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ABSTRACT OF THE DISSERTATION

Essays on Strategic Mediation of Information

by

Aleksandr Levkun

Doctor of Philosophy in Economics

University of California San Diego, 2022

Professor Simone Galperti, Co-Chair
Professor Joel Sobel, Co-Chair

This dissertation is a collection of three essays on the topic of strategic media-

tion of information. A recurring theme is a presence of the information intermediary

influencing the interaction between informed and uninformed parties.

Chapter 1 studies communication between an informed sender and an unin-

formed receiver with a presence of a strategic fact-checker. I show that if the cost

of checking is small, the optimal fact-checking policy is full fact-checking; otherwise,

no fact-checking is optimal. The receiver need not prefer a fact-checker with prefer-

ences aligned with the receiver to one with opposed preferences. Adding multiple

xi



fact-checkers does not necessarily improve communication even when all fact-checkers

are willing to fully check by themselves.

Chapter 2 considers an online platform that intermediates trade between sellers

and buyers using data records of the buyers’ personal characteristics. An important

component of the value of a data record for the platform is a novel externality that

arises when a platform pools records to withhold information from the sellers. Ignoring

this externality can significantly bias our understanding of the value of data records.

Chapter 2 then characterizes a platform’s willingness to pay for more data, thereby

establishing a series of basic properties of the demand side of data markets.

Chapter 3 presents the optimal editorial policy for state-owned media manipulat-

ing information flow from a strategic informed elite to an uninformed receiver. I show

conditions on players’ preferences under which the media meaningfully communicate

information on the ruler’s competence. An elite that is more aligned with the media

benefits the media, as long as the alignment is not too close. The media are worse off

when the receiver is more critical of the ruler, whereas the elite generally is better off

when the receiver is more critical. I characterize the lower bound on the media’s payoff

when the receiver has private information about how critical he is.
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Chapter 1

Communication with Strategic Fact-
checking

1.1 Introduction

Fact-checking of prominent public figures has become ubiquitous. Initially the

fact-checkers mostly devoted attention to the US elections. Now they constantly check

political claims over the variety of challenging topics. Undoubtedly, fact-checking has

become an integral part of political discussion in the US (Graves, 2016).1 The major social

media companies such as Facebook and Twitter now flag suspicious and misleading

content on their websites and accompany the conclusions by fact-checkers’ reports.2

The goal of fact-checking is to hold politicians accountable for spreading deceitful

claims (Graves, 2016). However, the fact-checkers’ role of “arbiters of truth” has drawn

criticism on the multiple counts including the fact-checkers’ bias.3 Ostermeier (2011)

points out the lacking transparency in how the fact-checked claims get selected. The

selection effect may lead to a biased perception of a politician’s credibility: actors who

receive more negative fact-checking ratings deemed less truthful than those who are

checked rarely and receive fewer negative ratings (Uscinski and Butler, 2013; Uscinski,

1Graves and Cherubini (2016) document the rise of fact-checking in Europe.
2See Facebook (2021) and Reuters (2021).
3Examples of other critiques include an inability of fact-checkers to fight motivated reasoning (Walter

et al., 2020) and the choice to examine claims that cannot be checked reliably (Uscinski and Butler, 2013).
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2015). For these reasons, our understanding of the effects of potentially biased fact-

checking is important, especially in the age of fake news and alternative facts (Allcott

and Gentzkow, 2017).

This paper takes the possibility of a strategically motivated fact-checker seriously.

We ask following questions. Who benefits from fact-checking? How do these benefits

depend on the fact-checker’s preferences? Is fact-checking effective in preventing the

speaker from spreading false claims? What kind of a fact-checker is preferred by a

receiver and does adding fact-checkers help this receiver to learn the truth more often?

To answer these questions, we incorporate a strategic fact-checker in a model of

cheap-talk communication between a sender and a receiver. The receiver has to accept

or reject a sender’s proposal, but does not know whether it is good or bad for her. The

sender is informed about a binary receiver’s value of acceptance and can either convey

this to the receiver using cheap-talk claims or stay silent. However, the sender would

like the receiver to always accept and, thus, makes a claim in an attempt to persuade

the receiver. The fact-checker may verify truthfulness of a sender’s claim by employing

a fact-checking technology at a cost. This technology is subject to a potential failure

to verify a claim.4 The fact-checker commits to a stochastic fact-checking policy that

initiates checks of sender’s potential claims.5,6 The fact-checker chooses a fact-checking

policy to maximize its expected payoff net of the fact-checking cost. The fact-checker’s

payoff function is the central factor in our analysis. We consider three natural examples

of this payoff function. First, the pro-receiver fact-checker maximizes the receiver’s

4In reality, the failure probability and the fact-checking cost can depend on the issue under considera-
tion. Claims can be hard to verify because of the insufficient or lacking evidence on the issue (Graves,
2016). The paper focuses on one issue at a time, for which there is a given probability of failure.

5Commitment can be made credible if the fact-checker strives for reputation in repeated interactions
with senders and receivers.

6We take a stance on the capacity of the fact-checker to make strategic decisions. Graves (2017)
itemizes typical steps of a process of fact-checking based on the author’s field experience with three
major fact-checking organizations: PolitiFact, FactCheck.org, and Washington Post’s Fact Checker. The
first step identifies claims to check. Then the fact-checkers gather the evidence, assess the claim veracity,
and publish the fact-check output in a transparent manner. We allow the fact-checker to be strategic only
about the first step of this process.
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payoff. Second, the pro-sender fact-checker wishes for the sender’s proposal to be

accepted. Third, the anti-sender fact-checker wants the sender’s proposal to be rejected.

Without fact-checking, the issue of pooling compromises communication: the

bad sender’s type pretends to be the good sender. The fact-checker is able to provide

separation, thereby increasing the receiver’s payoff relative to the sender-receiver cheap-

talk game. However, the benefits of fact-checking for the sender depend on whether

sender’s information is persuasive, that is, whether the receiver accepts the sender’s

proposal under no communication. We show that when sender’s information is not

persuasive, fact-checking determines the extent to which the good sender can convince

the receiver to accept. Consequently, more frequent fact-checking increases the sender’s

payoff. In any equilibrium, the good sender simply sends the most checked claim and

the players’ equilibrium payoffs are unique. When sender’s information is persuasive,

fact-checking determines the extent to which the bad sender can dupe the receiver into

accepting. As a result, more frequent fact-checking can only harm the sender. The

defining property of any equilibrium in this case is that the bad sender prefers as little

fact-checking as possible but still needs to mimic the good sender’s type. The good

sender always gets his proposal accepted, with an opportunity to make any claim.

Subsequently, various good sender’s behavior corresponds to different players’ payoffs.

Our first main result shows that the optimal fact-checking policy is a threshold

policy in terms of the fact-checking cost. When the cost is above the threshold, the fact-

checker never checks. When the cost is below the threshold, the fact-checker initiates

checks with probability one. Even though varying a fact-checking policy affects sender’s

incentives, we get a bang-bang solution. The reason is that the fact-checker’s objective

can be written as a linear function of a single input, the maximal probability of checking

across claims. Only when the fact-checking technology is perfect in a sense that it never

fails, the fact-checker is able to deter the sender from producing false claims. Otherwise,

the bad sender attempts to mimic the good type, and the separation is achieved only by

3



successful fact-checking.

The cost threshold is given by the fact-checker’s preferences. In particular, the

pro-sender (anti-sender) fact-checker never checks when the sender’s information is

(not) persuasive, since uninformative communication makes the receiver choose the

fact-checker’s preferred action. Having an access to the pro-receiver fact-checker is

not always the best option for the receiver. We can always find a fact-checker caring

exclusively about the sender’s payoff that fact-checks for a greater range of the fact-

checking cost. The sufficient condition for this implication is that the sender gains more

by persuading the receiver than does the receiver by learning the truth.

Our second main result addresses the question of whether having multiple fact-

checkers improves communication. To study this, the paper considers a situation with

two fact-checkers choosing fact-checking policies simultaneously. A fact-checker that

would not check were it alone continues not to do so in this setting, since more frequent

fact-checking can only decrease its payoff. Interesting equilibrium policies arise when

both fact-checkers are willing to check by themselves. The free-riding motive arises: a

fact-checker would like to delegate the need to check to another fact-checker enjoying

the benefits of more informative communication at no cost. When the fact-checking

cost is intermediate, this incentive shapes an equilibrium in which fact-checking is

underprovided and the receiver’s payoff decreases compared to the case of a single

fact-checker. In this equilibrium, each fact-checker initiates checks with a nontrivial

probability which depends on the other fact-checker’s cost threshold. When the cost

is low enough, the free-riding motive is weak and both fact-checkers check to the full

extent in the unique equilibrium. The composite fact-checking policy checks more

frequently and the failure of the fact-checking technology is mitigated.

Several authors suggested that “partisan” fact-checkers can be harmful for more

informative political discourse (Ostermeier, 2011; Graves, 2016).7 We show that this

7See also Scientific American (2020).
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is not necessarily the case.8 The partisan fact-checker may be willing to fact-check

the claim to help or hurt the sender, while the fact-checking cost may prevent the

non-partisan fact-checker from selecting this claim. As for the fact-checking cost, the

automated fact-checking will necessarily drive down the fact-checking cost. While

most fact-checking efforts are currently made by journalists and experts, there is hope

for systematic computer-assisted fact-checking (Hassan et al., 2017; Graves, 2018).

Our results suggest that the decrease in the fact-checking cost can only sustain more

informative communication. However, currently researchers and practitioners agree

that the real promise of the automated fact-checking lies in methods to assist human fact-

checkers in selecting the claims for verification (Graves, 2018). This may “debias” the

fact-checker, which in our setting can have adverse effects for information transmission.

Related Literature

This paper contributes to the growing literature on communication with de-

tectable deception. Three recent papers explore the implications of lie detection in a

cheap-talk setting. Balbuzanov (2019) studies a version of Crawford and Sobel (1982)

model. If the sender’s message does not correspond to the true state, the receiver

observes a private signal pointing out a sender’s lie with an exogenous probability.

Fully revealing equilibria exist, even for small probabilities of lie detection. The main

driver of this result is that the receiver is able to condition punishing actions based

on the message. Dziuda and Salas (2018) analyze the implication of having the same

lie detection technology as in Balbuzanov (2019) in a communication game with no

common interests between the sender and the receiver, as in our setup. In informative

equilibria, low sender’s types lie and a positive measure of high types reveal the truth.

An increased probability of lie detection necessarily increases information transmission.

Holm (2010) investigates the role of the truth and lie detection in binary bluffing games,
8One clear example of a partisan fact-checker is StopFake, Ukrainian fact-checking organization

devoted to refutation of Russian propaganda.
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where the sender’s goal is to deceive the receiver. Truth (lie) detection corresponds to

the receiver observing a perfect signal with a fixed probability if the sender’s statement

is true (false). In the considered bluffing game, truth or lie detection shrinks the set

of equilibria. The equilibrium is unique if the probability of detection is sufficiently

high. These papers differ from ours in two ways. First, our fact-checking technology

allows for catching lies and pointing out truths simultaneously. Second, these papers

study communication with exogenously provided lie detection. However, our fact-

checking policy is not exogenously given but it is chosen by a strategic agent incurring

the fact-checking cost. Our focus is the implications of fact-checker’s incentives on the

equilibrium outcomes and players’ welfare. Besides the cheap-talk setting, Ederer and

Min (2022) study the consequences of the lie detection presence in a binary Bayesian

persuasion model of Kamenica and Gentzkow (2011). Ederer and Min (2022) show that

the sender lies more often and the sender’s payoff weakly decreases with the improve-

ment of the lie detection technology. Interestingly, for their environment we show that

if the fact-checker checks more aggressively, then the sender’s payoff increases, as it

helps the good sender’s type to separate more often.

This paper is related to the literature on optimal auditing. This strand of literature

pioneered by Townsend (1979) studies the effects of auditing on the sender’s incentives

to misrepresent private information. The auditor commits to an auditing scheme

specifying auditing probabilities for sender’s claims and additional transfers when the

sender’s claim is checked. A fact-checking policy chosen by the fact-checker in our

setting can be seen as an auditing scheme. As in our paper, Border and Sobel (1987)

and Mookherjee and Png (1989) allow for stochastic auditing schemes. Also Baron

and Besanko (1984) and Laffont and Tirole (1986) present models in which auditing

cannot guarantee learning of sender’s private information because of an exogenous

noise, which corresponds to our imperfect fact-checking technology. The auditor relies

on transfers to induce truth-telling by the sender. However, our fact-checker does not

6



have an access to transfers. Instead, the fact-checker has to respect the constraints of

the resulting sender-receiver game altered by a fact-checking policy. In this sense, our

model is purely informational as our strategic intermediary can only use informational

tools to affect the outcomes of the game. In this light, we view our paper as a bridge

between literatures on communication with detectable deceit and optimal auditing.

Our paper can also be linked to the literature on the strategic mediation. Ivanov

(2010), Ambrus, Azevedo, and Kamada (2013), and Salamanca (2021) allow for the

possibility of the biased mediator in a cheap-talk model. The closest paper to ours

is Ivanov (2010) who introduces the strategic mediator into an otherwise standard

uniform-quadratic setting of the Crawford and Sobel (1982). Ivanov (2010) shows that

there exists a strategic mediator that delivers the highest possible receiver’s payoff, as

if communication happened through an optimal non-strategic mediator. Importantly,

the optimal mediator for the receiver is not pro-receiver, with the bias opposed to the

sender’s bias. Relative to this paper, our fact-checker acts as the strategic mediator

who has commitment power.9 Moreover, the fact-checker is unable to send arbitrary

messages and restricted to the usage of the fact-checking technology. The strategic

mediator in Ivanov (2010) may increase the noise in communication, whereas the

fact-checking technology can only decrease the noise.

Finally, our paper relates to the empirical literature on of fact-checking, recently

surveyed by Nieminen and Rapeli (2019). The evidence on the effects of fact-checking is

mixed. Weeks and Garrett (2014) and Weeks (2015) show that the corrections to false

information improve the belief accuracy of the receivers of information. By the means of

a randomized online experiment during the 2017 French presidential election campaign,

Barrera et al. (2020) find that the fact-checking of “alternative facts” by Marine Le Pen

shifted voters’ posteriors on facts towards the truth but did not affect policy conclusions

9The mediator in Salamanca (2021) maximizes the sender’s payoff and also has commitment power.
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or support for the candidate.10 Nyhan and Reifler (2015) demonstrate that the fact-

checking efforts may discourage politicians from spreading false claims. Concerning

the influence of the fact-checker’s identity on the effects of fact-checking, Wintersieck,

Fridkin, and Kenney (2021) find that the source of the fact-check only modestly impacts

assessments of the fact-check output. Lim (2018) suggests that different fact-checkers

rarely check the same claims: only one in 10 statements was found to be fact-checked by

both the Washington Post Fact Checker and Politifact.11 We show that the free-riding

motive may induce fact-checkers to “divide the market” among themselves, as the

benefits of double-checking are swamped by the fact-checking cost.

1.2 Model

There are three players, a sender (he), a fact-checker (it), and a receiver (she),

who participate in a one-round communication game. The receiver can choose between

accepting or rejecting a sender’s proposal. The receiver’s payoff depends on a state

of the world, whereas the sender has state-independent preference for approval. The

receiver’s decision relies on information contained in a sender’s claim and a fact-check

output. A fact-checking policy assigns to each sender’s claim the probability that the

claim is checked. Successful fact-checking reveals whether the sender’s claim is truthful

or not, while unsuccessful fact-checking generates the empty output. We seek to solve

the problem of the fact-checker who can commit to a fact-checking policy to maximize

its payoff.

10Ideology and political affiliation with a speaker may decrease the effectiveness of fact-checking
in adjusting beliefs (Nyhan and Reifler, 2010; Jarman, 2016). Nyhan and Reifler (2010) demonstrate a
“backfire” effect: corrections may increase the belief in false claims among some ideological groups. The
importance of the backfire effect is disputed as many following studies found no evidence for the backfire
effect (Weeks and Garrett, 2014; Nyhan, Porter, et al., 2020).

11Amazeen (2015) and Amazeen (2016) provide an evidence of the consistency of the fact-check output
for the same claim for different fact-checkers. At the same time, Marietta, Barker, and Bowser (2015)
reports variations of the fact-check outputs for the claims on topics of climate change, racism, and
consequences of the national debt.
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Players and information

There is an issue θ ∈ {0,1} that is relevant for a receiver’s decision between

accepting, a = A, or rejecting, a = R, the sender’s proposal. Nature picks θ from the

prior distribution with probability µ(θ), where µ(1) = µ ∈ (0,1), with a slight abuse of

notation. The privately informed sender learns θ and makes a claim about the issue in a

form of a costless message m ∈M= {0,1, ms}. Message m = ms is a silent message. Non-

silent message m ∈ {0,1} corresponds to a sender’s claim that θ = m. The fact-checker

decides whether to check sender’s message m for veracity by means of a fact-checking

technology described below. Successful fact-checking generates the fact-check output

O= 1 if m is truthful and O= 0 if m is deceitful. Unsuccessful fact-checking generates

an empty output, O=∅. The receiver observes message m and fact-check output O and

then acts, a ∈ {A, R}.

Fact-checking technology

The fact-checker has an access to a technology that verifies truthfulness of

sender’s claims. The usage of this technology has a cost of c ≥ 0. If the fact-checker

initiates a check of non-silent message m, then the technology produces fact-check

output O ∈ {0,1,∅} in the following way. With probability p, verification fails and

O=∅. With probability 1− p, the generated fact-check output is O= 1 when θ = m and

O= 0 when θ ̸= m. If m is silent or the fact-checker does not initiate a check of m, then

the output is empty, O=∅. In what follows, we consider the imperfect fact-checking

technology, that is, p ∈ (0,1). Section 1.6 discusses the perfect fact-checking technology

(p = 0).

Strategies

We will refer to a sender with knowledge θ as θ-sender. A sender’s strategy

is a probability distribution σ(·|θ) over messages m ∈ M sent by θ-sender. The fact-
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checker selects χ : M→ [0,1], where χ(m) specifies the probability of initiating a check

of sender’s claim m. Without loss of generality, we can set χ(ms) = 0. Message m is

successfully checked with probability χp(m) := (1− p)χ(m).12 A fact-checker’s strategy

is a choice of a fact-checking policy χp(m) ∈ [0,1 − p] for m ∈ {0,1}. Finally, a receiver’s

acceptance strategy α(m,O) specifies the probability of choosing a = A after observing

message m and fact-check output O. The receiver’s posterior belief that θ = 1 is denoted

as π(m,O).

Payoffs

The sender’s goal is to convince the receiver to accept, that is, the sender’s

payoff is uS(a) = 1{a = A}. The receiver’s payoff uR(a,θ) is θ − ω if the receiver

chooses to accept and 0 if the receiver decides to reject the sender’s proposal.13 The

parameter ω ∈ (0,1) tracks the minimal belief that θ = 1 for the receiver to be willing

to accept the sender’s proposal. The fact-checker has preferences over action-issue

pairs, uF(a,θ), net of the fact-checking cost. We will consider three natural variations of

fact-checker’s preferences: the fact-checker is pro-receiver if uF(a,θ) = uR(a,θ), pro-sender

if uF(a,θ) = uS(a), and anti-sender if uF(a,θ) = −uS(a). Fact-checker’s preferences are

fixed, parameters ω, µ, and p are common knowledge, and all players are expected

utility maximizers.

Solution concept and equilibrium

We assume that the fact-checker has commitment power. Accordingly, the fact-

checker chooses the fact-checking policy χp at the outset of the game.14 Each fact-

12We can allow the failure probability of the fact-checking technology to vary across m, but that would
not change our results qualitatively.

13For θ being an element of the unit interval, the same payoff structure for the receiver is adopted in
Kolotilin et al. (2017), Shishkin (2021) among others. This specification effectively makes a = A a “risky”
action with a state-dependent payoff for the receiver, while a = R is a “safe” action.

14Note that in this setting, the fact-checking policy is only relevant for the sender’s strategy, whereas
the receiver may potentially not even observe χp. The situation will change if the receiver has an option to
search for a fact-check at some non-zero search cost. Then the decision whether to search for a fact-check
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checker’s choice of fact-checking policy χp initiates a subgame between the sender and

the receiver for which we require standard perfect Bayesian equilibrium conditions and

an additional requirement of consistency with fact-checking technology:

1. If at least one of σ(m|0) or σ(m|1) is non-zero, then π(m,∅) = µσ(m|1)
µσ(m|1)+(1−µ)σ(m|0) .

2. For m ∈ {0,1} and O ∈ {0,1}, π(m,O) = 1{m = O}.

3. If π(m,O) > ω, then α(m,O) = 1. If π(m,O) < ω, then α(m,O) = 0.

4. σ(·|θ) is supported on argmax
m∈M

{
χp(m)α(m,1{θ = m}) + (1 − χp(m))α(m,∅)

)
.15

The first requirement is a standard Bayesian updating of receiver’s beliefs after

observing on-path messages. Consistency with fact-checking technology requires re-

ceiver’s understanding of a nonempty fact-check output for both on-path and off-path

messages.16 The third requirement states that the receiver’s decision is optimal given

her beliefs. The final requirement prescribes that the sender sends only messages that

lead to the highest probability of acceptance, with an understanding that these messages

can be fact-checked.

Given χp, we refer to a triple (σ,α,π) that satisfies conditions above as a χp-

equilibrium. Let E(χp) denote the set of χp-equilibria, with a typical element ε. Each χp-

equilibrium ε is associated with the joint distribution of decisions and issues λ(a,θ|ε,χp).17

The fact-checker’s problem is to choose fact-checking policy χp and χp-equilibrium

jointly to maximize its expected payoff net of the fact-checking cost. Specifically, the

will take χp into account.
15Given that χp(ms) = 0, the value assigned to 1{θ = ms} is irrelevant.
16Our definitions of on-path and off-path messages are standard. Fixing equilibrium σ, the on-path

messages satisfy σ(m|1) > 0 or σ(m|0) > 0. The off-path messages are messages that are not on-path.
17Formally, ε = (σ,α,π) generates a joint action-issue distribution as follows:

λ(a = 1,θ|ε,χp) = µ(θ) ∑
m∈M

σ(m|θ)
[
χp(m)α(m,1{θ = m}) + (1 − χp(m))α(m,∅)

]
,

λ(a = 0,θ|ε,χp) = µ(θ) ∑
m∈M

σ(m|θ)
[
χp(m)(1 − α(m,1{θ = m})) + (1 − χp(m))(1 − α(m,∅))

]
.
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fact-checker solves

max
χp

max
ε∈E(χp)

∑
a,θ

uF(a,θ)λ(a,θ|ε,χp)− c ∑
θ,m∈{0,1}

χ(m)σ(m|θ)µ(θ)

 .

A solution to this problem, χ∗
p and ε∗ ∈ E(χ∗

p), is an equilibrium. In our definition of

the equilibrium, we view the fact-checker as a principal who is able to select among its

favorite equilibria.18

Fixing a fact-checking policy χp and a χp-equilibrium, US(θ) stands for the payoff

of θ-sender, US = µUS(1) + (1 − µ)US(0) is the sender’s ex ante payoff, and UR is the

receiver’s ex ante payoff. We say that equilibrium payoffs US(θ) and UR are feasible if

there is a fact-checking policy χp and a χp-equilibrium that generate those payoffs.

We refer to a pair (µ,ω) as an environment. It will be useful to distinguish

whether the environment is predisposed toward the sender or not. Specifically, when

µ < ω, that is, under no information the receiver chooses to reject the sender’s proposal,

we refer to (µ,ω) as a sender-unfavorable environment (SUE). When the receiver chooses to

accept under the prior, that is, µ > ω, we refer to (µ,ω) as a sender-favorable environment

(SFE).

1.3 Feasible Payoffs and Subgame Equilibria

In this section, we describe properties of the feasible payoffs across all possible

fact-checking policies. We also characterize χp-equilibria depending on the environment

(µ,ω) and the failure probability of the fact-checking technology p. We start our analysis

by considering two extreme cases of the fact-checking policies: no fact-checking and full

fact-checking. Considering extreme policies helps us to identify lower and upper bounds

on the feasible payoffs. We focus on the sender’s incentives first and characterize feasible

18This is a standard assumption in the information design literature for an agent with commitment
power (e.g., Kamenica and Gentzkow, 2011). Mathevet, Perego, and Taneva (2020) analyze the information
design framework under various selection rules, including the worst-equilibrium selection.
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payoffs of 0- and 1-senders, while delegating the discussion of receiver’s feasible payoffs

to the end of this section.

The no fact-checking policy corresponds to χp(0) = χp(1) = 0. Without fact-

checking, messages do not have an intrinsic meaning. Our game collapses to the cheap-

talk game with a binary state of the world and state-independent sender’s preferences.

In SUE, the equilibrium sender’s strategy is such that any message leads to the receiver

rejecting the sender’s proposition. Consequently, US(1) = US(0) = 0. On the other

hand, in SFE, the receiver accepts the sender’s proposition after observing any on-path

message: US(1) = US(0) = 1.19

Consider now the full fact-checking policy, that is, χp(0) = χp(1) = 1 − p. Then

after observing a non-silent message, the receiver learns the issue with probability 1 − p.

In SUE, such fact-checking policy prevents 0-sender and 1-sender from pooling on the

silent message. In fact, 1-sender never sends the silent message. Indeed, for 1-sender to

be willing to send ms, the receiver needs to accept after this message with probability

of at least 1 − p. This is because 1-sender can always send only a true message m = 1:

by consistency with fact-checking technology and under given fact-checking policy,

the receiver understands the implications of observing (m,O) = (1,1) and chooses

the sender-preferred action. However, in a χp-equilibrium, it is impossible to have

α(ms,∅) ≥ 1 − p, since the condition of the sender-unfavorable environment would

require 0-sender to place some weight on fully checked non-silent messages creating

profitable deviations for him. Thus, the receiver learns the issue in SUE conditional

on the successful fact-check. Corresponding sender’s payoffs are US(1) = 1 − p and

US(0) = 0. The situation is different in SFE. Here pooling on the silent message survives

as a χp-equilibrium. Due to 1-sender’s indifference between revealing himself and being

19Irrespective of the environment, some equilibria can still be informative, with some messages
revealing the issue. However, the receiver’s payoff is fixed across all χp-equilibria at UR = max{0,µ − ω}.
Indeed, additional information does not increase the receiver’s payoff, since her optimal action remains
unchanged conditional on receiving or not receiving this information.
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pooled with 0-sender, two equilibrium patterns persist. In one, as in SUE, 1-sender

never sends ms and the receiver learns the issue when the fact-check is successful. In

another, the receiver does not fully learn after observing the silent message but still

accepts the sender’s proposition. The sender’s payoffs are US(1) = 1 and US(0) ∈ {p, 1}

in SFE, depending on the equilibrium pattern.

We now proceed to characterizing feasible payoffs spanned by all fact-checking

policies. We show that two insights from extreme fact-checking policies generalize

to any fact-checking policy χ. First, 0-sender’s proposition is always rejected by the

receiver in SUE. Second, 1-sender always gets his proposition accepted in SFE.

Proposition 1.1. The feasible sender’s payoffs are

• US(1) ∈ [0,1 − p] and US(0) = 0 in the sender-unfavorable environment,

• US(1) = 1 and US(0) ∈ [p,1] in the sender-favorable environment.

All proofs are in the appendix. This result has several implications. First, no fact-

checking and full fact-checking policies deliver the extremes of the range of sender’s

feasible payoffs. Second, we can always construct a fact-checking policy χp and a

corresponding χp-equilibrium that generate an interior 1-sender’s payoff in SUE and

0-sender’s payoff in SFE. One such construction is as follows. Suppose the fact-checker

chooses a fact-checking policy χp, with χp(1) ≥ χp(0). Both 0-sender and 1-sender

completely pool on m = 1, that is, σ(1|1) = σ(1|0) = 1. The receiver learns the issue with

probability χp(1) and makes an optimal choice. With probability 1 − χp(1), message

m = 1 is not checked. In such an event, the receiver chooses to reject in SUE and accept

in SFE. With appropriately chosen receiver’s posterior beliefs after off-path messages,

we show that this is indeed a χp-equilibrium. The sender’s payoffs are US(1) = χp(1)

and US(0) = 0 in SUE, whereas US(1) = 1 and US(0) = 1 − χp(1) in SFE. Finally, this

result shows that no other sender’s payoffs are feasible. Intuitively, with probability
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of at least p, the fact-checking technology fails to produce a fact-check, and the game

unfolds as if the no fact-checking policy is in place. In SUE, fact-checking can only

help 1-sender to separate himself from 0-sender. On the other hand, fact-checking only

detects 0-sender’s mimicking in SFE.

Note that Proposition 1.1 implies that the receiver always plays a pure strategy

after on-path messages in both SUE and SFE. Indeed, if the receiver was mixing on the

equilibrium path, the payoffs of both 0-sender and 1-sender would be strictly between

0 and 1, which contradicts Proposition 1.1.

We now relate the result to the best possible communication outcome for the

sender. In a setting without the fact-checker but with the sender’s commitment power as

in Kamenica and Gentzkow (2011), the sender can obtain the ex ante payoff of µ
ω in SUE.

To achieve this, 1-sender always sends a “winning” message mw ∈ M and 0-sender

sends mw with probability µ
1−µ · 1−ω

ω to make the receiver exactly indifferent between

taking actions a = 1 and a = 0 upon observing mw. The tie is broken in the sender’s favor.

In our setting, even when the fact-checking technology never fails, the maximum ex ante

payoff is US = µ achieved by the full fact-checking policy. The sender’s commitment

payoff is not achievable, since it requires an undetectable randomization on the side of

0-sender. Our sender lacks commitment power. If θ-sender sends multiple messages,

then he is indifferent between sending any one of them. Fact-checking cannot make

0-sender randomize without revealing him. We note that for large state space θ ∈ [0,1],

this is no longer true. The reason is that the best communication outcome for the sender

no longer requires randomization on his side.20 As a result, fact-checking may enable

commitment in a setting with a continuous state space. We discuss this in more detail

in Section 1.6.
20Titova (2021) shows that in a sender-receiver game with a large state space, the sender can achieve

the commitment outcome with verifiable information only. Also related is Guo and Shmaya (2021) who
study a cheap-talk game in which the sender incurs “miscalibration cost” for undermining the meaning
of a certain claim. They show that high miscalibration cost acts as a substitute for commitment and the
sender can achieve the commitment outcome.
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Proposition 1.1 tells us that fact-checking affects ex ante sender’s payoff by

varying only one of θ-sender’s payoffs. First, 0-sender is not able to escape the zero

payoff in SUE regardless of whether his messages get checked or not. Additional

fact-checking can only help 1-sender to get his messages verified. Second, 1-sender

is always capable to get his proposition accepted irrespective of a 0-sender’s strategy

and a fact-checking policy. Additional fact-checking can only reveal 0-sender more

frequently. We now formalize this logic by asking a natural question: when the fact-

checker checks more aggressively, how are the sender’s and the receiver’s payoffs

affected? For a fixed fact-checking policy χp, let us denote a non-silent message that is

checked with the highest probability as m ∈ {0,1} and the corresponding probability as

χp =max{χp(0),χp(1)}. Note that χp is bounded above by 1− p. Similarly, we define m

as a non-silent message that is checked with the probability χp = min{χp(0),χp(1)}.21

We say that a fact-checking policy χp is more aggressive than χ′
p if χp > χ′

p.22 The

following proposition shows how the ex ante payoffs of the sender and the receiver

alter for a more aggressive fact-checking policy.

Proposition 1.2. When the fact-checking policy is more aggressive:

• both the sender and the receiver benefit in the sender-unfavorable environment,

• the lower bound on the sender’s payoff decreases and the upper bound on the receiver’s

payoff increases in the sender-favorable environment.

