When comparing other properties of the core routers using Campion’s StructuralD-

iff, I found differences in the static route configuration and the BGP configuration. In the

static routes I found two classes of differences. The first included many static routes that ap-

plied to the same prefix but had different next hops and different administrative distances. I

deemed these as intentional differences, since the next hops had similar addresses, suggesting

that their next hop routers were of the same role, and the administrative distances did not

affect the relative priority of routes. The second class of static route differences included two

static routes that were present in one router but not the other, as demonstrated in section 2.1.

These were reported to the operators, and they said that these were intentionally added as

a workaround for a specific BGP routing issue. The BGP configuration difference was that

certain iBGP neighbors of the Cisco router were missing a neighbor send-community com-

mand to propagates communities, while Juniper routers send communities by default. The

operators indicated that this configuration difference does not cause a behavioral difference

because the core routers do not set communities on routes.

2.4.3 False Positives

I distinguish between two types of false positives that Campion may produce, both of which

were exhibited in the results for the university network. First, there can be intentional

differences between routers. This was the situation for the static routes that were added

in one configuration as a workaround for a specific BGP routing issue, as well as for the

static routes that had differing next hops. Second, there can be spurious differences due

to Campion’s modular approach. Specifically, any potential behavioral difference between
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corresponding components is reported by Campion, but these differences may not cause an

actual behavioral difference in the current network, for example because the differences are

shadowed or accounted for by other parts of the configuration. This was the situation for

the iBGP neighbors of one router which were not configured to send communities.

However, I argue that it is still worthwhile to report both kinds of false positives. Report-

ing intentional differences allows the operator to ensure that all and only expected differences

exist between the two routers. In the case of static routes added as a workaround, the op-

erator commented, ”I just need to find another way to resolve this,” indicating that this

difference is intentional but still not optimal. Reporting spurious differences is valuable be-

cause they represent latent errors that can potentially be ”activated” by a change elsewhere

in the network configuration. In the case of the spurious difference for sending communi-

ties, if the core routers later start to set communities on routes then this difference will

cause an important behavioral difference. Indeed, the operator commented that these kinds

of spurious differences would likely be examined and addressed when the routers are next

replaced.

2.4.4 Scalability

For each of the data center scenarios, Campion finished its localization task within five

seconds for each pair of routers. For the university core and border pairs, the total runtime

to compare the core and border pairs was 3 seconds. When combined with the parsing of

the configurations, the total time was under 10 seconds, with configuration parsing taking a

majority of the time. I additionally tested the scalability of SemanticDiff for ACLs. I used

Capirca3 to randomly generate nearly equivalent ACLs for Cisco and Juniper configurations.

I introduced 10 differences between the two ACLs and compared them. When the ACLs

were generated with 1000 rules, SemanticDiff took less than a second. When the ACLs

were generated with 10,000 rules, SemanticDiff took 15 seconds. These tests were done

3https://github.com/google/capirca
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with a 2.2 GHz CPU. Moreover, Batfish’s parsing time for the 10,000 case is 13 seconds,

which is comparable to the runtime of SemanticDiff.
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CHAPTER 3

Modular Verification of BGP Safety Properties

A key problem in verifying network control plane properties with formal methods is scaling

these techniques to large networks. While previous tools attempt to scale through various

means, they are not efficient enough to be used today on large real-world networks such as

the wide-area networks of hyperscalers.

This lack of scalability is fundamental to the monolithic approach to modeling that is

used by earlier tools. They analyze the network configuration and routing processes as a

whole, exhaustively exploring all possible control-plane behaviors induced by the complex

interactions among all configuration directives and protocols. Networks can contain hun-

dreds of routers and links, and as the size of the network grows, the number of possible

network states grows exponentially, making it very difficult to scale verification techniques.

In other domains, like software or hardware, the way to handle this is through modular

checking. In this style, subsystems (e.g., a software function or hardware module) are veri-

fied independently to meet local specifications (e.g., a precondition/postcondition pair) that

together imply a desired global property. Prior work has used modularity to scale data-plane

analysis [23], but modularizing control-plane verification is more challenging due to complex

routing protocols and policies.

Control plane behavior depends on the interaction of complex configurations with BGP,

a distributed message-passing protocol. A classical way to reason modularly about protocols

is through invariants indexed by time [50], and/or employ temporal logic [33]. This requires

significant effort and expertise. Instead, I demonstrate that in practice a wide range of
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Tool Feature Minesweeper [6] BagPipe [53]
Plankton [42] ARC [20]

Lightyear
Tiramisu [3] Hoyan [55]

Analyzes all peer BGP routes   # #  
Analyzes failures  #    
Checks safety and liveness properties  G#    
Verification is fully automatic     G#
Near linear scaling with network size # # # #  
Localizes bugs in configurations # # # #  

Table 3.1: Comparison of prior verification tools with Lightyear.

desired properties can be modularly verified without making time explicit.

This chapter, along with chapter 4, presents a modular approach to network control plane

verification that is implemented in the tool Lightyear. Like prior verifiers, it takes as input a

network’s configuration and a global property to verify. However it additionally requires the

user to provide local constraints that should hold on individual routers and edges. Given a

set of local constraints on individual nodes and edges, Lightyear can produce a set of checks

that are applied to route maps in the router configurations. If all the checks for the policies

pass, then that implies that the global property holds.

A comparison between Lightyear and previous tools is shown in table 3.1. Since Lightyear

can prove global properties using only local checks, and there is a limit to the size of local

checks, Lightyear can scale nearly linearly in the size of the network. It is the first tool that

can scale in such a fashion. Additionally, since checks are local to specific route maps, if any

check fails, the user can immediately narrow down errors to the relevant router configuration.

This chapter focuses on safety properties on individual routers, which intuitively ensure

that “bad” routes never reach a particular node. This includes common properties like filter-

ing bogons, preventing transit between peers, and ensuring isolation. Chapter 4 focuses on

liveness properties, which intuitively ensure that a “good” route will eventually be accepted

or forwarded at a particular location. This includes many control-plane reachability queries:

for example that a route received from one neighbor will be sent to another. In the following

sections, I first show an overview of checking a safety property with an example, and then I
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ISP1

ISP2

R1

R2
R3

Customer

X

✓

Network

Figure 3.1: Example network with safety and liveness properties. Routes from ISP1 should not be
sent to ISP2 (safety). Routes from Customer should reach ISP2 (liveness). Policies are implemented
by tagging and checking communities.

present the general formulation and proof.

3.1 Overview and Example

In this section I show how Lightyear checks safety properties with the example in Figure 3.1.

In the example network, each edge represents a connection between BGP speakers. The

network contains three BGP routers: R1, R2, and R3. R1 and R2 each have an ISP as

an external neighbor. R3 is connected to an external neighbor that is a customer. The

network satisfies two properties. First, it satisfies the standard no-transit property that

routes originating from ISP1 should not be advertised to ISP2, and second, it satisfies the

property that routes from Customer, with appropriate prefixes, should eventually be sent

to ISP2. The former is a safety property, holding when a certain event (advertising a route

from ISP1 to ISP2) never occurs. The latter is a liveness property, which is explained in

chapter 4. Both are network-wide policies in that they depend on the interaction of multiple

routers to achieve the correct result.

Existing control-plane verifiers [6, 53, 20, 3, 42] would verify these properties by creating

a representation of the possible data planes that can result from the entire network’s configu-

ration and then searching this representation for counterexamples. This joint representation
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of all network node behaviors has inherent scalability limitations.

However, the scalability limitations can be overcome by using knowledge about the struc-

ture of the network configurations. Network configurations are highly modular by design.

Each router has route maps, which define an import and export policy on each peering

session. These determine the router’s responsibilities, and the different local policies act in

combination to ensure desired global properties. In our example network, one way to ensure

the no-transit property is to use a common approach based on communities:

• R1’s import policy marks received routes from ISP1 with a BGP community (a simple

32-bit tag) with value 100:1

• R2’s export policy filters routes tagged with 100:1 when advertising to ISP2, and

• no other import or export policy strips community 100:1 from routes that it advertises.

Note that each of the above behaviors is node-local and pertains to an individual BGP

route map. Unlike Lightyear, prior control plane verification tools are not aware of this

modular structure and so cannot leverage it. Alternatively, one could make a tool that can

simply perform these kinds of local checks. However, in that case there is no guarantee that

together they imply the desired end-to-end property. Even in this simple example, the fact

that it is necessary to check the third condition above is subtle and easily missed. The rest

of this section shows the necessary inputs and generated checks need to modularly verify this

property for the network in Figure 3.1. The inputs consist of an end-to-end property and a

network invariant. These are used to generate a set of local checks. If the checks hold, then

the network property is verified.

End-to-end Property: For safety properties, the end-to-end property of interest is

specified as a pair of a particular location in the network and a predicate on the routes

reaching that location. Many network policies fall into this class of properties, for example

bogon filtering; ensuring that a network only advertises routes to its own destinations; and
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Type Location(s) Logical Formula Description

End-to-end Property R2 → ISP2 ¬FromISP1(r) No routes sent to ISP2 come from ISP1

ISP1 → R1 True ISP1 can send our network any route

R2 → ISP2 ¬FromISP1(r) No routes sent to ISP2 come from ISP1Network Invariants
Nodes and other
edges in network

FromISP1(r)
⇒ 100:1 ∈ Comm(r)

Routes from ISP1 are tagged with community 100:1

ISP1 → R1 (True ∧ r′ = Import(ISP1→ R1, r))
⇒ (FromISP1(r′)⇒ 100:1 ∈ Comm(r′))

R2 → ISP2 ((FromISP1(r)⇒ 100:1 ∈ Comm(r)) ∧ r′ = Export(R2→ ISP2, r))
⇒ ¬FromISP1(r′)

Other Edge E ((FromISP1(r)⇒ 100:1 ∈ Comm(r)) ∧ r′ = Export(E, r))
⇒ (FromISP1(r)⇒ 100:1 ∈ Comm(r))

Generated Checks

((FromISP1(r)⇒ 100:1 ∈ Comm(r)) ∧ r′ = Import(E, r))
⇒ (FromISP1(r)⇒ 100:1 ∈ Comm(r))

Table 3.2: Using Lightyear to prove the no-transit property from figure 3.1. The user-
provided global property and local invariants are show in blue. Lightyear-generated local
verification checks are shown in yellow.

forms of isolation between nodes or groups of nodes. Such properties can also express complex

constraints among BGP attributes, for example that prefixes in a specific range always have

a particular local preference or MED value.

