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Abstract Circulating tumor cells (CTCs) are prognostic

in all stages of breast cancer. However, since they are

extremely rare, little is known about the molecular nature

of these cells. We report a novel strategy for the isolation

and expression profiling of pure populations of CTCs

derived from peripheral blood. We developed a method to

isolate CTCs based on immunomagnetic capture followed

by fluorescence-activated cell sorting (IE/FACS). After

assay validation using the BT474 cell line spiked into

blood samples in vitro, RNA from CTCs isolated from the

blood of five metastatic breast cancer (MBC) patients was

linearly amplified and subjected to gene expression pro-

filing via cDNA microarrays. We isolated a range of 9-993

captured CTCs from five MBC patients’ blood and profiled

their RNA in comparison to a diverse panel of primary

breast tumors (n = 55). Unsupervised hierarchical clus-

tering revealed that CTC profiles clustered with more

aggressive subtypes of primary breast tumors and were

readily distinguishable from peripheral blood (PB) and

normal epithelium. Differential expression analysis

revealed CTCs to have downregulated apoptosis, and they

were distinguishable from PB by the relative absence of

immune-related signals. As expected, CTCs from MBC

had significantly higher risk of recurrence scores than

primary tumors (p = 0.0073). This study demonstrates that

it is feasible to isolate CTCs from PB with high purity

through IE/FACS and profile them via gene expression

analysis. Our approach may inform the discovery of ther-

apeutic predictors and be useful for real-time identification

of emerging resistance mechanisms in MBC patients.
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Abbreviations

CTC Circulating tumor cell

IE/FACS Immunomagnetic enrichment followed by

fluorescence-activated cell sorting

RNA ribonucleic acid

MBC Metastatic breast cancer

cDNA Complementary deoxyribonucleic acid

PB Peripheral blood

QPCR Quantitative real-time polymerase chain

reaction

EpCAM epithelial cell adhesion marker

mAb Monoclonal antibody

HER2 Human epidermal growth factor receptor 2

ER Estrogen receptor

RPMI Roswell Park Memorial Institute

EDTA Ethylenediaminetetraacetic acid

CALGB Cancer and Leukemia Group B

ACRIN American College of Radiology Imaging

Network

StratRef Stratagene Universal Human Pooled

Reference RNA

dIdC Poly(deoxyinosinic-deoxycytidylic) acid

sodium salt

M-MLV Moloney Murine Leukemia Virus Reverse

Transcriptase

GUS Beta-glucuronidase

ABI Applied Biosystems

CT Cycle threshold

HLA Human leukocyte antigen

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

Cy Cyanine dye

GSE Gene Expression Omnibus series format file

AU Approximately Unbiased

ANOVA Analysis of variance

BH Benjamini Hochberg

FDR False discovery rate

DAVID the Database for Annotation, Visualization

and Integrated Discovery

PAM50 A 50 gene intrinsic subtype classifier

BCL2 B-cell lymphoma 2

CDC6 Cell division cycle 6

NUF2 Kinetochore protein Nuf2

CENPF Centromere protein F

CEP55 Centrosomal protein 55 kDa

CXXC5 CXXC finger protein 5

EGFR Epidermal growth factor receptor

ERBB2 Human epidermal growth factor receptor 2

ESR1 Estrogen receptor 1

FGFR4 Fibroblast growth factor receptor 4

FOXC1 Forkhead box C1

GRB7 Growth factor receptor-bound protein 7

NDC80 NDC80 kinetochore complex component

KRT14 Keratin 14

MYBL2 Myeloblastosis oncogene-like 2

PTTG1 Pituitary tumor-transforming 1

RRM2 Ribonucleotide reductase M2

TMEM45B Transmembrane protein 45B

TYMS Thymidylate synthetase

UBE2C Ubiquitin-conjugating enzyme E2C

UBE2T Ubiquitin-conjugating enzyme E2

ROR * P Risk of recurrence score

PBS Phosphate-buffered saline

KEGG Kyoto Encyclopedia of Genes and Genomes

GO Gene ontology

UTR Untranslated region

UCSF University of California, San Francisco

USC University of Southern California

I-SPY1 Investigation of Serial Studies to Predict

Your Therapeutic Response with Imaging

And moLecular Analysis 1 clinical trial

SWOG Southwest Oncology Group

NCI National Cancer Institute

PE Phycoerythrin

CI Confidence interval

Introduction

Circulating tumor cells have been demonstrated to be

present in the peripheral blood (PB) from patients with all

major types of cancers [1]. CTC status reflects metastatic

progression, correlating with imaging to evaluate treatment

response or progression of disease [2, 3]. Ideally, longitu-

dinal analysis of CTCs for changes in gene expression and

mutation status during treatment may provide insight into

the development of resistance mechanisms, information

that may be useful in selecting drug combinations that may

prolong a patient’s life [4].