The key insight behind Proposition 1.2 is that we can characterize the range of

sender’s and receiver’s payoffs in all χp-equilibria as a correspondence with a single

input χp. In SUE, the payoffs US and UR are unique for all fact-checking policies with

the same χp. In SFE, this is no longer the case. Still we can characterize the bounds of

21If χp(0) = χp(1), messages m = 0 and m = 1 can be assigned to m and m arbitrarily.
22This order is chosen primarily for expository purposes. Our results could be presented for an

alternative definition of a more aggressive fact-checking policy that would require χp(0) ≥ χ′
p(0) and

χp(1) ≥ χ′
p(1), with at least one strict inequality.
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the payoff range with χp and we show that the set of sender’s and receiver’s payoffs is

greater in the strong set order for a more aggressive fact-checking policy.

Proposition 1.2 delivers a comparative statics on US and UR for different fact-

checking policies. In SUE, 1-sender gets verified more often with a more aggressive

fact-checking policy thereby increasing the ex ante sender’s payoff. In SFE, 0-sender’s

claims can be checked more frequently. However, SFE allows for a χp-equilibrium, in

which 0-sender and 1-sender pool on the silent message. Thus, we need to make use of

the comparative statics on sets for SFE. The part of Proposition 1.2 that concerns the

receiver is intuitive. A more aggressive fact-checking policy leads to more informative

communication, with the same caveat for SFE.

As a by-product, the proof of Proposition 1.2 characterizes χp-equilibria for

any fact-checking policy χp. Here to eliminate the consideration of multiple cases,

suppose that χp > χp > 0 for the sake of clarity. Table 1.1 presents the support of

sender’s equilibrium strategies in SUE. We can see that 1-sender only sends the message

that is checked the most. In turn, 0-sender sends m with the probability of at least

σ(m|0) ≥ µ
1−µ · 1−ω

ω , so that the receiver decides to reject the sender’s proposition upon

seeing message m and an empty fact-check output O=∅. Otherwise, 0-sender would

get the positive payoff which contradicts Proposition 1.1. The remaining weight of

σ(·|0) can be placed arbitrarily on ms and m. These messages reveal 0-sender. However,

this additional information does not affect the receiver’s payoff, since her optimal action

stays unchanged.

Table 1.1. The support of sender’s equilibrium strategy σ(m|θ) in the sender-
unfavorable environment.

σ(m|θ) θ = 0 θ = 1
m = ms · 0
m = m · 0
m = m · 1

Table 1.2 presents potential supports of sender’s equilibrium strategies in SFE.
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There are three equilibrium patterns depending on which message m is sent by 0-sender.

For this message, it has to be the case that σ(m|1) ≥ 1−µ
µ · ω

1−ω , so that the receiver

decides to accept the sender’s proposition upon seeing message m and an empty fact-

check output O = ∅. Otherwise, either 1-sender does not get a payoff of one which

contradicts Proposition 1.1, or 0-sender has a profitable deviation. The remaining weight

of σ(·|1) an be placed arbitrarily on the messages that are checked more frequently than

m. These messages reveal 1-sender.

Table 1.2. Potential supports of sender’s equilibrium strategy σ(m|θ) in the sender-
favorable environment.

σ(m|θ) θ = 0 θ = 1 σ(m|θ) θ = 0 θ = 1 σ(m|θ) θ = 0 θ = 1
m = ms 1 · m = ms 0 0 m = ms 0 0
m = m 0 · m = m 1 · m = m 0 0
m = m 0 · m = m 0 · m = m 1 1

The equilibrium pattern is unique in SUE in the sense that the strategy of one of

θ-senders is fixed across χp-equilibria. In SFE, we have multiple equilibrium patterns.

This difference stems from the sender’s incentives depending on the environment.

Indeed, 1-sender simply sends the most checked message in SUE, since he can get

a positive payoff only when fact-checked. In SFE, 0-sender only sends the message

that is checked the least out of the messages played by 1-sender. In other words, 0-

sender wants as little fact-checking as possible but he still needs to mimick 1-sender.

The inclusion of messages ms and m in the strategy of 1-sender generates additional

equilibrium patterns producing multiplicity.

The characterization of χp-equilibria presented above allows us to calculate the

ex ante payoffs US and UR for both environments. In SUE, the equilibrium payoffs are

unique and equal to US = µχp and UR = µ(1 − ω)χp. Intuitively, both the sender and

the receiver get the positive payoff only when the message m gets fact-checked and the

receiver accepts the sender’s proposition.

In SFE, the equilibrium payoffs are not unique for fixed χp anymore and they
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depend on the equilibrium pattern as presented in Table 1.2. We can summarize these

patterns by message m that 0-sender plays with probability one. If m is the silent

message ms, then the sender always gets his proposition accepted, US = 1, and the

receiver’s payoff is equal to the no-communication payoff UR = µ − ω. If m is a non-silent

message, then 0-sender is revealed with probability (1 − µ)χp(m), making the receiver

change her optimal action to a = 0. Hence, the sender’s payoff is US = 1− (1− µ)χp(m).

The receiver’s payoff is UR = µ − ω + (1 − µ)ωχp(m), the no-communication payoff

plus an additional benefit of not making a wrong decision with payoff −ω when 0-

sender gets revealed by fact-checking. We can describe the range of equilibrium payoffs

in SFE with χp only:

US ∈
[
1 − (1 − µ)χp,1

]
and UR ∈

[
µ − ω,µ − ω + (1 − µ)ωχp

]
.

ω 10 µ

ω(1 − ω)χp

(1 − ω)

UR

SUE SFE

Figure 1.1. Feasible UR depending on prior µ for fact-checking policies with fixed χp.
The dashed red line corresponds to the receiver’s payoff under complete information.

Figure 1.1 provides an illustration of the part of Proposition 1.2 on the receiver’s

payoff. The receiver is better off when the fact-checking policy is more aggressive as

it sustains more informative communication. The receiver’s payoff under complete

information is attainable only when χp approaches one, which can be achieved by the
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full fact-checking policy and only when p approaches zero, that is, the fact-checking

technology is perfect.

1.4 Optimal Fact-Checking

In this section, we characterize the optimal fact-checking policy for the fact-

checker with arbitrary preferences over receiver’s decisions and issues. This allows us

to generate receiver’s preferences over different fact-checkers. We also discuss how our

predictions change under the selection of the worst χp-equilibrium for the fact-checker.

The optimal fact-checking policy is characterized by a cost threshold. For the

fact-checking cost higher than the threshold, no fact-checking is one of the optimal

policies. For fact-checking cost lower than the threshold, full fact-checking is one of the

optimal policies. We are able to represent the cost threshold in terms of the fact-checker’s

preferences, as the following proposition shows.

Proposition 1.3. For the fact-checker with preferences uF(a,θ), there exists c(uF) > 0, such

that χp = 0 is optimal for c > c(uF) and χp = 1 − p is optimal for c < c(uF). Furthermore,

• c(uF) = ω(1 − p) [uF(1,1)− uF(0,1)] in the sender-unfavorable environment,

• c(uF) = (1 − µ)(1 − p) [uF(0,0)− uF(1,0)] in the sender-favorable environment.

Intuitively, when the fact-checking cost is too high, the no fact-checking policy is

optimal. The fact-checker is also more likely to do no fact-checking, when the initiated

fact-checks are less likely to produce a check, that is, p increases. When p approaches

one, the cost threshold goes to zero, since the fact-checking technology that always fails

is not worth to use for any fact-checker.

Proposition 1.3 tells us that if the fact-checking cost becomes sufficiently low, then

the full fact-checking policy becomes optimal.23 Following our characterization of χp-

equilibria, the joint distribution of decisions and issues λ(a,θ|ε,χp) can be summarized

23Note that picking χp = 1 − p is not necessary for optimality. However, when there are multiple
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by the maximal probability of fact-checking χp for any χp-equilibrium ε. We can

then find the minimal cost of fact-checking that supports distribution λ(a,θ|ε,χp) as a

function of χp. We show that the fact-checker’s benefit ∑a,θ uF(a,θ)λ(a,θ|ε,χp) and the

minimal cost of fact-checking are linear functions of χp in the interior. This linearity

generates the threshold policy, making either no fact-checking or full fact-checking

optimal depending on the fact-checking cost.

The cost threshold depends only on the fact-checker’s preferences uF(·,θ) in issue

θ, for which US(θ) is varying across different fact-checking policies. By Proposition

1.1, it is θ = 1 in SUE and θ = 0 in SFE. The reason is US(θ
′) is fixed for θ′ ̸= θ and thus

the distribution of decisions and issues λ(a,θ′|ε,χp) is fixed for issue θ′ over all fact-

checking policies χp and χp-equilibria. Indeed, US(θ
′) can be written as λ(a = 1,θ′|ε,χp)

in χp-equilibrium ε. Therefore, different fact-checking policies can only affect the fact-

checker’s payoff in issue θ.

When c(uF)≤ 0, the no fact-checking policy is always optimal for the fact-checker

with preferences uF. The fact-checker that prefers a = 0 when the issue θ = 1 never

fact-checks in SUE. Similarly, the fact-checker that prefers a = 1 when the issue θ = 0

plays the no fact-checking policy in SFE. This is intuitive, since the no fact-checking

policy effectively shuts down informative communication. Without communication,

the receiver already makes a decision preferred by the fact-checker.

The cost threshold depends on the prior only in SFE. Moreover, c(uF) goes to

zero when µ approaches one. This follows from the set of χp-equilibria available to

the fact-checker depending on the environment. In SUE, distribution λ(a,θ|ε,χp) is

uniquely pinned down by χp. The question is what χp-equilibrium for a fact-checking

policy with χp is associated with the minimal cost of fact-checking. The answer to this

question is χp-equilibrium in which the maximal weight of 0-sender’s strategy is put

equilibrium patterns, the fact-checker is able to steer players toward the preferred χp-equilibrium in
which m is never played.
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on an unchecked message, σ(m|0) = µ
1−µ · 1−ω

ω and σ(ms|0) = 1 − σ(m|0), such that the

receiver’s incentive constraints are intact. As a consequence, the fact-checker’s benefit

and the minimal cost of fact-checking are linear in µχ, and c(uF) is independent of the

prior. In SFE, the minimal cost of implementing any equilibrium pattern from Table 2

is achieved by implementing χp-equilibrium in which 0-sender and 1-sender pool on

the same message m, that is, σ(m|0) = σ(m|1) = 1. Any other χp-equilibrium results

in more fact-checking without changing the distribution of decision and issues. The

fact-checker that desires to implement a more aggressive fact-checking policy has to

pay a cost in the size of
cχp
1−p , while the fact-checker’s benefit is linear in 1 − µ. As an

implication, c(uF) is linear in 1 − µ as well.

Proposition 1.3 allows us to describe receiver’s preferences over settings with

different fact-checker’s payoffs uF. To fix ideas, suppose that the fact-checker’s payoff

uF is a weighted sum of the sender’s and the receiver’s payoffs: uF(a,θ) = βSuS(a) +

βRuR(a,θ) = βSa + βR1{a = A}(θ − ω). This allows us to deduce the receiver’s pref-

erences over different kinds of fact-checkers in terms of weights βS and βR, as the

following corollary shows.

Corollary 1.1. Suppose uF(a,θ) = βSuS(a) + βRuR(a,θ). Then the receiver weakly benefits

when

• βS increases and βR increases in the sender-unfavorable environment,

• βS decreases and βR increases in the sender-favorable environment.

By Proposition 1.2, the receiver prefers a more aggressive fact-checking policy. By

Proposition 1.3, the fact-checker is guaranteed to implement either the no fact-checking

policy or the full fact-checking policy for almost every fact-checking cost c. Thus, the

comparative statics provided in Corollary 1.1 speaks to the range of the fact-checking

cost for which the full fact-checking policy is implemented. This range can only expand
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when the fact-checker puts more weight on the receiver’s payoff. The fact-checker that

cares less about the sender is more likely to implement the no fact-checking policy in

SUE as under no information the receiver decides to the reject the sender’s proposal.

Similar logic tells us that if βS increases in SFE, then the fact-checker chooses the no

fact-checking policy for a greater range of fact-checking cost.

We can specialize even more and consider the receiver’s preferences over pro-

receiver, pro-sender, and anti-sender fact-checkers. The pro-receiver fact-checker puts

a weight of βS = 0 on the sender’s payoff and a weight of βR = 1. The pro-sender’s

(anti-sender’s) weights are βS = 1 (βS = −1) and βR = 0. By Corollary 1.1, we can

immediately conclude that the receiver prefers the pro-receiver fact-checker over the

anti-sender (pro-sender) fact-checker in SUE (SFE). Figure 1.2 presents the range of

the fact-checking cost for which pro-receiver, pro-sender, and anti-sender fact-checkers

implement the full fact-checking policy for different prior probabilities µ on θ = 1 and

under the imperfect fact-checking technology.

(1 − ω)ω ω 1 − ω c̃

µ

ω

1

SFE

SUE PR, PS PS

PR, AS AS

Figure 1.2. This figure shows the regions in the (c̃,µ) space, where c̃ = c
1−p , for fixed

ω < 1
2 , where pro-receiver (PR), pro-sender (PS), and anti-sender (AS) fact-checkers

choose the full fact-checking policy.

23



Figure 1.2 shows that the anti-sender fact-checker never checks in SUE and

the pro-sender fact-checker implements the no fact-checking policy in SFE. Indeed,

uninformative communication makes the receiver choose the fact-checker’s preferred

action. Interestingly, there is a range of the fact-checking cost, for which the receiver’s

best fact-checker is not pro-receiver. We note that this result is not robust to the linear

transformation of uF: we could rescale uF for the pro-receiver fact-checker, so that it

implements the full fact-checking policy more often.24 However, our main point is we

can always find a fact-checker caring exclusively about the sender’s payoff that will be

more likely to implement the full fact-checking policy than the fact-checker maximizing

the receiver’s payoff. The receiver prefers the pro-sender (anti-sender) fact-checker in

SUE (SFE) if the following cardinal condition holds for payoff functions uS and uR: the

sender gains more by persuading the receiver than the receiver by learning the truth.

We now comment on the equilibrium selection. We assume that the fact-checker

can steer the sender and the receiver toward its favorite χp-equilibrium. Suppose instead

that the worst χp-equilibrium for the fact-checker is played out by the sender and the

receiver after it chooses a fact-checking policy χp. In SUE, we know that the distribution

of decisions and issues λ(a,θ|χp, ε) is uniquely pinned down by the maximal probability

of fact-checking χp in fact-checking policy χp. Thus, the fact-checker’s expected benefit

does not depend on the selection of a specific χp-equilibrium ε. The worst-equilibrium

selection can only drive up the minimal cost of fact-checking by selecting χp-equilibrium

in which both 1-sender and 0-sender only send m. This would lead to a decrease in the

fact-checking threshold c(uF) to the level of µ(1 − p)[uF(1,1)− uF(0,1)]. In SFE, the

fact-checker that desires to implement a more aggressive fact-checking policy will not

be able to sustain informative communication under the worst-equilibrium selection.

Indeed, since SFE permits silence by both 0-sender and 1-sender as an equilibrium, the

fact-checker cannot do better than the no fact-checking policy.

24If we rescale both uF and c, then clearly the cost threshold is unaffected.
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1.5 Many Fact-Checkers

This section is devoted to the extension of our baseline model which allows the

possibility of multiple fact-checkers available to the receiver. We characterize equilib-

rium fact-checking policies and their implications for the provision of fact-checking and

players’ payoffs. We showcase an equilibrium which results in the underprovision of

fact-checking relative to the case of only one fact-checker present. We provide conditions

for the existence of this equilibrium.

Up until now, we assumed that there is a single fact-checker. In reality, there

are many fact-checking institutions available to the receiver, each with a potentially

different agenda. What happens to the provision of fact-checking and players’ payoffs

in our setting if there are several fact-checkers each choosing its own fact-checking

policy? To answer this question, we modify our model as follows. Suppose there are

two fact-checkers with payoffs uF,1 and uF,2.25 At the beginning of the game, each

fact-checker decides on the fact-checking policies, χp,1,χp,2 ∈ [0,1 − p]2. Note that the

probability of message m checked is χp(m) := 1 − (1 − χp,1(m))(1 − χp,2(m)). Then

the game unfolds as in our baseline model. The sender observes the issue θ ∈ {0,1}

and sends message m. The receiver sees sender’s message m ∈ {0,1,ms} and realized

fact-check outputs O1,O2 ∈ {0,1,∅}.26 Based on the observed message and fact-check

outputs, the receiver makes the decision a.

The fact-checking policies chosen by fact-checkers generate probabilities χp(m)

of each non-silent message m checked. Then the game continues with a one of χp-

equilibria, which we already conveniently characterized in Section 1.3 with χp =

max{χp(0),χp(1)}. We can also define χp,i = max{χp,i(0),χp,i(1)} as before. To make

25When there are more than two fact-checkers, the equilibrium structure remains qualitatively the
same.

26The informational content of two nonempty fact-check outputs is the same. Therefore, the receiver
makes the same decision irrespective of whether she observed one or two nonempty fact-check outputs.

25



predictions about the fact-checkers’ choice of χp,1 and χp,2, we need to make a stance

on the selection of χp-equilibria. We make two assumptions. First, we assume that if

there are two available χp-equilibria ε1 and ε2 that generate the same joint distribution

of decisions and issues but ε2 is associated with a weakly greater fact-checking cost for

both fact-checkers than ε1 and strictly greater for at least one of them, then ε2 cannot be

played.27 Second, in SFE, we assume that 1-sender sends only the most checked mes-

sage. In other words, we assume that the most informative χp-equilibrium is played.28

These assumptions guarantee that after fact-checkers choose their fact-checking policies,

they know that the game will continue in accordance with a specific χp-equilibrium.

If fact-checkers select their fact-checking policies χp,1 and χp,2 by best responding to

each other, then we call χp,1 and χp,2 equilibrium fact-checking policies. Equilibrium

fact-checking policies and succeeding χp-equilibrium constitute an equilibrium. In what

follows, we characterize equilibrium fact-checking policies.

Suppose c(·) as given by Proposition 1.3 is fixed, that is, we fix parameters µ,

ω, and p. First, note that either of conditions c(uF,i) < 0 or c ≥ c(uF,i) imply that the

optimal policy involves no fact-checking by fact-checker i. Indeed, if fact-checker i does

not want to provide information to the receiver when it is alone, a more aggressive fact-

checking policy can only negatively affect its payoff. Then the equilibrium fact-checking

policy for fact-checker j ̸= i is given by Proposition 1.3. For a more interesting case,

suppose that conditions c(uF,i) < 0 or c ≥ c(uF,i) do not hold for both fact-checkers. In

words, both fact-checkers would select the full fact-checking policy if they were an only

fact-checker available. Then the following proposition characterizes all equilibrium

fact-checking policies.

27That is, we assume that the chosen χp-equilibrium has to be Pareto-undominated for fact-checkers.
We view this requirement as a logical extension of the best-equilibrium selection in the case of one
fact-checker.

28If we allow for a small fine for the sender that is caught in a lie, this extension would select the
most informative equilibrium pattern. Interestingly, Nyhan and Reifler (2015) provide results for a
field experiment suggesting that the speaker is less likely to receive negative fact-checking rating when
fact-checking poses a salient threat in a form of reputational risks.
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Proposition 1.4. Fix the environment (µ,ω) and the failure probability of the fact-checking

technology p. Suppose that c < c(uF,i) for both fact-checkers. In the equilibrium:

• if c < pc(uF,i) for both fact-checkers, then χp,1 = χp,2 = 1 − p;

• if c < pc(uF,i) and c > pc(uF,j), j ̸= i, then χp,i = 1 − p and χp,j = 0;

• if c > pc(uF,i) for both fact-checkers, then there are three equilibria: (1) χp,1 = 1 − p,

χp,2 = 0, (2) χp,1 = 0, χp,2 = 1 − p, and (3) χp,i = 1 − c
c(uF,j)

, j ̸= i.

Importantly, when χp,i > 0 for both fact-checkers in the equilibrium, they check

the same non-silent message with their own maximal probability to save on fact-

checking cost. Proposition 1.4 holds for both SUE and SFE, with cost threshold c(·) given

by Proposition 1.3. If the fact-checking cost is low enough, then both fact-checkers select

the full fact-checking policy, thereby increasing the maximal probability of fact-checking

χp to 1 − p2. Thus, the composite fact-checking policy created by two fact-checkers

becomes more aggressive than in the case of only one fact-checker. The presence of

multiple fact-checkers helps to alleviate the failure of fact-checking technology in this

case and increases the provision of fact-checking benefiting the receiver. The sender

benefits from the added fact-checker only in SUE, as it makes more likely for 1-sender

to get his proposition accepted when he is verified by fact-checking.

Alternatively, there are equilibria in which only one fact-checker carries out the

full fact-checking policy. In an anticipation of this, another fact-checker prefers to not

fact-check at all enjoying the benefit of more informative communication at no cost. This

free-riding motive keeps χp at 1− p, as if there is only one fact-checker present.29 In this

case an additional fact-checker does not assist in overcoming a failure of fact-checking

technology. The payoffs of the sender and the receiver remain unaffected.

29In a different setting, Carletti, Cerasi, and Daltung (2007) examine a bank’s choice between lending to
firms individually or in cooperation with other banks. Their setting features a similar free-riding problem
due to the need to monitor bank-firm relationships at a cost.
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Moreover, when the fact-checking cost is intermediate, there is an equilibrium

which may promote the underprovision of fact-checking relative to the case of one

fact-checker. In this equilibrium, both fact-checkers do not check to the full extent

and the maximal probability of fact-checking is χp = 1 − c
c(uF,1)

· c
c(uF,2)

. When c <

√
p
√

c(uF,1)c(uF,2), the composite fact-checking policy is more aggressive than there is

only one fact-checker present. However, when the fact-checking cost is intermediate,

c >
√

p
√

c(uF,1)c(uF,2), both fact-checkers want to implement the full fact-checking

policy by themselves, but the composite fact-checking policy is less aggressive, χp <

1 − p. The coordination problem stimulated by a strong free-riding motive results into

the underprovision of fact-checking. In this case, less informative communication hurts

the receiver.

Finally, we point out that the existence of the equilibrium with the underprovision

of fact-checking relies on our assumption of the simultaneous fact-checkers’ moves.30

Moreover, our setting does not allow for repeated checks in case of the technology

failure. We view both of these restrictions as reflecting time-pressure conditions of

real-world competition between fact-checking organizations. As pointed out by Graves

(2016), “editors at FactCheck.org have remarked several times on the sharper deadline

pressure the group faced once its national rivals appeared”. FactCheck.org responded

to new market conditions by introducing the “FactCheck Wire” in 2009 with a purpose

to deliver shorter fact-checks in a timely manner.

1.6 Discussion

This section considers two variations of our baseline model that allows us to

discuss facts that can be checked perfectly and are not binary in nature.

30If the fact-checkers moved sequentially, then the first fact-checker would have a first-mover advantage
adopting a no fact-checking policy, passing the need to fact-check to the second fact-checker.
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Perfect fact-checking technology

When the fact-checking technology is perfect, p = 0, it is possible to have a

message checked with probability one, that is, χ0 = 1. If p = 0 and χ0 = 1, then there

is an additional equilibrium pattern in both SUE and SFE, where 1-sender only sends

m and 0-sender can play any strategy. In words, 1-sender sending only fully checked

messages leaves no option for 0-sender to extract a positive payoff. Then any 0-sender’s

strategy is an equilibrium strategy. We highlight one of these equilibria, where 0-

sender plays the silent message ms with probability one, and we call this χ0-equilibrium

completely separating. The completely separating equilibrium reveals the issue, while

only the claim made by 1-sender gets fact-checked. The following proposition shows

that the optimal policy is still a threshold policy that utilizes the availability of separation

at a lower minimal fact-checking cost.

Proposition 1.5. Suppose that p = 0. For the fact-checker with preferences uF(a,θ), there

exists c(uF)> 0, such that χ0 = 0 is optimal for c > c(uF) and χ0 = 1 is optimal for c < c(uF).

Furthermore,

• c(uF) = uF(1,1)− uF(0,1) in the sender-unfavorable environment,

• c(uF) =
1−µ

µ · [uF(0,0)− uF(1,0)] in the sender-favorable environment.

It is evident that the cost threshold c(uF) is discontinuous at p = 0. The reason

behind this result is a discontinuity of the minimal cost of fact-checking: it is more

costly to detect pooling than sustain separation by making use of the silent message.

The completely separating equilibrium is preferred by the fact-checker that wishes to

fact-check fully. Hence, the fact-checker that wants to implement a full fact-checking

policy can do so for a larger range of the fact-checking cost.

In the setting with multiple fact-checkers, we point out that the underprovision

of fact-checking can only occur under the imperfect fact-checking technology. When the
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fact-checking technology is perfect, both fact-checkers never choose the fact-checking

technology other than no fact-checking or full fact-checking. This is because the minimal

cost of fact-checking is linear in χ0 for χ0 ∈ [0,1) and subject to a downward jump at

χ0 = 1, since the completely separating equilibrium becomes available.

Larger State Space

Our model considers only claims about the binary issues. In practice, fact-

checkers check variety of statements, some of them quantitative in nature.31 One way

to allow for such statements is to enlarge the state space, so that θ ∈ [0,1]. For simplicity,

suppose that the prior is uniform on [0,1] and the message space may contain only the

closed intervals that are subsets of the unit interval.32 For such state space, Titova (2021)

shows that the sender can achieve the commitment outcome in SUE with verifiable

information only.33 The solution involves a winning message mw = [θ∗,1] and a losing

message ml = [0,θ∗], where the cutoff value θ∗ is chosen to make the receiver exactly

indifferent between taking actions a = 1 and a = 0 upon observing mw. The tie is

broken in the sender’s favor. In our setting, messages are cheap but the fact-checker

can provide their verification. Thus, the pro-sender fact-checker is able to deliver

the sender’s commitment payoff in SUE, if the fact-checking cost is low enough. In

particular, the fact-checker only checks mw with probability one. The outcome does not

rely on the selection and does not involve randomization on the sender’s side. In our

binary setting, the commitment payoff is not achievable, since it requires undetectable

randomization by 0-sender which the fact-checker cannot sustain without revealing

him. Note that the similar construction to Titova (2021) can show that the anti-sender

fact-checker uses the same structure to implement the sender-worst outcome in SFE,

31For example, Donald Trump famously spread information about US unemployment rates that
received negative fact-checking ratings (National Public Radio, 2017).

32The variation of this setting is analyzed in Balbuzanov (2019).
33The definitions of SUE and SFE remain the same. In SUE (SFE), the receiver rejects (accepts) the

sender’s proposition under the prior.
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with a difference that the cutoff value θ∗ for messages mw and ml is chosen to make the

receiver exactly indifferent between taking actions a = 1 and a = 0 upon observing ml

and the tie is broken against the sender.

1.7 Conclusion

This paper examines communication between an informed sender and an un-

informed receiver with a presence of a strategic fact-checker. The sender makes a

claim about an issue to persuade the receiver to approve the sender’s proposal. The

fact-checker has its own goal and chooses a stochastic fact-checking policy that checks

sender’s claims. Checking a claim is costly and, with some probability, can fail to verify

whether the claim is true or false. Full fact-checking is optimal when the cost is below a

threshold. Otherwise, no fact-checking is optimal. We characterize the cost threshold as

a function of fact-checker’s preferences. The receiver need not prefer a fact-checker with

preferences aligned with the receiver to one with opposed preferences. Adding multiple

fact-checkers does not necessarily improve communication even when all fact-checkers

are willing to fully check by themselves. For intermediate cost of checking, having

multiple fact-checkers can lead to underprovision of fact-checking due to free riding.

Chapter 1 is currently being prepared for submission for publication of the

material. The dissertation author, Aleksandr Levkun, is the sole author of this material.
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Chapter 2

The Value of Data Records

2.1 Introduction

Personal data is the “new oil” of modern economies. Markets for data have been

rapidly developing and have fueled major policy debates (Federal Trade Commission,

2014). These markets also have spurred intense research to understand their unique

properties (Bergemann and Ottaviani, 2021). However, many critical questions remain.

Among them, what is the value of an individual’s data for the firm using it? How does

this value depend on the data’s content and the firm’s goals? Answering these questions

can shed light on the demand side of data markets and on how people should be fairly

compensated for their specific data (Lanier, 2013; Acquisti, Taylor, and Wagman, 2016;

Arrieta-Ibarra et al., 2018).

Understanding the value of data in modern economies raises new challenges.

First, in many markets data is traded based on its specific informational content (Berge-

mann and Bonatti, 2019). Yet, standard theories almost exclusively evaluate information

before it realizes. Second, data is often used by firms that act as intermediaries—like

e-commerce marketplaces, search engines, and matching platforms—to strategically di-

rect interactions between agents with conflicting interests. Yet, standard theories mostly

evaluate information for single decision makers. To overcome these challenges, our

approach combines modern information design with classic duality methods. We find
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that the value of data for intermediation problems differs fundamentally from standard

decision problems. This is because, to manage conflicting interests, an intermediary may

tailor the information it conveys to the agents by pooling data records, thus creating

complex externalities between them.1

Consider an example. An online platform mediates the interactions between

a population of buyers and a monopolist, who produces a good at zero marginal

cost. For each buyer, the platform owns a data record, which consists of a list of the

buyer’s personal characteristics (gender, age, etc.). There are different types of records

depending on how much the platform knows about the buyer. For simplicity, suppose

type ωk reveals that her valuation for the seller’s good is k for k ∈ {1,2}. The collection

of buyers’ records forms the platform’s database. Suppose its composition q consists

of 3 million records of type ω1 and 6 million of type ω2. The seller knows only q. For

each interaction, the platform sends a signal about ω to the seller so as to influence the

price he charges.2 Concretely, the platform may divide the buyers into market segments

based on their records and tell the seller to which segment each buyer belongs. Our

main goal is to determine how much value the platform derives from each buyer’s

record. This is immediate if the platform maximizes the seller’s profits (e.g., because

it keeps a share of it). This case is effectively the same as if the platform itself were

the seller and directly set a price for each buyer knowing ω. Since this is akin to a

decision problem, the value of a record is equal to the payoff the platform directly

obtains conditional on ω.

The answer is no longer immediate when we consider other objectives of the

platform. To illustrate, suppose it maximizes the buyers’ surplus (e.g., because it cares

1This practice is widespread in many digital platforms. For example, Google’s “quality score” pools
people’s searches to increase competition among advertisers (see, e.g., Sayedi, Jerath, and Srinivasan,
2014); Uber conceals the riders’ destinations from drivers to increase riders’ welfare; and Airbnb withholds
the host’s profile picture to decrease discrimination.

2This is in the spirit of Bergemann, Brooks, and Morris (2015). Elliott, Galeotti, and Koh (2020) study a
related problem with multiple horizontally differentiated sellers.
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about their loyalty). One way to do this is to assign each buyer whose record is of

type ω2 to either a subprime segment s or to a prime segment s̄, with equal probability;

instead, it assigns all buyers whose record is of type ω1 to s. The seller optimally sets

a price of 1 for segment s and a price of 2 for s̄. The expected payoff that the platform

directly obtains from a record of type ω1 is 0, while it is 1
2 for a record of type ω2. Do

these payoffs reflect the actual value the platform derives from each record? The answer

is no. We will show that the actual values are v∗(ω1) = 1 and v∗(ω2) = 0. That is, the

most valuable records for the platform are those that yield the lowest payoff. To see why,

imagine two buyers, Ann and Bonnie, whose records are of type ω1 and ω2 respectively.

Bonnie’s record yields a positive payoff to the platform only when pooled with Ann’s

record through segment s. In this case, Ann’s record helps to persuade the seller to set a

low price for Bonnie. Hence, Ann’s record should not be worthless, even though Ann’s

interaction with the seller yields zero payoff to the platform. Indeed, v∗(ω1) = 1 reflects

that Ann’s record exerts a positive information externality on Bonnie’s interaction. By

contrast, v∗(ω2) = 0 reflects that we have to discount this externality from Bonnie’s

record.

Our main contribution is to characterize what determines the value of data

records for intermediaries like the platform above. Our analysis delivers v∗(ω) as the

unit value of every type-ω record in the database, leveraging the linear structure of

intermediation problems. At the same time, v∗(ω) also equals the marginal effect on

the platform’s total payoff of adding type-ω records to the database. As the example

showed, v∗(ω) can differ significantly from the payoff the platform directly obtains from

a record because it pools records to tailor the information it conveys to the seller. We

show that v∗(ω) is the sum of the platform’s direct payoff from each type-ω record and

the externalities caused by that record on other records and their interactions.3 We relate

3Importantly, these externalities arise even when data records are statistically independent. As such,
they differ fundamentally from “learning” externalities highlighted by the literature (see below), which
depend on the correlation between records.
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these externalities to how the platform exploits the seller’s incentives across interactions.

