
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Automated Detection and Repair of Text Accessibility Issues

Permalink
https://escholarship.org/uc/item/24n6q8xq

Author
Alshayban, Abdulaziz

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/24n6q8xq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Automated Detection and Repair of Text Accessibility Issues

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Abdulaziz Alshayban

Dissertation Committee:
Professor Sam Malek, Chair

Assistant Professor Iftekhar Ahmed
Assistant Professor Joshua Garcia

2023

© 2023 Abdulaziz Alshayban

DEDICATION

To my beloved mother, who has been my constant source of inspiration and support.
And to my incredible wife, Atheer, and my precious children, Nasser and Joud, for filling my

life with joy.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Dissertation Structure . 3

2 Background 5
2.1 GUI in Android . 5
2.2 Mobile Apps Accessibility . 6
2.3 Supporting Text Scaling for Accessibility . 9

3 Related Work 11
3.1 Accessibility Standards and Guidelines . 11
3.2 Previous Empirical Studies . 12
3.3 Accessibility Testing and Repair . 13
3.4 GUI Testing . 15

4 Research Problem 17
4.1 Problem Statement . 17
4.2 Research Hypothesis . 18

5 Understanding App Accessibility at Scale 20
5.1 Introduction . 21
5.2 Methodology . 23

5.2.1 Study Subjects . 23
5.2.2 Accessibility Evaluation Tool . 24
5.2.3 Data Collection and Analysis . 26
5.2.4 Survey . 29

5.3 Results . 31

iii

5.3.1 App Perspective . 31
5.3.2 Developer Perspective . 37
5.3.3 User Perspective . 41

5.4 Discussion . 43
5.5 Threats to validity . 48
5.6 Conclusion . 49

6 AccessiText: Automated Detection of Text Accessibility Issues in Android
Apps 50
6.1 Introduction . 51
6.2 An empirical study of text-based accessibility issues in mobile apps 54

6.2.1 Design and Data Collection . 54
6.2.2 Results . 57

6.3 Approach . 60
6.3.1 Test Runner . 61
6.3.2 Result Analyzer . 63

6.4 Evaluation . 67
6.4.1 Experimental Setup . 67
6.4.2 Effectiveness of AccessiText . 68
6.4.3 Performance of AccessiText . 70

6.5 Discussion . 71
6.6 Threats to validity . 73
6.7 Conclusion . 74

7 ARTEX: Automated Repair of Text Accessibility Issues in Android Apps 76
7.1 Introduction . 76
7.2 Approach . 78

7.2.1 Fault Localization . 79
7.2.2 Repair Generation Phase . 82

7.3 Evaluation . 87
7.3.1 Experimental Setup . 87
7.3.2 Effectiveness of Artex . 87
7.3.3 Performance of Artex . 90
7.3.4 User Preferences for Provided Fixes 91

7.4 Threats to validity . 94
7.5 Conclusion . 94

8 Conclusion 96

Bibliography 98

iv

LIST OF FIGURES

Page

5.1 Number of apps for each category in the dataset 27
5.2 Distribution of inaccessibility rate among apps 32
5.3 Distribution of inaccessibility rates across the different categories 34
5.4 Two accessibility issues are identified in the TabbedActivity template. TextCon-

trast for the title of inactive tab, and a missing SpeakableText For the Button 35
5.5 How Apps accessibility levels changed over time 36
5.6 The rate of the different accessibility concerns discussed in app reviews . . . 42

6.1 Examples of (a) unresponsive view issue, and (b) missing view issue 55
6.2 Examples of (a) overlapping views issue, and (b) cropped view issue 56
6.3 Number of text accessibility issues grouped by platform 58
6.4 A cropped view accessibility issue for AnovaCulinary app as reported by a user. 59
6.5 Overview of AccessiText . 61
6.6 Example of a truncated view . 65

7.1 Overview of Artex . 78
7.2 A comparison of a screen displaying a Cropped View issue; the left image

shows the app before the fix, while the right image demonstrates the app after
the issue has been resolved. 90

7.3 A comparison of a screen displaying an Overlapping View issue; the left image
shows the app before the fix, while the right image demonstrates the app after
the issue has been resolved. 91

7.4 A graph summarizing how users rated Artex’s proposed fixes for effectiveness. 92
7.5 A graph summarizing how users rated Artex’s proposed fixes for aesthetics. . 93

v

LIST OF TABLES

Page

5.1 The distribution of accessibility issues . 33
5.2 Comparison of SD values for apps made by the same developers, and different

developers. 38
5.3 Reported challenges with ensuring accessibility 39
5.4 Comparison of the mean for apps’ inaccessibility rates developed by top

companies against all other apps . 39
5.5 Accessibility issues ranked according to the Scott-Knott ESD test (all respon-

dents) . 40
5.6 Inaccessibility rates correlation with app rating 43
5.7 Comparison of inaccessibility rates for apps that were selected as Editors’

Choice in Play store. 43

6.1 The number of detected accessibility issues and running time for each app . . 68
6.2 Precision and recall of AccessiText . 69

7.1 Accessibility issue types and their respective fix rates using Artex 88
7.2 Running time and fix rates for Artex across different apps 89

vi

ACKNOWLEDGMENTS

“ And say, ‘My Lord, increase me in knowledge.’ ” (Quran, 20:114)

First and foremost, I humbly express my deepest gratitude to Allah, the Most Merciful and
Compassionate, for granting me the knowledge, fortitude, and determination needed to reach
this significant milestone.

I extend my utmost appreciation to my advisor, Prof. Sam Malek, whose guidance and
invaluable expertise have greatly contributed to my personal and professional growth. At the
beginning of my Ph.D. journey, I had a limited understanding of how to conduct research
and write papers. However, Sam was consistently supportive, offering guidance, inspiration,
and a helping hand, and helped me navigate through this challenging process. I also want
to thank my committee members, Prof. Iftekhar Ahmed and Prof. Josh Garcia, for their
valuable feedback and direction. Their dedication and knowledge have played a pivotal role
in my research progression and success.

I would like to express my heartfelt appreciation to my colleagues for their unwavering support
throughout my journey. The generosity with which they shared their expertise, time, and
skills has had a profoundly positive impact on my work. It has been a privilege to collaborate
with such dedicated individuals.

To my friends, who have indeed become my second family, your consistent support and shared
adventures have been priceless throughout this journey. My appreciation for each of you is
beyond what words can convey.

A heartfelt thank you goes out to my family, especially my dear mother, showering me with
unwavering support and encouragement throughout this process. Your love, understanding,
and presence have made all the difference in my journey.

It’s hard to express how thankful I am to my loving wife, Atheer, who has been my support,
my confidant, and my closest companion during this challenging journey. Her insights,
constant encouragement, and love have been essential to my success. To my dear children,
Nasser and Joud, your happiness and laughter have brightened my days, giving me the
strength to face the most difficult times.

Lastly, I am thankful to King Saud University and the National Science Foundation for their
generous funding and support, which have enabled the completion of this dissertation and
the pursuit of my research goals.

vii

VITA

Abdulaziz Alshayban

EDUCATION

Doctor of Philosophy in Software Engineering 2023
University of California, Irvine Irvine, CA

Masters of Science in Software Engineering 2015
George Mason University Fairfax, VA

Bachelor of Science in Software Engineering 2011
King Saud University Riyadh, Saudi Arabia

RESEARCH EXPERIENCE

Graduate Research Assistant 2020–2023
University of California, Irvine Irvine, CA

TEACHING EXPERIENCE

Teaching Assistant 2019–2020
University of California, Irvine Irvine, CA

Teaching Assistant 2015–2017
King Saud University Riyadh, Saudi Arabia

viii

REFEREED CONFERENCE PUBLICATIONS

#A11yDev: Understanding Contemporary Software Ac-
cessibility Practices from Twitter Conversations

April 2023

In the CHI Conference on Human Factors in Computing Systems (CHI 2023)

AccessiText: Automatic detection of text accessibility
issues in Android apps

May 2022

In the The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (FSE 2022)

Latte: Use-case and assistive-service driven automated
accessibility testing framework for android

May 2021

In the CHI Conference on Human Factors in Computing Systems (CHI 2021)

Accessibility issues in android apps: state of affairs,
sentiments, and ways forward

May 2020

In the 42nd International Conference on Software Engineering (ICSE 2020)

ER catcher: a static analysis framework for accurate
and scalable event-race detection in Android

Sept 2020

In the 35th International Conference on Automated Software Engineering (ASE 2020)

A benchmark for event-race analysis in android apps. June. 2020
In the 18th International Conference on Mobile Systems, Applications, and Services
(MobiSys 2020)

ix

ABSTRACT OF THE DISSERTATION

Automated Detection and Repair of Text Accessibility Issues

By

Abdulaziz Alshayban

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2023

Professor Sam Malek, Chair

Mobile technology has progressed beyond the scope of communication, increasingly influencing

sectors such as education, health, and finance. For the 15% of the global population living

with disabilities [97], accessibility is arguably the most crucial software quality attribute.