As shown in the first line of Table 3.2, the no-transit property specifies that no route

transmitted over the edge from R2 to ISP2 should originate at ISP1. To enable the expression

of rich properties, Lightyear allows users to define ghost attributes that conceptually update

message headers with additional fields. This is a common technique in software verification,

where additional variables are introduced that do not affect the computation but allow for

easier property specification [18]. In the table, FromISP1(r) is a boolean ghost variable that

is defined by the user to be false in all originated routes, set to true by the import filter on

R1 from ISP1, and left unchanged by all other filters.

Network Invariants: Users must also specify invariants. While in principle the user

could specify a different invariant for each network location, many locations play the same

role in the network and have the same behavior with respect to the desired end-to-end

property. In our example, there are only three network invariants, shown in Table 3.2, which

correspond exactly to the three node-local behaviors described earlier that ensure the no-
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transit property. First, no assumption is made about the routes coming from ISP1 to R1,

so the associated predicate is True. Second, routes coming from R2 to ISP2 should not

come from ISP1. Note that this invariant is identical to the end-to-end property, which

is common but need not be the case. Third, all other locations in the network should

satisfy the key correctness invariant: routes from ISP1 must be tagged with the community

100:1. Notably, this three-part decomposition is analogous to the modular verification of

software [21], which typically involves a precondition that is assumed to hold initially, a

postcondition to be proven, and one or more inductive invariants that hold throughout each

execution and are sufficient to imply the postcondition.

Generated Checks: Given this information from the user, Lightyear automatically

generates local checks to validate the given network invariants. Importantly, each local check

pertains to a single BGP filter on a single network router, applied to messages from a specific

neighbor. Together these checks implement a form of assume-guarantee reasoning [26, 41]:

each location’s network invariant is proven under the assumption that the local invariant of

its directly connected locations hold. As I show later, together these checks imply that all

local invariants in the network are respected.

Table 3.2 shows the local checks that Lightyear automatically generates for our running

example. The first check ensures that the import filter at R1 on the edge from ISP1 to R1

establishes the key invariant FromISP1(r) ⇒ 100:1 ∈ Comm(r). Since that filter tags all

routes with community 100:1, the check is easily provable by an SMT solver. The second

check ensures that the key invariant is sufficient to ensure that routes from ISP1 are not

exported on the edge from R2 to ISP2. Since the export filter at R2 on that edge drops all

routes that are tagged with 100:1, the check passes. The third set of checks ensure that the

key invariant is preserved by all other import and export filters in the network. Since these

filters never strip community 100:1 from a route, the checks pass.1 Lastly (not shown in

the table), Lightyear must check that the invariant on the edge from R2 to ISP2 implies the

1There are also some analogous checks for originated routes, but they are omitted here for simplicity.
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end-to-end property. This check is trivial since the two properties are identical.

In summary, Lightyear’s approach to control-plane verification leverages the modular

structure that is already present in the network configurations. By requiring the user to make

this structure explicit through a set of local invariants at each location, Lightyear soundly

reduces checking an end-to-end network property to a set of checks that each pertain to a

single BGP import or export filter.

This approach has numerous benefits over the prior, monolithic approaches. First, our

approach is highly scalable, since the number of checks is linear in the number of edges in the

BGP network graph. Second, Lightyear’s modular checks provide a very strong guarantee.

For both safety and liveness properties, the approach handles all possible external route

announcements from neighbors. For safety properties, it additionally provides resilience to

arbitrary failures ”for free,” since it proves that ”bad” routes are not received without making

any assumptions about the paths on which they might flow. Third, the modular approach

naturally supports incremental verification when a node is updated: only the local checks

pertaining to that node must be re-checked. Finally, modularity has large benefits for error

localization and understanding: the failure of a local check directly pinpoints the erroneous

import or export filter and the local invariant that it fails to satisfy.

3.2 BGP Model

This section describes our model of BGP. I model the semantics of BGP as a set of allowed

traces. Our semantics is a variant of that from the Bagpipe tool [53].

A trace is a sequence of events. There are three types of events: recv, slct, and frwd.

For r ∈ Routes, R and N ∈ Routers, and R→ N ∈ Edges:

1. recv(N → R, r) occurs when R receives route r from neighbor N

2. slct(R, r) occurs when R selects r as the best route for a destination and installs it

3. frwd(R→ N, r) occurs when R forwards route r to the neighbor N
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Using the terms from RFC4271 [45], one can also think of recv(N → R, r), slct(R, r), and

frwd(R → N, r) as corresponding to installing a route into the Adj-RIB-In, Loc-RIB, and

Adj-RIB-Out, respectively. Thus, traces can be thought of as the sequence of updates to

network’s BGP state. I denote the set of all traces as Traces.

A valid trace is one that could occur for a given topology and policies, according to the

BGP semantics. I formalize the notion of trace validity as a set Valid ⊆ Traces of traces

that satisfy specific properties. I consider a trace A1, A2, . . . , An to be valid, and hence part

of the set Valid, if it satisfies a set of safety axioms.

The safety axioms consist of the following properties, for all 1 ≤ k ≤ n:

1. If Ak = recv(N → R, r), then either:

(a) N ∈ Externals, or

(b) there exists j < k such that Aj = frwd(N → R, r)

2. If Ak = slct(R, r), then there exists j < k, r′ ∈ Routes, and N ∈ Routers ∪

Externals such that Aj = recv(N → R, r′) and r = Import(N → R, r′)

3. If Ak = frwd(R→ N, r), then either:

(a) r ∈ Originate(R→ N), or

(b) there exists j < k and r′ ∈ Routes such that Aj = slct(R, r′) and r =

Export(R→ N, r′)

3.3 Safety Checks

Lightyear requires three inputs from the user in order to check safety properties. The first

input, the network configurations, is standard. As described previously, the configurations

are used to build the BGP topology as well as the policy functions.
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The second input is the network safety property, which requires that all route announce-

ments that can reach a particular location satisfy certain constraints. Formally, a network

safety property is a pair (ℓ, P ) where:

(ℓ, P ) ∈ (Routers ∪Edges)× P(Routes)

ℓ is a location, either a router or an edge, and P is a set of routes matching a particular

constraint. In practice, users directly specify a logical constraint on route attributes that

represents P .

Each safety property (ℓ, P ) corresponds to a property of all possible valid traces, as de-

fined in the previous section — all routes that can reach location ℓ must satisfy P . Formally,

a network satisfies a property (ℓ, P ) if for all T ∈ Valid, r ∈ Routes, R,N ∈ Routers

• if ℓ = R and slct(R, r) ∈ T , then r ∈ P

• if ℓ = R→ N and frwd(R→ N, r) ∈ T ∨ recv(R→ N, r) ∈ T , then r ∈ P

For example, the location (R1 → R2) and constraint 1:1 ∈ Comm(r) together specify the

property that if frwd(R1→ R2, r) or recv(R1→ R2, r) are in a valid trace, then r should

always have the community 1:1.

Finally, Lightyear’s third input is a set of network invariants, one per location in the

given network. Formally, the network invariants are modeled as a set of pairs denoted I:

I ⊆ (Routers ∪Edges)× P(Routes)

Each element of the set has the form (ℓ, P ), where ℓ is a location and P is a set of routes, as

in the network property defined above. The semantics of each pair is a property of traces,

analogous to the semantics of network properties shown above.

I require that there exist exactly one pair in I per location in the given network, and I use
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the notation Iℓ to denote the set P of routes associated with location ℓ in I. I also require

that IR→N = Routes for each edge R → N where R ∈ Externals. In other words, I

make no assumption about routes coming from external neighbors but rather assume that

any route may be advertised.

Given the network configuration, network property (ℓ, P ), and network invariants I,

Lightyear generates the following local checks for each edge A→ B in the network topology,

which validate each location’s network invariant using assume-guarantee reasoning:

1. Import: For all r, r′ ∈ Routes, if r = Import(A → B, r′) and r′ ∈ IA→B, then

r ∈ IB.

2. Export: For all r, r′ ∈ Routes, if r = Export(A→ B, r′) and r′ ∈ IA, then r ∈ IA→B.

3. Originate: For all r ∈ Routes, if r ∈ Originate(A→ B), then r ∈ IA→B.

For example, the first check verifies that the import route map at B on the edge A → B

satisfies IB, assuming that A → B satisfies its local invariant. If the router B is external

then the import check is not performed, and similarly if the router A is external then the

export and originate checks are not performed. In our implementation of Lightyear, the

local checks are performed by modeling import and export filters using SMT constraints and

invoking an SMT solver to validate each check or provide a counterexample.

Finally, Lightyear checks that the network invariants I imply the network property (ℓ, P ).

This is done simply by requiring that Iℓ ⊆ P , i.e. that the network invariant for ℓ implies

the network property P . Again this check is performed with an SMT solver.