We explain when these externalities are positive and negative. For instance, in price-

discrimination settings—which generalize our example—they satisfy a single-crossing

property as long as the platform cares more about the buyers’ surplus than the seller’s

profit: The externality is positive for buyers whose valuation for the seller’s product

is low and negative for those whose valuation is high. This means that ignoring such

externalities could lead to overcompensating the latter for their data at the expense of

the former.

This characterization of the value of data records is a necessary step to study

an intermediary’s willingness to pay for more data. In our context, acquiring more

data can have two meanings. In our example, (i) the platform can obtain more records

for its database and, hence, gain the ability to mediate more interactions between

the corresponding buyers and the seller (e.g., because new buyers join it); or (ii) our

platform can obtain better records by observing more informative characteristics about

existing buyers (e.g., because they become more active online).4

With regard to obtaining more records, a key insight is that the platform’s pref-

erence over databases is pinned down by v∗ as a function of their composition q. In

particular, v∗ determines the platform’s willingness to pay for more records and the

substitutability between types of records. We find that this willingness to pay is stepwise

diminishing. Moreover, record types are imperfect substitutes (or even complements) if

and only if the platform withholds some information from the seller. These properties

establish a “scarcity principle” for data: In any intermediation problem, scarcer types of

records are more valuable both in absolute and in relative terms. They also enable us to

infer how the platform uses its data from observable features of its demand function,

4The distinction between more and better records is consistent with that between marketing lists and
data appends, the two main products traded in the data brokerage industry (Federal Trade Commission,
2014). The former allows companies to identify new customers who have specific characteristics. The
latter allows companies to learn new characteristics about existing customers.
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which can be derived using standard maximization subject to a budget constraint.

The platform’s preference over databases is also useful to study its willingness to

pay for better records. This is because obtaining more information about existing buyers

changes their records’ type and hence the database composition q. Imagine the platform

refines the record of a buyer, called Cindy, by observing new characteristics about her.

We show that such refinements have a positive direct effect: Cindy’s record becomes

more valuable in expectation. Because they change q, refinements also have indirect

effects: Unrefined records can become more or less valuable. These effects are due to

the aforementioned externalities and exist even if Cindy’s new characteristics provide

no information about other buyers (i.e., refinements are independent). We find that,

despite their negative effects on the value of some records, independent refinements

always benefit the platform overall, which therefore has a positive willingness to pay for

them. This benefit is decreasing in the extensive margin—namely, how many records of

a given type are refined. The benefit becomes zero under a precise condition, even if the

platform would act on the new information it gets and use the refined and unrefined

records differently. This is in sharp contrast with decision problems, where getting

information is strictly beneficial if and only if it changes optimal behavior. Another

difference is that the platform’s willingness to pay can be negative for refinements that

are correlated between records.

Our analysis applies to any setting where an intermediary (principal) mediates

interactions between multiple agents by providing them with information or by affecting

incentives with its actions. We can also let the agents have some payoff-relevant

data, as long as the intermediary has direct access to everybody’s data.5 We view the

intermediary as using each interaction’s data as an input to produce information or

choose its actions. Once we see intermediation problems through this lens, it becomes

5In a related project, we analyze the case where the intermediary has to first elicit the data from its
sources.
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natural to use linear-programming duality to characterize the value v∗ of the data inputs,

adapting the classic work of Dorfman, Samuelson, and Solow (1987) and Gale (1989).

This paper contributes to improving our understanding of the demand side of

data markets. We believe that its insights are useful to informing empirical strategies

for estimating the demand for data or to inferring from market observables how data

is used. Progress in this area is essential for studying the welfare effects of critical

policy interventions, such as new antitrust or privacy regulations.6 Finally, a better

understanding of the value of people’s data may help improve on the status quo where

they receive no compensation for it (Lanier, 2013; Arrieta-Ibarra et al., 2018; Jones and

Tonetti, 2020).

Related Literature

This paper contributes to the burgeoning literature on data markets, compre-

hensively reviewed by Bergemann and Bonatti (2019) and Bergemann and Ottaviani

(2021).

One of its strands studies the optimal “use” of a database. This often involves

a single party—such as a platform or data broker—who owns a database and designs

information products for some agents—such as sellers, advertisers, or decision makers—

to either charge a price or influence their behavior (or both). In Admati and Pfleiderer

(1986) and Admati and Pfleiderer (1990), a platform sells signals (i.e., Blackwell experi-

ments) about an asset to market traders. In Bergemann and Bonatti (2015), a platform

sells segments of buyers to advertisers and charges a linear price based on the segment

size. In Bergemann, Bonatti, and Smolin (2018), a platform designs menus of signals

to screen information buyers with heterogeneous priors. Yang (2020) studies a related

problem in considerably richer settings. Our platform also owns a database and uses

it to design information. However, our focus is not on the information products and
6See, e.g., Stigler Report (2019); Crémer, de Montjoye, and Schweitzer (2019); Goldberg, Johnson, and

Shriver (2021).
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their prices but on the value of their data inputs in the “upstream” market. These data

records have two key features: Each record gives access to a buyer, on top of information

about her, and each record can be valued ex post based on its specific content.

Another strand of the literature on data markets studies how to incentivize

consumers to disclose their data. Choi, Jeon, and B.-C. Kim (2019), Acemoglu et al.

(2021), and Ichihashi (2021) study the “learning” externalities that one consumer’s

disclosure has on others when their data is correlated. Bergemann and Morris (2019)

examine how this correlation affects consumers’ incentives to participate in data markets

and other market observables. These papers differ from ours in two ways. First, our

platform is assumed to already have the database.7 This offers a useful benchmark to

study the effects of privacy regulations. Second, we isolate a new data externality, which

stems from the platform’s pooling records to withhold information from the sellers and

arises even if consumers’ records are statistically independent.

Our work is related to the literature on data privacy, reviewed by Acquisti, Tay-

lor, and Wagman (2016). Calzolari and Pavan (2006) analyze information externalities

between sequential interactions. Nageeb, Lewis, and Vasserman (2022) examine when

giving consumers control over their data can help them benefit from personalized pric-

ing. Ichihashi (2020) finds that a multi-product platform can prefer not to use consumers’

data for personalized pricing and maximizes profits via product recommendations.

Our methods build on the information-design literature, reviewed by Bergemann

and Morris (2019). We formulate our “data-use” problem as a linear program, using

standard arguments (Bergemann and Morris, 2016), and then consider its dual to obtain

our “data-value” problem. Others have used duality to study information design

(Kolotilin, 2018; Galperti and Perego, 2018; Dworczak and Martini, 2019; Dworczak

and Kolotilin, 2019; Dizdar and Kováč, 2020). These papers exploit the dual to solve

7This may seem far-fetched but most data-brokers’ transactions happen without the consumer’s
knowledge (Federal Trade Commission, 2014).
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the primal design problem. We use the dual to address a distinct economic question of

independent interest—what is the value of data? Unlike those papers, we also study

problems with multiple agents through the notion of Bayes-correlated equilibrium. This

links our work to an earlier literature on dual analysis of correlated equilibria (Nau and

McCardle, 1990; Nau, 1992; Myerson, 1997). Finally, the mechanism-design literature

has used duality methods at least since Myerson (1983; 1984), as well as more recently to

study informationally robust mechanisms (e.g., Du, 2018; Brooks and Du, 2020; Brooks

and Du, 2021).

2.2 Model

For ease of exposition, we present the model and analysis in a context similar

to our example in the Introduction: An e-commerce platform mediates interactions

between buyers and sellers. Our approach and results apply much more broadly to

settings where a principal influences the behavior of multiple strategic agents with

information, its actions, or both. Section 2.5 discusses this and other aspects of the

model.

Let i = 0 denote the platform, which is the principal. Let I = {1, . . . ,n} be a

set of sellers, who are the strategic agents. Let Ai be the finite set of seller i’s actions.

We can interpret ai as the price, quality, or other features of seller i’s product. The

platform is used by a continuum of buyers, each interested in buying a product from

the sellers. Each buyer’s preference over the sellers’ products is pinned down by a

random variable θ, which is independently and identically distributed across buyers

over a finite set Θ. We use the pronoun ‘it’ for the platform, ‘he’ for each seller, and ‘she’

for each buyer.

The platform has access to some data about each buyer. We think of this data as a

record of personal characteristics that is informative about her θ—perhaps only partially.
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We assume that each buyer’s record is uninformative about the other buyers’ θ.8 There

are different types of records—denoted by ω in some finite set Ω—depending on what

the platform knows about the buyer. Thus, the content of each buyer’s record is

analogous to the realization of an exogenous signal about her underlying preference.

Only the platform observes ω, which gives it an informational advantage over the

sellers. Let q ∈ RΩ
+ denote the collection of buyers’ records, where q(ω) are of type ω.

We refer to q as the platform’s database.

For each interaction between a buyer and the sellers, we leave her purchase

decision given their actions and θ implicit and embed it in the payoff functions of the

sellers and the platform. For every ω and a = (a1 . . . , an), let ui(a,ω) be i’s expected

payoff conditional on the buyer’s record. Let Γω = {I, (Ai,ui(·,ω))n
i=0}, which defines a

complete-information game between the sellers. We may also refer to Γω as a buyer-

sellers interaction of type ω. The primitives Γ = {Γω}ω∈Ω and q are common knowledge.

The platform mediates each interaction by privately conveying information about

its type to each seller so as to influence their actions. The sellers combine this information

with Γ and q to form beliefs and act. Our platform has full commitment power, similar

to the omniscient information designer in Bergemann and Morris (2019). Formally,

it publicly commits to an information structure that, for each interaction, produces a

private signal about ω for each seller i. As is standard (Myerson, 1983; Myerson, 1984;

Bergemann and Morris, 2016), we can focus on information structures in the form of

recommendation mechanisms, where the platform privately recommends an action

to each seller that he must find optimal to follow (obedience). A mechanism is then a

function x : Ω → ∆(A), where x(a|ω) can be interpreted as the share of interactions of

8We make this assumption to emphasize the novel aspects of our results. Our model can accommodate
correlation among records (see Section 2.5.1).
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type ω that lead to recommendation profile a.9 Formally, the problem is

Uq : max
x ∑

ω∈Ω,a∈A
u0(a,ω)x(a|ω)q(ω)

s.t. for all i ∈ I and ai, a′i ∈ Ai,

∑
ω∈Ω,a−i∈A−i

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
x(ai, a−i|ω)q(ω) ≥ 0. (2.1)

Constraint (2.1) is equivalent to requiring that ai maximize seller i’s expected utility

conditional on the information conveyed by ai given x and the database q. Denoting

any optimal mechanism by x∗q , we define the direct payoff generated by each record of

type ω as

u∗
q(ω) =

∆ ∑
a∈A

u0(a,ω)x∗q(a|ω),

and the total payoff generated by the database as

U∗(q) =∆ ∑
ω∈Ω

u∗
q(ω)q(ω). (2.2)

We assume that Uq satisfies a minor regularity property, which holds generically in the

space of sellers’ payoff functions: No more than |A × Ω| of the constraints (2.1) are ever

active at the same time (see Remark A.2.1 in Appendix A.2).

2.3 The Unit Value of Data

This section addresses our main question: How much value does the platform

derive from each buyer’s record and what are its properties? To get a sense of why

the answer is nontrivial, it is useful to compare our problem Uq with standard decision

problems. We can interpret Uq as a collection of decisions: For each buyer-sellers

interaction, the platform uses its record to decide what to disclose about the buyer so as

9Note that restricting x(·|ω) to be the same between records of the same type ω is without loss of
generality.
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to influence the sellers’ actions (i.e., x(·|ω) for every ω).

To establish our benchmark, imagine that all parties have aligned interests: ui is

an affine transformation of u0 for all i = 1, . . . ,n. Then, constraints (2.1) can be omitted

and it is as if the platform directly controlled the sellers’ actions. In this case, all the

decisions in Uq are independent of one another. Indeed, Uq is separable across records:

For each of them, the platform effectively faces a standard decision problem in which it

chooses a to maximize u0(a,ω) guided by the information in the record. For this reason,

we will slightly abuse terminology and refer to our model with aligned interests as a

standard-decision problem.

In this paper, however, we are mainly interested in instances of Uq where parties

have conflicting interests, to which we will refer as intermediation problems. In this case,

the platform can only influence the sellers’ actions indirectly, subject to constraints (2.1).

While it continues to face the collection of decisions in Uq, these are no longer indepen-

dent. That is, Uq is no longer separable across records because what information a signal

conveys about one record depends on which other records lead to the same signal.10

Consequently, while the value of each record continues to be determined by how it

is used to guide decisions—like in standard-decision problems—this use is not con-

fined to the interaction physically attached to that record—unlike in standard-decision

problems. Thus, to answer our question, we need to systematically keep track of all

the ways the platform uses each record to mediate all interactions and the resulting

interdependencies.

This contrast between intermediation and standard-decision problems will be

helpful to better understand our results and relate them to the classic work on the

comparison of experiments under the decision-theoretic framework of Blackwell (1951,

1953) (see also Laffont, 1989). We will return to this point in Section 2.5.

10This dependence between signal decisions is orthogonal to our commitment assumption. It would
arise even if our platform could not commit and we had to rely on some equilibrium notion.
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2.3.1 The Data-Value Problem

Our approach builds on the observation that any information-design problem is

a linear program. A standard economic interpretation is that linear programs describe

the problem of optimally using some scarce inputs to produce some output (Dorfman,

Samuelson, and Solow, 1987, p. 39). We think of information design as a “data-use”

problem, where the inputs are the records in the database and the output is the informa-

tion conveyed by each mechanism in the form of recommendations. Following Dorfman,

Samuelson, and Solow (1987), we then exploit the dual of this data-use problem to

evaluate each record.

We call this evaluation task the data-value problem. Let λ = (λ1, . . . ,λn) where

λi : Ai × Ai → R+ for all i ∈ I. For each i and (a,ω) define

ti(a,ω) =
∆ ∑

a′i∈Ai

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
λi(a′i|ai), (2.3)

and t(a,ω) =
∆

∑i∈I ti(a,ω). The data-value problem is

Vq : min
v,λ

∑
ω∈Ω

v(ω)q(ω)

s.t. for all ω ∈ Ω,

v(ω) = max
a∈A

{
u0(a,ω) + t(a,ω)

}
. (2.4)

We denote any optimal solution by (v∗q ,λ∗
q) and the induced functions t by t∗q . By

standard linear-programming arguments v∗q is unique generically with respect to q.

Note that v∗q can depend on q for intermediation problems but not for standard-decision

problems, as in this case v∗q(ω) = maxa∈A u0(a,ω) for all ω.

We refer to equation (2.4) as the value formula, which defines our main object of

interest. The reason hinges on the next relation between the data-use and data-value
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problems and on the following interpretation. All proofs are in the appendix.

Lemma 2.1. For any q, Vq is equivalent to the dual of Uq. Thus, for every x∗q and (v∗q ,λ∗
q)

∑
ω∈Ω

v∗q(ω)q(ω) = U∗(q) =∆ ∑
ω∈Ω

u∗
q(ω)q(ω). (2.5)

This duality relation follows from basic linear-programming results. When

applied to our specific problem, it becomes the key to answering our economic questions.

In Uq, every x defines a joint measure χ ∈ RΩ×A
+ , which must satisfy ∑a∈A χ(a,ω) =

q(ω); that is, the use of type-ω records to produce recommendations must exhaust their

stock q(ω) in the database. Formally, v(ω) is the multiplier of this constraint, which is

usually interpreted as the shadow price of the corresponding input through the thought

experiment of adding a marginal unit of it. In fact, v∗q(ω) is equal to the derivative of

U∗(q) with respect to q(ω), as for any constrained optimization. However, it would be

incorrect to think that v∗q(ω) captures only the value of a marginal record of type ω. The

linear structure of Vq and our value formula demonstrate that v∗q(ω) is the value of each

record of type ω in the database. Note that, by (2.4), v∗q(ω) is measured in terms of the

payoffs of the platform and the sellers. We will then call v∗q(ω) the unit value of a record

of type ω (see also Gale, 1989, p. 12). Note that Vq assigns such values simultaneously

to all records and does not require finding x∗q .

The rest of the paper characterizes the properties of v∗q and their economic

implications. Here, we begin with a useful lower bound. For ω ∈ Ω, let CE(Γω) be the

set of correlated equilibria of the game Γω.

Lemma 2.2 (Lower Bound). For every q,

v∗q(ω) ≥ ū(ω) =
∆ max

y∈CE(Γω)
∑

a∈A
u0(a,ω)y(a), ω ∈ Ω.

Lemma 2.1 and 2.2 imply that v∗q(ω) = ū(ω) for all ω if and only if there is
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an optimal x∗q that satisfies x∗q(·|ω) ∈ CE(Γω) for all ω. In words, for such an x∗q the

platform fully discloses the buyer’s record to the sellers for all interactions.

Unit Values and Individual Compensations

By quantifying how much a record contributes to the total payoff U∗(q), v∗q offers

a benchmark for individually compensating each buyer as the “owner” of her record.

In Vq, we can view the platform as choosing v to minimize the total expenditure to

compensate the buyers. However, the platform is constrained by equation (2.4), which

imposes a lower bound for each buyer’s compensation that takes into account how

her record is used.11 Paraphrasing Dorfman, Samuelson, and Solow (1987), p. 43, this

interpretation is reminiscent of the operation of a competitive market where competition

forces the platform to offer the “owner” of a record the full value to which her input

gives rise, while competition among these “owners” drives down this value to the

minimum consistent with this limitation. Gale (1989), Chapter 3.5, also shows how

dual problems can deliver competitive prices of scarce inputs. In general, how much

individuals will actually receive for their data can depend on the market structure, their

bargaining power, and the need to incentivize them to disclose their data truthfully.

Nonetheless, to see the importance of guiding the compensation of data owners

using v∗q and not u∗
q , consider again our introduction example of a surplus-maximizing

platform. Suppose it decides—perhaps forced by some regulation or court order—to

compensate the buyers for their contribution to U∗(q) by giving back some share δ to

them. How δ is chosen and the compensations implemented is important in practice

but irrelevant for the point we want to make here. The more fundamental question is

how much each buyer should get. It seems that the answer should take into account

each buyer’s specific record. One could use u∗
q , which would result in incorrectly

allocating δU∗(q) only to the buyers with ω = ω2 (each receiving δu∗
q(ω2) = δ0.5)

11In fact, by complementary slackness v∗q(ω) = u0(a,ω) + t∗q(a,ω) if x∗q (a|ω) > 0. We provide another
independent economic interpretation of the data-value problem in Appendix A.2.
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because u∗
q(ω1) = 0. In fact, only the buyers with ω = ω1 contribute to U∗(q) because

v∗q(ω2) = 0. Thus, δU∗(q) should be allocated entirely to these buyers (each receiving

δv∗q(ω1) = δ).

2.3.2 Value Decomposition and Data Externalities

What determines the unit value of a record? Why and how are the direct pay-

offs u∗
q a biased measure of these values? We show next that the value of a record can

be decomposed into two parts: its direct payoff and an additional component, which

captures that record’s effects on the information the platform discloses about other

records and thus on their direct payoffs.

Proposition 2.1. For all ω, v∗q(ω) = u∗
q(ω) + t∗q(ω) where

t∗q(ω) =
∆ ∑

a∈A
t∗q(a,ω)x∗q(a|ω)

a.e.
= ∑

ω′∈Ω

∂u∗
q(ω

′)

∂q(ω)
q(ω′). (2.6)

This result highlights that the effects captured by t∗q(ω) are akin to an externality.

Consider a buyer called Ann. Simply by belonging to the database, her record affects

how the platform mediates the interactions that other buyers have with the sellers.

Formally, t∗q(ω) summarizes the marginal effect that Ann’s record has on the direct

payoff of other records (equation (2.6)). This externality is purely informational: Ann’s

record contributes to the information advantage that the platform has for all interactions

it mediates and hence affects its decisions with other records through x∗q . In fact,

∂
∂q(ω)

u∗
q(ω

′) = ∑a u0(a,ω′) ∂
∂q(ω)

x∗q(a|ω′). Adjustments in x∗q can arise because changing

q(ω) can render x∗q no longer feasible (i.e., obedient) or optimal.

This externality is a hallmark of intermediation problems. It arises when an

intermediary tailors the information for the agents by pooling data records so as to

manage conflicts of interest. Indeed, the externality is absent in standard-decision
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problems, where it is optimal to fully disclose the type of each record.12 It is worth

emphasizing that this externality arises even if records are statistically independent.

As such, it is distinct and complementary to the “learning” externalities discussed in

Section 2.1, which arise because a buyer’s record is informative about another buyer’s

preferences. This channel is intentionally switched off in our paper, which emphasizes

externalities that arise endogenously from how data is used.

Which records generate positive and which records generate negative externali-

ties?

Corollary 2.1. t∗q(ω) < 0 for some ω if and only if t∗q(ω′) > 0 for some ω′. Moreover,

t∗q(ω) < 0 implies u∗
q(ω) > ū(ω), while u∗

q(ω) < ū(ω) implies t∗q(ω) > 0.13

The externalities lead to cross-subsidization of value from records with t∗q(ω)< 0

to records with t∗q(ω′) > 0. Since the total payoff is fixed, records with v∗q(ω′) > u∗
q(ω

′)

must take their extra value from some other records. The second part of the corollary

explains this cross-subsidization. Records with t∗q(ω) < 0 generate a direct payoff

that exceeds the full-disclosure payoff ū(ω), which requires that u0(a,ω) > ū(ω) and

x∗q(a|ω) > 0 for some a. That is, the platform earns a payoff with type-ω records that

would never be possible by fully disclosing them, so it relies on pooling them with

records of a different type. In this case, type-ω records do not “deserve” the full u∗
q(ω)

and their value discounts the help received from other records. Conversely, this help

from type-ω′ records justifies why t∗q(ω′) > 0 and their value exceeds u∗
q(ω

′). Finally,

we can interpret u∗
q(ω) < ū(ω) as “sacrificing” type-ω records, as the platform could

fully disclose them and get ū(ω). For this sacrifice to be worthwhile, such records must

receive compensation, explaining t∗q(ω) > 0. This last part offers a simple sufficient

12Whenever full disclosure is optimal, u∗
q(ω) = ū(ω) and v∗q(ω) = ū(ω) as discussed after Lemma 2.2,

so t∗q(ω) = 0. Note that the converse is not true: There are examples where t∗q(ω) = 0, but v∗q(ω) > ū(ω)
for all ω.

13The corollary follows because Lemma 2.1 implies ∑ω∈Ω t∗q(ω)q(ω) = 0, and Lemma 2.2 and Proposi-
tion 2.1 imply t∗q(ω) ≥ ū(ω)− u∗

q(ω) for all ω.
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condition for t∗q ̸= 0. Appendix A.2 provides another condition based on primitives.

Proposition 2.1 also highlights that the externalities through u∗
q are tightly related

to how the platform exploits the sellers’ incentives with its information. By the first part

of (2.6), t∗q(ω) aggregates externalities that type-ω records generate by inducing specific

actions a. These are inversely related to the platform’s resulting payoff, in the following

sense.

Corollary 2.2. Suppose x∗q(a|ω) > 0 and x∗q(a′|ω) > 0. Then, u0(a,ω) > u0(a′,ω) if and

only if t∗q(a,ω) < t∗q(a′,ω).14

Thus, inducing actions whose payoff exceeds ū by more, for instance, requires

paying larger externalities to other records. Since t∗q(a,ω) =
∆

∑i∈I t∗q,i(a,ω), we can

view t∗q,i(a,ω) as how much seller i contributes to the externality. Recall that t∗q,i(a,ω)

differs from zero only if λ∗
q,i(a′i|ai) > 0 for some a′i (see (2.3)). By standard arguments

(complementary slackness), λ∗
q,i(a′i|ai) > 0 only if

∑
ω,a−i

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
x∗q(ai, a−i|ω)q(ω) = 0; (2.7)

the converse also holds generically in q. In words, λ∗
q,i(a′i|ai) > 0 if and only if seller i is

indifferent between ai and a′i conditional on receiving recommendation ai from x∗q .

Corollary 2.3. The sellers who contribute to the externality t∗q(ω) are only those whom x∗q

renders indifferent with the actions it recommends using records of type ω (i.e., (2.7) holds).

Thus, we can also interpret t∗q(ω) as aggregating the “cost of incentives” for

the actions that the platform recommends using type-ω records. This cost is positive

for seller i if recommending a with type-ω records hinders satisfying (2.7) because

ui(ai, a−i,ω) < ui(a′i, a−i,ω), which then lowers t∗q(a,ω) and hence v∗q(ω). The oppo-

site happens if recommending a with type-ω records helps satisfying (2.7) because

14This follows from complementary slackness, namely v∗q(ω) = u0(a,ω) + t∗q(a,ω) if x∗q (a|ω) > 0.
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ui(ai, a−i,ω) > ui(a′i, a−i,ω). Appendix A.2 elaborates on this interpretation and how

the platform exploits the sellers to determine their contribution to the externalities. Note

that Corollary 2.3 differs from the immediate fact that optimal solutions of linear pro-

grams occur on the boundary of the feasible set, which here means that some obedience

constraint must bind. Also, as q varies, x∗q and hence t∗q may change. However, as long

as λ∗
q does not change, how each seller contributes to t∗q(ω) does not change.

2.3.3 Application (Part I): Price Discrimination and the Externalities

To illustrate the importance of these data externalities, we consider a more

general version of our example in the Introduction. There is only one seller (n = 1)

who chooses the price a1 for his product. For each buyer, θ is her valuation for the

product. Let Ω = {ω1, . . . ,ωK} ⊂ R+, K ≥ 2, and ωk be strictly increasing in k. Records

of type ωk fully reveal that θ = ωk. Normalizing the seller’s constant marginal cost to

zero, his profit is a1 if ω ≥ a1 and zero otherwise: u1(a1,ω) = a1I{ω ≥ a1}. The platform

maximizes a weighted sum of profits and consumer surplus: u0(a1,ω) = πa1I{ω ≥

a1}+ (1 − π)max{ω − a1,0}, where π ∈ [0,1]. Finally, let aq be the optimal uniform

monopoly price.

Proposition 2.2. For π ≤ 1
2 ,

v∗q(ω) =


(1 − π)ω if ω < aq

πaq + (1 − π)(ω − aq) if ω ≥ aq;

moreover, t∗q(ω)> 0 for ω < aq and t∗q(ω)≤ 0 for ω ≥ aq. For π ≥ 1
2 , v∗q(ω) = u∗

q(ω) = πω

for all ω.

To understand this result, we note that x∗q takes only two forms depending on

π (see Appendix A.2). If π ≤ 1
2 , the platform maximizes the buyers’ surplus subject to
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holding the seller’s expected profit at aq, as when π = 0. Thus, it is as if trade happens

for every interaction, generating total surplus equal to ω, and only the buyers with

a product valuation of at least aq contribute to guaranteeing this profit. If π ≥ 1
2 , the

platform fully discloses all records. This allows perfect price discrimination, so profits

always equal the buyer’s valuation and her surplus is zero.

Whenever the platform cares more about the buyers’ surplus than the seller’s

profits, the direct payoff u∗
q provides a biased account of the value of each record. This

bias has a specific structure: t∗q satisfies a single-crossing property in ω and this holds

generally across q. That is, u∗
q is biased downward for low-valuation buyers (i.e., ω < aq)

and upward for high-valuation buyers (i.e., ω ≥ aq). Thus, ignoring the externalities

we highlight may lead to overcompensating high-valuation buyers for their data at the

expense of low-valuation buyers.

How does caring more about the buyers’ surplus affect the value of their records?

By simple algebra, lowering π ≤ 1
2 decreases v∗q(ω) if and only if the buyer has an

intermediate valuation (aq ≤ ω < 2aq). Intuitively, for such records a larger share of

the buyers’ product valuation goes to fund the seller’s guaranteed profits of aq, which

becomes more costly as their surplus becomes more important to the platform. By

contrast, the records of buyers with low valuation help the platform achieve a positive

surplus with other buyers, and the records of buyers with high valuation just yield a

large surplus. For π ≥ 1
2 , v∗q(ω) increases in π independently of ω. This is because the

platform helps the seller extract the full surplus from each interaction, and it cares more

about doing so.

2.4 Willingness to Pay for Data

What is the platform’s willingness to pay for “having more data”? This colloquial

expression can have two meanings. The first—analyzed in Section 2.4.1—is that the
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platform obtains more records in the database and, hence, it mediates more interactions

between the buyers and sellers. The second—analyzed in Section 2.4.3—is that the plat-

form obtains better records; namely, it observes more informative characteristics about

existing buyers. In either case, having more data ultimately changes the database q,

which is the basis for the sellers’ beliefs. Hereafter, we assume that how the platform

changes q is publicly observed and hence q is always commonly known.15 Building

on Section 2.3, we can then study the platform’s willingness to pay for more data by

analyzing how the records’ values v∗q depend on q. Alternatively, we can interpret

the the following analysis as comparative static exercises that show how the values of

records vary between platforms which differ only in their databases.

2.4.1 More Records: Preferences Over Databases

Analyzing the platform’s willingness to pay for more records can shed light

on the properties of the demand for data records. For example, are demand curves

downward sloping? Are data records complements or substitutes and, if so, why? We

can view the platform as a “consumer” of records, whose utility function is U∗. The

platform’s preferences over databases are then fully characterized by v∗q . Indeed, v∗q(ω)

is akin to the marginal utility of type-ω records at q, which determines the platform’s

willingness to pay. We can also measure the substitutability between records of type ω

and ω′ at q by computing their marginal rate of substitution as usual, which satisfies

MRSq(ω,ω′)
a.e.
= − v∗q (ω)

v∗q (ω′) .

A classic property in standard consumer theory is that marginal utilities are

diminishing. Does the same hold for the platform? More generally, how does v∗q vary

with q? We show that as records of a given type become more abundant, they become

less valuable and do so stepwise. This follows from the next two results. The first

15Of course, in reality the platform may change its database privately without the sellers’ knowing
exactly how. Allowing for this introduces complications and requires enriching the model accordingly.
We leave this for future research.
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establishes a general “scarcity principle” for data. Given q, define the share of type-ω

records by

µq(ω) =
∆ q(ω)

∑ω′ q(ω′)
, ω ∈ Ω.

Proposition 2.3 (Scarcity Principle). Consider databases q and q′. Fix ω. If µq(ω)< µq′(ω),

then v∗q(ω) ≥ v∗q′(ω). Moreover, there exists µ̄(ω) < 1 such that, if µq(ω) > µ̄(ω), then

v∗q(ω) = ū(ω).

This property holds generally, irrespective of the details of the intermediation

problem. It implies that v∗q(ω) is weakly decreasing in q(ω). Hence, holding fixed

the quantity of all other types of records, the platform’s demand for type-ω records is

downward sloping and converges to ū(ω) when q(ω) is sufficiently large. Equivalently,

the individual contribution of type-ω records to the platform’s payoff—hence, their

owners’ benchmark compensation—decreases as their quantity increases.

This decline in value is stepwise because v∗q is locally constant in q.

Proposition 2.4 (Stability). There exists a finite collection {Q1, . . . , QM} of open, convex, and

disjoint subsets of RΩ
+ such that ∪mQm has full measure and, for every m, v∗q is unique and

constant for q ∈ Qm.

Each Qm is the interior of a cone in the space of databases RΩ
+.16 Importantly, v∗q is

constant even though the platform may adjust how it uses its data when q changes. We

can show that within each cone, while v∗q(ω) is constant, the optimal x∗q(ω) changes as

a function of q (see Remark A.2.1 in Appendix A.2). Intuitively, this is because x∗q has to

be fine-tuned to maximally exploit the sellers’ incentives. By contrast, v∗q depends only

on which sellers’ incentives are exploited, but not on how much (recall equation (2.3)

and Corollary 2.3).