Leading mobile operating systems, including iOS and Android, offer various built-in assistive

services to enhance accessibility for users with disabilities [24, 17]. App accessibility relies

on following guidelines, best practices, and extensive testing to confirm compatibility with

assistive services. Failure to comply with theses requirements can lead to accessibility issues

and barriers for users.

This dissertation aims to enhance mobile app accessibility by initially conducting a large-scale

empirical study involving apps, developers, and users to determine the prevalence, categories,

and characteristics of accessibility issues, along with development practices that might have

contributed to these issues. Next, driven by insights from the study, the research focuses

on improving app accessibility for low-vision users, especially those relying on the Text

Scaling Assistive Service (TSAS). This is achieved by proposing practical methods and

techniques to detect, localize, and automatically repair text accessibility issues stemming

from incompatibility between apps and TSAS. The dissertation introduces AccessiText,

an automated tool designed to accurately detect text accessibility issues by analyzing UI

x

screenshots and metadata information collected through dynamic analysis. AccessiText

employs various heuristics based on distinct types of text accessibility issues, discovered by

examining user-reported feedback in Play Store reviews and Twitter data. Furthermore, this

dissertation presents Artex, a search-based automatic repair technique utilizing a genetic

algorithm to localize and automatically repair text accessibility issues, while minimizing

layout distortion and preserving the app layout’s consistency.

In our evaluation of the proposed techniques and tools, we conducted experiments and user

studies on real-world commercial applications. The findings demonstrated the effectiveness,

efficiency, and usefulness of these techniques in resolving text accessibility issues.

xi

Chapter 1

Introduction

Mobile applications (apps) play a crucial role in billions of people’s daily lives worldwide,

offering a range of essential services, from personal banking to communication and health care.

Ensuring ease of access to these services is vital for everyone, particularly for the approximately

15% of the world’s population with disabilities [98]. Accessibility is the practice of making

websites and applications usable by individuals with disabilities on various devices, such

as smartphones and tablets [92]. Adhering to accessibility concepts and guidelines is not

only a matter of ethical and social responsibility, but also a legal requirement as enforced by

regulations, including Section 508 and 504 of the Rehabilitation Act, and the Americans with

Disabilities Act (ADA) [6]. To meet the needs of individuals with disabilities, leading mobile

operating systems, such as iOS and Android, have published platform-specific developer

accessibility guidelines [26, 19], and integrated various assistive services such as screen readers,

switches, and text accessibility features. Utilizing assistive services empowers individuals

with disabilities to effectively use mobile devices and complete tasks that may be otherwise

difficult. It is crucial for developers to adhere to relevant guidelines and integrate suitable

best practices, ensuring accessible and optimal user experiences for users with disabilities.

1

A vital aspect of app accessibility for visually impaired users is text accessibility and readability,

which can be enhanced by carefully considering elements such as contrast ratio, font selection,

and text resizing. The Text Scaling Assistive Service (TSAS) is a service commonly utilized

by low-vision individuals to increase the default text size for better readability, and it is one

of the most popular assistive services used by mobile phone users [2]. However, incompatible

apps, those designed without accessibility in mind, may lead to unexpected user interface

behaviors, resulting in accessibility barriers. While some research has explored accessibility

issues in mobile apps [80, 33, 40, 12], none have specifically addressed the unique challenges

faced by low-vision users who rely on TSAS.

This dissertation seeks to bridge this gap by initially conducting a large empirical study on app

accessibility issues, exploring their prevalence, categories, characteristics, and the development

practices that contribute to these challenges. Next, driven by the insights of this study, the

research focuses on improving app accessibility for low-vision users, especially those using

TSAS, by proposing methods and techniques to detect, localize, and automatically repair

text accessibility issues that arise due to app incompatibility with TSAS. To address these

concerns, the dissertation presents AccessiText, an automated tool designed to identify text

accessibility issues by analyzing UI screenshots and metadata information obtained through

dynamic analysis. AccessiText employs heuristics based on multiple text accessibility issue

types discovered via user-reported feedback from app reviews and Twitter data. Furthermore,

this dissertation introduces Artex, a search-based automatic repair method utilizing a genetic

algorithm to localize and automatically repair text accessibility issues while preserving layout

consistency and minimizing distortion.

Evaluations and user studies on real-world commercial applications showcase the effectiveness,

efficiency, and usefulness of the proposed techniques and tools. By addressing text accessibility

challenges for low-vision users relying on TSAS, this dissertation advances app accessibility

and enhances the mobile experience for disabled users.

2

1.1 Dissertation Structure

The rest of this dissertation is organized as follows: Chapter 2 presents background infor-

mation. Chapter 3 discusses related work. Chapter 4 presents the research problem, three

research hypotheses, and the scope of this thesis. Chapter 5 presents the results of a large-

scale empirical study aimed at understanding the accessibility of Android apps from three

complementary perspectives: apps, developers, and users. Chapter 6 presents AccessiText, an

automated testing technique for text accessibility issues arising from incompatibility between

apps and TSAS. Additionally, it describes the empirical study of identifying five different

types of text accessibility issues by analyzing candidate issues reported by users in (i) app

reviews for Android and iOS, and (ii) Twitter data. Chapter 7 describes Artex, a search-based

automatic repair technique that aims to localize and provide fixes for text accessibility issues,

followed by a conclusion in Chapter 8.

The following is the list of my research projects and publications:

• Syed Fatiul Huq, Abdulaziz Alshayban, Ziyao He, and Sam Malek. “#A11yDev: Un-

derstanding Contemporary Software Accessibility Practices from Twitter Conversations”.

In the CHI Conference on Human Factors in Computing Systems (CHI 2023).

• Abdulaziz Alshayban, Sam Malek. “AccessiText: Automatic detection of text

accessibility issues in Android apps”. In the The ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(FSE 2022).

• Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy

Branham, Sam Malek. “Latte: Use-case and assistive-service driven automated acces-

sibility testing framework for android”. In the CHI Conference on Human Factors in

Computing Systems (CHI 2021).

3

• Abdulaziz Alshayban, Iftekhar Ahmed, Sam Malek. “Accessibility issues in android

apps: state of affairs, sentiments, and ways forward”. In the 42nd International

Conference on Software Engineering (ICSE 2020).

• Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed, Sam Malek. “ER

catcher: a static analysis framework for accurate and scalable event-race detection in

Android”. In the 35th International Conference on Automated Software Engineering

(ASE 2020).

• Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed, Sam Malek. “A bench-

mark for event-race analysis in android apps.”. In the 18th International Conference

on Mobile Systems, Applications, and Services (MobiSys 2020).

4

Chapter 2

Background

This chapter offers a brief overview of Android Graphical User Interfaces (GUIs) and software

accessibility, with a particular focus on text scaling as a means to enhance accessibility. This

discussion serves to provide context and clarify the subsequent analyses presented in this

dissertation.

2.1 GUI in Android

In Android, an app is built around the concept of activities, which represent individual

screens or user interfaces within an app. Each activity can have a distinct purpose, such as

displaying information, gathering user input, or performing a specific task. The user interface

(UI) for an Android app is composed of a series of View and ViewGroup elements, with each

activity consisting of multiple instances of these elements. A View is simply a user interface

element that can be used to create interactive UI views that the user can interact with such

as TextView, ImageView, CheckBox, etc. A ViewGroup is a type of view that is capable

of hosting and organizing other views, known as children. This class serves as an invisible

container to hold other views and to define the layout properties that control how their child’s

5

views are positioned on the screen.

Designing the UI is an essential step in creating an app that is functional, visually appealing,

and easy to use. There are several ways to define the UI in an Android app, but two of the

most common and effective methods are XML layouts and Java/Kotlin code. XML-based

layouts are the most popular approach used by developers to build the UI in Android apps.