3.4 Proof of Correctness

In this section I prove that Lightyear’s modular approach to control-plane verification is

correct.
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First I state and prove the key lemma, which says that the local checks are sufficient to

ensure that the network invariants I hold, for all valid traces.

Lemma: Given a BGP topology and policy as well as network invariants I, let C be the set

of Import, Export, and Originate checks that Lightyear generates. If all checks in C pass,

then for all T ∈ Valid, r ∈ Routes, R,N ∈ Routers:

• if slct(R, r) ∈ T , then r ∈ IR

• if frwd(R→ N, r) ∈ T ∨ recv(R→ N, r) ∈ T , then r ∈ IR→N

Proof: The proof is by induction on the length of the (partial) trace T .

Base case: For a partial trace of length 0, there are no events, so the statement is vacuously

true.

Inductive case: Suppose T = A1, A2, . . . , Ak+1. I assume by induction that the statement

is true for A1, A2, . . . , Ak. I do a case analysis on the event Ak+1:

Case Ak+1 = recv(N → R, r), so I have to show that r ∈ IN→R. By the trace validity

axioms, either:

1. N ∈ Externals. In this case I know that IN→R = Routes, so r ∈ IN→R.

2. There exists j < k + 1 such that Aj = frwd(N → R, r). Then by the inductive

hypothesis I have that r ∈ IN→R.

Case Ak+1 = slct(R, r), so I have to show that r ∈ IR. From the trace validity axioms, I

know that there exists j < k+1, r′ ∈ Routes, and N ∈ Routers∪Externals such that

Aj = recv(N → R, r′) and r = Import(N → R, r′). From the inductive hypothesis, I know

that r′ ∈ IN→R. Therefore by the Import check in C for N → R, I can conclude that r ∈ IR.

Case Ak+1 = frwd(R → N, r), so I have to show that r ∈ IR. By the trace validity axioms,

either:
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1. r ∈ Originate(R→ N). Then from the Originate check in C for R→ N I have that

r ∈ IR→N .

2. There exists j < k + 1 and r′ ∈ Routes such that Aj = slct(R, r′) and r =

Export(R → N, r′). From the inductive hypothesis, I have that r′ ∈ IR. Then from

the Export check in C for R→ N , I can conclude that r ∈ IR→N .

Now I prove the correctness theorem for Lightyear, which says that Lightyear’s checks

are sufficient to ensure that the given network property holds, for all valid traces.

Theorem: Given a BGP topology and policy, a network property (ℓ, P ), and network in-

variants I, let C be the set of Import, Export, and Originate checks that Lightyear generates.

If all checks in C pass and Iℓ ⊆ P , then for all T ∈ Valid, r ∈ Routes, R,N ∈ Routers:

• if ℓ = R and slct(R, r) ∈ T , then r ∈ P

• if ℓ = R→ N and frwd(R→ N, r) ∈ T ∨ recv(R→ N, r) ∈ T , then r ∈ P

Proof: There are two cases:

1. ℓ = R and slct(R, r) ∈ T . From the earlier lemma I have that r ∈ Iℓ, and since

Iℓ ⊆ P it follows that r ∈ P .

2. ℓ = R → N and frwd(R → N, r) ∈ T ∨ recv(R → N, r) ∈ T . Again from the earlier

lemma I have that r ∈ Iℓ, and since Iℓ ⊆ P it follows that r ∈ P .

3.5 Extensions and Discussion

3.5.1 Ghost Attributes

To increase Lightyear’s expressiveness, users can define ghost attributes, which conceptually

extend each route with additional fields. For example, the FromISP1(r) ghost attribute from

Section 3.1 is used to indicate whether r originated from ISP1. A ghost attribute is defined
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by specifying the set of values that the attribute can take, along with updates to the Import,

Export, and Originate functions that make up the given network’s policy (Section 3.2).

In the case of FromISP1(r) from Figure 3.1, it can be defined as a boolean attribute with

the following behavior:

• the import filter on ISP1 → R1 sets FromISP1 to true

• the import filter on ISP2 → R2 sets FromISP1 to false

• other filters leave FromISP1 unchanged

• all originated routes have FromISP1 set to false

Other natural network properties can be expressed using ghost attributes. A WaypointR

attribute that is true only for routes processed by a particular router R can be defined by

specifying that filters on R set WaypointR to true, origination as well as import filters from

external neighbors at other routers set WaypointR to false, and filters between the routers

in the network leave WaypointR unchanged.

Ghost attributes do not affect the description of Lightyear or proof of its correctness

above, as they do not depend on the specific set of attributes that are in a route.

3.5.2 Fault Tolerance

A significant benefit of Lightyear’s approach to control-plane verification of safety properties

is that it supports reasoning about failures “for free.” That is, if all of Lightyear’s checks

pass, then the given network property is guaranteed to hold not only in the failure-free case

but also in the presence of arbitrary node and link failures.

Lightyear soundly reasons about failures because of our over-approximate notion of trace

validity (Section 3.2. Specifically, any trace that is feasible according to the given BGP

topology and passes the import and export filters along the corresponding path is considered
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Figure 3.2: A network where a safety property cannot be prove

valid. Hence, every trace that can occur under any failure scenario is already considered valid.

By our correctness theorem, all of these traces satisfy the property (ℓ, P ).

3.5.3 Incompleteness

The method for verifying safety properties is always sound but it may not be complete for

pathological networks. Incompleteness in this case means that there is a combination of a

network and a property such that the property holds on all valid traces in the network, but it

is not possible to prove the property by stating an invariant and checking the local contracts

generated by the invariant. Specifically, my approach may not work for networks where

the import and export policies do not prohibit loops, and the correctness of the property

depends on the BGP best route selection mechanism.

Consider the example in figure 3.2. In this network, there are four routers and the

numbered arrows show the path taken by a route propagated through the network. Suppose

it has the following policies configured:

• At R2, the import policy on routes from R1 adds community sets local preference 200.

• At R2, the import policy on routes from R4 adds community 10:1 and sets local

preference 50.

• All other policies accept all routes sent between R1, R2, R3, R4 without altering them
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(even those that would normally be dropped because of AS paths or iBGP fields).

• Routes from any neighbors not pictured are rejected

• Only R1 originates routes.

Now, suppose the user wants to prove the property that for all routes r and traces T ,

slct(R2, r) ∈ T =⇒ 10:1 /∈ Comm(r). This can be expressed as a safety property. The

property is true for the following reason: the only possible way for R2 to receive and import

a route with community 10:1 is if the route from R1 looped around the network and came

back to R1 via R4, as in the path shown in figure 3.2. The route will have local preference

50, but in order for this to occur, R2 must already have a route obtained from R1 with local

preference 200. Therefore R2 will never select and install a route with community 10:1.

However, even though the property is true, it is not possible to state an invariant for

this that is established with checks on import and export filters. If there were an invariant

I, it must be that IR2 =⇒ 10:1 /∈ Comm(r). It is not possible to establish this invariant

because it is possible for R2 to successfully import a route r with 10:1 /∈ Comm(r), namely

the case where the route comes from along the path in the figure above. Because of this, my

safety checking framework is not complete in all cases.

The fundamental reason why the above example cannot be checked is that it contains a

looping path and depends on the BGP best route selection mechanism to ensure safety. The

looping path ensures that the ”bad” route is present only when a ”good” route is already

present in a particular routing table, and relying on the best route selection mechanism means

that the property is not checkable with checks on import and export filters. It is worth noting

that in a typical BGP network, the AS path attribute and iBGP route reflector attributes

prevent signaling loops from occurring in the network, so cases like the above will never

occur. My conjecture is that for networks where import and export policies (which includes

the default AS path and iBGP rules) prevent loops, all properties should be checkable. That

is, for all true properties, it is possible to state an invariant that implies the property with
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generated checks that will pass.
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CHAPTER 4

Modular Verification of BGP Liveness Properties

The previous chapter shows how safety properties can be checked using modular checks. This

chapter extends that to another class of network properties. These are liveness properties in

that intuitively they model that some ”good” route will eventually be accepted or forwarded

in the network given some initial conditions. This includes many control-plane reachability

queries: for example that a route received from one neighbor will be sent to another.

Reasoning modularly about liveness properties is particularly challenging; it requires

that the modular checks together imply an end-to-end path through the network. I show a

natural approach to do this using two kinds of constraints: path constraints that ensure the

feasibility of a ”good” path, and a related no-interference invariant that ensure good paths

cannot be prevented. In the following sections, I define the class of liveness properties, show

the checks necessary to prove such a property.

4.1 Overview and Example

Consider the example in figure 3.1. This network should satisfy the property that routes

from Customer, with appropriate prefixes, will eventually be sent to ISP2. This is a liveness

property because I want to show that a ”good” route (a route from Customer), will even-

tually be sent to ISP2, given the initial condition that the network receives such route from

Customer.

The rest of this section shows the inputs that the user would need to provide and the

checks that would need to be performed in order to verify the property in this example. A
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more general formulation is shown in the following sections. The user needs to provide the

end-to-end property, a path that a route can travel along, and a set of constraints for the

route at each step in the path. This will be used to generate two things: a set of propagation

checks, and a no-interference property.

End-to-end Property: For liveness properties, the end-to-end property of interest

is also a pair of a particular location in the network and predicate. However, here the

predicate indicates that a route satisfying the property will eventually reach that location.

The property in Table 4.1 shows that a route with a customer prefix will eventually be sent

from R2 to ISP2. If the routes of interest come from a neighbor, as in this case, then the

property will only be provable under the assumption that the neighbor advertises such a

route. Users can optionally specify such an assumption, as shown in the table.