16It is easy to see that unit values are constant along the rays in the space of databases: If q′ = αq for
α > 0, then v∗q = v∗q′ . This is because only the frequency of record types matters for the sellers’ incentives.
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Returning to the platform’s marginal rate of substitution between records, is it

diminishing as in standard consumer theory? The answer is yes, at least weakly: The

platform’s preferences are always convex, because U∗(q) is always a concave function

of q.17 However, in some cases records are perfect substitutes, namely MRSq(ω,ω′)

is constant. An example is when the platform faces a standard-decision problem,

since then v∗q(ω) = ū(ω) for all ω. The next result characterizes which intermediation

problems also lead to perfect substitutability between all records (i.e., MRSq(ω,ω′) does

not depend on q for all ω, ω′).

Proposition 2.5. All records are perfect substitutes if and only if there is some database q ∈RΩ
++

at which it is optimal for the platform to fully disclose every record. In this case, full disclosure

is optimal for all q ∈ RΩ
+.

This result has several implications. First, suppose we can estimate the platform’s

demand functions by observing its transactions in the data market. Then, by detecting

any imperfect substituatbility between record types, we can infer that the platform is

withholding information from the sellers. We can do so even if we know nothing about

the intermediation problem it faces (i.e., Γ). Indeed, by Proposition 2.5 some types

of records are imperfect substitutes if and only if it is never optimal to fully disclose

all records. More generally, the intermediary’s transactions in a data market reveal

properties of how it uses its database, which may be harder to observe.

Another implication is that the optimality of withholding some information

does not depend on the database composition. This simplifies assessing whether an

intermediary will withhold information based on the primitives of a specific application

(i.e., Γ). One way is to start from full disclosure and show that for some q ∈ RΩ
++ we

can do strictly better by sometimes concealing any type of records. Since the answer

17Concavity follows because, by (2.5), we can view U∗ as the result of minimizing a family of functions
that are linear in q (Rockafellar, 1970, Theorem 5.5). It is related directly to the concavification results in
Mathevet, Perego, and Taneva (2020) and indirectly to the individual-sufficiency results in Bergemann
and Morris (2016a).
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does not depend on q, we can pick it in any convenient way (e.g., uniform quantities).

Alternatively, we can identify conditions for the optimality of withholding information

directly in terms of Γ. Appendix A.2 provides such a condition.

Last but not least, convexity of the platform’s preferences leads to standard

demand analysis. In particular, choosing an optimal database subject to a budget

constraint is a well-behaved problem. Given market price p(ω) > 0 for every ω, the

optimal q is characterized by a generalized version of the usual tangency condition that

deals with kinks in indifference curves:

max
v∈v∗q

v(ω)

v(ω′)
≥ p(ω)

p(ω′)
≥ min

v∈v∗q

v(ω)

v(ω′)
, ω,ω′ ∈ Ω.18

It is easy to see that if withholding information is optimal (i.e., v∗q ̸= ū for some q),

then there is an open set of prices for which the platform chooses a nontrivial database

containing multiple types of records. More generally, we can use v∗q to characterize the

platform’s demand functions for records, thus enabling a general study of the demand

side of data markets. These functions satisfy some simple properties that may be useful

for empirical analysis: Since U∗(q) is homothetic, data records are normal goods and

the optimal database composition depends only on price ratios, not on the platform’s

budget. Which prices will prevail in the market is of course determined by the interplay

of demand and supply. Under perfect competition, Dorfman, Samuelson, and Solow

(1987) and Gale (1989) provide arguments for equilibrium prices to equal v∗q .

2.4.2 Application (Part II): Demand Curve and Substitutability

Returning to the setting of Section 2.3.3, recall that the platform maximizes a

weighted sum of the buyers’ surplus and the profits of a single price-setting seller,

18We slightly abuse notation by letting v∗q stand for the set of optimal solutions at q. This condition is
equivalent to p ∈ ∂U∗(q), where ∂U∗(q) is the superdifferential of U∗ at q. Note that in the special case
with a unitary budget and p(ω) = 1 for all ω, choosing q is isomorphic to choosing an optimal prior in
∆(Ω).
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where the latter receives weight π ∈ [0,1].

We first show an example of a downward-sloping demand curve. Figure 2.1(a)

shows the value of records of type ωK calculated using Proposition 2.2. This value is

stepwise diminishing as these records become more abundant (Propositions 2.4 and 2.3).

The figure also shows that as q(ωK) becomes sufficiently large, v∗q(ωK) reaches a lower

bound, which in this case is 0.

q(ωK)

v∗q(ωK)

97531

1

2

3

4

5

(a) Example of a demand curve: π = 0, K =
10, θk = k (∀k), q(ωk) = 1 (∀k < K).

q(ω1)

q(ω2)

π = 0

π = 1/4

π ≥ 1/2

(b) Example of indifference curves becom-
ing less convex: K = 2, θk = k (∀k)

Figure 2.1. Platform’s demand and indifference curves.

Next, we explore how the substitutability between records depends on π. When

π ≥ 1
2 , all types of records are perfect substitutes and MRSq(ω,ω′) = − ω

ω′ for all q,

which is thus constant in π. When π < 1
2 instead, records become more substitutable as

the platform cares less about the buyers’ surplus (i.e., π increases). Recall that aq is the

seller’s optimal price if he knows only the database composition q.

Corollary 2.4. Fix q and increase π < 1
2 . If ω,ω′ < aq, MRSq(ω,ω′) is constant at − ω

ω′ . If

ω < aq ≤ ω′, MRSq(ω,ω′) increases monotonically toward − ω
ω′ from below. If ω′ > ω ≥ aq,

MRSq(ω,ω′) decreases monotonically toward − ω
ω′ from above.

In words, as π increases toward 1
2 , for record types on the opposite side of aq the

platform’s indifference curves rotate counterclockwise in the direction of perfect substi-
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tutability. For records on the same side of aq, its indifference curves rotate clockwise in

the direction of perfect substitutes. Thus, the indifference curves become “less convex”

around the dimension ω = aq. In particular, at π = 0 records of type ω = aq are perfect

complements with every other type. These patterns are illustrated in the right panel of

Figure 2.1, which shows the platform’s indifference curves in the case with two types of

records.

2.4.3 Better Records and Willingness to Pay for Information

A platform can also change its database by refining some of its existing records

with better information. For example, this could involve observing new personal

characteristics about a subset of buyers. Intuitively, refining a record changes its type

according to what the platform learns. How do such refinements change the value

derived from each record? Do they always improve the platform’s total payoff and

consequently command a positive willingness to pay?

We first need to formalize what a refinement is. Recall that every buyer’s record

of type ω ∈ Ω is informative about her θ, so it induces a belief βω ∈ ∆(Θ). A refinement

of a record of type ω is a distribution σω ∈ ∆(Ω) that satisfies the usual Bayes’ con-

sistency condition βω = ∑ω′∈Ω σω(ω′)βω′ . That is, any such refinement is equivalent

to observing an exogenous signal that transforms a record of type ω into a record of

type ω′ with probability σω(ω′). For instance, the original record may contain only

the buyer’s age, while the refined record may also contain her gender. When refining

multiple records of type ω—in particular, a share α ∈ [0,1] of q(ω)—each record is

refined independently according to σω.19 Importantly, implicit in the definition there

is the assumption that Ω is “rich” in the sense that it already contains all record types

that can result from σω. This allows us to use the platform’s preferences over databases

in RΩ
+ characterized by v∗q to assess the consequences of refinement σω.

19We discuss refinements that are correlated among records in Section 2.5.1.
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Consider refining a share α of type-ω records according to σω. How does this

change the unit value that the platform derives from its records? Such a refinement has

both direct and indirect effects, as it affects both the records that are being refined and

those that are not. The root of these interdependencies is the externality discussed in

Section 2.3.2. Refining α of type-ω records changes the original database q into a new one,

denoted by qα, which contains fewer records of type ω and more records of the types ω′

that result from the refinement (i.e., ω′ ∈ supp σω). Thus, the unit value of the former

records may increase and that of the latter decrease by the scarcity principle (Proposition

2.3). Formally, given α ∈ [0,1] and σω, by the Law of Large Numbers qα(ω) = (1− α)q(ω)

and qα(ω′) = q(ω′) + ασω(ω′)q(ω) (where we can interpret α = 0 as refining only one

record since it is infinitesimal and q0 = q). Note that the composition qα of the new

database is certain, even though it is uncertain which records of type ω become of

type ω′. Thus, it suffices that the sellers know that a database q has been refined

according to σω and α for them to know the resulting composition qα.

Corollary 2.5. Fix q. Suppose a share α of type-ω records is refined according to σω.

Direct Effects: The value of refined records increases in expectation. That is, we have

∑ω′∈Ω v∗qα
(ω′)σω(ω′)− v∗q(ω) ≥ 0. This increase shrinks as α gets larger.

Indirect Effects: The value of unrefined records of type ω increases: v∗qα
(ω) ≥ v∗q(ω).

The value of unrefined records of type ω′ ∈ suppσω decreases: v∗qα
(ω′) ≤ v∗q(ω′). Both

these effects are larger as α gets larger.

With regard to the refined records, the expected gain in their value can shrink but

never turn into a loss, even if refining more records lowers the value of the record types

that result from it. Intuitively, for each refined record the platform knows more about

the corresponding interaction, so it can better tailor its signals for the sellers and achieve

more with that record. However, the externalities that contribute to its value may now
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be smaller. The former positive aspect dominates the latter because we are considering

independent refinements. This is no longer true if refinements are correlated between

records (see Section 2.5.1). Finally, note that the direct effects of a refinement depend on

q, so the net value of the information it adds to a record cannot be quantified in absolute

terms (unlike for standard-decision problems).

Corollary 2.5 highlights a novel implication of people’s decisions to disclose

their data. Recall that v∗q is a benchmark for compensating buyers for their specific

record. We can interpret a refinement as a buyer’s decision of whether to disclose

more of her personal characteristics. Imagine a group of similar buyers—that is, whose

records are of the same type—which includes Ann and Bonnie. Ann decides to disclose,

expecting that her record will become more valuable and hence may result in a higher

compensation (direct effect). Bonnie instead decides not to disclose, yet her record

may also become more valuable but for different reasons (indirect effect). Moreover, a

larger group of disclosing buyers decreases Ann’s expected gain in value, but increases

Bonnie’s. The disclosing buyers can also cause the value of, say, Cindy’s record to fall—

hence, lower her compensation—if her record is of one of the types that can result from

the refinement (indirect effect). Importantly, these effects happen even if the platform

does not learn anything new about Bonnie and Cindy from what Ann and the other

buyers disclosed—in contrast to the learning externalities discussed in the literature

(see Section 2.3.2).

Given these mixed effects of refinements on the unit value of all records, it

is unclear whether they benefit the platform overall. In fact, those effects reflect a

fundamental trade-off that refining records can generate in intermediation problems (but

not in standard-decision problems). On the one hand, knowing more about each refined

record allows the platform to better tailor its signals for the sellers and possibly achieve

more in those interactions. On the other hand, changing the database q can change the

sellers’ beliefs about each buyer, which in turn can weaken the platform’s informational
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advantage and hence its ability to influence the sellers’ actions. A mechanism x may be

obedient before the refinement but not after it, which can hurt the platform. Nonetheless,

we obtain the following.

Proposition 2.6. Fix q. Suppose a share α of type-ω records is refined according to σω. The

platform weakly benefits from this refinement: U∗(qα)− U∗(q) ≥ 0. Moreover, the benefit is

zero for all α ∈ [0,1] if (and only if generically in q) there exists a ∈ supp x∗q(·|ω′′) for ω′′ = ω

and all ω′′ ∈ suppσω. Finally, the refinement’s marginal benefit decreases in α.

This implies that the platform’s willingness to pay for a refinement is always

weakly positive, so the positive effects on refined records always dominate the negative

effects on other records. The platform’s willingness to pay can be strictly negative for

refinements that are correlated between records (see Section 2.5.1).

Proposition 2.6 provides a sharp condition for the willingness to pay for refine-

ments to be zero, which depends only on the initial q. Given this q, there must be a

common action profile that the platform induces with positive probability both for

the original record to be refined and for every type that it can turn into when refined.

Intuitively, this means that the platform is exploiting its information advantage to some-

times use the original record as if it was already refined, so refining it does not make it

more valuable. In fact, under this condition all direct and indirect effects in Corollary 2.5

are zero. Importantly, note that the direct effect of refining a record can be zero even

if the platform uses it differently after the refinement (i.e., even if x∗q(·|ω) ̸= x∗q(·|ω′)

and u∗
q(ω) ̸= u∗

q(ω
′) for some ω′ ∈ suppσω). Overall, the platform may be unwilling to

pay a strictly positive price for refining its records, despite acting on the information it

receives (i.e., changing x∗q ). This is different from standard-decision problems, for which

a key insight is that more information is strictly beneficial if it changes the optimal

choices.

Finally, Proposition 2.6 shows that the marginal benefit of a refinement is di-
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minishing in the share of refined records. This may be reminiscent of classic results in

standard decision problems where information has decreasing marginal returns (see,

e.g., Moscarini and Smith, 2002; Varian, 2019). However, there is an important difference.

Our exercise is not to gradually give the platform more information about one fixed

interaction so that it can better learn the buyer’s preferences. Focusing on this intensive

margin is perhaps the most typical way of studying returns from information, especially

in standard decision problems (see Bergemann and Ottaviani, 2021, Section 2.5). We

instead fix the amount of information we give the platform for each interaction (i.e., σω)

and vary how many interactions we independently refine in this way (i.e., α). As such,

this extensive-margin exercise has constant returns for standard-decision problems

but not for intermediation problems—again, due to the externalities documented in

Section 2.3.2.20

2.4.4 Application (Part III): Refinements

We illustrate some of these points using the setting of Section 2.3.3 with a single

price-setting seller. Suppose the platform maximizes the buyers’ surplus (π = 0). As

before, ω1 and ω2 are the record types that correspond to buyers whose valuation θ is 1

and 2; instead, ω◦ corresponds to buyers’ whose valuation is believed to be θ = 2 with

probability h > 1
2 and θ = 1 otherwise. Fix any q that satisfies q(ω◦) < q(ω1) < q(ω2)

in which case we have that v∗q(ω1) = 1, v∗q(ω2) = 0, and v∗q(ω◦) = 1 − h. Now, suppose

we refine a share α of type-ω◦ records with a refinement σω◦ such that σω◦(ω2) = h and

σω◦(ω1) = 1 − h. As shown in Table 2.1, the platform changes how it uses the refined

records—compare x∗q(·|ω◦) and x∗q(·|ω2)—as well as the unrefined records of type ω2—

note that x∗q(·|ω2) depends on q. Nonetheless, the “if” condition in Proposition 2.6 holds.

Therefore, for any α ∈ [0,1] the platform’s willingness to pay for the refinement as well

20In fact, given σω the marginal effect of changing α on U∗(qα) equals ∑ω′∈Ω v∗qα
(ω′)σω(ω′)− v∗qα

(ω)
(see the proof of Proposition 2.6 for details).
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as the expected increase in unit value of each refined record are zero: U∗(q) = U∗(qα)

and v∗(ω1)σω◦(ω1) + v∗(ω2)σω◦(ω2) = v∗(ω◦). Both are instead strictly positive if

q(ω1) < q(ω◦) and α > 0 is sufficiently small. See Appendix A.2 for more details.

Table 2.1. Optimal x∗q .

x∗q(a|ω) ω1 ω2 ω = ω◦

a = 1 1 q(ω1)−(2h−1)q(ω◦)
q(ω2)

1

a = 2 0 1 − q(ω1)−(2h−1)q(ω◦)
q(ω2)

0

2.5 Discussion

2.5.1 Correlation between Records and General Refinements

Throughout the paper we assumed that each buyer’s record is uninformative

about other buyers’ preferences (i.e., records are independent). We did so to clarify that

the interdependencies between the values of data records arise not from exogenous

correlation, but endogenously from how the data is used. While this assumption may

seem restrictive, it can be easily relaxed. For a fixed database, each buyer’s record

should already contain all the observations available to the platform that are relevant to

that buyer, which may include variables that refer to other individuals. For example, if

the average income in Ann’s neighborhood is predictive of Ann’s income, then it should

be listed in Ann’s record. Once this assignment is done for each buyer, conditional on

her record any other record adds no information about her θ by construction. We can

then replace our original independence assumption with this conditional independence

assumption, and nothing changes in our analysis for a fixed database.

The possibility that one buyer’s data is informative about other buyers has deeper

implications with regard to refinements. For example, observing Bonnie’s income may

require updating her record as well as the record of her neighbor Ann. This introduces

correlation in how records are updated, so it leads to more general refinements than
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those analyzed in Section 2.4.3. Nonetheless, we can continue to view such refinements

as changing the platform’s database and analyze their consequences using our tools

(i.e., v∗q over RΩ
+). Ultimately, a refinement transforms the type of each affected record

into a new one, so it changes the original q to another q′. This change can exhibit

correlation between records; yet, for each of them the Bayes’ consistency condition

βω = ∑ω′∈Ω σ̂ω(ω′)βω′ must hold, where σ̂ω is the marginal distribution of the type

changes for records of type ω.

Interestingly, correlated refinements can overturn some of the results from Section

2.4.3. For standard-decision problems, they always weakly increase both the records’

unit values and the platform’s total payoff. By contrast, for intermediation problems

there are refinements that decrease the unit value of the refined records as well as the

platform’s total payoff. This is because they change more drastically not only what the

platform knows about the buyers, but also the degree and nature of its information

advantage over the sellers (recall that q is always commonly known).

Table 2.2. Value of records and total payoffs for specific databases (π = 0).

ω1 ω2 ω◦

v∗q 1 0 1 − h U∗(q) = q(ω1) + (1 − h)q(ω◦)

v∗q′ 0 1 − U∗(q′) = q′(ω2)

v∗q′′ 1 0 − U∗(q′′) = q′′(ω1)

We illustrate this possibility with an example. We use again the setting of

Section 2.4.4 and assume that the platform maximizes buyers’ surplus (π = 0). Let the

initial q satisfy q(ω◦) < q(ω1) < q(ω2) and q(ω2) < q(ω1) + (1 − h)q(ω◦). Consider

the following refinement, which is arguably extreme but serves to make our point as

clearly as possible. Suppose the platform learns that all its type-ω◦ records involve

buyers with the same valuation. Thus, if refined, with probability 1 − h they all become

records of type ω1 and with probability h they all become records of type ω2. Thus, this

refinement transforms the original database q into a new one: With probability 1 − h,
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the new database is q′ and satisfies q′(ω1)> q′(ω2)> q′(ω◦) = 0; with probability h, the

new database is q′′ and satisfies q′′(ω2) > q′′(ω1) > q′′(ω◦) = 0. Table 2.2 reports the

value of each record for these databases (see Appendix A.2 for details). We find that the

refinement has a strictly negative effect on both the unit value of the refined records and

the platform’s total payoff. Indeed, note that v∗q(ω◦) > (1 − h)v∗q′(ω1) + hv∗q′′(ω2) = 0

and U∗(q)> U∗(q′)> U∗(q′′) because q′(ω2) = q(ω2) and q′′(ω1) = q(ω1). By contrast,

if the platform maximizes the seller’s profits (π = 1), we have v∗q̂(ω1) = 1, v∗q̂(ω2) = 2,

and v∗q̂(ω
◦) = 2h for all q̂. Thus, the same refinement has a strictly positive effect on

both the unit value of the refined records and the platform’s total payoff. The key is

that a profit-maximizing platform treats each buyer-seller interaction as an independent

decision problem, so it does not care about correlation in how it learns about records.

Instead, a surplus-maximizing platform cares about such correlation, because it can

have profound consequences on its information advantage through the composition of

its database.

2.5.2 Standard-Decision Versus Intermediation Problems

It is instructive to briefly explain how our setting relates to the classic decision-

theoretic framework of Blackwell (1951) and Blackwell (1953) and the ensuing literature

(see, e.g., Laffont, 1989). In a standard decision problem there is an unknown state

of nature θ ∈ Θ that is drawn according to some distribution ψ ∈ ∆(Θ). The decision

maker observes an exogenous signal ω ∈ Ω from a known experiment e : Θ → Ω. Let

ũ0(a,θ) be the ex-post utility of the decision maker from the payoff-relevant action a ∈ A.

Then, conditional on the signal realization ω, the expected payoff of the decision maker

is u0(a,ω) = Eψ,e(ũ0(a,θ)|ω). Last but not least, the decision maker directly chooses a.

Our setting shares this framework’s basic elements. Our intermediary is the

analogue of the decision-maker, but faces a fundamentally different decision. Instead of

directly choosing a, the intermediary has to decide what to disclose about the exogenous
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signal ω so as to influence another agent’s choice of a. The capacity to influence this

choice depends on the intermediary’s information advantage over the agent and is

constrained by the agent’s incentives.

Moreover, our intermediary mediates a collection of such problems whose respec-

tive θ and ω have already realized. While the frequency of problems whose signal is

ω is common knowledge, the agent cannot identify which ones these are. Only the

intermediary can: A data record of type ω allows the intermediary to identify a problem

whose signal realization was ω.21 While mathematically this collection of problems

is the analogue of the usual prior distribution, this “frequentist” approach has two

advantages. First, it is more descriptive: It allows us to think of data records as physical

objects rather than mutually exclusive possibilities. This is important if we want to

think about data records as being traded based on their specific content, as it is often

the case in data markets (Bergemann and Bonatti, 2019). Second, this approach allows

us to ask natural and practical questions—such as the effects of adding more records or

refining existing records—which would be artificial with the standard approach. We

can think of refining an existing record as observing the realization of an experiment,

in line with the tradition following Blackwell. Hence, we can view Proposition 2.6 as

studying the “value of information” in intermediation problems.

2.5.3 General Intermediation Problems

Our framework and results apply more broadly to any setting where a principal

mediates interactions between multiple agents using data. For ease of exposition, we

simplified the model in several ways. Neither changes the analysis or its interpretations.

First, we can allow the principal to also choose an action a0 ∈ A0 for each mediated

interaction. In this case, a mechanism x also has to specify a0 for each ω. Second, we

21Rather than simultaneously mediating all problems in the collection, an equally valid interpretation
is that the intermediary commits to a mechanism for the whole collection and then problems are drawn
independently and mediated one at a time.
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can allow each agent i to also privately observe some data about the interaction he is

in. For example, in our leading e-commerce example the seller can observe the quality

or the history of customer reviews of his product. We can again model the realizations

of such data with some finite set Ωi, where each ωi is ultimately an exogenous signal

about some underlying payoff-relevant θ. Let Ω = Ω0 × . . . × Ωn with typical element

ω = (ω0, . . . ,ωn). The key assumption is that the principal also observes the private

data of each agent—i.e., the entire ω = (ω0, . . . ,ωn)—as does the omniscient designer in

Bergemann and Morris (2016a). Thus, now the whole vector ω defines a type of data

record in the principal’s database and characterizes each interaction that it mediates.

Our proofs already take into account this more general setting.

2.5.4 Additional Examples

We sketch other possible applications of our model.

Navigation Services

A navigation app uses data about routes’ conditions to direct traffic by provid-

ing drivers with information—such as recommended routes and travel times. Das,

Kamenica, and Mirka (2017) propose a simple way to model this complex problem. Sup-

pose the app (principal) seeks to minimize congestion. We can think of an interaction

as consisting of a group of drivers (agents) in some city who simultaneously choose,

say, one of two routes between the residential and business district. For each route, the

travel time increases in how many drivers choose it but at different rates (e.g., because

one is a highway and one is surface streets); travel times also depend on some uncertain

event (e.g., construction work), which is observed only by the app. For each city served

by the app, the realization of this event defines its data record.
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Ridesharing

A ridesharing platform mediates the interactions between n drivers and a popu-

lation of potential riders who just landed at an airport. Each rider seeks to reach her

final destination ϑd ∈ [0,1] and values a ride ϑv ≥ 0. Her preference is then pinned

down by θ = (ϑd,ϑv). The platform knows ϑd and some personal characteristics of the

rider, which are informative about ϑv. The drivers do not know anything about the

riders and compete for them by posting a price ai. Drivers have known preferences over

final destinations—for instance, they are increasing in ϑd. Once an offer is accepted,

the driver must honor it regardless of the final destination. The platform chooses what

information about a rider’s θ to disclose to the drivers so as to maximize a combination

of the rider’s and drivers’ payoffs.

Online Advertisement

A population of individuals uses a search engine run by a platform. For each

individual, it keeps a record that includes the searched keywords and some personal

characteristics that are informative about her tastes in an horizontally differentiated

product market, summarized by θ ∈ [0,1]. There is a finite set I ⊆ [0,1] of advertisers.

The index i ∈ I captures the advertiser’s exogenous position in the product market—e.g.,

whether he advertises men’s or women’s apparel. The advertisers compete in a second-

price auction to display an ad to each individual. Advertiser’s i expected profits from

winning access to an individual decreases in the distance between θ and i. The platform

chooses which information about each individual’s θ to disclose to the advertisers so as

to maximize its total payoff.
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2.6 Conclusion

This paper explains what determines the individual value of specific data records

and what its properties are. In doing so, it advances our understanding of the demand

side of data markets, thus shedding light on how they work and how they may be

affected by regulatory interventions. This can provide insights into a key part of the

digital economy. To the best of our knowledge, our approach to assessing the value of

data has not been used before, it is broadly applicable, and it lays the foundations on

which more questions can be tackled by future research. One direction is to fully analyze

specific applications, such as e-commerce or the settings sketched in Section 2.5.4.

Another is to explicitly model some of the privacy regulations discussed in policy

circles, or to consider richer and possibly private ways in which intermediaries can

change their databases.

Chapter 2 is currently being prepared for submission for publication of the

material. Chapter 2 is coauthored with Galperti, Simone and Perego, Jacopo. The

dissertation author, Aleksandr Levkun, is one of primary authors of this chapter.
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Chapter 3

Strategic Mediation of Information in
Autocracies

3.1 Introduction

The dominant model of dictatorship has evolved over the course of the twentieth

century. The authoritarian states rely less on terror and ideology to make the citizens

abide by ruler’s political objectives than before.1 Softer autocracies have emerged,

including Russia, Venezuela, Ecuador, Turkey before the coup attempt in 2016, among

others. These states no longer practice massive repressions. Instead, they hold elections

and allow legal opposition in the attempts to imitate democracy (Gandhi and Lust-Okar,

2009).2 These states seek to convince the population in ruler’s competence to lead the

country into a prosperous future (Guriev and Treisman, 2019). One of the main instru-

ments for achieving this goal is an information manipulation through multiple channels

including state-owned media.3 The state-owned media consistently manipulate facts

1Potential reasons for this transformation are improved personal freedom, means of mobility, and
the declined appeal of authoritarian ideologies since the end of the Cold War (Naim, 2022; Guriev and
Treisman, 2019).

2As Brownlee (2007), p. 6, writes, “regimes have permitted opposition movements to contest elections
but have stopped short of rotating power or allowing fair elections that would have risked their secure
tenure in office”.

3That is why such authoritarian states are sometimes referred to as informational autocrats. This term
is used in Guriev and Treisman (2019) that provides an extensive overview of the inner processes in
modern autocracies.
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and censor information to influence citizens’ beliefs about the ruler’s competence. How-

ever, the state-owned media do not necessarily have direct access to the facts.4 Instead,

they have to rely on reports generated by a strategically-interested information source.5

For example, reports could be research conducted by an independent statistical agency

in hopes of providing the most accurate information to the general public. Reports could

also surface from ruler’s cabinet members acting in their own best interest. This paper

seeks to pin down information sources that are useful to the media in their persuasive

attempts. In the presence of a strategic source, how likely is swaying citizens’ decisions

toward the ruler’s favor? What is the optimal editorial policy for the state-owned media

and how does the policy depend on the preferences of citizens and the source?

To answer these questions, we consider a model of the optimal information

disclosure by a state-owned media to a representative uninformed receiver. The receiver

must decide between taking a mobilizing or the status-quo actions. Some examples

of mobilization include voting for the ruler in the election, voting in favor of the

ruler’s proposal to change the Constitution, not revolting, not going to anti-government

protests (Gehlbach and Sonin, 2014; Shadmehr and Bernhardt, 2015). The media want

the receiver to take the mobilizing action.6 However, the receiver prefers the mobilizing

action only if the ruler’s competence is high enough. The media do not have access to

the ruler’s competence and such information has to be supplied by the informed elite.

The elite knows the state of the ruler’s competence. This knowledge can come from

an independent research, a proximity to the ruler, or an ability to understand political

processes better than the receiver (Guriev and Treisman, 2018). The elite’s ordinal

4This can happen due to asymmetric information, so that journalists require sources to gain access to
information or help to interpret it. Egorov, Guriev, and Sonin (2009) and Lorentzen (2014) also indicate
the need of authoritarian regimes for “watchdog reporting” to govern more efficiently.

5Schudson (2002) and Waisbord (2000), p. 108, point out the constraints that the media face due to the
source’s incentives to advance their own interests.

6The ruler needs to delegate the responsibility for reporting news to a designated institution. The
ruler’s interests are presented by the state-owned media with the same objective, even though the ruler
does not participate in the game.
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preferences are such that only if the elite observes that the ruler’s competence is above a

certain threshold, then she prefers the mobilizing action. The elite cannot communicate

to the receiver directly. Instead, having learnt the competence, the elite sends a message

to the media. The media then generate a report to the receiver. Finally, the receiver

chooses an action based on the media’s report. We study the media’s problem under

the commitment assumption. That is, at the beginning of the interaction, the media’s

editorial policy on how reports are generated from elite’s messages is announced.

The media’s optimal editorial policy is simple to describe. If the elite and the

receiver disagree on the favorable action for a sufficiently large set of the ruler’s compe-

tence levels, then the media cannot do better than providing no information and the

receiver opts for the status-quo action.7 Otherwise, the media signal whether the ruler’s

competence is higher or lower than a threshold which depends on the elite’s preferences.

By doing so, the media ensure that the elite reports information truthfully. If the ruler’s

competence is high enough then the editorial policy suggests the mobilizing action to

the receiver. Otherwise, the status-quo action is suggested with some probability. This

probability is calibrated to make the receiver indifferent between two actions. We show

that if the receiver becomes more critical of the ruler, that is, he requires a higher ruler’s

competence to oblige with choosing the mobilizing action, then the media are worse

off. It becomes harder for the media to convince the receiver to choose the mobilizing

action. We also show that the elite generally benefits when the receiver becomes more

critical. As discussed in Guriev and Treisman (2019), highly educated citizens in the

authoritarian states tend to be more critical toward their government. Thus, as a predic-

tion of this model, the spread of higher education would make it harder for the media

to sway the receiver toward the mobilizing action and make the informed elite better

off. The media benefit from the elite that is more aligned with the media as long as the

7The intuition is similar to the one in sender-receiver games, where if the sender’s bias is too large,
then the equilibrium is necessarily uninformative.
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alignment is not too close: reports generated from the source having a similar objective

to the media’s lead to the receiver’s skepticism.

The media need to incentivize the elite to supply information by designing the

editorial policy tailored to the elite’s preferences. Such honesty constraints discipline

the editorial policy and render some information sources to be futile to the media. Our

assumptions on players’ payoffs describe a range of situations in which the media

attempt to influence citizens’ beliefs, e.g., a voting application.8 The elites are directly

interested in the election outcome, and their preferences determine informativeness of

communication. This paper helps to understand the relationships between the informed

elites and the state-owned media in modern autocracies. In particular, we show that

the elite closely aligned to the ruler’s objective is fruitless to the state-owned media if

the receiver is able to correctly make inferences. Importantly, even if the elite is heavily

critical of the ruler, the state-owned media can still weaponize elite’s information to

persuade the receiver.