XML layouts enable developers to define the style, position, size, and appearance of UI

elements. The use of XML provides a clear separation between the UI design and the code

that defines app functionality, making it easier to manage over time. XML layouts are also

easy to modify using any text editor, providing developers with the flexibility they need to

create complex and interactive UI designs.

One important aspect of UI implementation in Android is that each UI can be defined in

multiple XML layout files, where each subset of the UI, such as buttons, text fields, or images,

can be designed and configured separately in its own XML file. This approach allows for

greater modularity and flexibility in designing UIs, making it easier to maintain and update

them. For instance, if an app has multiple screens that share some common UI components

developers can create separate XML files for those components and reuse them across screens.

This helps reduce code duplication and promotes consistency in the UI design.

2.2 Mobile Apps Accessibility

In this section, we provide a brief description of accessibility issues within Android apps,

outlining the issue, impacted audiences, and some examples.

Content Labeling

Impacted audience: Individuals with visual impairment.

Description: Content labels are alternative texts to images/actions. Although they are

invisible, they can be accessed and announced by a screen reader (e.g., TalkBack in Android).

6

They are intended to provide a clear description of images or actions of buttons for individuals

with visual impairment. Below is a list of issues related to content labeling.

• Speakable Text: This issue indicates User Interface (UI) elements that are visible on

the screen, but missing text labels. Presence of this accessibility issue means screen

reader will be unable to convey these elements to visually impaired users. This issue

can be fixed by providing certain attributes in the layout XML file, or dynamically in

the code.

• Duplicate Speakable Text: This issue indicates UI elements with the same labels are

visible in the same screen. Duplicate labels make it difficult for the user to separate

and identify each UI element.

• Redundant Description: For native Android elements such as a Button, screen readers

can access the type of UI element and announce it to the user along with the label.

Repeating the type of element in the label is redundant and may confuse the user.

UI Implementation

Impacted audience: Individuals with mobile impairment.

Description: Developers are required to avoid certain implementations of UI elements that

challenge users with mobile impairment. Below is a list of accessibility issues related to UI

implementation.

• Clickable Span: UI elements such as ClickableSpan may not be compatible with

accessibility services such as screen readers, i.e., hyperlinks within those elements may

not be detectable and will not be activated. For these hyperlinks to be supported by

accessibility services, the use of alternative UI elements such as URLSpan is encouraged

7

• Duplicate Clickable Bounds: This issue indicates two or more elements, such as nested

Views, that share the same space and boundaries on the screen. When using alternative

navigation approaches, duplicate views can cause the same area on the screen to be

focused more than once.

• Editable Content Description: This issue highlights improper setting of properties

when implementing EditText elements. Supporting accessibility for EditText requires

implementing a label describing the field when it is empty. Moreover, once the user

enters text, that text should be announced.

• Unsupported Class Name: Native Android View provides type information to screen

readers and other accessibility services. For example, accessibility services can recognize

an element as Button or Checkbox automatically and announce that to the user.

However, developers sometimes create a custom View, but forget to provide this

information to screen readers and other accessibility services. This issue highlights a

custom View that does not provide the type of elements to screen reader.

• Traversal Order: Screen readers navigate the elements on a screen based on their

hierarchical order. Developers can override this navigation order by using specific

attributes for each UI element within the XML layout file, allowing them to specify the

following and previous elements on the screen. This issue identifies cases where cyclic

navigation is present, which may leave the user stuck at a certain element and unable

to explore the remaining elements on the screen.

Touch Target Size

Impacted audience: Individuals with mobile impairment.

Description: Small targets are difficult to tap accurately. This requires more effort for the

user. Failure to successfully tap on a button may impede using the app altogether.

8

• Touch target size: This issue identifies clickable UI elements with small touch areas

that can be difficult to use.

Low Contrast

Impacted audience: Individuals with visual impairment.

Description: Insufficient contrast among an app’s UI elements can affect how easily users can

read, find, and comprehend those elements. Below is a list of accessibility issues related to

contrast.

• Text Contrast: This issue corresponds to visible text, where there is a low contrast

ratio between the text color and background color.

• Image Contrast: This issue identifies images that are visible on the screen but with a

low contrast ratio between the foreground and background colors.

2.3 Supporting Text Scaling for Accessibility

In Android, it is fairly simple to initially enable resizable text views so that they become

sensitive to the user’s selected preferences. As outlined in Android documentation, the

platform allows dimensional values to be specified in a variety of ways, however, when it

comes to specifying the text sizes, the use of scale-independent pixels (SP) is recommended

as they can be adjusted based on the users’ preference. Listing 2.1 shows an example of

a scaleable Textview UI view component in Android. By setting the width and height

properties of the view to wrap content, we ensure that the width or height can expand

as needed to contain the text within it. In iOS, the process of supporting scalable text

size, while still straightforward, requires additional work and is not enabled by default.

Apple encourages the use of their existing UIFontTextStyle classes, and then enabling

9

<TextView

android:id="@+id/textView1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Scaleable Text!"

android:textSize="26sp"

/>

Listing 2.1: A TextView that defines its size in terms of SP units. The text displayed will
scale based on the user’s preference.

the adjustsFontForContentSizeCategory properties of the UI view elements to have an

automatic update based on the user selected text size. In case of developers using custom

fonts, the process requires additional work by the developer.

At first, it may seem effortless to support app text scaling. Developers can simply follow

the outlined steps in the platform documentation to enable that feature without much work.

However, supporting this feature without considering proper layout design and running tests

with larger text sizes, especially in rich and complex UIs, can result in many accessibility

issues for users.

According to the Web Content Accessibility Guidelines (WCAG) [94], the recognized standard

for digital accessibility, web and mobile apps should meet some minimum requirements called

success criteria. The Resizable Text success criteria mandate that the app’s textual content

must be resizable (scaleable) up to double the default size without losing any of the app

content or functionality.

10

Chapter 3

Related Work

The purpose of this chapter is to provide an overview of the related work which forms the

basis of our proposed research. In particular, it discusses relevant accessibility standards,

previous empirical studies on the accessibility of mobile apps, and related work on the testing

and repair of accessibility issues.

3.1 Accessibility Standards and Guidelines

Accessibility standards and guidelines are vital for guaranteeing that digital content and

technologies are usable by individuals of all abilities. By providing a set of established

principles and best practices, these frameworks guide developers and designers in creating

more inclusive and accessible apps and digital products.

Among the most globally utilized and recognized guidelines are the Web Content Accessibility

Guidelines (WCAG) [94] developed by the World Wide Web Consortium (W3C). These

guidelines provide a comprehensive framework covering various aspects of digital accessibility,

such as perceivability, operability, understandability, and robustness. Additionally, both

Android and iOS platforms have their own set of platform-specific accessibility guidelines

11

[24, 17], which aim to help developers create apps that are accessible and user-friendly for

people with different abilities.

These standards and guidelines serve as essential tools to promote accessibility and inclusion

in the digital world, thereby ensuring a seamless user experience for all.

3.2 Previous Empirical Studies

Empirical studies involve systematic data collection and analysis, often through observation

and experimentation, to generate insights or validate theories. In the context of accessibility

in mobile apps, empirical studies serve as valuable tools to better understand the extent

of accessibility issues, identify specific problems, and assess the effectiveness of possible

solutions. Recently, studies have started to focus and further investigate accessibility issues

in mobile apps. However, the number of these studies is in comparison smaller than those

for the web. Notably, most of the prior work in this space is small scale. Coelho et al.

manually evaluated four government mobile apps using W3C Accessibility Guidelines [94]

and found that accessibility issues are extensive in these cases [84]. Milne et al. investigated

the accessibility of mobile health sensors for blind users [69]. Walker et al. evaluated weather

apps and found them not to be universally accessible [93].

Vendome et al. [34] performed an empirical study to understand Android apps’ accessibility

issues. However, our study is answering a much wider and more comprehensive set of questions,

as we take a broader approach by looking into the perspective of users, developers, and

apps, while their study only investigates the developer’s perspective. Furthermore, our study

analyzes 10 additional types of accessibility issues. Finally, our approach employs dynamic

analysis for detection of accessibility violations, while they use static analysis, enabling us to

detect a wider variety of accessibility issues as several UI elements in Android are populated

at runtime.