Path and Constraints: As with safety properties, users need to provide a set of local

constraints on individual network locations, but they take a different form for liveness prop-

erties. Users must provide a path through the network that the desired route can take to

reach the destination from the source, along with local constraints for each edge and node

along the path. The path does not need to be unique. Intuitively, each local constraint

indicates the properties of the ”good” routes that will reach that particular location, and

together they constitute a witness that a ”good” route will eventually reach its intended des-

tination. As shown in Table 4.1, our example has two path constraints: at locations R3, R2,

and R3 → R2 there will eventually be a route with the customer prefix that does not have

the community 100:1, and at R2 → ISP2 there will eventually be route with the customer

prefix. It is important that routes from Customer do not have the community 100:1, or else

they will be dropped at R2, as I saw for the no-transit property.

Propagation Checks: In order to prove the liveness property two types of checks need

to be performed. First, there are local checks that together imply that a route will in fact

traverse the given path, in the absence of interference from other possible paths. These

checks are analogous to the generated checks for safety properties shown earlier. In our
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example in Table 4.1, the checks again follow a three-part structure, with Customer → R3

establishing an invariant, R3 → R2 maintaining the invariant, and R3 → R2 using the

invariant.

No-interference: Finally, liveness properties require an additional set of checks. Since

BGP only selects the best route available from all of a router’s neighbors, it is not enough

to show that filters do not reject ”good” routes along our path. It is also necessary to show

that other routes in the network can never interfere, at any node along the path. To do

this, I need to check that any route accepted on the path with the same prefix must satisfy

the corresponding path constraint. For this example, at R3 and R2, routes with a customer

prefix are checked to never have the community 100:1. This constraint ensures that if

routes for customer prefixes arrive along other paths and are preferred to those arriving on

our path, those routes will still satisfy the desired property (i.e., they will be sent from R2 to

ISP2). Note that this means that our approach does not require that the specified path be

unique in the network, so I can verify liveness properties even in some scenarios where there

is routing redundancy. The no-interference constraint is itself a set of safety properties, and

so in general it must be proven using the machinery shown in the previous subsection, with

its own set of local invariants and checks.

4.2 Checks

I now describe the general framework for verifying liveness properties modularly. Proving

liveness properties modularly is more difficult than proving safety properties, since it requires

showing both that ”good” routes are allowed and that interfering routes are not.

4.2.1 Inputs for Liveness Checks

The inputs for a liveness check consist of the following:

1. The network configurations

2. A liveness property (ℓ, P ) ∈ {Routers ∪Edges} × P(Routes)
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Type Location(s) Logical Formula Description

End-to-end Property R2 → ISP2 HasCustPrefix(r) Customer prefixes are advertised to ISP2

Assumption Customer → R3 HasCustPrefix(r) Assume customer routes are advertised to R3

R3, R2, HasCustPrefix(r) Routes from customer are accepted/forwarded

R3 → R2 ∧¬ 100:1 ∈ Comm(r) and not tagged with community 100:1Path Constraints

R2 → ISP2 HasCustPrefix(r) Routes are forwarded to ISP2

Customer → R3 (HasCustPrefix(r) ∧ r′ = Import(Customer→ R3, r))
⇒ (HasCustPrefix(r′) ∧ ¬100:1 ∈ Comm(r′))

((HasCustPrefix(r) ∧ ¬100:1 ∈ Comm(r)) ∧ r′ = Export(R3→ R2, r))
⇒ (HasCustPrefix(r′) ∧ ¬100:1 ∈ Comm(r′))

R3 → R2
((HasCustPrefix(r) ∧ ¬100:1 ∈ Comm(r)) ∧ r′ = Import(R3→ R2, r))
⇒ (HasCustPrefix(r′) ∧ ¬100:1 ∈ Comm(r′))

Propagation Checks

R2 → ISP2 ((HasCustPrefix(r) ∧ ¬100:1 ∈ Comm(r)) ∧ r′ = Export(R2→ ISP2, r))
⇒ HasCustPrefix(r′)

No-interference Checks R3, R2 HasCustPrefix(r) Routes accepted at R3 and R2 with a customer

(Safety Properties) ⇒ ¬100:1 ∈ Comm(r) prefix must not have community 100:1

Table 4.1: Using Lightyear to prove the liveness property from figure 3.1. The user-provided
global property, and path constraints are show in blue. The propagation checks are shown
in yellow for the path is Customer → R3 → R2 → ISP2. The no-interference checks are
safety properties proven using their own invariants (not shown).

3. A path (ℓ1, . . . , ℓn = ℓ) where ℓi ∈ {Routers ∪Edges}

4. A constraint C1 . . . Cn for each location in the path, where Ci ∈ P(Routes)

The property (ℓ, P ) represents a liveness property of all valid traces, namely that there will

eventually be a route at ℓ that satisfies P . Formally, this means for all T ∈ Valid, either:

• ℓ ∈ Routers and there exists r′ such that slct(ℓ, r′) ∈ T and P (r′) holds, or

• ℓ ∈ Edges and there exists r′ such that frwd(ℓ, r′) ∈ T and P (r′) holds

The path (ℓ1, ℓ2, . . . , ℓn−1, ℓn = ℓ) is a sequence of routers and edges that I expect the

route to travel across. I require that it represents an actual topological path in the network:

if ℓi = R ∈ Routers then for some N , ℓi+1 = R → N , and if ℓi = R → N , then ℓi+1 = N .

For example, ISP1→ R1, R1, R1→ R3, R3, R3→ Customer is a path in the network from

Figure 3.1. The last location ℓn must be the location ℓ of the end-to-end property that I are

verifying.
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The constraints C1 . . . Cn are properties that represent the set of ”good” routes that reach

each ℓi along the path. They play a role analogous to the local invariants Iℓi for proving

safety properties, described earlier. The property C1 for the first location in the path is

simply assumed to hold; in practice it is usually an edge coming from an external router, in

which case it is not possible to prove whether it sends a route. Rather, the best I can do

is prove that if that router sends a ”good” route, then it will eventually reach its intended

destination in the network.

4.2.2 Local Checks

The checks for liveness can be broken up into two parts: checks that prove propagation along

the given path, and checks that prove there is no interference from outside routes.

Propagation along a path: These checks are analogous to the Import and Export

checks performed for safety verification, but they are only checked along the given path.

Together they ensure that the import and export filters along the path (ℓ1, . . . , ℓn) do not

drop ”good” routes. Specifically, for all valid traces T and i < n:

If ℓi = R ∈ Routers, then:

Ci(r) ∧ r′ = Export(R→ N, r) =⇒ r′ ̸= Reject ∧ Ci+1(r
′)

and if ℓi = R→ N ∈ Edges, then:

Ci(r) ∧ r′ = Import(N → R, r) =⇒ r′ ̸= Reject ∧ Ci+1(r
′)

No interference: Next, I need to verify that it is not possible for a router along the

path to select a ”bad” route with the same prefix as a ”good” route. Let Prefix(Ci) refer

the set of prefixes with at least one route in Ci:

{p | p = Prefix(r) ∧ r ∈ Ci}
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Then at each router ℓi along the path I must prove the following safety property:

(ℓi, Prefix(r) ∈ Prefix(Ci) =⇒ Ci(r))

These properties can be proven using our existing approach for proving safety properties

(chapter 3, given appropriate local invariants.

Implying the network property: The above checks ensure that all of the local Ci

constraints in fact hold. Finally, Lightyear generates a local check that Cn ⊆ P , similar

to the analogous check for safety properties, to ensure that the local constraints imply the

desired end-to-end liveness property.

4.3 Proof of Correctness

In this section, I prove the correctness of the modular checks for liveness properties.

Theorem: Given the following:

• The network configurations

• A liveness property (ℓ, P )

• A path S = (ℓ1, ℓ2, . . . , ℓn−1, ℓn = ℓ)

• A constraint for each location C1 . . . Cn

For all valid traces T , if all of the following are true:

1. all checks (propagation, no interference) pass

2. there exists r such that recv(ℓ1, r) ∈ T ∧ C1(r)

3. for all r, Cn(r) =⇒ P (r)

4. there are no link failures along the path
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then there exists r′ such that either:

• ℓ ∈ Routers and there exists r′ such that slct(ℓ, r′) ∈ T and P (r′) holds, or

• ℓ ∈ Edges and there exists r′ such that frwd(ℓ, r′) ∈ T and P (r′) holds

Proof: Consider a valid trace T . By the assumption, there exists r1 such that recv(ℓ1, r1) ∈

T and C1(r1)

There must exists at least one router R = ℓj and a route rj such that slct(R, rj) is in the

trace and Prefix(rj) = Prefix(r1). If there are no routers outside the path that have their

routes accepted then r2 = Import(ℓ1, r1) is the most preferred route at ℓ2, so slct(ℓ2, r2) will

be in the trace. If there are routers outside the path that have their routes accepted, then

by the no interference check, it must be that the router accepted at ℓj will satisfy Cj(rj).

Consider the last router that accepts a route from a neighbor outside the path. I will use

induction to show that all locations ℓi between it and the end will have a route satisfying Ci:

Base case: Take the last router R = ℓj, where there exists rj, Cj such that slct(ℓj, rj) ∈ T

and C1(rj). I have shown above that there must be one.