The initial analysis assumes that the population is identical in how critical they

are, and hence it can be represented by a single representative receiver. However,

in reality, the population is heterogeneous in pickiness towards the ruler, even in

authoritarian states.9 This observation leads us to consider the state-owned media

attempting to sway decisions of the population of receivers having private information

about their pickiness. Without honesty constraints, the state-owned media implement

the upper censorship policy revealing low levels of the ruler’s competence and pooling

high levels (Kolotilin et al., 2017). Honesty constraints reduce the media’s welfare, since

the upper censorship policy cannot be implemented. Revealing all low states of the

8For example, see Alonso and Câmara (2016).
9For an example of such heterogeneity in citizens’ preferences, Russian independent pollster Levada

center reports respondents’ answers to the question “Do you approve the decisions of Vladimir Putin
as the president of Russia?” in October 2019. 26 % of the respondents answered “Yes, absolutely”, 44 %
answered “Rather yes, than no”, 18 % answered “Rather no, than yes”, 10 % answered “Absolutely not”,
2 % abstained (Levada Center, 2019). See also Neundorf, Gerschewski, and Olar (2020).
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ruler’s competence is not available due to incentives of the low types of the source. We

characterize the solution to the media’s problem choosing over the restricted simple

class of editorial policies with a support having at most two elements. The optimal

simple policy provides the lower bound for the media’s unconstrained problem. We

show the sufficient condition on the distribution of receiver’s private information, under

which this lower bound is attained. We illustrate the lower bound for the unimodal

distribution of receiver’s types.

Related literature

This paper is a part of an active literature that studies strategic information dissemi-

nation decisions by the media concerned with swaying the beliefs of its audience. Guriev

and Treisman (2018) present the model of the informational autocracy that yearns for

staying in power. There is an elite that is informed about the ruler’s competence. The

authors establish conditions under which manipulation of information provided by

the elite is more beneficial for the ruler than opting for repressions or improving living

standards. Relative to Guriev and Treisman (2018), in our model the only way for the

elite to communicate with the public is through the state-owned media. The media

do not generate information itself, and transfers are not allowed. The manipulation of

information is the only available instrument to the media. We characterize the effective-

ness of this instrument depending on the preferences of the elite, the media, and the

population.

Most of the papers in the literature assume that news is exogenous in the sense

that it is a realization of the payoff-relevant random variable for the audience. Shadmehr

and Bernhardt (2015) explore a ruler’s decision of whether to censor information avail-

able to citizens to avoid a revolution. The citizen’s net payoff from successful revolution

depends on the news that can be censored by the ruler. The authors characterize the

ruler’s censorship strategy and show that the ruler is better off by committing to censor
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less than he does in the equilibrium. Duggan and Martinelli (2011) consider the election

model with an incumbent and a challenger in which the media can affect the public

opinion. The state of the world is the challenger’s policy on a level of public good

provision and an income tax rate. As in this paper, the media can commit to how it

systematically distorts the information about the challenger’s policy. The authors char-

acterize the choice of the media slant for pro-incumbent and pro-challenger media. The

slanting technology is fixed and represented by the projection of the two-dimensional

policy on a straight line with a slope representing the media slant. Instead, this model

considers a general slanting technology for a one-dimensional state and allows the

information supplier to be strategic.

Chiang and Knight (2011) and Gehlbach and Sonin (2014) provide empirical

evidence that voters take media’s bias into account when forming beliefs about political

candidates. Gehlbach and Sonin (2014), Duggan and Martinelli (2011), and Gentzkow,

Shapiro, and Stone (2015) adopt the assumption of the media’s commitment power

to a probabilistic information structure, as this paper does. This assumption captures

the government’s need to delegate responsibility for reporting news to correspondents,

reporters, and editors who make frequent decisions about the framing of the news they

decide to cover.

This paper also contributes to the literature on mediated cheap talk, which studies

communication between an informed sender and an uninformed receiver through

the mediator. The informed party makes a report to the mediator, who then makes

a non-binding recommendation to the receiver. The literature focuses on the optimal

mediation for the sender and the receiver. The optimal mediation generally adds noise

to communication. Goltsman et al. (2009) characterize the optimal mediation for the

uniform-quadratic setup of the cheap-talk game of Crawford and Sobel (1982). Blume,

Board, and Kawamura (2007) analyze the special case of the mediation protocol: with

some probability, the sender’s message is transmitted perfectly to the receiver; with the
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remaining probability, the noisy message is generated. The authors show that noise

generally improves welfare. These papers concentrate on the neutral mediator and

characterize the best mediator for the sender and the receiver. In this paper, the media

play the role of the mediator and have a strategic objective, specifically, to increase the

probability of the mobilizing action chosen by the receiver. We analyze the optimal

mediation plan for different assumptions on the sender’s and receiver’s preferences.

Within the uniform-quadratic setup, Ivanov (2010) shows that that there is no welfare

loss if the strategic mediator is chosen properly. Compared to this paper, we assume the

media’s ability to commit to the mediation plan. Therefore, the media in this paper will

generally obtain a higher payoff. Salamanca (2021) studies the informed party that is

able to choose and commit to the mediation plan. The author characterizes sender’s

value function under the assumption of aligned sender’s and mediator’s preferences.

In this paper, if the information source and the mediator are aligned, then the only

equilibrium is completely uninformative. Skreta and Perez-Richet (2021) consider a

game with a similar extensive form to this paper. The mediator designs a test to detect

the costly falsification of the state of the world by the sender.10 The main difference

of Skreta and Perez-Richet (2021) and this paper is the payoff structure: in Skreta and

Perez-Richet (2021) the mediator designs the test to maximize the receiver’s payoff

while the sender wishes the receiver to take a certain action.11

This paper also contributes to the constrained information design literature. This

literature seeks to extend the standard Bayesian persuasion framework of Kamenica

and Gentzkow (2011) by adding meaningful constraints the persuading side has to face.

Le Treust and Tomala (2019) and E. Tsakas and N. Tsakas (2021) study the setup where

10Skreta and Perez-Richet (2021) cover the case of the costless falsification that corresponds to cheap-talk
messages.

11Ball (2019) introduces the model of predictive scoring. The scoring agency with commitment power
aggregates multiple features of the sender into a score. The sender’s features are correlated with the state
that the receiver wishes to match. The sender is able to distort her features at a cost. Similarly to Skreta
and Perez-Richet (2021), the scoring agency is aligned in preferences with the receiver.
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the persuading side communicates with the receiver through a channel that is subject

to exogenous noise. The optimal payoff is characterized as a function of the Shannon

channel capacity in Le Treust and Tomala (2019).12 Lipnowski and Mathevet (2018)

impose the behavioral assumptions on the receiver that leads to non-Bayesian updating

and analyze the optimal information disclosure. Compared to these papers, the media

in the role of a persuading side face novel constraints capturing the media’s inability to

access the state directly. Instead, the media incentivize the source to supply information

by carefully designing the information protocol. Boleslavsky and K. Kim (2018) consider

the setup where the agent exerts a privately observed effort that determines the state

distribution. Thus, the persuader has to not only persuade the receiver to take some

action, but also incentivize the agent’s effort. Boleslavsky and K. Kim (2018) has the

additional constraints in the form of moral hazard, whereas in this paper the honesty

constraints correspond to the adverse selection problem.

3.2 Model

This section introduces a game between an informed elite, which I call a source

(S, she), a state-owned media (M, it), and an uninformed receiver (R, he).

The receiver has to decide whether to undertake the status-quo action a0, or the

mobilizing action a1. The mobilizing action corresponds to some political objective

of the ruler. The payoff of the receiver uR(a,θ) depends on his action a ∈ A = {a0, a1}

and the ruler’s competence θ ∈ Θ = [0,1]. The ruler’s competence is unknown to the

receiver but he holds a prior µ0 on Θ that is common to all the players. The receiver’s

preference parameter δR(θ) = uR(a1,θ)− uR(a0,θ) captures the receiver’s net payoff

12The technique developed in Le Treust and Tomala (2019) and Doval and Skreta (2018) corresponds to
rewriting the additional constraints as a function of receiver’s posterior beliefs distribution. However, in
our problem, the state space is continuous and honesty constraints have to be satisfied for every pair of
states. Even though the inequalities corresponding to honesty conditions can be written in accordance
with Doval and Skreta (2018), their method does not make the problem tractable.
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from the mobilizing action, and the function δR(θ) is assumed to be strictly increasing.

That is, the receiver prefers the mobilizing action if the ruler’s competence is high

enough. Moreover, we assume the following tension condition:

∫ 1

0
δR(θ)dµ0 < 0. (3.1)

This condition indicates that under the prior the receiver opts for the status-quo action.

A source perfectly learns the ruler’s competence and cares about the receiver’s

action. The source is referred to as type-θ source if she learns that the ruler’s competence

is θ. The source’s payoff function uS(a,θ) is summarized by two measurable sets

representing source’s ordinal preferences, Θ0 = {θ ∈ [0,1] : uS(a0,θ) > uS(a1,θ)} and

Θ1 = {θ ∈ [0,1] : uS(a1,θ) > uS(a0,θ)}. In words, Θ0 captures the source types that

strictly prefer the status-quo action, whereas Θ1 captures the source types that strictly

prefer the mobilizing action. The measure of types that are indifferent between a0 and a1

is assumed to be zero.13 The source can only communicate with the receiver indirectly,

by sending a costless message m ∈M to the state-owned media. The set of messages

M has at least as many elements as Θ.

The state-owned media wish to promote the ruler’s interests. In particular, the

media want the receiver to undertake the mobilizing action irrespective of the ruler’s

competence. The media’s payoffs of the status-quo action and the mobilizing action are

normalized to 0 and 1, respectively. Therefore, the media’s expected payoff is simply

the probability of the mobilizing action being chosen. The media can communicate

with the receiver but cannot generate information itself. Instead, information has to be

provided to the media by the source in the form of message m ∈M. The media then

produce a costless report r ∈ R observed by the receiver. The set of reports R has at

13If the measure of indifferent source types is nonzero, the media’s problem is relaxed in the sense that
the media have to satisfy fewer incentive constraints on the source’s side.
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least two elements.

We assume that the media can commit to how the reports are generated based

on the messages provided by the source. In particular, at the beginning of the game, the

state-owned media publicly choose an editorial policy π : M→ ∆(R), where π(r|m) is

the probability of generating report r after observing the source’s message m. We refer

to the editorial policy π as a strategic dissemination protocol, or simply a protocol.

Timing

We summarize the timing of the game. The game starts with the state-owned

media committing to the strategic dissemination protocol, π : M → ∆(R), observed

by all players. The ruler’s competence θ ∈ [0,1] then realizes as the draw from the

distribution µ0. The source observes θ and π and sends a costless message m ∈ M

to the media. The report r ∈ R is then generated by the media as the draw from the

distribution π(·|m). Finally, the receiver observes the protocol π and the report r, forms

the posterior belief µ, and decides whether to undertake the status-quo action a0 or the

mobilizing action a1. The payoffs then are realized.

Equilibrium

An equilibrium consists of four measurable maps: a messaging strategy ρ : Θ →

∆(M) for S, an information dissemination protocol π : M→ ∆(R) for M, a probability

of choosing the mobilizing action α : R→ [0,1] for R, and a belief mapping µ : R→ ∆(Θ)

for R. An equilibrium is the protocol π chosen by M and a perfect Bayesian equilibrium

of the subgame that follows the M’s choice. Specifically, given π, a perfect Bayesian

equilibrium (PBE) is a tuple (ρ,α,µ) that satisfies

1. (belief formation)

µ is obtained from µ0 via Bayes’ rule, given ρ, whenever well-defined;

2. (receiver’s best-response)
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α(r) = 1 if
∫

Θ δR(·)dµ(·|r) > 0, and α(r) = 0 if
∫

Θ δR(·)dµ(·|r) < 0;

3. (sender’s best-response)

ρ(θ) is supported on argmax
m∈M

∫
R [uS(a1,θ)α(·) + uS(a0,θ)(1 − α(·))]dπ(·|m) for ev-

ery θ ∈ Θ.

Following the information design literature14, the agent with a commitment power is

assumed to be able to steer other agents toward her favorite PBE. Thus, for every π,

M chooses a PBE that generates the highest media’s ex ante payoff denoted as V(π).

Finally, the equilibrium π is chosen to maximize V(π). We denote the value function of

the media as V. This completes the definition of the equilibrium.

3.3 Equilibrium Analysis

We analyze the model using revelation principle. It is without loss to focus on

the direct protocols where the source truthfully reports the ruler’s competence and the

receiver obediently follows an action recommendation. We characterize the set of the

direct protocols that satisfy honesty and obedience conditions. Finally, we solve for the

optimal protocol for the media and discuss its properties.

A protocol π is said to be direct if M = Θ and R = A. That is, for a direct

protocol π, the source is asked to report a competence level θ and the media make a

binary action recommendation to the receiver.

In a direct protocol, S is said to be honest if it is optimal for her to report the

ruler’s competence truthfully. R is said to be obedient if it is optimal for him to follow a

recommendation. A direct protocol π : Θ → ∆(A) is Bayesian incentive-compatible if S

14See Kamenica and Gentzkow (2011), Alonso and Câmara (2016), and Bergemann and Morris (2016b)
among others. Mathevet, Perego, and Taneva (2020) develop the methodology of analyzing persuasion
problems for various equilibrium selection rules.
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is honest and R is obedient. Specifically, S is honest given R’s obedience if

uS(a1,θ)π(a1|θ) + uS(a0,θ)π(a0|θ) ≥ uS(a1,θ)π(a1|θ′) + uS(a0,θ)π(a0|θ′) (3.2)

for every θ,θ′ ∈ Θ. We call a direct protocol π honest if it satisfies (3.2).

R is obedient given S’s honesty if following recommendation a1 is optimal, that

is, ∫ 1

0
δR(θ)π(a1|θ)dµ0 ≥ 0, (3.3)

and following recommendation a0 is optimal, that is,

−
∫ 1

0
δR(θ)π(a0|θ)dµ0 ≥ 0. (3.4)

Note that the tension condition (3.1) and the inequality (3.3) imply the inequality

(3.4). Then we call a direct protocol π obedient if it satisfies (3.3).

The revelation principle states that without loss the media can focus on the direct

protocols that are honest and obedient.

Lemma 3.1. Given any PBE in the original game followed by π, there exists an incentive-

compatible direct protocol π∗ under which the media get the same expected utility when S is

honest and R is obedient as in this PBE.

All proofs are in the appendix. By Lemma 3.1 an optimal incentive-compatible

direct protocol is also an equilibrium in the class of all possible protocols. From now on

we focus on the characterization of the optimal incentive compatible direct protocol.

It turns out that the honesty constraint significantly simplifies the problem by

disciplining any incentive-compatible direct protocol. Lemma 3.2 summarizes this

observation.
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Lemma 3.2. A direct protocol π is honest if and only if there exist π0 and π1, with π0 ≤ π1,

such that π(a1|θ) = π0 for every θ ∈ Θ0, and π(a1|θ) = π1 for every θ ∈ Θ1.

Thus, an honest direct protocol is characterized by a pair of numbers πi, i ∈ {0,1},

capturing the probability that the receiver takes the mobilizing action when the ruler’s

competence is in Θi. Intuitively, the source will always attempt to induce the highest

probability of her preferred action. Therefore, the probability of ai prescribed by protocol

π has to be identical across all θ ∈ Θi. Furthermore, the source types that prefer action a1

have to be provided with a higher probability π1 of implementing this action compared

to probability π0 provided to the types that prefer action a0.

To find the set of incentive-compatible protocols, we combine the insight of

Lemma 3.2 with the obedience condition. To this end, define I0 =
∫

Θ0
δR(θ)dµ0 and

I1 =
∫

Θ1
δR(θ)dµ0. In words, I0 and I1 capture receiver’s preferences in conjunction with

source’s preferences. It turns out that these statistics are sufficient to pin down the set

of incentive-compatible protocols. Note that Ii
µ0(Θi)

, i ∈ {0,1}, is the expectation of the

receiver’s net payoff from the mobilizing action conditional on the competence being in

Θi, E[δR(θ)|θ ∈ Θi]. Proposition 3.1 characterizes the set of incentive-compatible direct

protocols depending on the signs of the conditional expectations E[δR(θ)|θ ∈ Θ0] and

E[δR(θ)|θ ∈ Θ1].

Proposition 3.1. The set of incentive-compatible direct protocols I is characterized by (π0,π1),

π0 ≤ π1, where πi is the probability of implementing action a1 following any θ ∈ Θi. Further-

more,

• if I0 < 0 and I1 ≥ 0, then I =
{
(π0,π1) ∈ [0,1]2 : π1 I1 + π0 I0 ≥ 0

}
;

• otherwise, I = {(0,0)}.

To get the intuition behind this result, first, consider the case of E[δR(θ)|θ ∈

Θ1] < 0. In words, this inequality means that there is a sufficiently large portion of
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the source types who disagree with the receiver on the preferable action: they prefer

a1, whereas the receiver would choose a0 if the ruler’s competence was known. The

receiver is too skeptical of the statements of the source closely aligned with the media in

trying to assure the mobilizing action.15 Thus, in this case the only incentive-compatible

protocol involves pooling: π0 = π1 = 0.16 Otherwise, the information about whether

the ruler’s competence is in Θ0 or Θ1 can be meaningfully transmitted to the receiver.

Furthermore, Proposition 3.1 shows that in this case the obedience constraint implies

the requirement π0 ≤ π1 of the honesty constraint.

Figure 3.1 depicts the set of incentive-compatible protocols for the case when

complete pooling is not the only incentive-compatible protocol. This figure is similar to

the set of obedient protocols in the standard Bayesian persuasion problem with a binary

state (see, for example, Bergemann and Morris, 2019). Here, however, the state space is

continuous. The honesty constraints discipline the protocol over the states in Θ0 and

Θ1. Thus, the binary state in the standard Bayesian persuasion problem can be seen as

whether the state in our problem lies in Θ0 or Θ1.

Proposition 3.1 paves the way to finding the optimal media’s protocol. Indeed,

given the previous insights, the media’s problem can be written as follows:

V = max
(π0,π1)∈I

{µ0(Θ0) · π0 + µ0(Θ1) · π1} .

Thus, the media maximize the linear function over the set of incentive-compatible

protocols I defined by the linear inequalities and given by Proposition 3.1. Then there

necessarily is an extreme point solution. Proposition 3.2 finds this extreme point.

15By the standard intuition from sender-receiver games, if the conflict between sender’s and receiver’s
preferences is too large, then no meaningful information can be transmitted. For example, in the uniform-
quadratic setup of the cheap-talk game of Crawford and Sobel (1982), if the sender’s bias is too large,
then the equilibrium is necessarily completely uninformative.

16Note that even though π0 = π1 = 0, communication is not necessarily uninformative. However, all
receiver’s posterior beliefs generated by this protocol are low enough so that the status-quo action is
always taken.
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Figure 3.1. The set of incentive-compatible direct protocols, when E[δR(θ)|θ ∈ Θ0] < 0
and E[δR(θ)|θ ∈ Θ1] > 0.

Proposition 3.2. If I0 < 0 ≤ I1, then the solution to the media problem is the pair (π0,π1) such

that π0 = π(a1|θ) for every θ ∈ Θ0, π1 = π(a1|θ) for every θ ∈ Θ1, and (π0,π1) =
(

I1
−I0

,1
)

.

The ex ante media’s payoff is

V = µ0(Θ1) ·
E[δR(θ)|θ ∈ Θ1]− E[δR(θ)|θ ∈ Θ0]

−E[δR(θ)|θ ∈ Θ0]
.

If I0 < 0 ≤ I1 is not satisfied then π0 = π1 = 0 and the media’s payoff is 0.

When the conflict between source’s and the receiver’s preferences is too large, the

82



media cannot do better than making the protocol completely uninformative. Otherwise,

the media signal whether the ruler’s competence lies in Θ0 or Θ1. From the receiver’s

perspective, if the receiver gets the recommendation of the status-quo action, then he

knows with certainty that the ruler’s competence is in Θ0. On the other hand, the

recommendation of the mobilizing action can come from any competence level, but

the protocol renders the probabilities in the exact way to make the receiver indifferent

between two actions.

3.3.1 Example

In order to gain insight about properties of the media-optimal protocol, we

impose the functional forms for the players’ payoffs. We assume that the receiver’s

payoff function is uR(a,θ) = 1{a = a1} · (θ − ω), where ω ∈ [0,1] is interpreted as

receiver’s pickiness commonly known to the players. The pickiness level corresponds

to how critical the receiver is of the government. A pickier receiver would require a

higher ruler’s competence to oblige with choosing the mobilizing action. If the ruler’s

competence surpasses ω, then the receiver prefers the mobilizing action. The receiver’s

net payoff from the mobilizing action is then simply a linear function δR(θ) = θ − ω.

By the tension condition (3.1), ω > 1
2 . If ω ≤ 1

2 , then the media make the protocol

completely uninformative and extracts the payoff of 1.

Furthermore, we assume that Θ0 and Θ1 are half-intervals: Θ0 = [0, θ̄) and

Θ1 = (θ̄,1], where θ̄ ∈ [0,1] is the relevant source’s payoff parameter commonly known

to the players. We refer to θ̄ as a source’s threshold. That is, all the source types above θ̄

strictly prefer the mobilizing action, whereas all the source types below θ̄ strictly prefer

the status-quo action. The source with type θ̄ is indifferent between a0 and a1. If θ̄ = 0,

then the source is aligned in preferences with the media. If θ̄ = ω, then the source is

aligned in preferences with the receiver. Finally, for the sake of exposition, let the prior

µ0 be the uniform distribution on [0,1].
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Note that in the general case covered before, there may coexist two sets of the

source types that do not want their information to be revealed: types in Θ0 that know

that the ruler’s competence exceeds ω and types in Θ1 that know that the ruler’s

competence is below ω. The example leaves only one of these sets present depending on

the relation between θ̄ and ω. Threshold θ̄ can be interpreted as the source’s pickiness

level that is potentially different from the receiver’s ω.

For this example, the summary statistics I0 and I1 of source’s and the receiver’s

preferences can be directly calculated as

I0 =
∫ θ̄

0
(θ − ω)dθ =

θ̄(θ̄ − 2ω)

2
,

I1 =
∫ 1

θ̄
(θ − ω)dθ =

(1 − θ̄)(1 + θ̄ − 2ω)

2
.

Then Proposition 3.2 readily establishes the optimal protocol and the media’s ex

ante payoff from this protocol.

Claim 3.1. If θ̄ < 2ω − 1, then the optimal protocol is π0 = π1 = 0, resulting in the media’s

payoff of 0. If θ̄ ≥ 2ω − 1, then the optimal protocol is

(π0,π1) =

(
(1 − θ̄)(1 + θ̄ − 2ω)

θ̄(2ω − θ̄)
,1
)

,

and the media’s payoff is

V =
1 − θ̄

2ω − θ̄
.

Figure 3.2 shows the media’s optimal protocol and the value function for ω = 2
3

for various source’s thresholds θ̄.

Given Claim 3.1, it is straightforward to derive the relevant comparative statics

with respect to θ̄ and ω. A receiver with pickiness ω′ is said to be more aligned with the

media than a receiver with pickiness ω′′ if ω′ < ω′′. Similarly, a source with threshold
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π0

(a) The probability of imple-
menting a1 if θ ∈ Θ0.

1/3 1 θ̄

1

π1

(b) The probability of imple-
menting a1 if θ ∈ Θ1.

1/3 1 θ̄

2/3

V

(c) The media’s ex ante payoff.

Figure 3.2. The solution to the media’s problem for ω = 2/3 as a function of θ̄.

θ̄′ is said to be more aligned with the media than a source with threshold θ̄′′ if θ̄′ < θ̄′′.

Claim 3.2. The media get the ex ante payoff of 0 if θ̄ < 2ω − 1. As long as θ̄ ≥ 2ω − 1, the

media’s ex ante payoff increases if the receiver or the source become more aligned with the media.

It is easier for the media to persuade a more aligned receiver to undertake the

mobilizing action. For a more aligned source, there are two effects. First, the measure of

types Θ1 that guarantees the implementation of action a1 goes up. Second, for the source

types from Θ0, the probability of implementing the mobilizing action is increasing in θ̄

for θ̄ < ω and decreasing for θ̄ > ω. When π0 is increasing in θ̄, the first effect outweighs

the second effect. Therefore, the media’s payoff is lower for the pickier source as long as

θ̄ ≥ 2ω − 1. To summarize, if the source is closely aligned with the media, θ̄ < 2ω − 1,

the media’s payoff stays at zero. When θ̄ reaches the level of 2ω − 1, the media’s

payoff jumps to 2 − 2ω and then starts to decrease to 0 with increasing θ̄. This effect is

illustrated in Figure 3.2c.

Observe that the receiver’s ex ante payoff is always zero irrespective of the

source’s preferences. Indeed, when the protocol never recommends the mobilizing

action, the receiver undertakes the status-quo action and gets zero payoff. When the

source is not too closely aligned with the media, the media ensure that the receiver
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is kept indifferent between the status-quo and mobilizing actions upon receiving the

recommendation of the mobilizing action, so that the ex ante payoff of the receiver is

again zero.

Claim 3.3 establishes a comparative statics of the source’s payoff as a function of

the receiver’s pickiness.

Claim 3.3. Suppose that θ̄ ≥ 2ω − 1. The source types from Θ1 get their favorite action a1

with probability 1 irrespective of ω. The source types from Θ0 get their favorite action a0 with

probability 1 − π0 that is increasing in ω. That is, the source types from Θ0 are worse off when

the receiver is more aligned with the media.

Hence, by Claim 3.3, ex ante (before learning the ruler’s competence) the source

is worse off when the receiver is more aligned with the media. Indeed, the source

types from Θ1 always get their favorite action. The source types from Θ0 benefit from a

receiver with greater ω as it becomes harder for the media to persuade the receiver to

undertake the mobilizing action.

Finally, we compare the media’s optimal protocol to the protocol in the standard

Bayesian persuasion problem, that is, the problem with no honesty constraints.

Claim 3.4. The solution to the media’s problem facing no honesty constraints is

π(a1|θ) =


1, if θ ≥ 2ω − 1,

0, otherwise.

The media’s ex ante payoff is equal to 2 − 2ω.

The optimal protocol with honesty concerns achieves the payoff of the media

facing no honesty constraints when θ̄ = 2ω − 1. In other words, the media-optimal

source’s threshold corresponds to the threshold on the Bayesian persuasion protocol that

renders the receiver to be indifferent between a0 and a1. If the source’s threshold θ̄ falls
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below 2ω − 1, the media’s payoff drops to zero. This discontinuity is the consequence

of the discontinuity of the set of incentive-compatible protocols in θ̄. When θ̄ < 2ω − 1,

only the protocol that never recommends a1 is available. At θ̄ = 2ω − 1, the Bayesian

persuasion protocol becomes available and is employed by the media. Importantly,

even when θ̄ = 2ω − 1, the media facing no honesty constraints have access to a larger

set of incentive-compatible protocols. However, in this case the solution to our problem

and Bayesian persuasion problem coincide.

3.4 Persuading the Public

This section allows the receiver to have private information. The media attempt

to persuade the population of receivers to choose the mobilizing action. The media’s

report r is publicly revealed to the unit mass of receivers. Each receiver cares only

about his own action ai ∈ {a0, a1}.17 We impose the same assumptions on the payoff

functions as in Section 3.3.1. That is, Θ0 = [0, θ̄) and Θ1 = (θ̄, 1]. The ruler’s competence

level θ is assumed to be a draw from the uniform distribution on [0,1]. The receiver i’s

net payoff from the mobilizing action is a linear function δR(θ,ωi) = θ − ωi, where the

receiver’s pickiness ωi ∈ [0,1] is the receiver i’s private information. The mass of the

receivers with the pickiness below or equal to ω is captured by an absolutely continuous

cumulative distribution function H, with a strictly positive on (0,1) density h. Denote

the measure of a set Ω ⊆ [0,1] generated by H as η(Ω). Type-θ source extracts uS(a1,θ)

from each receiver taking the mobilizing action and uS(a0,θ) from each receiver taking

the status-quo action. The timing is unchanged. However, the source and the media

have to evaluate their payoffs as the expectation over the receiver’s types. The media’s

goal is to maximize the proportion of the receivers that choose the mobilizing action.

This setup is isomorphic to the problem with a single receiver having private

17In a voting application, this assumption corresponds to the sincere voting paradigm. For example,
see Alonso and Câmara (2016).
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information about ω. The common prior on ω is captured by the distribution H, and θ

and ω are assumed to be independent. We assume that the media cannot elicit private

information from the receiver.Then the analogue of the revelation principle for this case

can be shown. Instead of an unconditional action recommendation, the media now offer

a contingent recommendation, i.e., an action recommendation for each receiver’s type.

A typical contingent recommendation has the form of ω 7→ {a0, a1}. Thus, without loss,

it can be seen as the subset Ω1 of receivers that are recommended to choose a1. To this

end, we focus on a protocol ϕ : Θ → ∆(P([0,1]), where P([0,1]) is the set of measurable

subsets of the unit interval. We will show that only recommendations of the form [0,b],

b ∈ [0,1], are sent. Let suppϕ denote the set of contingent recommendations that appear

in the protocol ϕ after some reported competence level θ, ϕ(·|θ) > 0, and assume that

suppϕ is finite.18

A contingent protocol ϕ : Θ → ∆(P([0,1]) is Bayesian incentive-compatible if

S’s honesty and R’s obedience form an equilibrium. Specifically, S is honest given R’s

obedience if

∑
Ω1∈suppϕ

[η(Ω1)uS(a1,θ) + (1 − η(Ω1))uS(a0,θ))] (ϕ(Ω1|θ)− ϕ(Ω1|θ′)) ≥ 0 (3.5)

for every θ,θ′ ∈ Θ, that is, it is optimal for the source to report the ruler’s competence.

We call ϕ honest if it satisfies (3.5).

R is obedient given S’s honesty if, for every Ω1 ∈ suppϕ,

for every ω ∈ Ω1, ∫ 1

0
δR(·,ω)dϕ(Ω1|·) ≥ 0, (3.6)

for every ω ∈ [0,1] \ Ω1, ∫ 1

0
δR(·,ω)dϕ(Ω1|·) ≤ 0. (3.7)

18In principle, a protocol ϕ can have an infinite support. Then the summation in the honesty constraint
(3.5) has to be substituted by appropriate integration.
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We call ϕ obedient if it satisfies (3.6) and (3.7).

The following lemma shows that an optimal incentive-compatible contingent

protocol is also an equilibrium in the class of all possible protocols.

Lemma 3.3. Given any PBE in the original game followed by π, there exists an incentive-

compatible contingent protocol ϕ : Θ → ∆(P([0,1]) under which the media get the same

expected utility when S is honest and R is obedient as in this PBE.

As in the setup with a known receiver’s type, the incentive constraints reduce the

dimension of the search for the optimal protocol. We start by simplifying the obedience

constraint. Lemma 3.4 shows that any contingent recommendation is necessarily an

interval. The obedience constraint can be reduced to a single equation for each recom-

mendation in the support. This equation requires that the receiver with the highest

pickiness level among the receivers that are recommended a1 has to be indifferent

between the mobilizing and status-quo actions.

Lemma 3.4. Every obedient protocol ϕ : Θ → ∆(P([0,1]) exclusively sends contingent rec-

ommendations of the following form: a1 is recommended to receivers with ω ∈ [0,b], b ∈ [0,1];

otherwise, a0 is recommended. For every b ∈ suppϕ, the obedience constraint is summarized by

∫ 1

0
(θ − b)dϕ([0,b]|θ) = 0.

Lemma 3.4 illustrates that the contingent recommendations are intuitive: only

receivers that are sufficiently aligned with the media are recommended to take the

mobilizing action. Lemma 3.5 provides the further simplification that mirrors Lemma

3.2 and characterizes honest protocols.

Lemma 3.5. A protocol ϕ : Θ → ∆(P([0,1]) is honest if and only if there exist s0 and s1, with
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s0 ≤ s1, such that for every θ ∈ Θi, i ∈ {0,1},

si = ∑
[0,b]∈suppϕ

ϕ([0,b]|θ)H(b).

As before, the source types within sets Θ0 and Θ1 have to be provided the same

probability of their preferred action being implemented. This probability has to be

evaluated as an expectation over the receiver’s private information. The source types

from Θ1 get the favorite mobilizing action with probability s1, and the source types

from Θ0 get the undesirable mobilizing action with probability s0. Naturally, for the

honesty constraint to hold, the media ensure that s1 ≥ s0.