12

Researchers have also previously looked at specific accessibility issues, such as alternative text

labels [78], alternative image labels [69, 73, 84], and missing labels [73]. These studies help

characterize accessibility problems. However, the small scales at which they were performed

make it difficult to more generally assess the state of accessibility in mobile apps. Additionally,

none of these studies has considered developers and attempted to understand the development

practices that lead to the occurrence of accessibility issues in apps. Our study aims to fill

these gaps.

All in all, the aforementioned studies do not address one of the main objectives of our

work: obtaining a holistic view of the prevalence of accessibility issues, understanding why

developers create apps with accessibility problems, and comprehending the impact of these

issues on user perception. This comprehensive perspective is crucial for an effective approach

to enhancing accessibility in mobile apps.

3.3 Accessibility Testing and Repair

Accessibility analysis can be difficult and time-consuming, as it requires human expertise and

judgment to determine what barriers may exist for people with disabilities. Researchers have

investigated various ways of automating the accessibility analysis process [49, 75, 42, 40],

which can be broadly categorized into two categories: static and dynamic accessibility analysis.

Lint [61] is an Android analysis tool for potential issues in various categories such as security,

performance, and accessibility. However, it can only identify a limited set of accessibility

issues including missing content descriptions and missing accessibility labels declared directly

in the XML layout files. Moreover, as a static analysis tool, Lint requires access to app source

code to find such issues.

In the context of accessibility, dynamic analysis has had more success in identifying and

detecting issues [40]. Accessibility Scanner [83], the recommended tool from Google to

13

test apps for accessibility, is based on the Accessibility Testing Framework [46], an open-

source library of various automated checks for accessibility, and it can detect a wide set

of accessibility issues. Alshayban et al. [12] proposed an automated accessibility testing

technique by implementing a random crawler to simplify the process of accessibility testing.

MATE [40] is another tool focused on improved and more efficient exploration process for

accessibility testing. However, both of theses tools are limited to the same set of accessibility

issues as scanner, as they are based on the same accessibility testing framework.

Latte [80] is an approach aimed at reusing existing tests written to evaluate an app’s functional

correctness to assess its accessibility as well. It executes the test cases with the help of two

types of assistive services, screen readers and switches, to identify accessibility failures. A

recent work [33] by Chiou et al. utilized a combination of static and dynamic analyses to

detect keyboard accessibility traps in web apps when using a keyboard interface. Salehnamadi

et al. [82] highlighted the limitations of current accessibility testing tools and proposed

Groundhog, an automated accessibility crawler for mobile apps that detects accessibility

issues without requiring developer input. Alotaibi et al. [11] presented a novel approach for

automatically detecting TalkBack interactive accessibility failures in Android apps, addressing

existing limitations in accessibility-related techniques. In another study, Salehnamadi et al.

[81] introduced a record-and-replay technique that records touch interactions, replays them

with Assistive Technologies (AT), and generates a visualized report, aiding developers in

detecting complex accessibility issues.

While most previous research has focused on improving accessibility through the automated

detection of issues, there has been a growing interest in automating the repair process. Several

studies have aimed to enhance mobile app accessibility by utilizing automated solutions. Chen

et al. [31] developed LabelDroid, a deep-learning-based model that automatically predicts

labels for image-based buttons in Android apps, ensuring better compatibility with screen

readers. Mehralian et al. [67] further advanced this approach with COALA, a context-aware

14

label generation technique that significantly outperforms LabelDroid in both user studies and

automatic evaluations. Additionally, Chen et al. [32] focused on the automatic recognition

and classification of icon types in mobile applications, offering comprehensive coverage of

icons found in various apps. Finally, Alotaibi et al. [10] presented an automated method to

repair size-based accessibility issues, making them more user-friendly for people with motor

disabilities.

Overall, none of the above-mentioned solutions investigate text accessibility issues, nor

evaluate how the use of TSAS affects the app UI and introduces accessibility barriers for

users.

3.4 GUI Testing

Our approach is also related to the area of GUI testing. Generally, GUI testing is a form of

dynamic analysis to verify the UI functionality of the application under test. This type of

testing aims to check whether the UI behaves correctly by executing various test inputs (e.g.,

clicking a button, typing in a text field). However, since manual GUI testing is costly and

time-consuming, numerous automated GUI testing techniques and tools have been proposed

to assist developers in automatically testing app UIs for potential issues and crashes. While

the majority [79] of these tools [15, 20, 51, 64] focus on the functional aspect of the app

by revealing crashes through testing the app UI with various inputs, some focus on specific

issues that impact the non-functional aspects of the app.

Swearngin et al [87] proposed a deep learning based technique for uncovering potential

usability issues in UI elements tappability. Seenomaly [101] is an automated technique for

detecting GUI animations effects, such as card movement, menu slide in/out, snackbar display

GUI animation, that degrade the app usability and violate the platform’s UI design guidelines.

Draw [45] helps developers optimize the UI rendering performance of their mobile apps

performance by identifying the UI rendering delay problems. TAPIR [59] is a static analysis

15

tool for identifying inefficient image displaying (IID), which can impact the app performance

and user experience. UIS-Hunter [100] focuses on detecting UI design smells that violate

Google Material Design Guidelines, for example, illegible buttons due to lack of contrast, or

confirmation dialogs with only a single action that cannot be dismissed.

16

Chapter 4

Research Problem

4.1 Problem Statement

Due to the increased reliance of disabled people on their mobile devices, ensuring the

accessibility of mobile apps, and the support of assistive services within apps has become

more important than ever. Mobile platforms, such as Android and iOS, inclusion of various

integrated assistive services to help disabled users can present a set of new challenges for app

developers. Making apps accessible, and ensuring they are compatible with such services

require following a set of best practices and accessibility guidelines, and more importantly,

thoroughly testing the app under the various settings offered by the assistive service to

identify any issues that can render apps inaccessible for users.

The challenges caused by the lack of understanding and tools to ensure accessibility of mobile

apps can be summarized as follow:

17

“The growing dependence of users with a disability on mobile apps to complete their day-to-day

tasks stresses the need for accessible software. However, currently there is a lack of support

and compatibility in mobile apps for assistive services including the Text Scaling Assistive

Service (TSAS), which is used by people with low-vision to increase the text size and make it

accessible to them. The use of TSAS with incompatible apps may introduce text accessibility

issues for users. As a result, there is a need for practical techniques to advance accessibility

testing of TSAS, including various automated techniques for the detection, localization, and

repair of text accessibility issues.”

4.2 Research Hypothesis

Existing accessibility analysis tools rely on a set of predefined rules and violations in the app

code to identify accessibility issues, while it is effective in detecting various types of issues, a

major set of issues is not detectable via these tools, and can only be detected by testing the

app under the various settings and configuration offered by the assistive service. For example,

when using TSAS with incompatible apps, i.e., those implemented without accessibility in

mind, can result in unforeseen behavior in the app user interface and layout, introducing

various accessibility issues for users.

While several recent studies have investigated accessibility issues affecting mobile apps

[80, 33, 40, 12], none has focused on studying mobile apps support for low-vision users that

use TSAS. This is a rather surprising gap, since TSAS is one of the most widely used assistive

services [2]. Additionally, the impact of text accessibility issues goes beyond aesthetics,

and can, in addition to a reduced user experience, completely break some of the app’s

functionalities and make it inaccessible for a disabled user relying on TSAS.

18

Hypothesis 1: Conducting a study of mobile apps users’ feedback posted on Twitter can help

in identifying a set of recurring text accessibility issues when using the text scaling assistive

service.

Hypothesis 2: An automated technique for the detection of incompatible apps with text scaling

assistive services can be developed by utilizing visual information from app UI screenshots

and various metadata extracted using dynamic analysis.

To test these hypotheses, we will identify different classes of text accessibility issues by

analyzing candidate issues reported by users in (i) app reviews for Android and iOS, and (ii)

discussions and issues reported by users on Twitter. Subsequently, utilizing the identified set

of text accessibility issues, we will develop AccessiText, an automated technique for accurate

detection of text accessibility issues. Finally, we will evaluate our tool on a set of real-world

commercial apps to assess its effectiveness in detecting and addressing accessibility concerns.

Hypothesis 3: A search-based automatic repair technique can be devised for localizing and

fixing text accessibility issues in mobile apps.