The barriers to such a rational adaptive approach to

treating metastatic breast cancer (MBC) are largely tech-

nical. CTCs are rare and difficult to isolate. Prior efforts in

the molecular profiling of breast cancer CTCs utilized

enriched samples with a predominant population of leu-

kocytes even after enrichment procedures [5–7]. Several

groups have reported using quantitative real-time poly-

merase chain reaction (QPCR) for expression analysis of

CTCs [8–12]. QPCR requires prior knowledge of genes to

be interrogated and may not be suitable to distinguish very

low levels of leukocyte contamination. Sieuwerts et al.

reported that despite four logarithms of enrichment, large

quantities of contaminating leukocytes remained [11].

However, molecular profiling of CTCs in a background of

leukocytes does have the potential for detecting malignant
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transcripts [6]. Yu et al. reported that it is feasible to

sequence CTCs and that epithelial to mesenchymal tran-

sition was demonstrated [5]. While these approaches are

major advances in rare cell profiling, both required the

subtraction of leukocyte signatures for CTC profiling,

introducing the potential for biases and false discovery.

We have developed a protocol to collect rare popula-

tions of CTCs from PB [13] consisting of an immuno-

magnetic enrichment step followed by fluorescence-

activated cell sorting (IE/FACS). Small populations of pure

CTCs can be isolated for downstream molecular analyses.

Magbanua et al. reported that IE/FACS-isolated CTCs

could be assessed by array comparative genomic hybrid-

ization, providing evidence of the clonal relationship

between CTCs and primary tumors [14]. We have dem-

onstrated that whole transcriptome profiling is possible at

the picogram input level [15].

In this pilot study, we profiled CTCs isolated from the

blood of five MBC patients to demonstrate that gene

expression profiling of CTCs is feasible using IE/FACS

followed by RNA amplification. This approach may serve

as a rational basis for optimal treatment selection based on

transcriptional profiling.

Methods

Cell lines and CTC model

The BT474 cell line (from the Gray Lab) was used for proof

of principle experiments [16]. Cells were grown in Roswell

Park Memorial Institute (RPMI) medium supplemented with

10 % FBS and 1 % antibiotics/antimycotics (Invitrogen,

Carlsbad, CA). BT474 cells were trypsinized for 5 min and

counted using a hemocytometer. Cell count was confirmed

with a FACS Calibur using our previously described multi-

marker FACS assay [13]. 1000–100,000 cells were spiked

into 10 mL PB obtained from healthy females; all specimens

were processed immediately, and over-exposure to trypsin

was avoided by quenching with medium.

Patient samples

Ten to 20 mL of PB was drawn into EDTA tubes from five

female MBC patients yielding 9-993 captured CTCs from

which expression profiles were obtained; specimens were

processed immediately by IE/FACS. Microarray data for pri-

mary tumors prior to neoadjuvant chemotherapy were

obtained from the I-SPY1 trial (CALGB 150012, ACRIN

6657). Normal breast (n = 1) and skin samples (n = 3) were

collected as core and punch biopsies. Negative control PB

samples were obtained from healthy individuals. All patients

gave informed consent under a protocol approved by the

University of California San Francisco Institutional Review

Board. All patients received standard of care therapy for MBC;

all patients had been previously treated with several courses of

chemotherapy, and samples were obtained at convenient time

points in patient care during routine outpatient laboratory PB

draws. We selected patients known to be CTC positive for this

pilot study based on prior positive CTC test results.

Cell isolation via IE/FACS

IE/FACS was performed as previously described [13] but

with an emphasis on the preservation of RNA to be isolated

directly from CTCs. As we previously described in Magba-

nua et al. [13], our IE/FACS assays involve immunomagnetic

separation using EpCAM (MJ37) mAb-coated magnetic

beads followed by FACS with EpCAM (EBA-1) mAb con-

jugated to phycoerythrin (PE), thioflavin nucleic acid dye,

and CD45 (2D1) mAb conjugated to Cy5-PerCP (all from BD

Biosciences, San Jose CA). A threshold of a single cell

meeting these criteria was qualified as a positive test result.