Combining the results of Lemma 3.3, 3.4, and 3.5, the media’s problem can be

written as the following Lemma 3.6 prescribes.

Lemma 3.6. The media’s problem is

V = max
ϕ,s0,s1

{
θ̄ · s0 + (1 − θ̄) · s1

}
,

subject to

s0 = ∑
[0,b]∈suppϕ

ϕ([0,b]|θ)H(b)

for every θ ∈ [0, θ̄),

s1 = ∑
[0,b]∈suppϕ

ϕ([0,b]|θ)H(b)

for every θ ∈ [θ̄,1]; s0 ≤ s1; and

∫ 1

0
(θ − b)dϕ([0,b]|θ) = 0

for every [0,b] ∈ suppϕ.

This problem is still complicated, since the optimal protocol can potentially
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provide multiple contingent recommendations given each reported competence level θ.

We do not describe the solution to the problem stated in Lemma 3.6 explicitly. Instead,

we deliver the lower bound on the media’s payoff by finding the optimal protocol

within the restricted class of protocols. Define a simple protocol as a protocol with a

support having at most two elements, [0, b̄] and [0,b], with b̄ ≥ b. In what follows, we

characterize the optimal simple protocol. We will show the condition on the distribution

of receiver’s types H, under which the media’s payoff achieves this lower bound.

For a simple protocol, the honesty constraints in Lemma 3.6 can be written as

follows:

s0 = H(b) + ϕ0(H(b̄)− H(b)),

where ϕ0 = ϕ([0, b̄]|θ) for every θ ∈ Θ0, and

s1 = H(b) + ϕ1(H(b̄)− H(b)),

where ϕ1 = ϕ([0, b̄]|θ) for every θ ∈ Θ1. It has to be the case that ϕ0 ≤ ϕ1. For a simple

protocol, the honesty constraints specify that the probability of generating the “larger”

contingent recommendation [0, b̄] has to be constant within the competence levels in Θ0

and Θ1 and it has to be higher for the sources in Θ1.

The obedience constraint then pins down b̄ and b as a function of ϕ0 and ϕ1.

Lemma 3.7 establishes the bounds on b̄ and b and shows that, for any pair (b, b̄) within

these bounds, there exists a simple protocol with the support on [0,b] and [0, b̄]. The

operator E is the expectation with respect to the prior distribution on Θ.

Lemma 3.7. Every simple incentive-compatible protocol ϕ : [0,1]→ ∆({[0,b], [0, b̄]}) has to

satisfy b̄ ∈ [E[θ],E[θ|θ ∈ Θ1]] and b ∈ [E[θ|θ ∈ Θ0],E[θ]]. For every pair (b, b̄) within these

bounds, there exists an incentive-compatible simple protocol with the support on [0,b] and [0, b̄],

such that ϕ0 = ϕ([0, b̄]|θ) for every θ ∈ Θ0, ϕ1 = ϕ([0, b̄]|θ) for every θ ∈ Θ1, with ϕ0 ≤ ϕ1.
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From Lemma 3.7, every simple protocol is characterized by the pair of num-

bers b̄ and b. This observation paves the way to finding the optimal simple protocol.

Proposition 3.3 provides the geometric characterization of the solution to the media’s

problem. Let cavH be the concavification of H, that is, the smallest concave function that

majorizes H. Let Ĥ be the function H reduced to the domain [E[θ|θ ∈ Θ0],E[θ|θ ∈ Θ1]].

Proposition 3.3 shows that the optimal simple protocol delivers the media the payoff

equal to the concavification of Ĥ evaluated at E[θ].

Proposition 3.3. The media’s payoff from the optimal simple protocol is equal to cavĤ[E[θ]].

Proposition 3.3 obtains the lower bound on the media’s equilibrium payoff.

The upper bound on the media’s payoff is given by cavH[E[θ]]. Indeed, the receiver

ultimately bases his decision on the posterior mean of the ruler’s competence. If it was

possible for the media to induce every distribution of posterior means whose expectation

is the prior mean, then the solution to the media’s problem would correspond to

cavH[E[θ]]. However, this is not always feasible (see, for example, Gentzkow and

Kamenica, 2016). If those bounds are equal to each other, then the simple protocol

is optimal across all incentive-compatible protocols. Corollary 3.1 summarizes this

observation.

Corollary 3.1. The simple protocol is optimal for the media if cavĤ[E[θ]] = cavH[E[θ]].

Note that this sufficient condition can be checked just by knowing primitives

of the model: distribution H, prior distribution on Θ, and source’s preferences. The

immediate consequence of Corollary 3.1 is that for concave H, the simple protocol is

optimal. Moreover, b̄ = b, that is, the optimal protocol is uninformative.

Finally, to illustrate the bound provided in Proposition 3.3, we consider a uni-

modal distribution of receiver’s types that recently gained a lot of attention in the

literature, namely, Kolotilin et al. (2017), Lipnowski, Ravid, and Shishkin (2019), and

Shishkin (2021).
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The unimodal distribution corresponds to the density strictly increasing until

reaching mode m and then strictly decreasing. As a result, the corresponding cumulative

distribution function is convex-concave. The black line in Figure 3 illustrates the

example of such distribution.

With no honesty concerns, Kolotilin et al. (2017) show that the optimal policy is

upper censorship, when the distribution of receiver’s types is unimodal: it reveals all

states below and pools all states above a threshold.19 The upper-censorship policy in

our setup corresponds to the protocol ϕ, with ϕ([0,θ]|θ) = 1 for θ < t and ϕ([0,b]|θ) = 1

for θ ≥ t, where t > 0 is a threshold and b = E[θ|θ ≥ t]. However, the upper-censorship

policy is not incentive-compatible, when the honesty constraints are present. Indeed,

pick two types θ′,θ′′ ∈ Θ0 ∩ [0, t), θ′ < θ′′ and consider the incentives of type-θ′′ source

under the upper-censorship. Reporting θ′ gives the source probability 1 − H(θ′) of

the status-quo action chosen, whereas reporting θ′′ produces probability 1 − H(θ′′).

Type-θ′′ source prefers to misreport, and the honesty constraint is not satisfied. Indeed,

by Lemma 3.5 the sources preferring the status-quo action have to be provided with the

same probability of this action implemented. Under the upper-censorship policy, each

source type from Θ0 wants to mimic the lowest possible type, so that the status-quo

action is always chosen. This observation leads me to expect some pooling for the low

states in the optimal protocol.

Figure 3.3 illustrates the bounds on the media’s payoff for the case of unimodal

distribution. The media’s payoff from the optimal protocol has to lie in the interval

[V, V̄]. The payoff V can be achieved with an optimal simple protocol. This protocol

has a support having two elements, [0, b̄], [0,b], where b = E[θ|θ ∈ Θ0]. To maximize

the probability of the mobilizing action, the media sometimes reveal that the ruler’s

competence is low: the contingent recommendation [0,E[θ|θ ∈ Θ0]] reveals that the

19The mode of the distribution has to be sufficiently large. Otherwise, the uninformative policy is
optimal as most of the receivers are closely aligned with the media.
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Figure 3.3. Bounds on the media’s payoff. The black line corresponds to H. The red line
corresponds to cavH. The blue line corresponds to cavĤ.

ruler’s competence is in Θ0. However, the contingent recommendation [0, b̄] can come

from any θ: ϕ([0, b̄]|θ) = ϕ0 ∈ (0,1) for every θ ∈ Θ0, ϕ([0, b̄]|θ) = 1 for every θ ∈ Θ1.

Honesty constraints reduce the media’s welfare, since the upper censorship

policy cannot be implemented by the media. Revealing all low states of the ruler’s

competence is not available due to incentives of the low types of the source. The

optimal simple protocol delivers the lower bound on the media’s payoff. This protocol

sometimes reveals that the source is in Θ0 but does not given information beyond that.

The optimal protocol in the unrestricted class will possess the same feature: low states

need to be pooled together to satisfy honesty constraints.
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3.5 Conclusion

This paper presents a model of information disclosure by a state-owned media

to an uninformed receiver choosing between two actions. The problem is that the media

do not have direct access to relevant information. Instead, it has to be supplied by the

informed elite having interests in the receiver’s action. Therefore, the optimal media’s

editorial policy has to not only convince the receiver to undertake the media-favorite

action, but also cater to the elite’s preferences to incentivize the information supply.

This paper shows how these additional incentive constraints shape the optimal editorial

policy and outlines the welfare implications of this policy. We show the conditions under

which the honesty constraints are binding and there is a meaningful communication

depending on the preference parameters. We close with the discussion of assumptions

that are substantial for our results.

Discussion of assumptions

We assume that there are no transfers between players. In this sense, we study

the purely informational model of the interaction between the source, the media, and

the receiver. In reality, the source may be paid for promoting the ruler’s competence or

the receiver may be paid by the ruler for undertaking the mobilizing action. We leave

this possibility out of the model.

We assume that the media have commitment power. As explained in Gehlbach

and Sonin (2014) and Gentzkow, Shapiro, and Stone (2015), the editorial policy cannot

be easily changed and consistent bias in reporting is detected by receivers. This com-

mitment assumption may be relaxed in the fashion of Lipnowski, Ravid, and Shishkin

(2019), where with some probability the media may secretly change the editorial policy

after observing the source’s message. The analysis provided here can be seen as the best

the media can achieve over different possible communication protocols and equilibrium
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selection rules.

The messages produced by the source and the reports published by the media

are assumed to be costless. In reality of the authoritarian states, messages that suggest

the ruler’s incompetence may be associated with the consequential punishment. The

introduction of cost associated with specific messages imposes modeling challenges and

makes the methodology developed in this paper futile. Instead, one would need to make

use of, for example, the methodology of the papers that study strategic communication

with lying costs as in Kartik (2009).

Chapter 3 is currently being prepared for submission for publication of the

material. The dissertation author, Aleksandr Levkun, is the sole author of this material.
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Appendix A

Supplemental Material

A.1 Omitted Proofs for Chapter 1

All the proofs provided cover both the cases of the imperfect, p > 0, and perfect,

p = 0, fact-checking technologies.

Proof of Proposition 1.1

We start by showing that US(0) = 0 for every χp and χp-equilibrium in SUE.

Fix the environment (µ,ω), such that µ < ω. Fix a fact-checking policy χp and χp-

equilibrium (σ,α,π). Suppose towards the contrary that US(0) > 0. This means that

there exists an on-path message m ∈M, such that σ(m|0)> 0, χp(m)< 1, and α(m,∅)>

0. The latter inequality implies that the receiver’s posterior belief for message m and

empty fact-check output O=∅ satisfies π(m,∅) ≥ ω. We can represent this condition

in terms of the sender’s strategy:

σ(m|1) ≥ 1 − µ

µ
· ω

1 − ω
· σ(m|0) > σ(m|0),

where the second inequality follows from µ < ω and σ(m|0) > 0. Then σ(m|0) < 1, and

there exists m′ ̸= m, such that σ(m′|0) > 0. Then for 0-sender to behave optimally, it has

to be the case that χp(m′) < 1 and α(m′,∅) > 0. Following the same reasoning as for
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m, we need to have σ(m′|1) > σ(m′|0). We arrive at a contradiction, since exhausting

the probability constraint for 0-sender, ∑m∈M σ(m|0) = 1, will violate the probability

constraint for 1-sender, ∑m∈M σ(m|1) = 1.

For any χp and χp-equilibrium, we now show that US(1)≤ 1− p in SUE. If p = 0,

then there is nothing to prove, which is why we suppose that p > 0. Suppose that there

exists a fact-checking policy χp and χp-equilibrium (σ,α,π), such that US(1) > 1 − p.

Since the probability of any message m checked χp(m) is bounded above by 1 − p,

this implies that there exists an on-path message m ∈ M, such that σ(m|1) > 0 and

α(m,∅)> 0. However, this would imply that 0-sender can guarantee himself a non-zero

payoff by playing σ(m|0) = 1. We arrive at a contradiction, since US(0) = 0.

Finally, we construct a fact-checking policy χp and a χp-equilibrum (σ,α,π) that

delivers a payoff in the [0,1− p] interval to 1-sender in SUE. Select a fact-checking policy

χp, with χp(1)≥ χp(0). Consider the sender’s strategy that satisfies σ(1|1) = σ(1|0) = 1.

Then π(1,∅) < ω. Let the posterior belief after off-path messages m ∈ {0,ms} satisfy

π(m,∅) < ω. This is an equilibrium. Indeed, 0-sender is indifferent between playing

any m ∈M. 1-sender does not have a profitable deviation, since he only gets a positive

payoff in the event of his non-silent message checked, and m = 1 is associated with

the maximal probability of checking χp(1). The payoff of 1-sender in the constructed

equilibrium is then χp(1). Therefore, by controlling χp(1) ∈ [0,1 − p] and respecting

the inequality χp(1) ≥ χp(0), we can produce any US(1) ∈ [0,1 − p].

We now switch to SFE. We start by showing that US(1) = 1 for every χp and

χp-equilibrium in SFE. Fix the environment (µ,ω), such that µ > ω. Fix a fact-checking

policy χp and χp-equilibrium (σ,α,π). Suppose towards the contrary that US(1) < 1.

This means that there exists an on-path message m ∈M, such that σ(m|1)> 0, χp(m)<

1, and α(m,∅) < 1. The latter inequality implies that the receiver’s posterior belief for

message m and empty fact-check output O=∅ satisfies π(m,∅)≤ ω. We can represent
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this condition in terms of the sender’s strategy:

σ(m|0) ≥ µ

1 − µ
· 1 − ω

ω
· σ(m|1) > σ(m|1),

where the second inequality follows from µ > ω and σ(m|1) > 0. However, this implies

that there exists an on-path message m′ ̸= m that satisfies

σ(m′|0) < µ

1 − µ
· 1 − ω

ω
· σ(m′|1).

This inequality results in π(m′,∅) > ω. Then 1-sender fails to optimize and we

arrive at a contradiction.

For any χp and χp-equilibrium, we now show that US(0)≥ p in SFE. If p = 0, then

there is nothing to prove, which is why we suppose that p > 0. Fix a fact-checking policy

χp and χp-equilibrium (σ,α,π). We know that US(1) = 1. Thus, there exists an on-path

message m ∈M that satisfies σ(m|1) > 0, χp(m) < 1, and α(m,∅) = 1. Then 0-sender

can always guarantee himself at least a payoff of 1 − χp(m) by playing σ(m|0) = 1.

Since χp(m) ≤ 1 − p, we have US(0) ≥ p.

Finally, we construct a fact-checking policy χp and a χp-equilibrum (σ,α,π) that

delivers a payoff in the [p,1] interval to 0-sender in SFE. Fix a fact-checking policy χp

and consider the sender’s strategy that satisfies σ(1|1) = σ(1|0) = 1. Then π(1,∅) > ω.

Let the posterior belief after off-path messages m ∈ {0,ms} satisfy π(m,∅) < ω. This is

an equilibrium. Indeed, 1-sender achieves the maximum attainable payoff of 1. 0-sender

does not have a profitable deviation, since only sending m = 1 brings him a non-zero

payoff. The payoff of 0-sender in the constructed equilibrium is 1 − χp(1) ∈ [p,1].

Therefore, by controlling χp(1), we can produce any US(0) ∈ [p,1].
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Proof of Proposition 1.2

Fix χp. Let χp = max{χp(1),χp(0)} and χp = min{χp(1),χp(0)}. Let m (m)

denote a non-silent message that is checked with probability χp (χp). If χp(1) = χp(0),

messages m = 0 and m = 1 can be assigned to m and m in an arbitrary way.

We start by characterizing χp-equilibria in SUE. By Proposition 1.1, we know

that US(0) = 0. This implies that for any on-path message m, we have χp(m) = 1 or

α(m,∅) = 0. If χp > 0 and χp > χp, then the optimal behavior for 1-sender prescribes

σ(m|1) = 1. If χp = 1, then any σ(·|0) is an equilibrium strategy of 0-sender, with the

restriction π(m,∅) < ω on the receiver’s posterior belief after an off-path message m. If

χp < 1, then it has to be the case that α(m,∅) = 0, or in terms of the 0-sender’s strategy,

σ(m|0) ≥ µ
1−µ · 1−ω

ω . The remaining weight of σ(·|0) can be placed arbitrarily on the

messages other than m. The restriction π(m,∅) < ω on the receiver’s posterior belief

after an off-path message m ensures that we have an equilibrium.

If χp = χp > 0, then the optimality for 1-sender prescribes σ(1|1) + σ(0|1) = 1,

that is, ms is never sent by 1-sender. If χp = 1, then any σ(·|0) is an equilibrium strategy

of 0-sender, with the restriction π(m,∅) < ω on the receiver’s posterior belief after an

off-path message m. If χp < 1, then for any m, such that σ(m|1) > 0, we need to have

σ(m|0) ≥ µ
1−µ · 1−ω

ω · σ(m|1). The restriction π(m,∅) < ω on the receiver’s posterior

belief after an off-path message m ensures that we have an equilibrium.

If χp = 0, then for any on-path message m, we have α(m,∅) = 0. Thus, any σ that

satisfies σ(m|0)≥ µ
1−µ · 1−ω

ω · σ(m|1) for every on-path message m can be an equilibrium

sender’s strategy. The restriction π(m,∅) < ω on the receiver’s posterior belief after an

off-path message m ensures that we have an equilibrium.

Now we characterize χp-equilibria in SFE. By Proposition 1.1, we know that

US(1) = 1. This implies that for any message m that satisfies σ(m|1) > 0, we have

χp(m) = 1 or α(m,∅) = 1. In terms of the sender’s strategy, α(m,∅) = 1 corresponds to
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the condition σ(m|1) ≥ 1−µ
µ · ω

1−ω · σ(m|0). The optimality for 0-sender prescribes that

σ(m|0) > 0 only if σ(m|1) > 0 and m ∈ argminχp(·).

Suppose σ(ms|1) > 0. First, consider χp > 0. Then σ(ms|0) = 1 and σ(ms|1) ≥
1−µ

µ · ω
1−ω . The remaining weight of σ(·|1) can be placed arbitrarily on non-silent

messages. Now consider χp > χp = 0. Then in an equilibrium it has to be the case

that σ(ms|0) + σ(m|0) = 1. For m ∈ {ms,m}, such that σ(m|0) > 0, we need to have

σ(m|1)≥ 1−µ
µ · ω

1−ω · σ(m|0). Finally, consider χp = 0. For m ∈M, such that σ(m|0)> 0,

we need to have σ(m|1) ≥ 1−µ
µ · ω

1−ω · σ(m|0). The restriction π(m,∅) < ω is set for

off-path messages m in all cases.

Now suppose that σ(ms|1) = 0 and σ(m|1) > 0. Suppose χp = 1. Then any

σ(·|0) is an equilibrium strategy of 0-sender, since any strategy brings him the payoff

of zero. Now suppose that χp ∈ [0,1) and χp > χp. Then σ(m|0) = 1 and σ(m|1) ≥
1−µ

µ · ω
1−ω . The remaining weight of σ(·|1) can be placed on m. If χp = χp ∈ [0,1),

then σ(m|0) + σ(m|0) = 1 and for m ∈ {m,m}, such that σ(m|0) > 0, we need to have

σ(m|1) ≥ 1−µ
µ · ω

1−ω · σ(m|0). The restriction π(m,∅) < ω is set for off-path messages m

in all cases.

Now suppose that σ(m|1) = 1. If χp = 1, then any σ(·|0) is an equilibrium

strategy of 0-sender, since any strategy brings him the payoff of zero. If χp < 1, then the

optimality for 0-sender prescribes that σ(m|0) = 1. The restriction π(m,∅)< ω is set for

off-path messages m in all cases. This completes the characterization of χp-equilibria,

since we exhausted all possibilities.

We can calculate the sender’s and receiver’s payoffs in χp-equilibria we charac-

terized in terms of χp and χp.

In SUE, US(1) = χp, since 1-sender plays messages that are checked the most

and he gets a payoff of 1 only when fact-checked. Thus, the sender’s ex ante payoff is

US = µχp. The receiver’s payoff is UR = µ(1 − ω)χp. Indeed, the receiver plays a = 1
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only when 1-sender’s message gets fact-checked.

In SFE, the sender’s and receiver’s payoffs depend on the support of equilibrium

1-sender’s strategy σ(·|1). Suppose the support of σ(·|1) includes a message that is

checked with probability zero (ms is one such message irrespective of a fact-checking

policy). Then 0-sender only sends such messages. The payoff of 0-sender is US(0) =

1 and the sender’s ex ante payoff is then US = 1. The receiver’s payoff is the no-

communication payoff UR = µ − ω. Instead, suppose that the support of σ(·|1) does not

include ms but includes m that is checked with probability χp ∈ [0,χp]. Then the support

of σ(·|0) only includes messages that are checked with probability χp. The payoff of

0-sender is US(0) = 1 − χp and the sender’s ex ante payoff is US = 1 − (1 − µ)χp.

The receiver’s payoff is UR = µ(1 − ω) + (1 − µ)(1 − χp)(−ω) = µ − ω + (1 − µ)ωχp.

Finally, suppose that σ(m|1) = 1. Then either χp = 1 or 0-sender pools on m, σ(m|0) = 1.

In either case, the payoff of 0-sender can be summarized by US(0) = 1−χp. The sender’s

ex ante payoff is US = 1 − (1 − µ)χp. A similar calculation as above demonstrates that

UR = µ − ω + (1 − µ)ωχp.

We conclude that the range of payoffs US and UR in all χp-equilibria for a fixed

fact-checking policy χp can be summarized by a single parameter χp. In SUE, these

payoffs are unique, US = µχp and UR = µ(1 − ω)χp, both increasing in χp. In SFE,

US ∈ [1 − (1 − µ)χp, 1] and UR ∈ [µ − ω,µ − ω + (1 − µ)ωχp]. The lower bound on the

sender’s payoff decreases in χp and the upper bound on the receiver’s payoff increases

in χp.

Proof of Proposition 1.3 and 1.5

Fix a fact-checking policy χp. The characterization of χp-equilibria provided in

the proof of Proposition 1.2 allows us to generate available distributions λ(a,θ|ε,χp) for

any χp-equilibrium ε.

We start from SUE. The joint distribution of actions and issues in SUE for a fixed
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fact-checking policy χp for any χp-equilibrium ε is given by

Table A.1. The joint distribution of actions and issues in the sender-unfavorable envi-
ronment for a fixed fact-checking policy χp for any χp-equilibrium ε.

λ(a,θ|ε,χp) θ = 0 θ = 1
a = 0 1 − µ µ(1 − χp)

a = 1 0 µχp

For a fact-checking policy with fixed χp, the cheapest equilibrium to implement

for the fact-checker depends on whether χp = 1 or χp = 0. If χp = 1, then an equilibrium

that is associated with the minimal cost of fact-checking has σ(m|1) = 1 and σ(ms|0) = 1.

Indeed, condition σ(m|1) = 1 has to hold. Thus, if 0-sender is never checked, then the

fact-checker minimizes cost of fact-checking. If χp < 1, then σ(ms|0) = 1 is not available

anymore. Indeed, in any χp-equilibrium, we need to have α(m,∅) = 0 for any m that is

checked with probability χp. Then an equilibrium that is associated with the minimal

cost of fact-checking has σ(m|1) = 1, σ(m|0) = µ
1−µ · 1−ω

ω , and σ(ms|0) = ω−µ
(1−µ)ω

. The

total probability of initiating a fact-check is then µχ(m)
ω . Since χp = (1 − p)χ(m), the

implied minimal cost of implementing a fact-checking policy with χp is

CSUE(χp) :=


µc, if χp = 1,

µχp
(1−p)ω · c, if χp < 1.

The problem of the fact-checker with preferences uF(a,θ) is then given by

max
χp∈[0,1−p]

{
µχpuF(1,1) + µ(1 − χp)uF(0,1) + (1 − µ)uF(0,0)− CSUE(χp)

}
.

103



If p > 0, then the objective is a linear function of χp with the following solution:

χp


= 0, if c > ω(1 − p)(uF(1,1)− uF(0,1)),

∈ [0,1 − p], if c = ω(1 − p)(uF(1,1)− uF(0,1)),

= 1 − p, if c > ω(1 − p)(uF(1,1)− uF(0,1)).

If p = 0, then the objective is a linear function of χp with a discontinuity at χp = 1.

The solution is then always a corner solution:

χ


= 0, if c > uF(1,1)− uF(0,1),

∈ {0,1}, if c = uF(1,1)− uF(0,1),

= 1, if c < uF(1,1)− uF(0,1).

Now consider SFE. Let g(χp) ∈ [0,χp] be a function that tracks what type of χp-

equilibrium is played. Specifically, when g(χp) = 0, 1-sender’s strategy has a message

checked with zero probability in its support. When g(χp) = χp ∈ (0,χp), 1-sender’s

strategy has a message checked with probability χp in its support and σ(ms|1) =

0. Finally, when g(χp) = χp, 1-sender’s strategy only has messages checked with

probability χp in its support. The joint distribution of actions and issues in SUE for a

fixed fact-checking policy χp for any χp-equilibrium ε that generates function g(·) as

described above is given by

Table A.2. The joint distribution of actions and issues in the sender-favorable environ-
ment for a fixed fact-checking policy χp for any χp-equilibrium ε.

λ(a,θ|ε,χp) θ = 0 θ = 1
a = 0 (1 − µ)g(χp) 0
a = 1 (1 − µ)(1 − g(χp)) µ

We now fix g and discuss an equilibrium that minimizes the cost of fact-checking
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for fixed fact-checking policy with χp. When χp = 1 and g(1) = 1, an equilibrium that

is associated with the minimal cost of fact-checking has σ(m|1) = 1 and σ(ms|0) = 1,

similarly to SUE. When g(χp) = 0, an equilibrium that is associated with the minimal

cost of fact-checking has σ(ms|1) = σ(ms|0) = 1, since all other equilibria of this type

include checking non-silent messages of 1-sender. When g(χp) = χp ∈ (0,χp), an

equilibrium that is associated with the minimal cost of fact-checking has σ(m|1) =

σ(m|0) = 1, since all other equilibria of this type include checking message m of 1-sender

which bears additional costs. Finally, when g(χp) = χp and χp < 1, both 0-sender and

1-sender send only messages that are checked with probability χp. We conclude that

the minimal cost of implementing a fact-checking policy with χp is

CSFE(χp, g(·)) :=


µc, if χp = 1 and g(1) = 1,

g(χp)

1−p · c, otherwise.

The problem of the fact-checker with preferences uF(a,θ) is then given by

max
χp∈[0,1−p],g(·)

{
µuF(1,1) + (1 − µ)(1 − g(χp))uF(1,0)+

(1 − µ)g(χp)uF(0,0)− CSFE(χp, g(·))
}

,

subject to g(χp) ∈ [0,χp].

If p > 0, then the objective is a linear function of g(χp) with the following

solution:

g(χp)


= 0, if c > (1 − µ)(1 − p)(uF(0,0)− uF(1,0)),

∈ [0,1 − p], if c = (1 − µ)(1 − p)(uF(0,0)− uF(1,0)),

= 1 − p, if c < (1 − µ)(1 − p)(uF(0,0)− uF(1,0)).
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This solution can be achieved by choosing g(χp) = χp for all χp. Note that

g(χp) = 1 − p is only attainable by this choice of g(·).

If p = 0, then the objective is a linear function of g(χp) with a discontinuity at

g(χp) = 1. As a result,

g(χp)


= 0, if c > 1−µ

µ · (uF(0,0)− uF(1,0)),

∈ {0,1}, if c = 1−µ
µ · (uF(0,0)− uF(1,0)),

= 1, if c < 1−µ
µ · (uF(0,0)− uF(1,0)).

This solution can be achieved by choosing g(χp) = χp for all χp. Note that

g(χp) = 1 is only attainable by this choice of g(·).

This completes the proof, as the cost thresholds are inferred from the optimality

considerations above.

Proof of Proposition 1.4

Our assumption of Pareto-undominated χp-equilibrium guarantees that for any

χp, a subgame equilibrium for the sender and the receiver is chosen such that the

fact-checking cost is minimized for both fact-checkers.

Consider SUE. Suppose that p > 0. In this case, the cost threshold in the case

of one fact-checker is given by c(uF) = ω(1 − p)(uF(1,1) − uF(0,1)) by Proposition

1.3. Fix the strategy of the second fact-checker χp,2. Note that χp is bounded below by

χp,2 := max{χp,2(1),χp,2(0)}. Then the cheapest way to generate χp ∈ [χp,2,1 − p2] is

to check the message m ∈ argmaxχp,2(·) with probability χp,1 =
χp−χp,2
1−χp,2

. The problem

of the first fact-checker is

max
χp,1∈[0,1−p]

{
µχp(uF,1(1,1)− uF,1(0,1))− CSUE(χp,1)

}
,
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subject to χp = 1 − (1 − χp,1)(1 − χp,2). If c(uF,1) ≤ 0 or c ≥ c(uF,1), then the no fact-

checking policy is always optimal for the first fact-checker. Otherwise, the best response

of the first fact-checker is

χp,1(χp,2)


= 0, if χp,2 > 1 − c

c(uF,1)
,

∈ [0,1 − p], if χp,2 = 1 − c
c(uF,1)

,

= 1 − p, if χp,2 < 1 − c
c(uF,1)

.

Note that if c < pc(uF,1), then χp,1(·) = 1 − p is always a best response.

Similar calculation delivers the best response of the second fact-checker. If

c(uF,2) ≤ 0 or c ≥ c(uF,2), then χp,2(·) = 0. Otherwise,

χp,2(χp,1)


= 0, if χp,1 > 1 − c

c(uF,2)
,

∈ [0,1 − p], if χp,1 = 1 − c
c(uF,2)

,

= 1 − p, if χp,1 < 1 − c
c(uF,2)

.

If c(uF,i) ≤ 0 or c ≥ c(uF,i) is true for both i ∈ {1,2}, then χp,1 = χp,2 = 0 in the

equilibrium. If c(uF,i) ≤ 0 or c ≥ c(uF,i) is true for one i ∈ {1,2}, but not for j ̸= i, then

χp,i = 0 and χp,j = 1 − p. Now consider the case where c(uF,i) ≤ 0 or c ≥ c(uF,i) is false

for both i ∈ {1,2}. If c < pc(uF,i) is true for both i ∈ {1,2}, then χp,1 = χp,2 = 1 − p. If

c < pc(uF,i) is true for one i ∈ {1,2}, but not for j ̸= i, then χp,i = 1 − p and χp,j = 0

(when c = pc(uF,j), χp,j ∈ [0,1 − p]). Finally, suppose that c < pc(uF,i) is false for both

i ∈ {1,2}. Then there are three equilibria: (1) χp,1 = 0, χp,2 = 1 − p; (2) χp,1 = 1 − p,

χp,2 = 0; (3) χp,1 = 1 − c
c(uF,2)

, χp,2 = 1 − c
c(uF,1)

.

Suppose now that p = 0. In this case, the cost threshold in the case of one

fact-checker is given by c(uF) = uF(1,1)− uF(0,1) by Proposition 1.3. When χp,2 = 1,

the best response for the first fact-checker is χp,1 = 0. As before, the first fact-checker
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can generate χp ∈ [χp,2,1) by checking message m ∈ argmaxχp,2(·) with probability

χp,1 =
χp−χp,2
1−χp,2

∈ [0,1). The cost of doing so is CSUE(χp,1) =
µχp,1

ω · c. Alternatively, the

fact-checker can generate χp = 1 by selecting χp,1 = 1 at a cost of µc. Note that if

χp,1 > ω, then the latter option is cheaper. The problem of the first fact-checker is find a

maximum between

sup
χp,1∈[0,1)

{
µχp(uF,1(1,1)− uF,1(0,1))− CSUE(χp,1)

}

and

µ(uF,1(1,1)− uF,1(0,1))− µc,

subject to χp = 1 − (1 − χp,1)(1 − χp,2). There cannot be an interior solution. Indeed,

the objective in the inner problem is linear in χp,1. Thus, the supremum is achieved on

either χp,1 = 0 or χp,1 = 1. If the supremum is achieved on χp,1 = 1, then µ(uF,1(1,1)−

uF,1(0,1))− µc is greater than this supremum due to the lower cost of fact-checking.