To verify the correctness of this hypothesis, I will develop Artex, a search-based automatic

repair technique utilizing a genetic algorithm to localize and automatically repair text

accessibility issues, while minimizing layout distortion and preserving the app layout’s

consistency.

19

Chapter 5

Understanding App Accessibility at

Scale

Mobile apps are an integral component of our daily life. Ability to use mobile apps is

important for everyone, but arguably even more so for approximately 15% of the world

population with disabilities. This chapter presents the results of a large-scale empirical study

aimed at understanding accessibility of Android apps from three complementary perspectives.

First, we analyze the prevalence of accessibility issues in over 1, 000 Android apps. We find

that almost all apps are riddled with accessibility issues, hindering their use by disabled people.

We then investigate the developer sentiments through a survey aimed at understanding the

root causes of so many accessibility issues. We find that in large part developers are unaware

of accessibility design principles and analysis tools, and the organizations in which they

are employed do not place a premium on accessibility. We finally investigate user ratings

and comments on app stores. We find that due to the disproportionately small number of

users with disabilities, user ratings and app popularity are not indicative of the extent of

accessibility issues in apps. We conclude the chapter with several observations that form the

foundation for future research and development.

20

5.1 Introduction

Mobile applications (apps) play an important role in the daily life of billions of people

around the world, from personal banking to communication, to transportation, and more.

Ability to access these necessary services with ease is important for everyone, especially

for approximately 15% of the world population with disabilities [98]. As app usage has

steadily increased over the years among the disabled people, so has their reliance on the

accessibility features. In a survey conducted in 2017, it was found that 90.9% of visually

impaired respondents used screen readers on a smartphone [95], which is substantially higher

than prior years.

Due to the increased reliance of disabled people on their mobile devices, ensuring that

app features are accessible has become more important than ever before. Awareness as

to the accessibility of apps has been growing as well. Google and Apple (primary orga-

nizations facilitating the app marketplace) have released developer and design guidelines

for accessibility [26, 19]. They also provide accessibility services and scanners as part of

their platforms [18, 25, 83, 27]. Mandates from government regulations, such as Section 508

and 504 of the Rehabilitation Act and the Americans with Disabilities Act (ADA) [6], are

bringing further attention to accessibility factors in apps. Not surprisingly, as a result of

such legislation, accessibility-related lawsuits in US federal courts have been growing, e.g., by

180% in 2018 compared to 2017 [90].

Despite these accessibility-focused efforts, studies have found significant accessibility issues

in apps [77]. This suggests a continuing need for increasing accessibility awareness among

researchers, developers of mobile platforms (e.g., Apple, Google), and developers of individual

apps. Although some researchers have studied the accessibility of mobile apps, those studies

remain limited in terms of the number of subjects considered, or the number of accessibility

issues examined [7, 38, 57, 96, 77, 34]. Furthermore, it is not clear to what extent developers

21

utilize accessibility features in their apps. To the best of our knowledge, no prior work has

investigated the development practices pertaining to accessibility of mobile apps, to answer

questions such as: how prevalent are different categories of accessibility issues in mobile apps?

why developers write apps with accessibility issues? what do the developers want from the

accessibility analysis tools? etc.

In this chapter, we aim to cover this gap in research by providing a holistic view of Android

accessibility from three complementary perspectives: apps, developers, and users. We in-

vestigate prevalence of accessibility issues (the apps), reasons why developers create apps

with accessibility issues (the developers), and how accessibility issues impact user percep-

tion (the users). First, we conduct a mining study based on Android apps collected from

AndroZoo [22] to investigate the extent to which accessibility issues are present. Next, we

analyze the developers and organizations involved in the creation of these apps to determine

their association with accessibility issues. We then conduct a survey with practitioners to

gather a deeper understanding of the underlying reasons for creating apps with accessibility

issues. Finally, we analyze user-provided reviews of the collected apps to understand potential

associations between accessibility issues and users’ perceptions.

Overall, the chapter makes the following contributions:

• We report on the first large-scale analysis of prevalence of a wide variety of accessibility

issues (11 types) in over 1, 000 Android apps across 33 different application categories.

• We present the findings of a survey involving 66 practitioners, which shed light on

the current practices and challenges pertaining to accessibility, as well as practitioners’

perception regarding accessibility tools and guidelines.

• We discuss how the presence of accessibility issues, and their extent, impact users’

perception of apps.

22

• Based on our results, we outline implications for developers and researchers, and provide

suggestions for improving the existing tools to better support accessibility in mobile

apps.

The chapter is structured as follows: we provide a background on accessibility issues in

Android in Section 2.2, followed by a brief review of prior research efforts in Section ??. In

Section 5.2, we present our approach of mining Android apps and surveying developers for

answering our intended research questions. In Section 5.3, we present our findings. Section

6.5 discusses the results and outlines implications for developers and researchers.

5.2 Methodology

Our study consisted of the following steps: (1) we first collected a large set of Android apps

and filtered those that were not buildable; (2) we evaluated the accessibility of subject apps

using a custom-build tool that we developed on top of popular accessibility libraries and

testing frameworks; (3) we collected and analyzed developer and organization information

pertaining to each app to identify their association with accessibility issues; (4) we then

conducted a survey with practitioners to gather a deeper understanding of the underlying

reasons for developing apps with accessibility issues; and finally (5) we manually analyzed

user-provided reviews of the collected apps to understand potential associations between

accessibility issues and users’ perception. We now describe each of these steps in further

detail.

5.2.1 Study Subjects

For our study, we selected Android as it is the most popular mobile platform [21]. We selected

1, 500 top free apps from Google Play Store. These apps belonged to 33 different categories

such as health and fitness, music and audio, productivity, and etc. After identifying the

apps, we downloaded their APKs from AndroZoo [9], which is a repository of Android apps

23

with more than 9 million APKs. As part of our study, we wanted to investigate if same

developers tend to create similar types of accessibility issues. We selected a random set of 60

developers and found that 52 of them had multiple apps among the initial 1, 500 apps. We

then identified other apps from Google Play Store that these developers have published and

are not already in our list of projects. This criteria added 200 more apps to our list.

Since one of our goals was to investigate how accessibility levels change over time, we needed

to analyze multiple versions of apps. We selected the top 60 apps in terms of their Activity

coverage (defined in Section 5.2.3) and obtained multiple versions for each app.

5.2.2 Accessibility Evaluation Tool

To evaluate the accessibility features of Android apps, we developed an accessibility evalua-

tion tool that leverages the accessibility checks provided by Google’s Accessibility Testing

Framework [46], which is an open-source library that supports various accessibility-related

checks and can be applied to various UI elements such as TextView, ImageView, and Button.

Google’s Accessibility Testing Framework is also the underlying engine that is used by Google

Scanner [83], a Google recommended app for assessing the accessibility of Android apps. We

did not use Google Scanner [83] for our study, as it requires the users to manually run the

app, go through each screen and initiate the evaluation process, making it time-consuming

and not scalable for a large-scale analysis. Since Google’s Accessibility Testing Framework is

open-source, it provided us with the opportunity to integrate it into our evaluation tool with

ease and automate the entire process.

Our accessibility evaluation tool has two major parts. One part simulates user interactions

and the other part monitors the device for Accessibility Events. We detail each part

below.

24

Simulating User Interactions

We assess accessibility of apps dynamically, as several UI elements in Android are populated

at runtime, making it rather difficult to detect them statically. To that end, our tool first

installs the app on an emulator running on a laptop with Intel Core i7-8550U, 1.80GHz CPU,

and 16GB of RAM. We used an Android image configured with Google services, API level 25

and 1080 by 1920 pixel display resolution.

After successfully installing an app on the emulator, our tool uses Android Monkey [20] to

simulate user interaction. Android Monkey is a UI testing tool developed by Google. It

generates pseudo-random gestures, such as clicks and touches, to simulate user interactions.

Our accessibility evaluation tool runs each app for a time limit of 30 minutes, during which

the app is restarted multiple times to maximize the coverage of Activities and prevent Monkey

from getting stuck on specific screens. In the case of a crash, the tool restarts the app and

continues to crawl. Monkey takes a value as the seed to generate the random events. We feed

Monkey with a different seed value for each run to maximize coverage. Additionally, at this

step, we collect coverage metrics, such as the number of covered Activities and lines of code.