We prepared the FACS Aria II (BD Biosciences) with RNAse

Zap decontamination solution (Ambion, Austin, TX) prior to

all sorting. All samples were processed immediately fol-

lowing blood draws, and all lysates were immediately placed

on ice. All CTC subjects’ specimens were analyzed with a

FACS Aria processed using consistent gates.

RNA extraction and amplification

All sorted samples were stored at -80 �C as cell lysates

until the time of RNA isolation with PicoPure RNA iso-

lation kits (Life Technologies). For normal PB, RNA was

extracted using the Qiagen Blood RNA kit (Qiagen). Total

RNA and equivalent amounts of StratRef (Stratagene

Universal Human Pooled Reference RNA, Stratagene, La

Jolla, CA) were treated with 200 ng of poly dIdC (Sigma-

Aldrich, St. Louis, MO). CTC, BT474, PB, and StratRef

samples were linearly amplified with 2 rounds using Arc-

turus RiboAmpHS (Life Technologies). Primary tumor,

normal epithelium, and StratRef were amplified using 2

round modified T7 amplification [15, 17]. Concentrations

of amplified RNA products were measured using a UV

spectrophotometer. The molecular weight and integrity of

amplified RNA species were evaluated using the Agilent

Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA).

Quantitative RT-PCR

BT474 and StratRef total RNA were converted to cDNA

using M-MLV reverse transcriptase and random hexamers

(Life Technologies). Samples were then incubated at 25 �C

Breast Cancer Res Treat (2015) 149:121–131 123
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for 10 min then 48 �C for 30 min. Expression levels of 37

genes and a housekeeping gene GUS (beta-glucuronidase)

were analyzed using a 5’ nuclease assay and TaqMan Gene

Expression Assays with an ABI PRISM 7700 instrument

(Applied Biosystems (ABI), Foster City, CA). Relative

expression levels were calculated relative to GUS. Calcu-

lated QPCR expression ratios were derived using the for-

mula relative expression = 2(-D DCT) [18]. Log-

transformed (base 2) values for each gene expression ratio

were plotted for both microarray and QPCR methods. We

have previously published details regarding the selection

strategy and gene list [15]. Subsequent validation of our

assay performance was performed by QPCR of spiked,

sorted BT474 and PB for EpCAM, ER, HER2, CD45, HLA,

and GAPDH using TaqMan assays.

cDNA Microarrays

The 20,862 human cDNAs used in these studies were pur-

chased from Research Genetics (Huntsville, AL), now Invit-

rogen, and were provided by the Haqq laboratory as cDNA

microarrays. On the basis of Unigene build 166, these clones

represent 19,740 independent loci. Hybridization, washing,

scanning, and primary data analysis were performed as pre-

viously described [19–21]. Slides were then washed, scanned,

and analyzed with Axon Imager 4000b (Molecular Devices,

Sunnyvale, CA), using GENEPIXPRO3.0.

cDNA microarray data included three different array

formats, containing 21,600 (set 1), 21,632 (set 2), and

41,664 (set 3) features, respectively, representing in total

85 samples (5 sorted CTC, 7 plated BT474, 6 sorted

BT474, 8 PB, 4 normal epithelium, and 55 primary breast

tumors). Microarray data were deposited under GSE45965.

cDNA microarray normalization

Two types of normalization were used. First, each set of

arrays was normalized separately. Background correction

was not performed as this increased noise in low signal

features. Instead, a 2D spatial normalization approach

using the robust local regression function ‘loess’ was per-

formed to correct for uneven hybridization across indi-

vidual arrays using the marray software package [22] in the

R [23]. To achieve consistency between arrays, quantile

normalization across samples was performed using the

limma package [24] in R. The three sets of arrays were

merged into a single dataset by including those features

consistent to all array sets. This resulted in 21,006 total

genes for the combined dataset of 85 samples. To test for

residual batch effects after normalization, we calculated the

pairwise correlation matrix for all samples to verify that

clustering patterns were driven by cell type rather than

cDNA array design and processing batch.