If c(uF,1) ≤ 0 or c ≥ c(uF,1), then the no fact-checking policy is always optimal

for the first fact-checker. Otherwise, the best response of the first fact-checker is

χp,1(χp,2)


= 0, if χp,2 > 1 − c

c(uF,1)
,

∈ {0,1}, if χp,2 = 1 − c
c(uF,1)

,

= 1, if χp,2 < 1 − c
c(uF,1)

.

Similar calculation delivers the best response of the second fact-checker. If

c(uF,2) ≤ 0 or c ≥ c(uF,2), then χp,2 = 0. Otherwise, the best response of the second
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fact-checker is

χp,2(χp,1)


= 0, if χp,1 > 1 − c

c(uF,2)
,

∈ {0,1}, if χp,1 = 1 − c
c(uF,2)

,

= 1, if χp,1 < 1 − c
c(uF,2)

.

If c(uF,i) ≤ 0 or c ≥ c(uF,i) is true for both i ∈ {1,2}, then χp,1 = χp,2 = 0 in the

equilibrium. If c(uF,i) ≤ 0 or c ≥ c(uF,i) is true for one i ∈ {1,2}, but not for j ̸= i, then

χp,i = 0 and χp,j = 1. Now consider the case where c(uF,i) ≤ 0 or c ≥ c(uF,i) is false for

both i ∈ {1,2}. Then there are two equilibria: (1) χp,1 = 0, χp,2 = 1; (2) χp,1 = 1, χp,2 = 0.

Consider SFE. In this case, the cost threshold in the case of one fact-checker is

given by c(uF) = (1 − µ)(1 − p)(uF(0,0)− uF(1,0)) by Proposition 1.3. When p > 0, in

any χp-equilibrium, σ(m|1) = σ(m|0) = 1. When p = 0 and χp = 1, there are additional χ-

equilibria, in which σ(m|1) = 1 and σ(·|0) is arbitrary. Fix the strategy of the second fact-

checker. Note that χp is bounded below by χp,2 := max{χp,2(1),χp,2(0)}. To generate

χp ∈ [χp,2,1 − p2], the first fact-checker checks the message m ∈ argmaxχp,2(·) with

probability χp,1 =
χp−χp,2
1−χp,2

. The problem of the first fact-checker is

max
χp,1∈[0,1−p]

{
(1 − µ)g(χp)(uF,1(0,0)− uF,1(1,0))− CSFE(χp,1, g(·))

}
,

subject to χp = 1 − (1 − χp,1)(1 − χp,2), where g(·) is defined as follows. Let g(χp) ∈

[0,χp] be a function that tracks what type of χp-equilibrium is played. Specifically,

when g(χp) = 0, 1-sender’s strategy has a message checked with zero probability in its

support. When g(χp) = χp ∈ (0,χp), 1-sender’s strategy has a message checked with

probability χp in its support and σ(ms|1) = 0. Finally, when g(χp) = χp, 1-sender’s

strategy only has messages checked with probability χp in its support.
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Under our selection, g(χp) = χp, and

CSFE(χ, ·) :=


µc, if χ = 1,

χp
1−p · c, if χp < 1.

When p > 0, the fact-checker’s problem can be reduced to:

max
χp,1∈[0,1−p]

{
χp,1

(
(1 − χp,2)c(uF,1)− c

)}
.

Then the best responses are the same as in SUE, subject to a changed cost threshold c(·).

When p = 0, c(uF) =
1−µ

µ · (uF(0,0)− uF(1,0)) by Proposition 1.3. The problem

of the first fact-checker can be written as

max

 sup
χp,1∈[0,1)

{
µc(uF,1)χp −

χp,1

1 − p
· c
}

,µc(uF,1)− µc

 ,

subject to χp = 1 − (1 − χp,1)(1 − χp,2). There cannot be an interior solution for the

same reason as in the problem in SUE under the perfect fact-checking technology. Then

χp,1 = 1 is optimal when µc(uF,1)− µc ≥ µc(uF,1)χp,2, or c ≤ (1 − χp,2)c(uF,1). When

c ≥ (1 − χp,2)c(uF,1), χp,1 = 0 is optimal. Then the best responses are the same as in

SUE, subject to a changed cost threshold c(·). This completes the proof.

A.2 Omitted Proofs and Supplemental Material for
Chapter 2

All proofs in this appendix are for the general case where the agents (sellers) ob-

serve private data in the form of ωi ∈ Ωi and hence ω = (ω0,ω1, . . . ,ωn) (see Section 2.5).

The special case where only the principal (platform) observes data obtains by having

|Ωi| = 1 for all i ∈ I.
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Proof of Lemma 2.1

We will formulate Uq in terms of choosing a measure χ ∈ RA×Ω
+ :

Uq : max
χ

∑
ω∈Ω,a∈A

u0(a,ω)χ(a,ω),

subject to for all i ∈ I,ωi ∈ Ωi, and ai, a′i ∈ Ai,

∑
ω−i∈Ω−i,a−i∈A−i

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
χ(ai, a−i,ω) ≥ 0, (A.1)

and for all ω ∈ Ω,

∑
a∈A

χ(a,ω) = q(ω).

It is convenient to express this problem in matrix form. Fix an arbitrary total

ordering of the set A × Ω. We denote by u0 ∈ RA×Ω the vector whose entry correspond-

ing to (a,ω) is u0(a,ω). For every player i, let Ui ∈ R(Ai×Ai×Ωi)×(A×Ω) be a matrix thus

defined: For each row (a′i, a′′i ,ω′
i) ∈ Ai × Ai × Ωi and column (a,ω) ∈ A × Ω, let the

corresponding entry be

Ui((a′i, a′′i ,ω′
i), (a,ω)) =


ui(a′i, a−i,ω)− ui(a′′i , a−i,ω) if a′i = ai,ω′

i = ωi,

0 else.

Thus, Ui(a′i, a′′i ,ω′
i) denotes the row labeled by (a′i, a′′i ,ω′

i) (which defines the correspond-

ing obedience constraint) and Ui(a,ω) denotes the column labeled by (a,ω). Define

the matrix U by stacking all the matrices {Ui}i∈I on top each other. Finally, define the

indicator matrix I ∈ {0,1}Ω×(A×Ω) such that, for each row ω′ and column (a,ω′),

I(ω′, (a,ω)) :=


1 if ω′ = ω,

0 else.
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With this notation and treating q as a vector, Uq can be written as follows:

max
χ

uT
0 χ,

s.t. Uχ ≥ 0,

Iχ = q,

χ ≥ 0.

(A.2)

By standard linear-programming arguments (Bertsimas and Tsitsiklis, 1997) the

dual of Uq can be written as

min
λ,v

0Tλ + qTv,

subject to, for all i = 1, . . . ,n, ai, a′i ∈ Ai, and ωi ∈ Ωi,

λi(a′i|ai,ωi) ≥ 0,

v(ω) ∈ R for all ω ∈ Ω, and for all (a,ω) ∈ A × Ω

u0(a,ω) ≤ v(ω)− ∑
i∈I

 ∑
a′i∈Ai

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
λi(a′i|ai,ωi)

 .

The objective simplifies to

min
λ,v

∑
ω∈Ω

v(ω)q(ω).

The second set of constraints can be written as

v(ω) ≥ u0(a,ω) + ∑
i∈I

 ∑
a′i∈Ai

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
λi(a′i|ai,ωi)

 .

Define the sum in this expression by t(a,ω) for all (a,ω). Since for every ω ∈ Ω

this constraint has to hold for all a ∈ A and we have a minimization problem, we
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conclude that each v(ω) has to satisfy

v(ω) = max
a∈A

{u0(a,ω) + t(a,ω)} .

Thus, we obtain our data-value problem Vq.

Non-degeneracy and a Remark on the Structure of Solutions

In Section 2.2, we assumed that no more than |A × Ω| of the constraints (2.1) are

ever active at the same time. We now formalize that assumption following Bertsimas

and Tsitsiklis (1997). Consider the polyhedron defined by the constraints in (A.2) and

recall that χ ∈ RA×Ω
+ , which has dimension |A × Ω|. A basic feasible solution of Uq is

a χ such that (i) all equality constraints are active, (ii) |A × Ω| of the constraints active

at χ are linearly independent, and (iii) all constraints are satisfied. Formally, we assume

the following.

Assumption A.2.1 (Non-degeneracy). At every basic feasible solution χ of problem Uq

there are only |A × Ω| active constraints.

The next remark describes the structure of optimal solutions of Uq and Vq.

Remark A.2.1. We can transform Uq to the standard form US
q which can be written as

follows:
max

χ,s
u0χ,

s.t. Uχ − s = 0,

Iχ = q,

χ, s ≥ 0,

(A.3)

where each si(a′i|ai,ωi) is a nonnegative slack variable. The dual of US
q coincides with

the data-value problem Vq. Note that Uq always has an optimal solution χ∗
q , which is

generically unique and hence corresponds to an extreme point of the polyhedron of
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feasible χ. Moreover, this χ∗
q is an optimal solution of US

q as well. The extreme point

χ∗
q is nondegenerate by Assumption A.2.1 and characterized by a square, nonsingular,

active-constraint submatrix B consisting of linearly independent rows of the stacked

matrix
[

U −1
I 0

]
, where 1 is the identity matrix. As illustrated in Bertsimas and Tsitsiklis

(1997, Chapter 4), given B, we have

[
χ∗

q

s∗q

]
= B−1

[
0
q

]
, (A.4)

where s∗q is the vector of optimal slack variables in US
q . A corresponding solution of Vq

is given by [
v∗q
λ∗

q

]
= u0B−1. (A.5)

It follows that as long as the optimal solutions of Uq and Vq are defined by the same

extreme point given by B, χ∗
q varies with q, but (v∗q ,λ∗

q) does not.

Proof of Lemma 2.2

Fix an optimal solution (v∗q ,λ∗
q) of Vq. For every q, ω ∈ Ω, and x(·|ω) ∈ CE(Γω),

by (2.4) we have

v∗q(ω) ≥ ∑
a∈A

u0(a,ω)x(a|ω) + ∑
a∈A

t(a,ω)x(a|ω)

= ∑
a∈A

u0(a,ω)x(a|ω)

+ ∑
a∈A

{
∑
i∈I

∑
âi∈Ai

(ui(ai, a−i,ω)− ui(âi, a−i,ω))λ∗
i (âi|ai,ωi)

}
x(a|ω)

= ∑
a∈A

u0(a,ω)x(a|ω)

+∑
i∈I

∑
ai,âi∈Ai

λ∗
i (âi|ai,ωi)

{
∑

a−i∈A−i

(ui(ai, a−i,ω)− ui(âi, a−i,ω)) x(a|ω)

}
≥ ∑

a∈A
u0(a,ω)x(a|ω),
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where the last inequality follows because any x(·|ω)∈CE(Γω) is defined by the property

that, for all i ∈ I and ai, a′i ∈ Ai,

∑
a−i∈A−i

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
x(ai, a−i|ω) ≥ 0.

Since x(·|ω) is an arbitrary element of CE(Γω), we conclude that v∗q(ω) ≥ ū(ω).

Proof of Proposition 2.1

By complementary slackness, x∗q(a,ω) > 0 implies v∗q(ω) = u0(a,ω) + t∗q(a,ω).

Hence,

v∗q(ω) = ∑
a∈A

u0(a,ω)x∗q(a|ω) + ∑
a∈A

t∗q(a,ω)x∗q(a|ω) = u∗
q(ω) + t∗q(ω).

Suppose we start from database q, with q(ω) > 0, and we increase the quantity

of ω-datapoints from q(ω) to q̂(ω), thus obtaining the database q̂. We can write

U∗(q̂)− U∗(q) = u∗
q̂(ω)[q̂(ω)− q(ω)] + ∑

ω′∈Ω
[u∗

q̂(ω
′)− u∗

q(ω
′)]q̂(ω′)

Dividing both sides by q̂(ω)− q(ω), taking limits as q̂(ω)→ q(ω), and using Lemma 2.1,

we obtain that

t∗q(ω) = v∗q(ω)− u∗
q(ω) =

∂U∗(q)
∂q(ω)

− u∗
q(ω)

= lim
q̂(ω)→q(ω)

∑ω′∈Ω[u∗
q̂(ω

′)− u∗
q(ω

′)]q̂(ω′)

q̂(ω)− q(ω)
= ∑

ω′∈Ω

∂u∗
q(ω

′)

∂q(ω)
q(ω′)

= ∑
ω′∈Ω,a∈A

u0(a,ω′)

(
lim

q̂(ω)→q(ω)

[x∗q̂(a|ω′)− x∗q(a|ω′)]

q̂(ω)− q(ω)

)
q̂(ω′) =

= ∑
ω′∈Ω,a∈A

u0(a,ω′)
∂x∗q(a|ω′)

∂q(ω)
q(ω′),
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where the existence of the derivative
∂x∗q (a|ω′)

∂q(ω)
almost everywhere follows from (A.4).

Proof Proposition 2.2

First, note that we can write u0(a1,ω) = πa1I{ω ≥ a1}+ (1 − π)max{ω − a1, 0}

as

[a(2π − 1) + (1 − π)ω]I{ω ≥ a},

which is strictly increasing in a if and only if π > 1
2 . Let x̄∗ be the profit-maximizing

solution (i.e., for π = 1) and x∗ be the surplus-maximizing solution (i.e., for π = 0).

Lemma A.1. x̄∗ is optimal for all π ≥ 1
2 and x∗ is optimal for all π ≤ 1

2 .

Proof. Fix any (non-trivial) q and π ∈ (0,1). Problem Uq involves maximizing

∑
ω,a

uπ(a,ω)x(a|ω)q(ω) = ∑
ω≥a

[a(2π − 1) + (1 − π)ω]x(a|ω)q(ω),

subject to constraints (2.1).

Suppose that π > 1
2 . Note that x̄∗ is feasible and maximizes the objective function

pointwise for every ω. Indeed, since x̄∗(ω|ω) = 1, for every ω we have that x̄∗ selects

the highest a ≤ ω for every ω, thereby maximizing a(2π − 1)I{ω ≥ a}; it also maximizes

∑a≤ω ωx(a|ω) for every ω. We can invoke the Theorem of the Maximum to extend the

optimality of x̄∗ at π = 1
2 .

Suppose now that π < 1
2 . Now for each ω the objective is to pair ω with the smallest

possible a and do so with the highest probability allowed by (2.1). This is what x∗

essentially does. We can again invoke the Theorem of the Maximum to extend the

optimality of x∗ at π = 1
2 .

We now derive the expression of v∗q(ω) in the statement of the proposition. The

case of π ≥ 1
2 follows immediately from the fact that x̄∗ is full disclosure. Now suppose
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π < 1
2 . We will construct a candidate v∗q and prove it solves Vq using strong duality.

First, under x∗ we have

U∗(q) = ∑
ω,a

[πu1(a,ω) + (1 − π)u0(a,ω)]x∗(a|ω)q(ω)

= π ∑
ω,a

aI{ω ≥ a}x∗(a|ω)q(ω)

+(1 − π)

 ∑
ω<aq

ωq(ω) + ∑
ω≥aq

(ω − aq)q(ω)

 .

Note that

∑
ω,a

aI{ω ≥ a}x∗(a|ω)q(ω) = aq ∑
ω≥aq

q(ω),

because the left-hand side is the seller’s expected profits under x∗, which by construction

equal to the expected profit from the fixed uninformed price aq. Therefore, we can write

U∗(q) = πaq ∑
ω≥aq

q(ω) + (1 − π)

 ∑
ω<aq

ωq(ω) + ∑
ω≥aq

(ω − aq)q(ω)


= (2π − 1)aq ∑

ω≥aq

q(ω) + (1 − π)∑
ω

ωq(ω).

Now we construct (v∗q ,λ∗
q) and show that it satisfies all dual constraints and yields

∑ω v∗q(ω)q(ω) = U∗(q), which proves that (v∗q ,λ∗
q) is optimal by strong duality. Recall

that, in general, for all (a,ω) the dual constraint reads as

v(ω) ≥ uπ(a,ω) + ∑
a′
[u1(a,ω)− u1(a′,ω)]λ(a′|a).

Let λ∗
q(a′|a) = 0 for all a′ ̸= aq. Let λ∗

q(aq|a) = 1 − 2π for all a ∈ supp x(·|ω) for some

ω and λ∗
q(aq|a) = 0 otherwise. Given this, for ω < aq, the right-hand side of the dual
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constraint equals


πa + (1 − π)(ω − a) + aλ∗

q(aq|a) if a ≤ ω,

0 if a > ω.

Given λ∗
q(aq|a), the first line always equals (1 − π)ω > 0. Therefore, for ω < aq define

v∗q(ω) = (1 − π)ω.

For ω ≥ aq, the right-hand side of the dual constraint equals


πa + (1 − π)(ω − a) + (a − aq)λ∗

q(aq|a) if a ≤ ω

−aqλ∗
q(aq|a) if a > ω.

Given λ∗
q(aq|a), the first line always equals

(2π − 1)aq + (1 − π)ω = πaq + (1 − π)(ω − aq) > 0.

Therefore, for ω ≥ aq define

v∗q(ω) = (2π − 1)aq + (1 − π)ω.

Note that by construction v∗q satisfies all dual constraint and ∑ω v∗q(ω)q(ω) = U∗(q), as

desired.

It follows immediately that for π < 1
2 we have t∗q(ω)> 0 for ω < aq and t∗q(ω)≤ 0

for ω ≥ aq.
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Proof Proposition 2.4

By the formulation of Vq and Lemma 2.2, the polyhedron of feasible solutions

of Vq, denoted by F(Vq) does not contain a line because all dual variables are bounded

from below. By Theorem 2.6 in Bertsimas and Tsitsiklis (1997), F(Vq) has at least one

extreme point and at most finitely many of them by Corollary 2.1 in Bertsimas and

Tsitsiklis (1997). By Theorem 4.4 in Bertsimas and Tsitsiklis (1997), Vq has at least one

optimal solution. By Theorem 2.7 in Bertsimas and Tsitsiklis (1997), we can focus on

solutions that are extreme points of F(Vq).

Fix q and suppose that the optimal solution (v∗q ,λ∗
q) of the dual of Uq is unique.

As explained in Remark A.2.1, there exists a submatrix B such that (v∗q ,λ∗
q) satisfies (A.5).

Given Assumption A.2.1, Theorem 3.1 and Exercise 3.6 in Bertsimas and Tsitsiklis (1997)

imply that U −1

I 0

B−1
[

0
q

]
≥
[

0
q

]
.

The inequality is strict for each row of U that corresponds to λ∗
q,i(a′i|ai,ωi) = 0:

[
Ui(ai, a′i,ωi) | − 1i(ai, a′i,ωi)

]
B−1

[
0
q

]
> 0, (A.6)

where 1i(ai, a′i,ωi) is the row of the identity matrix 1 that corresponds to (i, ai, a′i,ωi).

Note that for each row ω of the indicator matrix I (i.e., I(ω)), which corresponds to

variable v∗q(ω), it automatically holds that
[
I(ω) | 0

]
B−1

[
0
q

]
= q(ω). Similarly, for

each row of U that corresponds to λ∗
q,i(a′i|ai,ωi) > 0, it holds that

[
Ui(ai, a′i,ωi) | −

1i(ai, a′i,ωi)
]
B−1

[
0
q

]
= 0 as long as B identifies the optimal extreme point.

Now consider changes in q and note that it only enters the objective of Vq. Each

condition (A.6) defines an open set of q’s in RΩ
+ that satisfy it. Define (v∗B,λ∗

B) identified
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by B as in (A.5) and

Q(B) = {q : (A.6) holds for all i ∈ I and (ai, a′i,ωi) s.t. λ∗
B,i(ai|a′i,ωi) = 0}.

Note that Q(B) is an open set because it is the intersection of finitely many open sets.

Now recall that there are only finitely many extreme points of the dual polyhe-

dron of feasible solutions. Therefore, there are finitely many submatrices {B1, . . . ,BM}

such that each identifies an optimal (v∗Bm
,λ∗

Bm
), where v∗Bm

is unique for all q ∈ Q(Bm).

For all m = 1, . . . , M, define Qm = Q(Bm). By construction, each Qm is open and

q,q′ ∈ Qm implies that v∗q = v∗q′ . Since v∗q is generically unique with respect to q, it

follows that RΩ
+ \ ∪mQm has Lebesgue measure zero.

Proof of Proposition 2.3

Fix µ1,µ2 ∈ ∆(Ω). Let Ωi = {ω ∈ Ω : µi(ω) > µj(ω), j ̸= i}, i ∈ {1,2}, and Ω3 =

Ω \ {Ω1 ∪ Ω2}.

Let Y = RΩ × R
A1×A1
+ × . . . × R

An×An
+ . Associate the canonical component-wise

order with Y, with an exception that the order is reversed for ω ∈ Ω1. Y is a lattice, with

a typical element (v,λ), where v ∈ RΩ and λ ∈ R
A1×A1
+ × . . . × R

An×An
+ .

The data-value problem is equivalent to the problem max(v,λ)∈S f (v,λ;µ), where

f (v,λ;µ) = −∑ω∈Ω v(ω)µ(ω) and the feasible set S ⊂ Y is given by the inequalities

v(ω) ≥ u0(a,ω) + ∑
i∈I

∑
a′i∈Ai

(ui(ai, a−i,ω)− ui(a′i, a−i,ω))λi(a′i|ai,ωi).

We treat µ as a parameter. Note that S does not depend on µ. Furthermore, µ is an

element of (|Ω| − 1)-dimensional simplex, with which we associate the following partial

order: µ′ ≥ µ if µ′(ω) ≥ µ(ω) for ω ∈ Ω1, µ′(ω) ≤ µ(ω) for ω ∈ Ω2, and µ′(ω) = µ(ω)

for ω ∈ Ω3. Note that µ1 ≥ µ2 in accordance with this partial order.
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We want to show that f is supermodular in (v,λ) and has increasing differences

in (v,λ;µ). Observe that

f (v′,λ′;µ) + f (v′′,λ′′;µ) = − ∑
ω∈Ω

v′(ω)µ(ω)− ∑
ω∈Ω

v′′(ω)µ(ω)

= − ∑
ω∈Ω

(v′(ω) + v′′(ω))µ(ω)

= − ∑
ω∈Ω

(max{v′(ω),v′′(ω)}+ min{v′(ω),v′′(ω)})µ(ω)

= f ((v′,λ′) ∧ (v′′,λ′′);µ) + f ((v′,λ′) ∨ (v′′,λ′′);µ).

Then f is supermodular in (v,λ).

Fix (v′,λ′) ≥ (v,λ) and µ′ ≥ µ. Observe that

( f (v′,λ′,µ′)− f (v,λ,µ′))− ( f (v′,λ′,µ)− f (v,λ,µ))

= ∑
ω∈Ω

(v(ω)− v′(ω))(µ′(ω)− µ(ω))

= ∑
ω∈Ω1

(v(ω)− v′(ω))(µ′(ω)− µ(ω)) + ∑
ω∈Ω2

(v(ω)− v′(ω))(µ′(ω)− µ(ω)) ≥ 0,

where the inequality follows from the adapted partial orders. Then, f has increasing

differences in (v,λ;µ).

Finally, by Theorem 5 in Milgrom and Shannon (1994), argmax(v,λ)∈S f (v,λ;µ) is

monotone nondecreasing in µ. This monotone comparative statics coupled with generic

uniqueness of v∗q with respect to q imply that if µq(ω) > µq′(ω) for two databases q and

q′ then v∗q(ω) ≤ v∗q′(ω). That is, this monotonicity of v∗q(ω) holds for any selection v∗q

from the optimal solution correspondence of Vq.

We now prove the second part of the proposition. When only records of type

ω are present in the database (i.e., µq(ω) = 1), we have v∗q(ω) = ū(ω). Indeed, the
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definition of ū(ω) implies that it can be written as

ū(ω) = min
bω ,ℓω

max
a∈A

{u0(a,ω) + tλω
(a,ω)} ,

where λω = (λ1,ω, . . . ,λn,ω), with λi,ω : Ai → ∆(Ai), and

tλω
(a,ω) = ∑

i∈I
∑

a′i∈Ai

(ui(ai, a−i,ω)− ui(a′i, a−i,ω))λi,ω(a′i|ai,ωi).

For ε > 0, consider a set Mε(ω) = {µ ∈∆(Ω) : µ(ω′)∈ (0, ε) for ω ̸=ω′,µ(ω)< 1}.

By Proposition 2.4, there exists a finite collection {P1, . . . ,PK} of open, convex, and

disjoint subsets of ∆(Ω) such that ∪kPk has measure one and, for every k, v∗q is unique

and constant for q, with µq ∈ Pk. Therefore, we can always find Pm ∈ {P1, . . . ,PK}, such

that Pm ∩ Mε(ω) is nonempty, open, and convex for all 0 < ε ≤ δ, where δ > 0. Then

v∗q(ω) is unique and constant for all q ∈ RΩ
++, with µq ∈ Pm ∩ Mδ(ω). Let us refer to

this constant as û(ω). If û(ω) = ū(ω), then the result follows. Suppose, on the contrary,

that û(ω) ̸= ū(ω). We can always pick a sequence µn, n ∈ N, from Pm ∩ Mδ(ω) that

converges to µ̃, with µ̃(ω) = 1. Then for every n ∈ N, v∗q(ω) = û(ω) for every q, such

that µq = µn. By the Berge’s maximum theorem, (v∗q ,λ∗
q) is an upper-hemicontinuous

correspondence and therefore has a closed graph. Hence, û(ω) ∈ v∗q(ω) for every q,

with µq = µ̃. We obtain the desired contradiction, since v∗q(ω) = ū(ω) for such q.

Proof of Proposition 2.5

If all types of records are perfect substitutes, MRSq(ω,ω′) = − v∗q (ω)

v∗q (ω′) must be

constant for all (ω,ω′) and q. By Lemma 2.2 and Proposition 2.3, it follows that v∗q(ω) =

ū(ω) for all ω and q. It follows that it is optimal to always fully disclose every record.

Fix q ∈ RΩ
++. Suppose that an optimal mechanism x∗q involves full disclosure.
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Then, we have

v∗q(ω) = u∗
q(ω) + ∑

a∈A
t∗q(a,ω)x∗q(a|ω) ≥ u∗

q(ω),

where the inequality follows from x∗q(·|ω) ∈ CE(Γω) for all ω. Since by Lemma 2.1

we must have ∑ω v∗q(ω)q(ω) = ∑ω u∗
q(ω)q(ω), it follows that v∗q(ω) = u∗

q(ω) for all ω.

Finally, since x∗q is optimal, it must be that u∗
q(ω) = ū(ω) for all ω. Now, note that v∗q

defines a supporting hyperplane of the iso-payoff line of level U∗(q) at q. The intercept

of such an hyperplane on each ω-axis is q̂ω(ω) = U∗(q)
ū(ω)

and q̂ω(ω′) = 0 for ω′ ̸= ω.

By definition, each q̂ω also belongs to the iso-payoff line of level U∗(q) and therefore

U∗(q) = U∗(q̂ω) for all ω. In other words, the intercepts of the hyperplane and the

iso-payoff line coincide for all ω.

Now consider any q′ ∈ R++, q′ ̸= q, that belongs to the supporting hyperplane

of level U∗(q) at q. By definition, we can obtain q′ as a convex combination of intercepts

q̂ω on each axis. Specifically, there exists β ∈ ∆(Ω) such that q′(ω) = β(ω)q̂ω(ω) for

all ω. By concavity of U∗(q) (Footnote 17), we must have that

U∗(q′) = ∑
ω∈Ω

v∗q′(ω)q′(ω) ≤ U∗(q) = ∑
ω∈Ω

β(ω)U∗(q̂ω) = ∑
ω∈Ω

ū(ω)q′(ω).

But since v∗q′(ω) ≥ ū(ω) for all ω by Lemma 2.2, we must have v∗q′(ω) = ū(ω) for all ω.

Then v∗q′′(ω) = ū(ω) for all q′′ that belong to the supporting hyperplane of level U∗(q)

at q. Finally, since v∗q is invariant to scaling of q, it follows that v∗q(ω) = ū(ω) for all ω

and all q ∈ RΩ
+.
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Proof of Corollary 2.4

For π > 1
2 , we have MRSq(ω,ω′) = − ω

ω′ and all ω,ω′. Consider now π < 1
2 :

MRSq(ω,ω′) =


− ω

ω′ if ω,ω′ < aq

− (1−π)ω
πaq+(1−π)(ω′−aq)

if ω < aq ≤ ω′

− πaq+(1−π)(ω−aq)

πaq+(1−π)(ω′−aq)
if ω,ω′ ≥ aq.

Thus, we have

∂MRSq(ω,ω′)

∂π
=


0 if ω,ω′ < aq

ωaq
[πaq+(1−π)(ω′−aq)]2

if ω < aq ≤ ω′

− aq(ω′−ω)

[πaq+(1−π)(ω′−aq)]2
if ω,ω′ ≥ aq.

Finally, it is easy to see that MRSq(ω,ω′)<− ω
ω′ for ω < aq ≤ ω′ and that MRSq(ω,ω′)>

− ω
ω′ for ω′ > ω ≥ aq.

Proof of Corollary 2.5

Fix ω, q, and a refinement σω. Since ui(a,ω) = Eσω [ui(a,ω′)|ω] for all i, by (2.4)

we have

v∗q(ω) = max
a∈A

∑
ω′∈Ω

[u0(a,ω′) + t∗q(a,ω′)]σω(ω
′)

≤ ∑
ω′∈Ω

max
a∈A

[u0(a,ω′) + t∗q(a,ω′)]σω(ω
′) = ∑

ω′∈Ω
v∗q(ω

′)σω(ω
′). (A.7)

Thus, if refining αq(ω) of the original records of type ω according to σω does not change

the value of any record, then (A.7) implies the desired inequality. Now consider the

other case: There exists a share α > 0 such that refining αq(ω) of the current records

of type ω according to σω leads to a new database qα such that v∗qα
(ω′) ̸= v∗q(ω′) for

124



some ω′ ∈ suppσω or ω′ = ω. Since the total quantity of records does not change, we

have that µqα(ω) < µq(ω) and µqα(ω
′) > µq(ω′) for all ω′ ∈ suppσω. By Proposition

2.3, it follows that v∗qα
(ω) ≥ v∗q(ω) and v∗qα

(ω′) ≤ v∗q(ω′) for all ω′ ∈ suppσω and that

the indirect effects are increasing in α. Now, note that for all α,

∑
ω′∈Ω

v∗qα
(ω′)σω(ω

′) ≥ v∗qα
(ω) ≥ v∗q(ω), (A.8)

where the first inequality follows from (A.7). This implies that the direct effect of a

refinement is always non-negative and decreasing in α.

Proof of Proposition 2.6

The directional derivative of U∗ at any q̂ in the direction σω is equal to

∑
ω′∈Ω

v∗q̂(ω
′)σω(ω

′)− v∗q̂(ω).

The linear path from q to qα can be parametrized as follows: for t ∈ [0,1], define qt(ω) =

q(ω)− tαq(ω), qt(ω′) = q(ω′) + tασω(ω′)q(ω) for ω′ ∈ suppσω, and qt(ω′′) = q(ω′′)

for remaining ω′′. Note that ∑ω′∈Ω v∗qt
(ω′)σω(ω′)− v∗qt

(ω) is non-negative by (A.7) and

decreasing in t by the scarcity principle. Finally, by the gradient theorem,

U∗(qα)− U∗(q) =
1∫

0

v∗qt
· ∇qt dt = αq(ω)

1∫
0

[
∑

ω′∈Ω
v∗qt

(ω′)σω(ω
′)− v∗qt

(ω)

]
dt ≥ 0,

where ∇qt is the gradient of qt with respect to t.