Monitoring Accessibility Events

We developed an Android app, called Listener, that was installed on the emulator as part of

our accessibility evaluation tool. Listener has a Service running in the background that uses

Android’s Accessibility API to listen for Accessibility Events, as each app is crawled.

Accessibility API is included in Android to support the implementation of accessibility

services.

Accessibility Events are system-level signals that indicate state changes on the device, e.g.,

when a Button is clicked, or a new screen is opened. Every time an Accessibility Event is

detected, the app takes a screenshot of the current screen, and retrieve the hierarchy of all the

25

UI elements (Views) that are visible to the user. It then invokes Google’s Accessibility Testing

Framework to perform the various accessibility checks [46]. Since there are no benchmarks

for evaluating this kind of tool, we evaluated the tool by running it on several apps and

manually verifying the results.

5.2.3 Data Collection and Analysis

We collected different types of accessibility issues for each app using our accessibility evaluation

tool. We also collected Package name, Activity name, and number of user interface elements

and lines-of-code for each app. We calculated the app Activity coverage by dividing the

number of unique Activities that are explored by the total number of Activities in the app.

We eliminated apps from our analysis with very low Activity coverage, i.e., apps for which

our tool was not able to explore more than one Activity. We finally ended up with 1, 135

apps in our corpus. Figure 5.1 shows the distribution of apps in our final dataset.

For apps in our dataset that were obtained from Google Play Store, we crawled each app

page and collected various meta-data including category, name of developer, number of

installs, number of reviews and rating score. Since we collected accessibility issues from

screens, and screens with larger number of elements are prone to more accessibility issues,

we needed to normalize the data to avoid such bias. To that end, we used inaccessibility

rate, a metric calculated by dividing the number of elements with accessibility issues on a

screen over the total number of elements on the same screen that are prone to accessibility

issues [99]. This ratio is calculated for each of the 11 types of accessibility issues. For

example, the inaccessibility rate for TextContrast type would be the number of elements with

TextContrast issues divided by all the TextView elements that are potential victims for this

type of accessibility issue.

Game UIs are not built using native UI elements, instead they are built based on graphic

libraries such as OpenGL [47] and Unity [91] [28], where interactive UI elements such as

26

Figure 5.1: Number of apps for each category in the dataset

27

buttons are rendered as images in the background. Existing tools can neither evaluate these

elements nor examine their properties, since these elements do not provide enough information

to the accessibility framework. As a result, we excluded the Game category from our analysis.

An important concern with existing accessibility analysis tools is that they report all ac-

cessibility issues without assigning any ranking. Our goal was to identify fruitful ways in

which the accessibility issues could be ranked, thus engineers can prioritize their effort in

resolving such issues. To identify plausible approaches, we randomly selected 25 apps and

100 screens from our dataset, and manually analyzed the reported accessibility issues. Our

manual analysis revealed three different cases: (1) Some accessibility issues make it difficult

to use the app, while others make the app completely unusable. As an example the 5-star

rating element of the Yelp app lacks accessibility support, leaving this core functionality

inaccessible to many people. This led us to define severity of impact on the user as a ranking

criterion. (2) Some accessibility issues are easily fixed, while others require redesigning the

interface completely. This motivated us to define ease of fix as another ranking criterion. (3)

Not all reported accessibility issues are in fact accessibility issues, as the tools sometimes

produce false positives. Thus, we defined certainty of the warning (true positive) as another

plausible ranking criterion.

We also investigated the impact of company culture on accessibility issues. We identified apps

in our dataset that are developed by well-known companies. It is naturally the expectation

that such companies would have better software development resources than others. The

selection criteria is based on the Forbes Top 100 Digital Companies list [43]. The list contains

companies such as Amazon, Google, and Microsoft. 23 apps met this criteria. We also

analyzed the impact of accessibility issues on users perception. To answer this question, we

crawled the Google Play Store and collected meta-data about each app including app rating

score, and whether it was promoted as an Editors’ Choice on the Store. Our analysis covered

reviews written in English only. Prior to performing the review analysis, we pre-processed the

28

text of the reviews using NLTK library [71]. We applied text tokenization, stemming, and

lower-case letters conversion. We then searched the dataset using a set of accessibility-related

keywords that are based on the different accessibility guidelines and tools, sample keywords

include “accessibility”, “visual impairment”, “blind”, etc. We improved upon this set as we

scanned through reviews that discussed accessibility. The search process flagged 704 reviews.

Two authors independently read the reviews and assigned the accessibility concern types and

whether the sentiment was positive or negative. We also had a high inter-rater reliability of

0.84. . We ended up with 150 verified accessibility-related reviews from 102 different apps.

5.2.4 Survey

To validate our findings, we performed an online survey of Android developers. In this section,

we describe the survey design, participant selection criteria, pilot survey, data collection, and

analysis.

Survey design

We designed an online survey to gather a deeper understanding of the underlying reasons

for creating apps with accessibility issues. We asked demographic questions to understand

the respondents’ background (e.g., their number of years of professional experience). We

then asked them about their current practice of using guidelines and tools for assessing

accessibility (if any). We also asked them about the challenges of ensuring accessibility based

on their experiences. We presented some of the accessibility challenges identified through

our empirical analysis of apps and asked the respondents to rate each of them with one of

the following ratings and to provide a rationale for their rating: very important, important,

neutral, unimportant, very unimportant. A respondent can also specify that he/she prefers not

to answer. We included this option to reduce the possibility of respondents providing arbitrary

answers. During our app analysis, we noticed that none of the available accessibility analysis

tools distinguish between the reported accessibility issues. We identified three potentially

29

fruitful methods of ranking reported accessibility issues: severity of impact on the user,

certainty of the warning (true positive), and ease of fix. We asked the respondents to rate

each of the 3 ranking methods with one of the following ratings and to provide a rationale for

their rating: very important, important, neutral, unimportant, very unimportant. A sample

of the survey instrument can be found at the companion website [86].

Participant Selection

We recruited participants for the survey from the list of open-source app developers on

F-Droid. In total, we identified 740 unique email addresses for our survey.

Pilot Survey

To help ensure the validity of the survey, we asked Computer Science professors and graduate

students (two professors and two Ph.D. students) with experience in Android development

and in survey design to review the survey to ensure the questions were clear and complete.

We conducted several iterations of the survey and rephrased some questions according to

the feedback. In this stage, we also focused on the time limit to ensure that the participants

can finish the survey in 10 minutes. The responses from the pilot survey were used solely to

improve the questions and were not included in the final results.

Data Collection

We used Qualtrics [76] to send a total of 740 targeted e-mail invites for the survey. 6 of

those emails bounced and we received 9 automatic replies, leaving at most 725 potential

participants, assuming all other emails actually reached their intended recipients. According

to the Software Engineering Institute’s guidelines for designing an effective survey [54],

“When the population is a manageable size and can be enumerated, simple random sampling is

the most straightforward approach”. This is the case for our study with a population of 740

software developers.

30

From the 740 sent emails, we received 66 responses (8.9% response rate). Previous studies in

software engineering field have reported response rates between 5.7% [74] and 7.9% [66]. We

disqualified 5 partial responses. Finally we considered 61 responses. We received responses

from 18 countries across 5 continents. The top two countries where the respondents reside

are Brazil and the United States. The professional experience of our respondents varies from

0.25 years to 6 years, with an average of 3.11 years.

Data Analysis

We collected the ratings our respondents provided for each accessibility issue, converted these

ratings to Likert scores from 1 (Strongly Disagree) to 5 (Strongly Agree) and computed the

average Likert score. We also extracted comments and texts from the “other” fields by the

survey respondents explaining the reasons behind their choices. To further analyze the results,

we applied Scott-Knott Effect Size Difference (ESD) test [89] to group the accessibility issues

into statistically distinct ranks according to their Likert scores. We excluded responses that

selected “I don’t know” for our ESD test. Tantithamthavorn et al. [89] proposed ESD as it

does not require the data to be normally distributed. ESD leverages hierarchical clustering

to partition the set of treatment means (in our case: means of Likert scores) into statistically

distinct groups with non-negligible effect sizes.

5.3 Results

In this section, we present the results of our study from three complementary perspectives:

apps, developers, and users.

5.3.1 App Perspective

We start by looking into the prevalence of accessibility issues in the apps. More specifically,

we answer the following research question.

31

RQ1: How prevalent are accessibility issues in Android apps?