Unsupervised hierarchical clustering and principal

component analysis

To characterize differential expression between different

cell types, we performed principal component analysis

(PCA) and hierarchical clustering using the stats package

in R. To verify that unsupervised clustering can reliably

classify specimens, the p-values for each cluster were

calculated via bootstrap resampling using standard Boot-

strap Probability (BP) and a multi-scale bootstrapping

method that is a better approximation to Approximately

Unbiased (AU) (R package pvclust [25]). Only probes of

the array which exhibited a hybridization signal 2 fold

above background in at least 10 % of specimens and with

none of the spots flagged as bad were used for PCA,

clustering, and all other analyses (7685 probes).

Differential gene expression and functional enrichment

studies

To identify genes with differential expression in sorted

CTC samples relative to primary tumors, normal epithe-

lium, and PB samples, we used ANOVA followed by Tu-

key analysis with Benjamini-Hochberg (BH) multiple

testing correction applied at each step to adjust for poten-

tial false discovery (FDR). Genes with a FDR adjusted

p value \ 0.05 were considered significant. Functional and

pathway analysis of differentially expressed genes were

carried out with the DAVID functional/pathway enrich-

ment analysis tool [26], using multiple testing corrected

p-values that control for false discovery with significance

threshold p \ 0.05.

Intrinsic subtype classification

Samples were evaluated for intrinsic subtype using the

PAM50 single-sample classification algorithm developed

by Parker and Perou [27]. Of the 50 genes in the PAM50

classifier, 21 were identified in the combined, quality fil-

tered dataset (7685 probes), and used for analysis. The 21

genes available for this analysis were BCL2, CDC6, NUF2,

CENPF, CEP55, CXXC5, EGFR, ERBB2, ESR1, FGFR4,

FOXC1, GRB7, NDC80, KRT14, MYBL2, PTTG1,

RRM2, TMEM45B, TYMS, UBE2C, and UBE2T. The

remaining 29 genes in the PAM50 were either not present

on the cDNA array probe set or did not meet the quality

control criteria described above. We used a 90 % confi-

dence interval (CI) in the subtype call to establish that gene

expression levels of the 21 genes were correlated to the

centroid of the subtype (otherwise the sample was con-

sidered unclassified). To assess differential risk of recur-

rence (ROR * P) scores across sample types, we used

ANOVA followed by Tukey analysis.
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Results

Assay validation using spiked-in breast cancer cells

Our approach to CTC isolation and expression array pro-

filing was first validated using a spiked-in cancer cell line.

BT474 cells were spiked into PB or PBS then subjected to

IE/FACS; supplemental Fig. 1 shows a representative

FACS gating strategy. As a control for the amplification

procedure, 500 pg of bulk BT474 RNA was amplified and

subjected to cDNA microarray analysis. Expression pro-

files for all sorted BT474 conditions were similar to the

expected BT474 profile (Fig. 1a), which was obtained from

non-amplified bulk total RNA analyzed in parallel as a

positive control. We previously reported a comparison of

amplification techniques at the picogram input level using

BT474 as the test cell line [15].

Unsupervised hierarchical clustering confirmed that all

BT474 expression profiles were closely related, regardless

of whether the cells were spiked into blood, PBS or were

bulk cells derived from cell culture; this was independent

of the RNA amplification procedure (Fig. 1a). Profiles of

BT474 cells isolated from blood were distinct from that of

PB (Fig. 1b), demonstrating that IE/FACS-isolated cells

appeared devoid of leukocyte contamination. This

approach demonstrated gene clusters that were differen-

tially expressed between BT474 cells and blood. A distinct

cluster of genes was observed to be upregulated in blood

but not in BT474 cells (Fig. 1c), these included fibrinogen-

related procoagulant Fgl2, pleckstrin (platelet and leuko-

cyte C kinase substrate), and DCL1, which is frequently

expressed in leukocytes but downregulated in cancers, as it

is a tumor suppressor gene. Conversely, genes such as

HER2 and ESR1 (ER) (Figs. 1d, e), as expected, were

upregulated in BT474 but not in blood.

Sorted, spiked BT474 cells via our IE/FACS approach

showed no expression of leukocyte markers CD45 or HLA

by QPCR, but positive control markers EpCAM, ER, and

HER2 were all expressed (Supplemental Fig. 2). As shown

in the PCA in Fig. 1f, samples clustered according to tissue

of origin rather than batch, confirming successful

normalization.