Suppose that there exists a common ã ∈ supp x∗q(·|ω) that satisfies x∗q(ã|ω′′) > 0

for all ω′′ ∈ suppσω. By complementary slackness, it follows that for all ω′′ ∈ suppσω,

125



we have v∗q(ω′′) = u0(ã,ω′′) + t∗q(ã,ω′′). Therefore, by the scarcity principle,

∑
ω′′∈Ω

v∗qα
(ω′′)σω(ω

′′) ≤ ∑
ω′′∈Ω

v∗q(ω
′′)σω(ω

′′) = v∗q(ω) ≤ v∗qα
(ω),

which, combined with (A.8), implies that ∑ω′′∈Ω v∗qα
(ω′′)σω(ω′′) = v∗qα

(ω) for all α ∈

[0,1]. In turn, this implies that U∗(qα) = U∗(q) for all α ∈ [0,1].

Conversely, suppose that for every â ∈ supp x∗q(·|ω) there exists ω′ ∈ suppσω that

satisfies x∗q(â|ω′) = 0. If the solution to the data-value problem is unique for database q—

which is the case generically—then x∗q(â|ω′) = 0 implies v∗q(ω′) > u0(â,ω′) + t∗q(â,ω′)

by strict complementary slackness. This and Proposition 2.4 imply that there exists t′ > 0

such that ∑ω′∈Ω v∗qt
(ω′)σω(ω′) > v∗qt

(ω) for all t ∈ [0,1]. It follows that U∗(qα) > U∗(q).

Interpreting the Data-Value Problem

To further understand the value of data records and the externalities between

them, we provide a stand-alone interpretation of the data-value problem Vq. With minor

adjustments, this extends to the problems described in Section 2.5.3. We fix q ∈ RΩ
++

and so drop it from notation.

We first rewrite V in the following equivalent way by exploiting the structure

of the specific problem at hand. For every i, we can set λi(ai|ai) = 1 (or any strictly

positive number) for all ai ∈ Ai. Given this, for every i and (ai) ∈ Ai, define

bi(ai) = ∑
a′i∈Ai

λi(a′i|ai),

which is strictly positive by construction. Also, for every i and (a′i, ai) ∈ Ai × Ai define

ℓi(a′i|ai) =
λi(a′i|ai)

bi(ai)
,

which implies that ℓi(·|ai) ∈ ∆(Ai). After constructing b = (b1, . . . ,bn) and ℓ= (ℓ1, . . . ,ℓn)
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in this way, for each i ∈ I and (a,ω) define

ti(a,ω) = bi(ai) ∑
a′i∈Ai

(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
ℓi(a′i|ai)

and t(a,ω) = ∑i∈I ti(a,ω). The data-value problem can be written as

V : min
v,b,ℓ

∑
ω∈Ω

v(ω)q(ω)

s.t. for all ω ∈ Ω,

v(ω) = max
a∈A

{
u0(a,ω) + t(a,ω)

}
, (A.9)

Gambles Against the Agents

Our interpretation hinges on unpacking how the platform determines the sellers’

contributions to the externalities between records. By (A.9), it does so by choosing b

and ℓ, which fully pin down t(a,ω) and hence v(ω). Recall that the platform wants

to minimize the values of its records, so it would like to lower t(a,ω) = ∑i∈I ti(a,ω) as

much as possible for all (a,ω). Each term of ti(a,ω) takes the form

bi(ai)ℓi(a′i|ai)
(
ui(ai, a−i,ω)− ui(a′i, a−i,ω)

)
,

which contributes to lowering ti(a,ω) if and only if ℓi(a′i|ai) > 0 and ui(ai, a−i,ω) <

ui(a′i, a−i,ω). That is, if seller i knew ω and his opponents’ offers a−i, he would strictly

prefer a′i to ai. In this case, offering ai amounts to making a mistake from an ex-post

viewpoint. We will say that seller i regrets offering ai.

Thus, inducing sellers to make offers they will regret emerges as an intrinsic goal

of the platform’s problem—together with maximizing u0. In this view, (bi,ℓi) becomes

an exploitation strategy on the part of the platform against seller i. Inducing regrettable

actions requires withholding information from seller i about ω or a−i. This explains why
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the platform may prefer partial disclosure, but from the perspective of the data-value

problem. In the end, v(ω) results from a trade-off between u0(a,ω) and the return from

inducing actions the sellers regret.

This return depends on the structure of b and ℓ, which define a family of gambles

against the sellers. To see this, fix (a,ω) and seller i. Then, ℓi(·|ai) ∈ ∆(Ai) defines a

lottery whose prize for the platform is ui(ai, a−i,ω)− ui(a′i, a−i,ω) for each a′i; the scaling

term bi(ai) defines the stakes that it bets on this lottery. The platform “wins” when

ui(ai, a−i,ω) < ui(a′i, a−i,ω) and “loses” otherwise. Thus, t(a,ω) is the overall expected

prize from (b,ℓ). We can then think of V as a fictitious environment where money is a

medium of exchange and the platform can write monetary gambling contracts with each

seller. Such contracts are enforced through contingent-claim markets that determine

prizes based on the interaction’s type ω and outcome a.1

We can then link how the platform chooses these gambles in V with the ex-

ternalities between records. Negative externalities t∗(ω) < 0 correspond to favorable

gambles, in the sense that the platform wins in expectation. This requires the help of

other records to withhold information and induce the sellers to make offers they will

regret. Conversely, positive externalities t∗(ω) > 0 correspond to unfavorable gambles.

Corollary 2.1 implies that, at the optimum, the platform chooses gambles that favor

it for some records, but not for others. In fact, this stems from deeper constraints and

trade-offs in the use of such gambles against the sellers.

Feasible Gambles and Trade-offs

The feasible gambles in V have specific features that shed light on the data-value

problem.

Some features reflect structural properties of V . While the prizes of each gamble

are contingent on ω and the entire a, for each seller i both bi and ℓi can depend only on ai.

1See Nau (1992) for a related interpretation.
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This limits the platform’s ability to tailor its gambles across records and sellers. These

properties reflect in V key interdependences in U : The independence of (bi,ℓi) from

a−i reflects the interdependence in U between sellers’ incentives; the independence of

(bi,ℓi) from ω reflects the non-separability of U across data records. To see this, suppose

ℓi(âi|ai)> 0. Then, (bi,ℓi) links the value formula (A.9) for (ai, a−i,ω) and (ai, a′−i,ω
′). In

particular, if ui(ai, a−i,ω) < ui(âi, a−i,ω) but ui(ai, a′−i,ω
′) > ui(âi, a′−i,ω

′), the platform

faces a trade-off because it may not be possible to use (bi,ℓi) to lower v(ω) without

also raising v(ω′). This is another way to see why and how externalities arise between

records. When committing to (b,ℓ) the platform has to take into account these effects of

each (bi,ℓi) across records.

How it solves the trade-offs depends on the relative frequency of records in the

database (hence q). Importantly, this transformation of non-separabilities in U into

independence properties of (b,ℓ) is what enables V to assign values individually to

each record.

The platform faces other constraints in its ability to jointly exploit the sellers.

Given V , it is clear that it would want to choose (b,ℓ) so that t(a,ω) ≤ 0 for all (a,ω)

with some strict inequality. Such gambles would guarantee a sure arbitrage against

the sellers, but are infeasible in the following sense. By complementary slackness

x∗(a|ω)> 0 implies v∗(ω) = u0(a,ω) + t∗(a,ω). Thus, since every ω must induce some

a for every x, action profiles that cannot be in the support of any obedient x(·|ω) are

irrelevant for determining v∗(ω). Given this, define

X = {(a,ω) ∈ A × Ω : x(a|ω) > 0 for some obedient x} .

Let G(X) be the set of gambles that can be contingent only on (a,ω) ∈ X (formally, we

restrict the functions b and ℓ to the subdomain X). Note that restricting the platform to

choosing from G(X) in V is immaterial, as restricting x to domain X is immaterial in U .
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Proposition A.2.1. For every gamble (b,ℓ) ∈ G(X), if t(a,ω) < 0 for some (a,ω), there

must exist (a′,ω′) such that t(a′,ω′) > 0.

This property is closely related to a similar result in Nau (1992). For completeness

we provide a proof below, which relies on a dual characterization of X using Farkas’

lemma.

The economic takeaway is that in the attempt to minimize values v by exploiting

the sellers with (b,ℓ), the platform faces a fundamental trade-off that is a hallmark of V .

Successfully exploiting the sellers for records of type ω with some outcome a requires

paying the cost of losing against them for records of some other type ω′ or outcome a′.

This result sheds light on how and how much the platform can actually manipulate

sellers by conveying information.

Proof of Proposition A.2.1 This proof is for the general case where the principal can

choose a0 ∈ A0 and each agent i can privately observe some own data ωi ∈ Ωi about

the interaction he is in. Fix (a∗,ω∗) ∈ X and introduce 1a∗,ω∗ as a vector of size |X| with

ε > 0 in the position indexed by (a∗,ω∗) and 0 in all other positions. Constitute a matrix

W such that its rows are indexed by (a,ω) ∈ X, its columns are indexed by (i, a′i, ai,ωi),

i ∈ I, and its entries are as follows:

W
(
(ã, ω̃), (i, a′i, ai,ωi)

)
= 1{ai = ãi,ωi = ω̃i} (ui(ai, ã−i,ωi, ω̃−i)− ui(a′i, ã−i,ωi, ω̃−i)).

By a variant of the Farkas’ lemma, either there exists λ ≥ 0, such that Wλ ≤

−1a∗,ω∗ , or else there exists χ ≥ 0, such that WTχ ≥ 0, with χT1a∗,ω∗ > 0. Now we show

that the latter is true. Indeed, we can pick χ(a,ω) = q(ω)x(a|ω), where x is obedient

and satisfies x(a∗|ω∗) > 0. We can find such x, since (a∗,ω∗) ∈ X. Then χ ≥ 0 and

χT1a∗,ω∗ > 0 are satisfied automatically. Finally, WTχ ≥ 0 corresponds exactly to the set

of obedience constraints in Uq restricted to the subdomain X.

Since any λ can be decomposed as λi(a′i|ai,ωi) = bi(ai,ωi)ℓi(a′i|ai,ωi), we con-
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clude that there is no (b,ℓ) ∈ G(X) that satisfies t(a,ω) ≤ 0 for every (a,ω) ∈ X and

t(a∗,ω∗) < −ε. The result then follows, since the choice of (a∗,ω∗) ∈ X and ε > 0 was

arbitrary.

A Sufficient Condition for Optimality of Withholding Information

We provide a sufficient condition on Γ for optimality of withholding information

for the general case where the principal can choose a0 ∈ A0 and each agent i can privately

observe some own data ωi ∈ Ωi. Recall that if the principal always fully disclose all ω,

then its must be implementing a correlated equilibrium of the complete-information

game Γω for all ω (i.e., x∗q(·|ω) ∈ CE(Γω)). The definition of CE in terms of inequalities

can be adjusted to incorporate the principal’s a0.

Proposition A.2.2. Fix Γ. Suppose there exists (a,ω) that satisfies:

(1) u0(a,ω) > ū(ω),

(2) for every agent i and action âi, such that ui(ai, a−i,ω) < ui(âi, a−i,ω), there exists

an x(·|ω′) ∈ CE(Γω′) for some ω′, with ω′
i = ωi, that satisfies

∑
a∈A

u0(a,ω′)x(a|ω′) = ū(ω′),

∑
a−i∈A−i

(
ui(ai, a−i,ω′)− ui(âi, a−i,ω′)

)
x(ai, a−i|ω′) > 0.

Then it is not optimal in Uq to always fully disclose all records for any q ∈ RΩ
++.

Condition (1) is clearly necessary: If for every records of type ω every action

profile a cannot deliver a payoff higher than the full-information payoff ū(ω), then it is

clearly optimal for the principal to fully reveal every ω. Given an outcome (a,ω) with

u0(a,ω) > ū(ω), there must be an agent who would have a profitable deviation from ai

to âi if he knew (a−i,ω−i). Otherwise, given a0, the profile a−0 is a Nash Equilibrium of
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Γω and hence a−0 ∈ CE(Γω), which would imply u0(a,ω) ≤ ū(ω). Then condition (2)

requires that agent i’s data ωi is consistent with another record ω′—so that he cannot

tell ω and ω′ apart based on his own data only—which admits a principal-preferred

correlated equilibrium that also recommends i to play ai and renders the deviation to

âi strictly suboptimal. Note that this condition is easy to check in applications starting

from the best full-disclosure mechanism x.

Proof of Proposition A.2.2 We will argue by contradiction. Suppose q ∈ RΩ
++ and Uq

admits a full-disclosure solution x∗∗q and hence x∗∗q (·|ω̃) ∈ CE(Γω̃) and u∗∗
q (ω̃) = ū(ω̃)

for all ω̃ ∈ Ω. Then v∗∗q (ω̃) = u∗∗
q (ω̃) = ū(ω̃) for all ω̃ ∈ Ω by Proposition 2.5.

Now suppose that (a,ω) satisfies both conditions in the statement of the proposi-

tion. For (v∗∗q ,λ∗∗
q ) to be feasible for Vq, we must have for all ω̃ ∈ Ω,

v∗∗q (ω̃) ≥ u0(a, ω̃) + t∗∗q (a, ω̃).

Since u0(a,ω) > ū(ω) = v∗∗q (ω), we must have t∗∗q (a,ω) < 0. Therefore, there exists a

pair (i, âi) that satisfies ui(ai, a−i,ω) < ui(âi, a−i,ω) and λ∗∗
q,i(âi|ai,ωi) > 0. For such a

pair (i, âi), there exists x(·|ω′) ∈ CE(Γω′) with the properties listed in the proposition.

Then, since λ∗∗
q,i(âi|ai,ωi) > 0,

∑
ã∈A

u0(ã,ω′)x(ã|ω′) + ∑
ã∈A

t∗∗q (ã,ω′)x(ã|ω′)

≥ ∑
ã∈A

u0(ã,ω′)x(ã|ω′)

+λ∗∗
q,i(âi|ai,ωi)

{
∑

ã−i∈A−i

(
ui(ai, ã−i,ω′)− ui(âi, ã−i,ω′)

)
x(ai, ã−i|ω′)

}
> ∑

ã∈A
u0(ã,ω′)x(ã|ω′) = v∗∗q (ω′),

where the first inequality follows because x(·|ω′) ∈ CE(Γω′). The strict inequality is

incompatible with constraint (2.4) and delivers the desired contradiction.
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Data and Price Discrimination: Analysis

This section provides the calculations for Section 2.4.4 and the example in Sec-

tion 2.5.1. Recall that a ∈ {1,2} and that u0(a,ω) = max{ω − a,0} and u1(a,ω) =

aI{ω ≥ a} for ω ∈ {ω1,ω2}. For ω◦, we have ui(a,ω◦) = hui(a,ω2) + (1 − h)ui(a,ω1)

for i = 0,1. For completeness, we solve both the information-design problem and the

data-value problem.

Information Design

The objective function is

(ω2 − ω1)x(1|ω2)q(ω2) + h(ω2 − ω1)x(1|ω◦)q(ω◦) = x(1|ω2)q(ω2) + hx(1|ω◦)q(ω◦).

The obedience constraints are

−x(2|ω1)q(ω1) + x(2|ω2)q(ω2) + (2h − 1)x(2|ω◦)q(ω◦) ≥ 0,

x(1|ω1)q(ω1)− x(1|ω2)q(ω2)− (2h − 1)x(1|ω◦)q(ω◦) ≥ 0.

Consider first the case of h > 1
2 . From the second constraint we get x∗q(1|ω1) = 1.

The first constraint is then automatically satisfied. Since h ∈ (0,1), it is always true that

2h − 1 < h. The solution satisfies x∗q(1|ω2) = 0 and x∗q(1|ω◦) = 1
2h−1

q(ω1)
q(ω◦) , as long as

1
2h−1

q(ω1)
q(ω◦) ≤ 1.

Now consider the case of h ≤ 1
2 . Combining obedience constraints, we get

x(1|ω1)q(ω1)− x(1|ω2)q(ω2)− (2h − 1)x(1|ω◦)q(ω◦) ≥

max{2q(ω1) + (1 − h)2q(ω◦)− 1,0} .

It is immediate that x∗q(1|ω◦) = x∗q(1|ω1) = 1, since this relaxes the constraint as much
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as possible. The constraint then becomes

q(ω1)− (2h − 1)q(ω◦)− max{2q(ω1) + (1 − h)2q(ω◦)− 1,0} ≥ x(1|ω2)q(ω2).

Data Value

The data-value problem is

min
v,λ

q(ω1)v(ω1) + q(ω2)v(ω2) + q(ω◦)v(ω◦),

subject to λ(2|1),λ(1|2) ≥ 0,

v(ω1) = max{λ(2|1),−λ(1|2)} = λ(2|1),

v(ω2) = max{1 − λ(2|1),λ(1|2)},

v(ω◦) = max{h + (1 − 2h)λ(2|1), (2h − 1)λ(1|2)}

= hmax
{

1 − 2h − 1
h

λ(2|1), 2h − 1
h

λ(1|2)
}

.

As we noted before, 2h−1
h < 1. Suppose that h > 1

2 . Then, it is optimal to set

λ∗
q(1|2) = 0 to relax the problem as much as possible. We then have

v(ω1) = λ(2|1),

v(ω2) = max{1 − λ(2|1),0},

v(ω◦) = hmax
{

1 − 2h − 1
h

λ(2|1),0
}

.

There are three candidates for optimal λ(2|1). When λ(2|1) = 0, the objective

is S0 =
∆ q(ω2) + hq(ω◦). When λ(2|1) = 1, the objective is S1 =

∆ q(ω1) + q(ω◦)(1 − h).

When λ(2|1) = h
2h−1 , the objective is S f =

∆ q(ω1)
h

2h−1 . The following claims are true.

First, S0 ≤ S1 if and only if q(ω1)≥ q(ω2)+ (2h− 1)q(ω◦). Second, S0 ≤ S f if and only if
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q(ω1)≥ q(ω2)
2h−1

h + (2h− 1)q(ω◦). Third, S1 ≤ S f if and only if q(ω1)≥ (2h− 1)q(ω◦).

Suppose now that h ≤ ω1
ω2

. Then v(ω◦) = h − (2h − 1)λ(2|1) and λ∗
q(1|2) = 0 is

again optimal. There are only two candidates for optimal λ(2|1), specifically, 0 and 1.

Summary

All these cases lead to three scenarios in terms of q.

Scenario 1: q(ω1) ≤ (2h − 1)q(ω◦). Note that this requires h > 1
2 . Table A.3 presents the

optimal x∗q .

Table A.3. Platform example, x∗q for Scenario 1.

x∗q(a|ω)
ω

ω1 ω2 ω◦

a 1 1 0 1
2h−1

q(ω1)
q(ω◦)

2 0 1 1 − 1
2h−1

q(ω1)
q(ω◦)

The solution to the data-value problem is λ∗
q(1|2) = 0, λ∗

q(2|1) = h
2h−1 and the

unit values are v∗q(ω1) =
h

2h−1 , v∗q(ω2) = 0, and v∗q(ω◦) = 0.

Scenario 2: (2h − 1)q(ω◦) ≤ q(ω1) ≤ q(ω2) + (2h − 1)q(ω◦). Note that the lower bound

on q(ω1) is meaningful only if h > 1
2 . Table A.4 presents the optimal x∗q .

Table A.4. Platform example, x∗q for Scenario 2.

x∗q(a|ω)
ω

ω1 ω2 ω◦

a 1 1 q(ω1)−(2h−1)q(ω◦)
q(ω2)

1

2 0 1 − q(ω1)−(2h−1)q(ω◦)
q(ω2)

0

The solution to the data-value problem is λ∗
q(1|2) = 0, λ∗

q(2|1) = 1, and the unit

values are v∗q(ω1) = 1, v∗q(ω2) = 0, and v∗q(ω◦) = 1 − h.

Scenario 3: q(ω1) ≥ q(ω2) + (2h − 1)q(ω◦). Table A.5 presents the optimal x∗q .

The solution to the data-value problem is λ∗
q(1|2) = λ∗

q(2|1) = 0 and the unit

values are v∗q(ω1) = 0, v∗q(ω2) = 1, and v∗q(ω◦) = h.
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Table A.5. Platform example, x∗q for Scenario 3.

x∗q(a|ω)
ω

ω1 ω2 ω◦

a 1 1 1 1
2 0 0 0

A.3 Omitted Proofs for Chapter 3

Proof of Lemma 3.1

The proof is standard and thence omitted (see, for example, Myerson, 1982).

Proof of Lemma 3.2

The honesty constraint (3.2) can be rewritten as follows: for every θ,θ′ ∈ Θ,

(uS(a1,θ)− uS(a0,θ))
(
π(a1|θ)− π(a1|θ′)

)
≥ 0.

Pick two source types θ′ and θ′′ that prefer a1 over a0, that is, θ′,θ′′ ∈ Θ1. Then

from the inequality above, π(a1|θ′) ≥ π(a1|θ′′) and π(a1|θ′′) ≥ π(a1|θ′), and conse-

quently π(a1|θ′) = π(a1|θ′′). Since θ′ and θ′′ were chosen arbitrarily from Θ1, π(a1|θ)

is constant across θ ∈ Θ1. Call this constant π1. Similarly, π(a1|θ) is constant across

θ ∈ Θ0. Call this constant π0. Thus, the honesty constraint is equivalent to the following

condition: for every θ0 ∈ Θ0 and θ1 ∈ Θ1,

(uS(a1,θ0)− uS(a0,θ0)) (π0 − π1) ≥ 0,

(uS(a1,θ1)− uS(a0,θ1)) (π1 − π0) ≥ 0.

Both of these inequalities are equivalent to π1 ≥ π0.
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Proof of Proposition 3.1

By Lemma 3.2, the obedience constraint (3.3) can be written as follows:

π0

∫
Θ0

δR(θ)dµ0 + π1

∫
Θ1

δR(θ)dµ0 ≥ 0,

or π0 I0 + π1 I1 ≥ 0. There are three cases to consider, depending on the signs of I0 and

I1. The case in which I0 ≥ 0 and I1 ≥ 0 is ruled out by the tension condition (3.1).

1. If I0 < 0 and I1 < 0, then the only way to satisfy the obedience constraint is to set

π0 = π1 = 0.

2. If I0 ≥ 0 and I1 < 0, then π1 ≤ I0
−I1

· π0. By Lemma 3.2, π1 ≥ π0. Finally, I0
−I1

< 1,

since by the tension condition (3.1), I0 + I1 < 0. The only way to satisfy these

inequalities is again to set π0 = π1 = 0.

3. Suppose I0 < 0 and I1 ≥ 0. If I1 = 0, then in the honest and obedient protocol,

π0 = 0 and π1 ∈ [0,1]. If I1 > 0, then

π1 ≥
−I0

I1
· π0 ≥ π0,

where the second inequality is implied by the tension condition (3.1). Thus, the

set of honest and obedient protocols for this case is the set of π0,π1 ∈ [0,1], such

that π1 ≥ −I0
I1

· π0.

Proof of Proposition 3.2

If I1 < 0, then the only incentive-compatible protocol is π0 = π1 = 0. The associ-

ated media’s payoff is then 0.

If I1 = 0, then π0 = 0. The media choose π1 as high as possible, that is, π1 = 1.
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Finally, if I1 > 0, then the set of incentive-compatible protocols is the triangle

depicted in Figure 1. According to the media’s objective, the media want the pair

(π0,π1) to be as high as possible. The solution then is the extreme point
(

I1
−I0

,1
)

. The

corresponding payoff is then

µ0(Θ0) ·
I1

−I0
+ µ0(Θ1) = µ0(Θ0) ·

∫
Θ1

δR(θ)dµ0

−
∫

Θ0
δR(θ)dµ0

+ µ0(Θ1) =

µ0(Θ1) ·
E[δR(θ)|θ ∈ Θ1]− E[δR(θ)|θ ∈ Θ0]

−E[δR(θ)|θ ∈ Θ0]
.

Proof of Claims 3.1, 3.2, and 3.3

These results directly follow from Proposition 3.2.

Proof of Claim 3.4

The media’s problem facing no honesty constraints can be written as follows:

max
π(a1|θ)∈[0,1][0,1]

∫ 1

0
π(a1|θ)dθ,

subject to the obedience constraint (3.3) tailored to the example:

∫ 1

0
(θ − ω)π(a1|θ)dθ ≥ 0.

First, note that π(a1|θ) = 1 for θ ≥ ω. Indeed, this choice relaxes the obedience

constraint as much as possible and provides the maximal payoff to the media for θ ≥ ω.

Thus, the problem is reduced to

max
π(a1|θ)∈[0,1][0,ω]

∫ ω

0
π(a1|θ)dθ + 1 − ω,
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subject to ∫ ω

0
(ω − θ)π(a1|θ)dθ ≤ (1 − ω)2

2
.

But then the solution is π(a1|θ) = 1 for 2ω − 1 ≤ θ < ω, since those types are associated

with “cheaper” cost of persuasion, namely, ω − θ. The optimal information structure

then follows. The media’s payoff is the length of the interval [2ω − 1,1], which is 2− 2ω.

Proof of Lemma 3.3

The argument is standard and can be found in Proposition 3 in Bergemann and

Morris (2019).

Proof of Lemma 3.4

Suppose Ω1 ∈ suppϕ. Let b = sup(Ω1) ∈ [0,1]. Note that the left-hand side of

inequalities (3.6) and (3.7) is continuous and strictly decreasing in ω, as δR(θ,ω) = θ −ω.

Hence, any ω < b has to lie in Ω1 by (3.6). Similarly, any ω > b has to lie in [0,1] \ Ω1 by

(3.7). Thus, Ω1 = [0,b]. Finally, since δ is continuous in ω,

∫ 1

0
δR(·,b)dϕ([0,b]|·) = 0

has to be satisfied.

Proof of Lemma 3.5

Using Lemma 3.4, the honesty constraint (3.5) can be written as follows:

(uS(a1,θ)− uS(a0,θ)) ∑
[0,b]∈suppϕ

(ϕ([0,b]|θ)− ϕ([0,b]|θ′))H(b) ≥ 0

for every θ,θ′ ∈ Θ. Thus, by the same argument as in Lemma 3.2, for every θ′,θ′′ ∈ Θ1,

∑[0,b]∈suppϕ ϕ([0,b]|θ′)H(b) = ∑[0,b]∈suppϕ ϕ([0,b]|θ′′)H(b). Then there exists s1 ∈ [0,1],
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such that s1 = ∑[0,b]∈suppϕ ϕ([0,b]|θ)H(b) for every θ ∈ Θ1. The same argument shows

that s0 = ∑[0,b]∈suppϕ ϕ([0,b]|θ)H(b) for every θ ∈ Θ0. Finally, the honesty constraint for

some type θ1 ∈ Θ1 deliberating a misreport θ0 ∈ Θ0 pins down that s1 ≥ s0.

Proof of Lemma 3.6

Lemma 3.3, 3.4, and 3.5 imply the constraints of the reduced problem. The

specification of sets Θ0 and Θ1 implies the media’s objective function.

Proof of Lemma 3.7

The obedience constraints pin down b and b̄ as functions of ϕ0 and ϕ1:

b̄ = f1(ϕ0,ϕ1) =
ϕ0
∫

Θ0
θdµ0 + ϕ1

∫
Θ1

θdµ0

ϕ0µ0(Θ0) + ϕ1µ0(Θ1)
, (A.10)

b = f2(ϕ0,ϕ1) =
(1 − ϕ0)

∫
Θ0

θdµ0 + (1 − ϕ1)
∫

Θ1
θdµ0

(1 − ϕ0)µ0(Θ0) + (1 − ϕ1)µ0(Θ1)
. (A.11)

Then the boundary conditions are established. If ϕ0 = ϕ1, then b = b̄ = E[θ]. If

ϕ0 = 0, then b̄ = E[θ|θ ∈ Θ1]. If ϕ1 = 1, then b = E[θ|θ ∈ Θ0]. The derivatives of b̄ and b

can be directly calculated:

∂b̄
∂ϕ0

=

∫
Θ0

θdµ0 · (ϕ0µ0(Θ0) + ϕ1µ0(Θ1))− (ϕ0
∫

Θ0
θdµ0 + ϕ1

∫
Θ1

θdµ0) · µ0(Θ0)

(ϕ0µ0(Θ0) + ϕ1µ0(Θ1))2

=
ϕ1µ0(Θ1)

∫
Θ0

θdµ0 − ϕ1µ0(Θ0)
∫

Θ1
θdµ0

(ϕ0µ0(Θ0) + ϕ1µ0(Θ1))2

= µ0(Θ0)µ0(Θ1) ·
ϕ1(E[θ|θ ∈ Θ0]− E[θ|θ ∈ Θ1])

(ϕ0µ0(Θ0) + ϕ1µ0(Θ1))2 < 0.

∂b̄
∂ϕ1

=

∫
Θ1

θdµ0 · (ϕ0µ0(Θ0) + ϕ1µ0(Θ1))− (ϕ0
∫

Θ0
θdµ0 + ϕ1

∫
Θ1

θdµ0) · µ0(Θ1)

(ϕ0µ0(Θ0) + ϕ1µ0(Θ1))2
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=
ϕ0µ0(Θ0)

∫
Θ1

θdµ0 − ϕ0µ0(Θ1)
∫

Θ0
θdµ0

(ϕ0µ0(Θ0) + ϕ1µ0(Θ1))2

= µ0(Θ0)µ0(Θ1) ·
ϕ0(E[θ|θ ∈ Θ1]− E[θ|θ ∈ Θ0])

(ϕ0µ0(Θ0) + ϕ1µ0(Θ1))2 > 0.

Similarly, it can be shown that ∂b
∂ϕ0

> 0 and ∂b
∂ϕ1

< 0. The bounds on b̄ and b in the

statement of the lemma are then implied.

The signs of these derivatives are intuitive. For example, if ϕ0 increases, then

the probability of getting the recommendation [0, b̄] goes up for the lower competence

levels θ ∈ Θ0 = [0, θ̄). Thus, some receivers with high ω will find it optimal to switch

from the mobilizing action to the status-quo action. That is, the obedience constraint

will make b̄ lower.

Given the boundary conditions and the signs of the derivatives above, there

always exist ϕ0,ϕ1 ∈ [0,1], with ϕ1 ≥ ϕ0, such that b̄ = f1(ϕ0,ϕ1) and b = f2(ϕ0,ϕ1) by a

multivariate version of the mean value theorem.

It is worth mentioning that under our assumptions on µ0, Θ0, and Θ1, the system

of equations b̄ = f1(ϕ0,ϕ1), b = f2(ϕ0,ϕ1) can be solved directly. It is a matter of algebra

to show that

ϕ0 =
1
θ̄
·

(
1 − 2b̄ + θ̄

)(1
2 − b

)
b̄ − b

,

and

ϕ1 =
2

1 − θ̄
·

(
b̄ − θ̄

2

)(
1
2 − b

)
b̄ − b

,

if b̄ > b. These ϕ0 and ϕ1 can be readily checked to satisfy ϕ0,ϕ1 ∈ [0,1] and ϕ1 ≥ ϕ0. If

b̄ = b, then b̄ = b = E[θ] which occurs as long as ϕ0 = ϕ1.
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Proof of Proposition 3.3

Equations (A.10) and (A.11) can be combined to get

b + (b̄ − b)(ϕ0µ0(Θ0) + ϕ1µ0(Θ1)) = E[θ].

By Lemma 3.6, the objective of the media is

µ0(Θ0)s0 + µ0(Θ1)s1 = H(b) + (H(b̄)− H(b))(ϕ0µ0(Θ0) + ϕ1µ0(Θ1))

= H(b) +
E[θ]− b

b̄ − b
(H(b̄)− H(b)) =

b̄ − E[θ]

b̄ − b
H(b) +

E[θ]− b
b̄ − b

H(b̄),

as long as b̄ > b. If b̄ = b, then the objective of the media is H(E[θ]). Note that

b̄ − E[θ]

b̄ − b
· b +

E[θ]− b
b̄ − b

· b̄ = E[θ].

By Lemma 3.7, any b̄ ∈ [E[θ],E[θ|θ ∈ Θ1]] and b̄ ∈ [E[θ|θ ∈ Θ0],E[θ]] can be

achieved by some simple protocol. Therefore, the media’s problem is a splitting problem

with the value function cavĤ[E[θ]] (Le Treust and Tomala, 2019). The corresponding b̄

and b can then be established as the supporting points of this object.
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