Inductive step: If ℓi = R ∈ Routers, then I know that slct(ℓi, ri) ∈ T and Ci(ri) from

the inductive hypothesis. I want to show that there exists ri+1 such that frwd(ℓi+1, ri+1) ∈ T

and Ci+1(ri+1). This is true because:

• let r′ = Export(ℓi+1, ri)

• slct(ℓi, ri) ∈ T and Ci(ri) (from the inductive hypothesis)

• r′ ̸= Reject and Ci+1(ri+1) (from the propagation check)

• frwd(ℓi+1, ri+1) ∈ T (from the liveness axiom)

If li = N → R ∈ Edges, then I know that frwd(ℓi, ri) ∈ T and Ci(ri), and I want to show

that there exists ri+1 such that slct(ℓi+1, ri+1) ∈ T and Ci+1(ri+1). This holds because:
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• let ri+1 = Import(ℓi, ri)

• recv(ℓi, ri) ∈ T (from liveness axiom given no link failures)

• ri+1 ̸= Reject and Ci+1(ri+1) (from the propagation check)

• I know that R and any router after R in the path did not accept any routes from any

neighbors not in the path, so N → R, so I know slct(ℓi+1, ri+1) ∈ T and Ci+1(r
′)

From this, I know that at ℓn, there exists a route rn such that Cn(rn) and either

frwd(ℓn, rn) ∈ T or slct(ℓn, rn) ∈ T . Cn(rn) =⇒ P (rn), which is what I wanted to

prove.

4.4 iBGP Full Mesh

The technique described in the previous sections is not complete, in the sense that there are

networks where a liveness property holds but it is not possible to prove it. One special case

is the iBGP full mesh. An iBGP full mesh has two differences from other BGP topologies.

1. Each router in an AS is connected to every other router in the AS via an iBGP session

2. When a route is learned from an iBGP session, it is not advertised to any other iBGP

neighbor. It is only advertised to eBGP neighbors1.

This mechanism allows routes learned from outside the AS to propagate within the AS

without looping or using additional fields like AS path.

To see why the liveness checking approach from the previous sections does not work for

an iBGP full mesh, consider the network in figure 4.1. Suppose I want to check the property

that if DataCenter1 sends a route to Core1, then eventually Core2 accepts a route.

1Normally, a route learned from an iBGP session is also advertised to route reflector clients, but a full
mesh should not have any client links
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Figure 4.1: BGP topology with an iBGP full mesh and interfering BGP advertisements.

To model the semantics of iBGP, I can consider each route to have an EdgeType that

is either eBGP, non-client (iBGP) , or client (iBGP). This field represents the type of

edge from which that the router received the route. This can be modeled as an additional

attribute that is set by each import policy in the network. The rule for iBGP is that a route

r with EdgeType(r) = non-client is dropped when exported to another non-client iBGP

neighbor. This can be modeled as part of the export policy.

One can try to use the earlier liveness checking approach by specifying the path as

DataCenter1→ Core1→ Core2. In order for a route r at Core1 to be exported to Core2,

it must be that EdgeType(r) ̸= non-client. This is part of the constraint that must be

specified by the user, and it is not possible to specify a constraint where this does not hold.

Now, consider the case where Core3 selects a route s′ after importing a route s from

DataCenter2. This will get sent to Core1. If this route is higher in priority than the route

received from DataCenter1, it will get selected. However, this does not satisfy the constraints

because that edge has EdgeType(r) = non-client. However, since Core3 also sends a route

to Core2, it is possible that the property still holds. Thus, I get a case where the property

holds because Core2 does accept a route, but I cannot prove it using the earlier method.

Intuitively, this is a case where routes coming from Core3 is interfering with routes coming

from Data Center 1. However, this is expected in an iBGP full mesh, where most routes are

rejected, and the correctness depends on the special topology in which all pairs of routers
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are connected. This is unlike other BGP networks where routes are typically accepted by

default, and attributes like AS path and the policies affecting them play a larger role in the

correctness. In general, it is likely not possible to verify policies without checking all policies

among the iBGP routers, which the approach to checking liveness in the previous sections

does not do.

4.4.1 Alternative Checks for iBGP full mesh

However, it is possible to check the correctness of an iBGP full mesh though it requires

different checks and some additional assumptions about the network. Below I present an

alternative that works for an iBGP full mesh. The main difference is that liveness has to be

checked in every direction between each pair of iBGP neighbors for eBGP or iBGP client

routes. If this hold, then the global property should hold even if iBGP non-client routes are

dropped.

If all of the following are true for routers R1 . . . Rn and constraints P :

1. Routers R1 . . . Rn are connected in a full mesh of iBGP connections and there are no

other non-client iBGP connections on those routers.

2. For all pairs of routers Ri, Rj, and all routes r, r′, if P (r) ∧ r′ = Export(Ri → Rj, r) ∧

EdgeType(r) ̸= non-client then r′ ̸= Reject ∧ P (r′)

3. For all pairs of routers Ri, Rj, and all routes r, r′, if P (r) ∧ r′ = Import(Ri → Rj, r)

then r′ ̸= Reject ∧ P (r′)

4. A safety property for all Ri that if they select or originate a route r then either:

(a) P (r)

(b) the prefix of r does not equal that of any route satisfying P

Then if a router Ri receives and imports a route r with P (r) from an eBGP or iBGP client

neighbor, then all routers R1 . . . Rn will select a route r′ with P (r′)
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4.4.2 Proof

Statement: For all valid traces T , if there exists i, N , r, r′ and the following are true:

• Ri is in the full mesh

• R→ N is an eBGP or iBGP client connection

• recv(N → Ri, r) ∈ T

• P (r′) where r′ = Import(N → Ri, r)

• all checks pass

Then for all k ∈ [1, n], there exists rk such that prefix(rk) = prefix(r) ∧ slct(Rk, rk) ∈

T ∧ P (rk)

Proof: If recv(N → Ri, r) ∈ T , then there exists ri such that slct(Ri, ri) ∈ T with the

same prefix and P (ri) holds (because of the safety check). There are two cases:

If EdgeType(ri) ̸= non-client, then for all k ̸= i,

1. for ri→k = Export(Ri, Rk, ri), ri→k ̸= Reject ∧ P (ri→k) (because of local check on

export filters)

2. frwd(Ri → Rk, ri→k) ∈ T and recv(Ri → Rk, ri→k) ∈ T (liveness axioms and assump-

tion of no link failures)

3. there exists a route rk such that slct(Rk, rk) ∈ T (because there must be at least one

received route with higher priority than all others)

4. P (rk) holds (because of safety check)

If EdgeType(ri) = non-client, then:
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1. there exists Rj and rj→i such that recv(Rj → Ri, rj→i) ∈ T and frwd(Rj → Ri, rj→i) ∈

T (because of safety axioms)

2. there exists rj such that slct(Rj, rj) ∈ T (because of safety axioms)

3. P (rj) holds (because of safety checks)

4. for all k ∈ [1, n] \ {i, j}, and for rj→k = Export(Rj, Rk, rj), rj→k ̸= Reject ∧ P (rj→k)

(because of local check on export filters)

5. frwd(Rj → Rk, rj→k) ∈ T and recv(Rj → Rk, rj→k) ∈ T (liveness axioms and assump-

tion of no link failures)

6. there exists a route rk such that slct(Rk, rk) ∈ T (because there must be at least one

received route with higher priority than all others)

7. P (rk) holds (because of safety check)

82



CHAPTER 5

Lightyear: Results of BGP Modular Checks

This chapter shows the results from running Lightyear on configurations from several net-

works. Section 5.1 describes using modular checks on the wide area network of a major

cloud provider. Section 5.2 compares the scaling of Lightyear and Minesweeper for synthetic

network configurations, and section 5.3 describes the experiences from running Lightyear on

configurations from a university network.

5.1 Cloud Provider WAN

I used Lightyear to modularly verify properties of the wide-area network (WAN) of a major

cloud provider, containing hundreds of routers and several thousands of peering sessions.

In doing so, I show that: (1) important behavioral properties in real-world networks can be

expressed in Lightyear; (2) these properties can be proven through a combination of modular

checks; (3) this approach scales, allowing properties to be verified quickly; and (4) if a local

check does not succeed, it produces actionable information, indicating a bug in either a

specific route map or a specific local invariant. To our knowledge no prior tool that verifies

properties of all possible external announcements from neighbors has been demonstrated to

scale to such a size.

I used Lightyear to verify two classes of properties that the wide-area network must

satisfy. In all cases I determined the intended network behavior by inspecting the config-

urations and talking with the network operators, and the local constraints were written

based on that intent. This process was typically iterative. That is, I would write an initial
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Type Locations (l) Logical Formula (Il) Description
End-to-end
Property

Any R in
network

FromPeer(r) =⇒
Prefix(r) /∈ Bogons

Bogon prefixes from peers should not be accepted

R ∈ Routers
FromPeer(r) =⇒
Prefix(r) /∈ Bogons

Bogon prefixes from peers should not be accepted at routers

Network
Invariants

Internal edges
R1 → R2

FromPeer(r) =⇒
Prefix(r) /∈ Bogons

Bogon prefixes from peers should not be sent along edges

Other True Edges to and from external peers are unconstrained

(a) End-to-end property and network invariants needed to verify that the network does not accept
bogons from external peers.

Type Locations (l) Logical Formula (Il) Description
End-to-end
Property

R /∈ Region
FromRegion(r) =⇒
Prefix(r) /∈ ReusedIPs

Routers outside a region should not accept
routes with reused addresses from that region

R ∈ Region
FromRegion(r) ∧
Prefix(r) ∈ ReusedIPs =⇒
RegionalComms ∩ Comm(r) = {C}

Routes with reused addresses are tagged with a
community for that region and no other region

Network
Invariants

R /∈ Region
FromRegion(r) =⇒
Prefix(r) /∈ ReusedIPs

Routers outside a region should not accept
routes with reused addresses from that region

R1 → R2 IR1 Edges have same invariant as sending router
E → R Comm(r) = ∅ Edges from external peers have no communities

(b) End-to-end property and network invariants needed to verify that reused addresses are not
accepted by any router outside the region.