To assess the reproducibility of whole transcriptome

amplification, we performed a global pair-wise Pearson

correlation of microarrays (Supplemental Fig. 2). Results

confirmed high correlation among all BT474 profiles.

Fig. 1 Microarray analysis of spiked, sorted cells and controls.

Unsupervised hierarchical clustering of six samples of normal PB

(red), three samples of amplified (gray), and two samples of

unamplified (yellow) BT474 RNA, and four replicates of BT474

cells spiked into blood (blue) or PBS (black) (one sample); a A

scaled-down representation of the entire cluster of 8041 genes based

on similar gene expression; b An enlarged dendrogram showing the

samples; c Gene cluster showing genes that are highly expressed in

normal PB; d Gene cluster containing HER2 (Erbb-2); e Gene cluster

containing ESR1. Brown, tan and green vertical bars correspond to

location of the gene clusters. The color bar scale denotes fold

upregulation (red) and fold downregulation (green). f Principal

component analysis demonstrated that spiked, sorted BT474 cells are

more similar to bulk BT474 RNA than peripheral blood

Breast Cancer Res Treat (2015) 149:121–131 125
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Furthermore, no correlation was observed between any

BT474 profile and PB, including the profile of BT474 cells

isolated from blood.

QPCR independently validated the microarray analysis.

Thirty-seven target genes were chosen for comparison of

QPCR and microarray data. Expression results showed

86.4 % agreement (32/37 genes) between microarray and

QPCR (Supplemental Fig. 3).

Isolation and gene expression profiling of CTCs

from MBC patients

We next tested the feasibility of this approach in five MBC

patients. RNA from n = 9–993 CTCs was captured and

isolated using IE/FACS, linearly amplified, and subjected

to gene expression profiling via cDNA microarrays. We

also profiled gene expression in a panel of primary tumors,

PB, and normal epithelium using the same platform.

Unsupervised hierarchical clustering of the 500 most

variable genes from the CTC samples showed that CTCs

clustered separately from PB and normal epithelium

(Fig. 2a), a partitioning also evident in PCA analysis of all

7685 probes (Fig. 2b). Moreover, a bootstrapping analysis

of the clustering pattern in the dendrogram produced an

unbiased estimate of p = 1 that PB clustered separately

from CTCs, tumors, and epithelium. These analyses pro-

vide strong evidence that IE/FACS-isolated CTCs from the

PB of patients allowing profiling their gene expression on a

transcriptome scale.

Intrinsic subtype and ROR analysis

Intrinsic subtype analysis of the CTCs classified 3/5 sam-

ples with a 90 % CI, however, 2/5 could not be classified

using the 21 available genes of the PAM50 on the cDNA

array. Similarly, 35/55 (63.6 %) primary tumors had sub-

type calls. The CTC specimens that could be assigned

subtype were HER2-like (2/5) and Luminal B (1/5), a

distribution consistent with the expected HER2 status

based on the primary tumors for these MBC patients (4/5

were HER2 positive) (Table 1). As expected given the

classifications, in an unsupervised hierarchical clustering of

the available PAM50 genes (21/50), the CTCs were

Fig. 2 Gene expression profiling of Stage IV patient CTCs (n = 5)

versus peripheral blood (n = 6), breast tumors (n = 55), and normal

epithelium (n = 4). a Unsupervised hierarchical clustering of the top

500 most variable genes (ward linkage) is shown. CTCs cluster most

closely with breast tumors. b A principal component analysis

demonstrated that sorted CTCs form a group distinct from peripheral

blood

Table 1 Numbers of CTCs analyzed per MBC patient and primary

tumor characteristics

Patient No. of CTCs

analyzed

Volume of

blood

CTCs/

ml

Her2 ER PR

1 993 16 62.1 ? ? ?

2 456 10 45.6 - ? ?

3 9 20 0.5 ? ? ?

4 279 10 27.9 ? ? ?

5 195 20 9.8 ? - -
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clustered with HER2-enriched, Luminal B, and Basal-like

primary breast tumors (see Fig. 3b). Although the CTCs

had low ERBB2 (HER2) expression, high RRM, CDC6,

GRB7, UBE2T, and FGFR4 and low ESR1, FOXC1,

KRT14, and BCL2 resulted in classification of two samples

with the HER2 centroid.