We measure the inaccessibility rate of each app for the 11 types of accessibility issues explained

earlier in Section 2.2. The inaccessibility rate is calculated by dividing the number of UI

elements (such as TextView or Button) infected with accessibility issues by the total number of

UI elements that are prone to such accessibility issues. We also use the overall inaccessibility

rate, which is the average of all the inaccessibility rates for the different types of accessibility

issues.

Figure 5.2 shows the distribution of overall inaccessibility rate for all the apps in our dataset.

As shown in figure 5.2, a small number of apps have no accessibility issues, while most apps

do. In our dataset, the mean inaccessibility rate for each app is 6.04% and the standard

deviation is 2.42%.

Figure 5.2: Distribution of inaccessibility rate among apps

�
�

�
�

Observation 1: Accessibility issues are prevalent across all categories of apps, and

the mean inaccessibility rate is 6.04%.

32

RQ2: What are the most common types of accessibility issues? Are specific

categories of apps more susceptible to accessibility issues than others?

Next, we take a closer look at the inaccessibility rate among the various types of accessibility

issues. Table 5.1 shows that Text Contrast, Touch Target, Image Contrast, and Speakable Text

are the most frequent and have a mean of 22.81%, 19.78%, 12.85%, and 11.08%, respectively.

Almost a quarter of TextView elements reported a Text Contrast issue. None of the apps in

our dataset had a Traversal Order accessibility issue. Since this is a very specific problem

with app navigation approach that is optional to use by developers, zero occurrence of this

accessibility issue is not surprising. We omit this issue from our analysis in the rest of the

tables.

Table 5.1: The distribution of accessibility issues

Type of accessibility issue Mean Std Max

TextContrast 22.81 11.61 65.10
TouchTargetSize 19.78 10.09 52.63
ImageContrast 12.85 11.99 50.0
SpeakableText 11.08 8.34 42.24
RedundantDescription 0.93 3.40 50.0
DuplicateSpeakableText 0.89 1.47 15.45
ClassName 0.68 1.96 19.64
DuplicateClickableBounds 0.55 0.92 8.33
EditableContentDesc 0.31 2.69 50.0
ClickableSpan 0.15 0.95 14.72
TraversalOrder 0.0 0.0 0.0

All accessibility types 6.04 2.42 16.64

Figure 5.3 shows inaccessibility rate of the apps grouped into 33 categories. We observe that

despite slight variations, all categories have accessibility issues. The overall inaccessibility rate

is between 4.2% and 7.3.%. Music and Audio category exhibits the highest inaccessibility rate

of 7.3%. While different categories of apps have similar distribution of overall inaccessibility

rates, certain types of accessibility issues are more frequent in some categories. For example,

apps in the Finance category have the lowest SpeakableText inaccessibility rate at about

4.0%, while Design and Beauty has the highest inaccessibility rate of this type at around

16.0%.

33

Figure 5.3: Distribution of inaccessibility rates across the different categories

34

�
�

�
�

Observation 2: 10 out of 11 types of accessibility issues evaluated in the study were

present in the evaluated apps, but to varying degrees.

Since developers use templates provided by Android Studio to build their apps, we posit

that the presence of accessibility issues in templates can contribute towards the prevalence of

accessibility issues in apps. To that end, we analyzed the templates and found that 5 out of

the 10 templates provided by Android Studio suffered from Text Contrast , Touch Target

and SpeakableText accessibility issues. For instance, a screen built using Tabbed Activity

template has Text Contrast issues for the titles of the different tabs (as shown in Figure 5.4).

Figure 5.4: Two accessibility issues are identified in the TabbedActivity template. TextContrast
for the title of inactive tab, and a missing SpeakableText For the Button

�
�

�
�

Observation 3: 50% of the templates provided by Android Studio, the most popular

IDE for Android development, have accessibility issues.

35

RQ3: How does accessibility evolve over time in Android apps?

In order to answer this question, we used a subset of the apps with multiple versions (details

in Section 5.2). We excluded apps with only one version from our analysis as our goal was to

investigate the evolution of accessibility issues. In total, this analysis involved 60 apps with

181 versions. We then performed the accessibility evaluation and calculated the difference

in inaccessibility rate among the subsequent versions. A positive difference indicates more

accessibility issues than the prior version, and vice versa.

Since we are using inaccessibility rate instead of the total number of accessibility issues for

our analysis, changes in the app user interface are less likely to impact the results. Figure 5.5

depicts the summary of changes in accessibility issue for 128 updates for 53 apps. Majority of

the updates (47%) improved the app’s overall accessibility, 28% of the updates impacted the

overall accessibility negatively, and for the remaining 25% overall accessibility levels remained

the same. Note that despite the use of inaccessibility rate, it is possible that the reduction in

inaccessibility rate is not due to fixes but due to the addition of UI elements. However, we

still consider it an improvement in the overall accessibility of a new version, as the new UI

elements did not introduce any new accessibility issues.

Figure 5.5: How Apps accessibility levels changed over time

�
�

�
�

Observation 4: Apps become more accessible over time, with 47% of app updates

improving the overall accessibility.

36

5.3.2 Developer Perspective

We now explain our findings regarding the associations between developer/organization and

accessibility issues.

RQ4: Do same developers tend to create similar types of accessibility issues?

We examine whether developers are creating apps with similar types of accessibility issues. To

answer this question, we first identified a subset of developers who had contributed to multiple

projects in our corpus. We then explored Google Play Store to identify all apps written by

these developers, which yielded 200 new apps. Finally. we calculated the inaccessibility rate

for 260 apps. Table 5.2 shows the average Standard Deviation (SD) of inaccessibility rate for

apps developed by the same developer and apps developed by different developers. In the

first column of Table 5.2, first we calculate the standard deviation for apps grouped by each

developer who has multiple apps and then calculate the average. In the second column, we

did a similar calculation but only for developers who contributed a single app. From table

5.2, we observe that the average standard deviation of inaccessibility rate in apps developed

by the same developers is 1.70, whereas it is 2.42 for apps developed by different developers.

We performed a Two Sample t-test for each category of accessibility issues and found that for

three of the categories (SpeakableText, DuplicateSpeakableText and ClassName) population

means are statistically significant (Two Sample t-test, p < 2.2e− 16) represented using an

asterisk (*) in Table 5.2. Since we are performing multiple tests, we have to adjust the

significance value accordingly to account for multiple hypothesis correction. We use the

Bonferroni correction [39], which gives us an adjusted α value of 0.004 to be used as the

significant level. We also report the Cohen’s d value (effect size) for each accessibility issue.

A Cohen’s d value ≥ 0.8 indicates a large effects size, a value ≥ 0.5 and < 0.8 indicates a

medium effects size, and a value ≥ 0.2 and < 0.5 indicates a small effects size. Although the

observed effect is for the most part small, it is not negligible. This is reasonable, because

37

other factors also impact the presence of accessibility issues.

Table 5.2: Comparison of SD values for apps made by the same developers, and different
developers.

Accessibility issue
Inaccessibility rate

SD
Cohen’s d

Same
developer

Different
developers

TextContrast 9.35 11.61 0.02
TouchTargetSize 7.86 10.09 -0.14
ImageContrast 7.64 11.99 0.06
SpeakableText * 4.50 8.34 0.33
RedundantDescription 0.66 3.40 0.02
DuplicateSpeakableText * 0.69 1.47 -0.23
ClassName * 0.42 1.96 -0.31
DuplicateClickableBounds 0.40 0.92 0.14
EditableContentDesc 0.0 2.69 -0.18
ClickableSpan 0.76 0.95 0.09

Overall inaccessibility 1.70 2.42 0.01

�
�

�
�

Observation 5: App developers tend to create apps with similar types of accessibility

issues.

RQ5: What are the underlying reasons for developing apps with accessibility

issues?

We surveyed Android developers (See Section 5.2 for details) to get their opinion about the

reasons behind accessibility issues in apps.

Table 5.3 represents the percentage of respondents selecting an option. It shows that lack

of awareness about accessibility and its importance is identified as the top reason (48.53%).

Additional cost and lack of support from management are the other top reasons.

�
�

�
�

Observation 6: Developers perceive lack of awareness as the top reason for intro-

ducing accessibility issues in apps.