Type Locations (l) Logical Formula (Il) Description
End-to-end
Property

R2 ∈ Region
FromRegion(r) ∧
Prefix(r) ∈ ReusedIPs

R2 inside a region eventually accept a route
with reused addresses from that region

Assumption
Edge from data
center D → R1

FromRegion(r) ∧
Prefix(r) ∈ ReusedIPs

Assume there is a route from the data center to
R1 with a reused prefix

Path
Constraints

R1, R2, R1 → R2

FromRegion(r) ∧
Prefix(r) ∈ ReusedIPs ∧
RegionalComms ∩ Comm(r) = {C}

R1 and R2 eventually select a route with reused
prefixes and the regional community

(c) End-to-end property and path constraints needed to verify that reused addresses are eventually
selected by each WAN router in that region. I assume that the route flows from the data center
along the path D → R1 → R2

Table 5.1: End-to-end properties and network invariants for three use cases in the WAN.

property specification and its set of local invariants based on our current understanding of

how the network operates. If Lightyear reported violations of local checks, I would inspect

the counterexamples and discuss with operators, either determining that the bugs are real

errors or identifying special cases that led to refined local invariants and (sometimes) refined

end-to-end property specifications.

Implementation: I implemented Lightyear as a tool in C#. The tool parses and

extracts the BGP policy along with import and export route maps from each configuration,

while supporting common attributes of BGP routes such as communities, AS paths, MEDs,
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local preference, along with most route map features, like matching on or setting attributes.

The tool allows users to provide local invariants written as a C# function using the Zen

constraint solving library [58], and to specify the routers and policies of interest. The Zen

library translates the functions into SMT formulas that are solved by Z3 [15]. If there are

any violations of the property, the tool returns counterexamples, showing a specific route

map, and a combination of attributes that leads to a violation.

Internet Peering Policies: I implemented local invariants to verify 11 properties in

Lightyear to ensure that different kinds of ”bad” routes are never accepted from peers. Each

of these properties can be expressed as a safety property on each node R in the network of

the following form:

(R, {r |FromPeer(r) =⇒ Q(r)})

with different properties Q(r). These include properties like not accepting bogons or routes

with invalid AS paths. An example of the invariants for the no-bogons property is shown in

Table 5.1a. The network has a set of Internet edge routers, that peer with Internet service

providers, other cloud providers, and customers, and so act as gateways between the cloud

provider and the Internet. The wide-area network ensures that ”bad” routes are not admitted

by filtering them at all of the Internet edge routers.

As mentioned earlier, running Lightyear to check these properties is an iterative process,

which involves refining the local constraints based on operator feedback. In the end, through

this process Lightyear identified 11 actual configuration errors. These included cases where

a route map denied more traffic than intended, and inconsistencies between the filters of

edge routers that are intended to have similar behavior. All of the findings were latent

bugs that did not have an immediate impact, but could become impactful on additional

failure. Further, because Lightyear is sound the operators can be sure that these are the

only violations of the desired end-to-end properties. As of this writing, all the bugs are

prioritized for fixing by network engineers.
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Verification with Lightyear is highly scalable. The maximum time that it took Lightyear

to sequentially run all of the local checks for any single property was 15 minutes, across

all devices in the network. As another data point, an automation that sequentially ran the

local checks for four of the properties across all of the hundreds of edge routes took a total

of 16 minutes. Given that each of these checks can be run independently on each device

configuration, it would also be easy to parallelize these checks in the future in order to scale

horizontally for large number of devices.

While using Lightyear to verify these 11 properties, I also learned best practices for writ-

ing properties. Initially, I combined multiple properties into a single property for Lightyear

to check. However, I found that writing multiple simpler properties, with associated simpler

local constraints, was not only easier to write and debug but also was usually faster to run,

since the constraints are simpler for the underlying SMT solver to process.

Proper IP Reuse: In the second use case, Lightyear was used to verify proper usage

of reused IPs within the network. The cloud network is partitioned into dozens of regions,

and some private IPv4 addresses are reused in different regions. There is a safety property

that traffic sent to these private addresses must stay within the region, and also a liveness

property that routes to reused addresses are advertised to other WAN routers in the same

region. I verified both of these properties for all regions in the network.

The safety property to verify is as follows, for each router R that is not part of the region

of interest:

(R, {r | FromRegion(r) =⇒ Prefix(r) /∈ ReusedIPs})

Here FromRegion(r) is a ghost variable that is set to true only on routes coming from

external routers in the particular region, and ReusedIPs is the set of prefixes that are

reused. The liveness property requires that in each region, a route with a reused prefix from

the data center routers can reach all other routers in that region, possibly going through one

intermediate router. That is, for every pair of WAN routers R1 and R2 in the same region,
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if R1 is connected to a data center router D, then routes with a reused prefix can travel

D → R1 → R2.

The WAN enforces these properties by tagging routes for reused IP addresses with a

region-specific community C when they are received from data centers. Routers in the same

region then accept routes tagged with that community, while routers in other regions reject

them. The local constraints I used to verify the safety and liveness properties are shown in

Table 5.1b and 5.1c respectively. One subtlety is that routes to reused IP addresses in the

region of interest must not only have the community C, but they also must not be tagged

with any other region’s community. Otherwise, these routes could be accidentally accepted

by other regions. The local constraints validate this property, and the WAN enforces it

by deleting all communities on routes coming from the data centers, before adding the

community C.

The communities used in each region were documented in a metadata file, which made

it easy for me to write the local constraints for each region. In one case, Lightyear found a

violation where a region used a community that was not present in the metadata file. The

operators acknowledged that this was a bug that could cause some traffic to be redirected.

In every other case, Lightyear was able to verify both the safety and the liveness properties.

5.2 Scaling Experiments

To illustrate the scaling benefits of modular checking, I compared Lightyear with

Minesweeper [6] on synthetic test cases. For a fair comparison, I created a new imple-

mentation of Lightyear that is built on top of the same parser and constraint generation

system as Minesweeper. I use a BGP full mesh where each router is connected to one ex-

ternal neighbor through eBGP and all other routers through iBGP. This leads to a total

of N2 edges in a network of size N . The network’s configuration is relatively simple, with

each eBGP connection using only prefix and community filters. I checked a no-transit safety

property, similar to the example in Figure 3.1.
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Figure 5.1 provides details on these results by comparing the number of SMT variables

and constraints generated by each tool, as well as the amount of time used to solve the SMT

constraints compared to the total computation time. I used 10 different communities for

10 routers and 20 different communities when testing 20 or more routers. As the network

size increases, Minesweeper requires several orders of magnitude more SMT variables and

assertions than the maximum number required by Lightyear for any local check. As a result,

SMT solving time dominates the run time of Minesweeper and is the limiting factor on its

ability to scale, while for Lightyear the solving time is a relatively small portion of the total

time. Minesweeper does not terminate within two hours when run on a network of size 40,

while Lightyear verifies a network of size 100 in 5.5 minutes.

5.3 University Network Results

Our experiences running Lightyear on the campus network of a large university show how

the local counterexamples produced can aid in refining the network invariants and localizing

errors.

For this case, I use the implementation of Lightyear built using the technology of

Minesweeper. Parsing network configurations and determining the topology and policy is

done using Batfish [19]. Since Batfish converts the configurations into a vendor-independent

format, this allows Lightyear to handle configurations from numerous different vendors, such

as Cisco and Juniper.

Properties and invariants are specified as Python functions mapping routers and edges

to BGP route constraints. Our implementation allows users to define one boolean ghost

variable, with Python functions to specify how route import, export, and origination should

affect the variable’s value. Currently I allow ghost variables to be transformed based on

the location in the network, but not based on other route attributes. For example, users

can specify that an import filter changes the value of a variable to true, but users cannot

specify that the filter transforms the variable to true if the prefix is 10.0.0.0/8. This is not
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a fundamental limitation but simplifies our implementation and has been sufficient for our

use cases.

The code for generating local checks from the user-provided invariants is written in

Python. The local checks rely on the symbolic modeling of BGP policies [6]. Specifically,

BGP route announcements are modeled as symbolic variables, and BGP route maps in the

configurations are modeled as SMT constraints on these symbolic variables, and the Z3 SMT

solver [15] is used to perform the local checks. Minesweeper’s symbolic analysis supports

many common features of BGP route maps, like communities, local preference, and MEDs,

as well as other configurable aspects of BGP like route origination. However, it does not

support reasoning about AS-path filtering, which is necessary for one of our use cases. For

that, I use an alternate backend for symbolic route analysis from Batfish that is based on

binary decision diagrams (BDDs) [5].

I used Lightyear to verify the property that only university-owned address blocks can

be advertised to the ISPs. This property is shown at the top of Table 5.2. Our initial

assumption was that this property only depends on prefix filtering done by the outbound

filters on the border routers, so I provided the network invariants shown in the middle of

the table. However, Lightyear produced counterexamples for the local checks on the edges

from the border routers to the ISPs, since the outbound filters allow advertisements for other

prefixes as long as they are tagged with the well-known blackhole community [31], which tells

the ISPs to blackhole that traffic. However, by inspection I found that this mechanism was

not being used currently — the blackhole community is not added to any announcements.

Hence I were able to still prove the desired end-to-end property, using the refined set of

invariants shown at the bottom of Table 5.2, where SComms represents the set of blackhole

communities.

To demonstrate our approach’s utility in error localization, I used Lightyear again after

injecting three errors into the configurations: (1) adding a policy that attaches the black-

hole community (2) changing a policy from removing communities to propagating them, and
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Type Locations (l) Logical Formula (Il) Description
End-to-end
Property

Edges to ISP
R → P

Prefix(r) ∈ UniPrefixes University routers only send prefixes for
its owned address blocks

Initial
Network
Invariants

Edges to ISP
R → P

Prefix(r) ∈ UniPrefixes University routers only send prefixes for
its owned address blocks

Other True Other locations are unconstrained

Refined
Network
Invariants

Edges to ISP
R → P

Prefix(r) ∈ UniPrefixes University routers only send prefixes for
its owned address blocks

Edges from external
P → R

True Routes from external neighbors are un-
constrained

Other Comm(r) ∩ SComms = ∅ Routes at other locations inside network
are not tagged with specific communities

Table 5.2: The end-to-end property and network invariants needed to verify that the uni-
versity only advertises its own aggregated networks. Both the initial guess and the refined
invariants are shown.