We calculated the ROR * P [27] for CTCs, breast

tumors, and normal epithelium as a continuous score and

present these results in Fig. 3b. This box plot shows that

CTCs had a significantly higher ROR * P score on aver-

age than do breast tumors, as expected given that CTCs

were isolated from MBC patients. This is connected to

more aggressive subtype (HER2 and Luminal B).

ROR * P scores were different across the different types

of samples (F-test p = 0.0038), with significantly higher

levels in CTCs relative to breast tumors (p = 0.0073), and

normal epithelial (p = 0.0063).

Pathway analysis

We performed a supervised analysis using ANOVA and

Tukey post hoc statistical tests to compare CTCs to PB

cells, breast tumors, and normal epithelium. P-values were

adjusted for multiple comparisons using the Benjamini-

Hochberg (BH) algorithm. Of the 7,685 evaluable probes,

1,116 genes were differentially expressed between CTCs

and PB, and 1,214 between CTCs and primary breast

tumors (see Fig. 4 and Supplemental Table 2).

Pathway and functional enrichment analysis applied to

differentially expressed genes, performed using the software

tool DAVID with BH adjusted p-values to correct for mul-

tiple comparisons (BH p \ 0.05), identified a number of

immune-related pathways and categories significantly

upregulated in PB relative to CTCs (see Supplemental

Table 3). In addition to a low level of immune signaling,

CTCs differed from PB and also from primary tumors in that

they have significantly lower levels of apoptosis signaling

(Fig. 5). Although no specific pathways were found to be

upregulated in CTCs, Supplemental Table 2 provides a

complete list of genes up or downregulated in CTCs. Genes

downregulated in CTCs relative to PB were enriched for a

plethora of ribosome-related pathways and terms. Together,

these results suggest that the CTCs had downregulated

apoptotic pathways, were distinguishable from PB cells by

B
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Fig. 3 a Intrinsic subtype analysis. Exploratory analysis based on the

subset of 21 genes from the PAM50 classifier available in our dataset

for analysis, CTCs clustered with the more aggressive breast cancer

subtypes (HER2 positive and luminal B) based on a 90 % confidence

interval (p \ 0.01) for assigning PAM50 subtype based on the

available probes in the cDNA microarray. b As expected, CTCs

derived from Stage IV patients had a higher risk of recurrence score in

comparison to I-SPY1 primary tumors (most of which were high risk

by a 70-gene classifier)
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the absence of immune signals, and were characterized by

downregulation of ribosomes despite high expression of

multiple proliferation genes in the PAM50 gene set.

Negative controls

As a negative control, we performed IE/FACS on healthy

females at UCSF (n = 23) and USC (n = 10). IE/FACS

yielded 0–0.5 CTCs per 20 mL of PB.

Discussion

This study demonstrates the feasibility of expression pro-

filing of pure CTCs. Using IE/FACS, we isolated small

populations of CTCs and amplified their RNA for micro-

array analysis. Five MBC patients’ CTCs were profiled

without evidence of contaminating leukocyte RNA. Our

proof of principle data with spiked, sorted cells demon-

strated that IE/FACS could isolate CTCs and characterize

them without altering their gene expression by either assay

manipulation or contamination by background leukocytes.

Additionally, negative controls showed essentially no evi-

dence of CTCs. Unsupervised hierarchical clustering ana-

lysis differentiated CTC profiles from PB. CTCs clustered

most closely with a panel of primary breast tumors but not

with normal epithelial samples, in keeping with their

malignant nature. Our observation that CTCs clustered

with the HER2-enriched and basal-like groups in an

exploratory analysis are consistent with the predominance

of HER2 positivity of these patients’ tumors, and should be

validated in larger trials taking into consideration tumor

biology and treatment variables [28].

CTCs had a higher ROR score than a panel of primary

tumors from the I-SPY1 trial (pre-neoadjuvant chemo-

therapy). The vast majority of the primary tumors for

patients participating in I-SPY1 [29] were found to be high

ROR based on the 70 gene classifier [30, 31]. We dem-

onstrated that CTCs gene expression also appeared to be

aggressive by a genomic classifier. We recognize that

CTCs were from a cohort of five MBC patients, and

therefore it is anticipated that their gene expression would

show a high ROR. Our intent with this experiment is to

provide further evidence of the malignant nature of CTCs

and of our ability to profile pure populations of such cells

as proof of principle rather than to definitively classify

them.