(3) changing the filter at the border router to allow a non-university address block. Each

of these errors causes the local checks to fail for the edges using the erroneous routing pol-

icy. Further, the counterexample provided by Lightyear for each error provides the relevant

information to understand the error, such as the prefix being advertised and whether com-

munities are being added or propagated. For example, the first error causes the local check

to fail because I cannot prove that Comm(r) ∩ SComms = ∅ for all routes r that pass the

filter, and the counterexample route includes the blackhole community.
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(a) Number of variables and constraints generated by Minesweeper for synthetic net-
works.
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(b) The maximum number of variables and constraints in any single local check
generated by Lightyear.
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(c) Time used by Minesweeper to verify a property of synthetic networks. Runtime
for networks with 40 routers or more exceeds two hours, not including time to parse
configurations.
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(d) Time used by Lightyear to verify a property in synthetic networks, not including
time to parse configurations.

Figure 5.1: Comparing Lightyear and Minesweeper on synthetic networks of various sizes.
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CHAPTER 6

Related Work

This chapter compares my work on modular verification, described in previous chapters,

to other network verification tools that have been developed. Previous tools for verifying

network properties roughly fall into three categories: Tools checking specific properties on

individual configurations, tools that model the data plane but not the control plane, and

tools that model the control plane. The tools that model more complex behaviors typically

struggle to scale or provide usable results, while tools that can scale or provide usable results

can only check more modest properties.

Earlier works in network verification checked specific properties in individual router con-

figurations. rcc [17] detects faults in BGP configuration using a high-level specification. It

considers many common causes of error in BGP and checks constraints that typically imply

good behavior. rcc does not have any problem scaling as it runs on one router as a time,

but it can only check simple configuration properties and is neither sound nor complete.

FIREMAN [57] checks firewall properties by modeling firewall actions as binary decision

diagrams (BDDs). It checks for inconsistencies, inefficiencies, and certain policy violations

(e.g. allowing bogons). These, and other tools [37] had many drawbacks. They could only

reason about one router at a time, they did not check more complex features of router con-

figuration like prefix lists and router maps, and they did not reason about network state.

Thus, they could not answer reachability queries like ”Could a packet reach from point A to

point B in the network?”

To answer such queries, many approaches applied formal method techniques to reason
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about data plane behavior. These approaches model the network as a web of switches. Each

switch maintains a forwarding table that matches the packet entering the switch with an out-

put port. Data plane verification techniques tried to answer queries about whether packets

can or cannot reach from node A to node B or whether packets will loop. Unlike simulation,

they attempt to answer these queries for all packets, and much of the challenge comes from

figuring out how to deal with the large space of packets and packet transformations. One

approach was Anteater [36] which models data plane behavior as a SAT formula. Another

approach was Header Space Analysis (HSA) [29] which used ternary simulation for better

scaling. It models packet headers as ternary bit vectors with each bit as either 1, 0, or

unknown, and simulates the effect of the network on these headers. Later approaches build

on these ideas with alternative approaches to speed up computation [54, 39], or allow for

incremental verification [30, 28, 22].

These data plane analysis techniques have been successful in discovering errors in net-

works. They are successful in that they can scale verification to forwarding rules across the

network, with relatively simple specifications. However, this type of verification requires

known forwarding tables. Forwarding tables are a result of dynamic routing processes in

the networks, so to use these tools, network operators need to supply a consistent snap-

shot of the network forwarding state in addition to the router configurations. This means

that data plane checking has to be done retrospectively. They can detect errors present in

networks, but in general, they cannot determine how a configuration change would affect

network behavior. Much of the challenge in real-world networks is change validation, that

is, guaranteeing the correctness of a change to the network configuration before it enters the

production system. Data plane verification alone cannot solve this problem. In addition,

forwarding rules are a product of the configuration, but if there is an error in a forwarding

rule, it is not obvious what configuration caused that error.

The next step was verification of the network control planes that generate the forwarding

tables used in the data plane. Checking correctness of the control plane would allow errors
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to be caught before a configuration change is made. In traditional networks, routers run dis-

tributed routing protocols like BGP and OSPF to compute the forwarding tables. Operators

configure attributes (e.g. link costs) and policies (e.g. route filters) to control the operation

of the protocols and influence the result, but the final routing table generated also depends

on the BGP messages from neighbors and the link failures within the network.

Batfish [19] was one attempt at checking control plane properties. Batfish takes router

configurations and simulates routing protocols for a fixed environment, producing forward-

ing tables that can then be used with data plane verification techniques. In a similar vein,

Microsoft’s Crystalnet [34] emulates networks using real device firmware, allowing for greater

accuracy when simulating network changes before they occur. This approach to checking

configurations by simulating the routing process can scale but it is limited to a single en-

vironment. It cannot handle arbitrary environments, so it cannot verify the correctness of

configurations in all cases.

In order to verify configurations for all environments, control plane verifiers were devel-

oped using symbolic modeling. Minesweeper [6] and Bagpipe [53] model the control plane,

using SMT approaches, allowing them to consider different environments and reason in the

presence of link failures. Other approaches [20, 42, 3, 7] build use alternative techniques to

speed up computation. My work falls into this category of control plane verification, with

an additional focus on the scalability and localization.

6.1 Comparisons to Campion

At a high level, my work on Campion differs from prior work in network verification in two

ways. First, we target verifying behavioral equivalence of two router configurations, while

prior work typically targets network-wide reachability properties. Second, we localize iden-

tified errors to both relevant headers and configuration lines even for the control plane; most

prior work in control plane verification simply provides individual concrete counterexamples.

Data Plane Verification Tools: Many tools verify reachability properties of a net-
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work’s data plane, including its ACLs and forwarding tables [36, 29, 30, 54, 25, 4, 35].

Several tools focus on ACLs [37, 51] and localize errors to ACL lines [25, 29, 51, 24]. The

closest to Campion is netdiff [16], a tool for checking data plane equivalence in networks.

It uses a similar symbolic execution approach, but it focuses on the data plane. Campion

extends these capabilities to perform configuration localization for the control plane. Head-

erLocalize and StructuralDiff have no analogue in netdiff.

Control Plane Verification: Control plane verifiers can be adapted to perform router

equivalence checking, as we showed for Minesweeper [6] in section 2.1. However, when veri-

fication fails, these tools only provide individual, concrete counterexamples, while Campion

localizes to both headers and configuration text. As we have seen by the experiment in

section 2.1, even if we extend Minesweeper to produce multiple counterexamples it is still

not able to quickly find all errors. Further, this still leaves the question as to which parts of

the text caused each error. There exist a tool extending Minesweeper to localize errors by

leveraging an SMT solver’s ability to provide unsatisfiable cores when verification fails [46].

The approach localizes errors to specific SMT constraints, but not to configuration lines or

headers. Campion leverages the BDD encoding of ACLs and route maps from Bonsai [7],

which uses BDDs to perform network abstraction, not router differencing or debugging.

Campion’s structural checks are reminiscent of rcc [17], but Campion’s checks are designed

to ensure behavioral equivalence and to do so without incurring additional false positives

over a modular semantic check.

Outlier Detection: Benson et al. [11, 10] infer data-plane reachability specifications

from a network’s forwarding tables and use these specifications in part to identify outliers.

However, they only consider the data plane and cannot localize back to the original configura-

tions. SelfStarter [27] infers parameterized configuration templates for ACLs and route maps

and uses them for outlier detection. This approach uses sequence alignment and so requires

router configurations to be structurally similar. Further, SelfStarter localizes configuration

text but cannot localize headers.
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Equivalence Checking: Equivalence checking is an old idea beyond networks, and the

SemanticDiff algorithm is similar in spirit to prior work. For example, Ramos et al. [44]

perform equivalence checking of two C functions via pairwise comparisons of execution paths.

Because network ACLs and route maps are loop-free, Campion is exhaustive, finding all

differences and localizing to all IP prefixes; equivalence checking of software is undecidable

in general.

6.2 Comparisons to Lightyear

Control Plane Verification: State-of-the-art approaches to network control-plane verifi-

cation were summarized in Table 3.1. Unlike Lightyear, these approaches are all monolithic

— they require joint analysis of the configurations of all nodes — which dramatically limits

scalability. Compared to Lightyear, Minesweeper’s worst case complexity is exponential in

the network size. Other improvements not only reduce generality but are at least quadratic

in the network size even when using specialized algorithms. Most approaches make tradeoffs

in expressiveness, for example giving up the ability to reason about all possible BGP an-

nouncements from neighbors [20, 42, 3, 56]. In contrast, Lightyear’s modular approach only

requires reasoning about individual BGP route maps in isolation and so is highly scalable.

Lightyear also provides guarantees across all possible external announcements and, for safety

properties, arbitrary failures.

rcc [17], validates important properties of BGP configurations, largely through local

checks on individual configuration. However, rcc is limited to specific ”best practice” poli-

cies, and there is no guarantee that the local checks together ensure the desired end-to-end

properties.

Closest to my work are recent techniques for modular control-plane verification,

Kirigami [49] and Timepiece [50] that use assume-guarantee reasoning for the control plane

using local invariants. However, both make a different set of tradeoffs than Lightyear.

Kirigami’s local invariants require the exact routes that will arrive on a particular edge.
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Because these invariants are fully concrete, Kirigami cannot reason about arbitrary route

announcements from neighbors or give guarantees in the presence of failures.

Timepiece allows more expressive local invariants than Kirigami, using an explicit notion

of time. In Timepiece, routing protocols have discrete, synchronized time steps, and in each

step, each router computes the best route among those it receives. This allows it to specify

and check temporal-logic properties, but require users to provide complex local invariants

for each node explicitly indexed by time. I, however, assume that routes can be sent and

arrive in arbitrary orders, and we demonstrate how to specify and check common safety and

liveness properties without explicit time.

Another line of work has improved scalability of control-plane verification through forms

of abstraction [7, 8]: the full network is analyzed monolithically, but irrelevant or redundant

configuration information is abstracted away to simplify the analysis. My work is orthogonal

to this line of work; the two approaches could be combined.

Data Plane Verification: Data plane approaches generally require joint reasoning

about the entire network. A recent exception is RCDC [23], which modularly verifies global

reachability contracts in a data center via local checks. However, RCDC is specific to the

data center design and does not provide a general framework for decomposing global property

checks into local checks. Another approach[40] exploits abstraction, such as symmetries, to

scale data-plane verification.

Modular Verification: Assume-guarantee reasoning [26, 41] enables modular verifica-

tion in other domains. A global property is modularized by providing each system component

with local invariants that it must satisfy, assuming other components satisfy their invariants.

Lightyear applies this methodology to networks to generate the local checks that each BGP

policy must satisfy.

Verification often requires identifying inductive invariants, properties that hold over some

unbounded space of system states, such as the iterations of a loop [21]. Such invariants arise
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naturally in networks and enable many locations to use the same local invariant. Typically,

a small set of nodes establishes an inductive invariant (e.g., by attaching a community), and

this invariant holds through the network as long as other nodes “do no harm” (e.g., never

remove communities).
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CHAPTER 7

Conclusion

In this thesis, I have presented multiple approaches to improving network verification using

modular techniques. Most existing network verification tools, especially for the control

plane, check properties holistically, modeling the network as a whole in order to reason

about network-wide properties. Instead, I am proposing that many of these checks can be

done while inspecting smaller modules of the network. This leads to better scalability and

improved localization, allowing for network verification to become a practical tool in real

world networks.

In chapter 2, I presented Campion, a tool for debugging router configurations intended to

be behaviorally equivalent. Unlike prior work, Campion uses modular structural or semantic

checks to localize errors to the affected message headers and relevant configuration lines.

Our experience with a cloud provider and a university indicates that Campion satisfies a real

need by localizing crucial errors. Campion exploits the modular structure of configurations

to break up complex checks of whole router behavior into smaller per-component checks.

This “bottom up” style eases localization, sidesteps reasoning about the routing protocols,

and allows simple structural checks to often be used without additional loss of precision.

In chapters 3, 4, and 5, I presented Lightyear, which can verify network-wide reachability

tools using local checks. I show the necessary inputs and checks needed to verify safety

and liveness properties. To my knowledge it is the first network verification tool that can

scale to large networks. It has been used at a major cloud vendor and discovered several

bugs. Further, Lightyear finesses the need to reason about time to prove safety and liveness,
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offering a sweet spot between expressiveness and complexity that has worked well for many

desired properties in our network.

None of these capabilities would be possible without exploiting modularity. As in other

forms of verification, I believe focusing on modularity will be critical to making real-world

network verification and debugging effective. Because of design patterns in the way configu-

rations are written and maintained in well engineered networks, it is possible to reason about

policies that depend on many different pieces of the network. There is plenty of structure in

the configurations, and that structure has not been adequately leveraged in past works.

7.1 Possible Extensions

The work in thesis has made it possible to modularly check network properties. However,

there is more work that can be done building on these ideas. One extension is to learn

the invariants and constraints that were used in chapter 3 and chapter 4, so that users

do not need to specify them manually. Another possibility is synthesize provably correct

configurations using the modular techniques introduced.

7.1.1 Learning Invariants

Chapter 3 and chapter 4 developed the idea of checking network properties using modular

checks. These modular checks relied on user-provided invariants and constraints in order to

generate the checks on BGP route maps. This is analogous to the idea of inferring invariants

in software programs. In software, loop invariants have to be specified in order to check the

behavior of programs with loops. However, there has been work to automatically infer these

invariants. If these invariants and constraints can be automatically inferred, then the burden

on the users who are using the tool would be reduced. Applying this idea to the realm of

network router configurations would allow network properties to be proven with less work

from the user.

One possible way to do this is to generate candidate constraints using the given network
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property and the route map definitions in the network. These can then be refined if the

candidate constraints do not generate checks that hold in the network. For example, if the

tool wants to generate an invariant for a no-transit safety property where routes received

from one neighbor are not sent to the other, it can try to generate an invariant where routes

from the first neighbor have either a particular community or a particular ASN in its AS

path that is dropped on the export filter to the second neighbor.

One challenge is determining what the relevant BGP route attributes. A large network

may use hundreds of different policies using several different attributes, so there would need

to be a way to figure out which combinations of prefixes, communities, AS paths, and other

attributes are used in implementing this particular property. A network satisfies several

properties at the same time, so many attributes and policies are likely unrelated to any

single property. A second challenge is determining which locations introduce or preserve

a route property. Assuming most properties are implemented so that some route maps

establish invariants and some preserve invariants, there needs to be graph algorithms or

heuristics that can quickly determine which route maps are used. In the case of liveness

properties, this would involve finding a valid path. A third challenge is handling cases when

there is an error in the configurations, and the property does not hold. In this case, it is

impossible to verify the property, so the tool should help to localize the error in some way.

7.1.2 Configuration Synthesis

Routers in a network have to be configured correctly in order for Internet services to work

properly. This configuration is usually done manually by operators or through templates and

simple scripts. However, these methods do not ensure the correctness of the configuration.

One option is to use verification, which was the subject of this thesis. Another option

is automatic synthesis based on operator intents. Users would provide some specification

of what the network behavior and a tool would generate the configurations to meet the

specification. This can additionally help by making it easier to switch between different
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router vendors that use different configuration languages. Previous tools for configuration

synthesis have been developed such as Propane/AT [1] or AED [2], but these have not seen

wide adoption.

As with network verification, the major challenge is to create a system that is powerful

enough to synthesize the policies that are used in real network while still generating config-

urations that are understandable to the operators. Large networks may have hundreds of

routers each with hundreds or thousands of lines of configuration. An incremental synthesis

tool would have to be able to determine where to add or remove configuration lines within

all of that text, while ensuring that the change satisfies the intended network properties.

Ideally, the end result should also be understandable and sensible to a human operator, as

the network operators are unlikely to adopt a tool to perform critical change unless they

can easily inspect the result to see if it matches their intention. This is hard to do with an

automated system since the same high-level policy may be implemented in different ways,

and some implementations are more idiomatic than others.

Building the ideas of modularity introduced in this thesis, it may be possible to create

a configuration synthesis tool that can handle these challenges. By specifying the desired

global property, the tool can make local changes so that the global property can hold. To

reduce difficulty on the part of the operators, the tool would have to determine where to

place the changes in order to create the most understandable result. To do this, it may have

to rely on the insight that routers in the network typically fall into one of several roles, and

routers in the same roll typically have similar policies. Significant work would have to be

done in order to create a complete and usable system.
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APPENDIX A

Proof of Soundness for Modular Equivalence

[Soundness] If networks N and N ∗ are locally equivalent for isomorphism I, then they have

the same set of routing solutions.

Proof. The proof is by a reduction to the stable routing problem [7]. First, I show that each

protocol p ∈ P forms a stable routing problem (SRP). In particular for any given destination

router d ∈ V advertising initial route dr, I(d) ∈ V∗ must also advertise dr since the protocol-

specific advertisement configurations must be the same. Given this, I can construct the SRP

(T ,R, dr,⪯p, trans) for N and (T ∗,R, dr,⪯p, trans
∗) for N ∗, where:

trans(e, r) = Fp(Cp(e), e, r)

trans∗(e, r) = F∗
p (C∗p(e), e, r)

I further relate the two SRPs with the abstraction (f, h) where f(e) = I(e) and h(r) = r.

The main theorem for abstract SRPs is that of equivalent routing solutions when the ab-

stractions are sound [7]. Thus, I must simply prove that this is a sound abstraction. To do

so, I prove each of the sufficient conditions in [7]:

Dest-equivalence. I have f(d) = I(d) which is the destination router for N ∗ and f(x) ̸=

I(d) for any x ̸= d by virtue of I being an isomorphism.

Orig-equivalence. I have h(dr) = dr since h is the identify function, which by construction
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is the route used at N ∗.

Drop-equivalence. I have h(r) = r since h is the identity function, which trivially satisfies

the drop-equivalence requirement that h(r) = ⊥ ⇐⇒ r = ⊥.

Rank-equivalence. By definition, I have r1 ⪯p r2 ⇐⇒ h(r1) ⪯p h(r2) since h is the

identity function.

Trans-equivalence. From the fact that N and N ∗ are equivalent for I, it follows that

Fp(Cp(e), e, r) = F∗
p (C∗p(I(e)), I(e), r). This means that I have trans(e, r) = trans∗(I(e), r)

by definition. Substituting the definition of f and h, this gives us the equivalence:

h(trans(e, r)) = trans∗(f(e), h(r)), which is the desired result.

Topology-abstraction. Finally, the topology requirements from [7] are trivially satisfied

since I is a homomorphism.

This result demonstrates that each protocol will compute the same set of routing solutions.

Thus the composition of the protocols will also compute and select the same set of routes.
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