Genomic classifiers in breast cancer are typically based

on early stage disease rather than MBC [27, 32]. However,

given the unavailability of fresh frozen biopsies of MBC to

be interrogated on the same cDNA platform, we estab-

lished several lines of evidence that we have a methodol-

ogy for gene expression profiling of pure populations of

EpCAM-positive CTCs. Our data provide evidence that

profiles of CTCs captured by IE/FACS are consistent with

breast cancer. This approach could be used as a ‘‘liquid

biopsy’’ since PB is much more readily available than

tumor tissue and could be re-assessed longitudinally to

assess tumor biology in real time as tumors evolve under

the selection pressure of cytotoxic therapies.

Using the same IE/FACS platform, Magbanua et al.

successfully profiled 102 MBC patients’ CTCs by array

comparative genomic hybridization [14]. In the present

study, we demonstrated the ability to isolate high quality

RNA from highly purified CTCs suitable for microarray

profiling. Taken together, RNA and DNA profiling could

CTC vs. Tumor

CTC vs. Blood

CTC vs. Epithelium

31

63

17

2

390

52

16

A:  Upregulated in CTCs

CTC vs. Tumor

CTC vs. Blood

CTC vs. Epithelium

B:  Downregulated in CTCs

174 85

128

82

326

162

584

Fig. 4 Venn diagram comparing CTCs, breast tumors, peripheral blood, and normal epithelium. This analysis is based on ANOVA followed by

Tukey analysis with a BH p value \ 0.05. a Genes upregulated in CTCs; b Genes downregulated in CTCs
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be utilized to further characterize the biology of CTCs and

identify opportunities for targeted therapy and potentially

novel therapies.

Our exploratory analysis suggested that the CTCs had

downregulated apoptotic pathways, were distinguishable

from PB cells by an absence of immune signals, and were

characterized by a curious downregulation of ribosomes

relative to all other cell types, perhaps suggesting a rela-

tively quiescent state while in transit through the blood

stream as suggested by Meng et al. [33]. However, ribo-

somal RNA is neither specifically amplified nor depleted

using RNA amplification. This calls into question whether

ribosomal RNA is truly downregulated in CTCs or if this

represents a problem related to transcript abundance in the

starting material causing differential degrees of ribosomal

RNA detection. Another explanation could be amplifica-

tion artifact since although both the CTCs and tumors were

subjected to two rounds of linear amplification, different

amplification strategies were used since the tumors were

profiled as part of the I-SPY1 trial rather than for the

purpose of comparison to CTCs. Previously, we found

inter-method Pearson correlations of 0.85-0.92 between

these amplification methods after taking into consideration

data processing [15]. Proliferation markers such as

MYBL2 and RRM2 were strongly upregulated in CTCs,

which is at odds with the finding of ribosomal inactivity.

Further ongoing studies of expression profiling of CTCs

will be required to evaluate this apparent incongruent

finding of downregulated ribosomal gene expression in

CTCs. Additionally, future studies analyzing individual

CTCs will shed light on the heterogeneity of CTC biology.

SWOG S0500 found that changing to an alternative che-

motherapy in MBC based on CTCs did not improve survival

[34]. However, the authors acknowledged that molecular

Fig. 5 Pathway analysis.

A DAVID functional

enrichment analysis

demonstrated that CTCs were

downregulated for the pathways

of apoptosis and immune

function relative to peripheral

blood
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profiling of CTCs might provide predictive information that

simple enumeration does not. In contrast to several previous

reports, IE/FACS yields pure CTC populations without

requiring background subtraction of residual PB.

We acknowledge that a major limitation of this study is

the small sample size of CTCs derived from MBC. This

study was intended to demonstrate feasibility of global gene

expression profiling of rare CTCs. Future studies including

larger numbers of samples are warranted to provide a better

understanding of the biology of CTCs. Comparison of gene

expression profiles of CTCs with primary tumors and

metastatic lesions may shed light on tumor evolution and

progression. Unfortunately, primary tumor samples were

unavailable for the MBC patients in our study. As gene

expression platforms have evolved, additional CTC patients

cannot be accrued and co-analyzed with this proof of con-

cept data, necessitating further prospective studies involv-

ing contemporary gene expression assays, such as RNA

Seq; these studies are currently in progress.

In summary, we demonstrate the feasibility of gene

expression profiling of rare CTCs. Molecular character-

ization of CTCs may yield insights into their potential as

biomarkers to allow for specific targeting of these cells in

patients who respond poorly to current therapies.
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