38

Table 5.3: Reported challenges with ensuring accessibility

Challenges with
Ensuring accessibility

Percent

Lack of awareness about accessibility and its importance 48.53
Additional cost of ensuring accessibility 16.50
Lack of support from management 15.53
Lack of tools 9.70
Lack of standards and guidelines 8.73
Not sure which standards to follow 0.97

RQ6: Do apps developed by large and well-known companies have better inac-

cessibility rate than other apps?

To answer this question, we identified apps that are developed by well-known companies such

as Amazon, Google, Microsoft, and etc. The selection criteria is based on the Forbes Top 100

Digital Companies list [43]. We posit that these companies have access to more experienced

developers and better development resources than others. 23 apps satisfied this criterion.

From table 5.4, we observe that the mean for one type of accessibility issue is noticeably

different. SpeakableText rate is 70% lower in the apps produced by top companies compared

to the mean for all other apps in the dataset. Surprisingly, no major difference is observed

among the other accessibility issues.

Table 5.4: Comparison of the mean for apps’ inaccessibility rates developed by top companies
against all other apps

Accessibility issue Inaccessibility rate Cohen’s d

Apps by
top companies

Other apps

TextContrast 20.63 22.75 -0.28
TouchTargetSize * 19.79 19.67 0.01
ImageContrast 12.60 12.86 0.02
SpeakableText * 3.39 11.21 -1.14
RedundantDescription * 2.49 0.90 0.36
DuplicateSpeakableText 1.10 0.89 0.12
ClassName * 1.68 0.68 0.47
DuplicateClickableBounds 0.33 0.55 -0.28
EditableContentDesc * 1.80 0.31 0.37
ClickableSpan * 0.76 0.14 0.41

Overall inaccessibility * 4.80 6.03 -0.48

We wanted to understand the reason behind this. In the survey, we asked the developers

39

whether accessibility evaluation is part of their app development/testing process. Out of the

32 survey respondents that are paid developers, 23 did not have any accessibility evaluation

as part of their app development process. We also asked the developers whether accessibility

of their apps is treated with importance in their organization. 27 respondents mentioned that

accessibility is not treated as importantly as other quality attributes, such as security, in their

organization. These might be some of the reasons why apps developed by top companies are

as susceptible to accessibility issues as apps developed by other companies.

�

�

�

�

Observation 7: The inaccessibility rates for apps developed by top companies are

similar to inaccessibility rates for other apps, except for SpeakableText accessibility

issue.

RQ7: Do developers perceive all accessibility issues equal?

Our goal was to understand how developers perceive different accessibility issues. To that

end, we presented a list of some of the accessibility issues identified through the app analysis

and asked the developers to rate them (See Section 5.2 for details). Table 5.5 presents the 6

accessibility issues ranked according to the Scott-Knott ESD test in terms of means of Likert

scores for all the respondents. Redundant Description , Text Contrast and Image Contrast

are the top two groups.

Table 5.5: Accessibility issues ranked according to the Scott-Knott ESD test (all respondents)

Group Accessibility issue category

1 RedundantDescription
2 TextContrast
2 ImageContrast
3 TouchTargetSize
3 DuplicateSpeakableText
4 SpeakableText

In our study, we noticed that none of the existing tools rank the reported accessibility issues,

thus do not provide any means of prioritizing accessibility issues that should be resolved by

the developer. We asked the respondents to rate three ranking methods that we identified

40

through a manual analysis and provide a rationale for their rating (See Section 5.2 for details).

We used Scott-Knott ESD test to rank their responses. Respondents ranked severity of

impact on the user as the primary criterion, and certainty of the warning (true positive) and

ease of fix as the second and third criterion, respectively.

�
�

�
�

Observation 8: Developers believe impact on user should be the primary criterion

for ranking (prioritizing) the accessibility issues.

5.3.3 User Perspective

Here, we report our findings regarding how users’ perception about apps is affected by the

presence of accessibility issues.

RQ8: What accessibility issues do users complain about?

To answer this question, we identified 704 reviews from 102 different apps using the process

explained in Section 5.2, resulting in 150 accessibility-related reviews. Figure 5.6 summarizes

the content of all the app reviews in terms of the type of accessibility concern discussed.

Almost half of the reviews discussed accessibility without specifying the exact issues. Users

in the other half of the reviews discussed mainly 3 concerns: (1) difficulties related to missing

label or content description, (2) text size or color, and (3) image/icon contrast or size. We

also found that users tend to use app review to communicate both positive and negative

experiences with app accessibility. In some cases users gave a bad review and stated that

they are going to delete the app as it is unusable.

Some of the accessibility issues that were discussed in the reviews are not detectable by

automated tools and require manual evaluation. For example, users reported issues related

to the grouping of UI elements on the screen. Users with visual impairment may rely on

using Google TalkBack linear navigation service to understand what is shown on the screen

(they swipe right and left to move from one element to another). In one app screen, there

41

were too many elements visible, and navigating that screen linearly was a tedious task, and

slowed down the reading experience. Alternatively, developers should hide elements that do

not add value to the user, either by marking them as unimportant for the screen reader, or

by grouping them with other UI elements under descriptive headings.

Figure 5.6: The rate of the different accessibility concerns discussed in app reviews

�

�

�

�

Observation 9: Almost half of the accessibility issues reported by users in app reviews

are about difficulties related to missing label or content description, text size or color,

and image/icon contrast or size.

RQ9: Do accessibility issues have any association with app ratings?

We explore the association, if any, between apps’ inaccessibility rate and their user ratings on

Google Play Store. We crawled the Google Play Store and collected meta-data about each

app including user rating, and whether it was promoted as an Editors’ Choice on the Store.

Table 5.6 shows the details of the correlation analysis for apps’ inaccessibility rates and user

ratings. We used Pearson correlation coefficient since the data is normally distributed.

�
�

�
�

Observation 10: There is no strong association between the presence of accessibility

issues and app ratings.

We also checked whether presence of inaccessibility issues has association with being promoted

as Editors’ Choice. Table 5.7 compares the inaccessibility rate for apps that were promoted

as Editors’ Choice (a total of 83 apps in our dataset) against all other apps that were not

42

Table 5.6: Inaccessibility rates correlation with app rating

Accessibility issue Correlation value

TextContrast * 0.150
TouchTargetSize -0.023
ImageContrast * 0.108
SpeakableText -0.020
RedundantDescription 0.019
DuplicateSpeakableText -0.059
ClassName -0.028
DuplicateClickableBounds 0.012
EditableContentDesc -0.020
ClickableSpan 0.022

Overall inaccessibility rate 0.050

promoted as Editors’ Choice. Interestingly, apps that were selected as Editors’ Choice had

similar inaccessibility rate compared to those that were not selected.

Table 5.7: Comparison of inaccessibility rates for apps that were selected as Editors’ Choice
in Play store.

Accessibility issue Inaccessibility rate Cohen’s d

Editors
Choice

Other
apps

TextContrast 25.30 22.71 0.23
TouchTargetSize 18.99 20.19 -0.12
ImageContrast * 15.41 12.43 0.25
SpeakableText 9.81 11.16 -0.16
RedundantDescription 1.12 0.97 0.04
DuplicateSpeakableText 0.71 0.91 -0.15
ClassName 1.04 0.66 0.18
DuplicateClickableBounds * 0.37 0.59 -0.26
EditableContentDesc 0.18 0.36 -0.07
ClickableSpan 0.05 0.17 -0.16

Overall inaccessibility 6.29 6.02 0.11

�
�

�
�

Observation 11: Presence of accessibility issues does not impact popularity of an

app.

5.4 Discussion

Accessibility issues are widely prevalent. One goal of our study was to investigate and identify

the most prominent accessibility issues. Our findings show Text Contrast, Image Contrast,

and Touch Target are widely prevalent accessibility issues in all categories (33 in our dataset)

43

of Android apps. Since the apps used in this study are the top free apps in the Google Play

Store, our results represent the accessibility status of the most commonly used Android apps

on the market.

Individuals with different kinds of disability are affected. To make things worse, identified

accessibility issues affect individuals with different types of disabilities. As an example, Touch

Target accessibility issue impedes the app use for individuals with mobile impairment. Color-

and image-contrast related accessibility issues create difficulty for visually impaired users.

Our results also highlight the fact that approximately 39 million blind users and 246 million

low-vision users worldwide [29] are mostly affected by accessibility issues, since the most

frequent issues identified in our analysis were Text Contrast, Image Contrast, and Touch

Target. These findings call for action to the software engineering community for reducing

accessibility issues and lowering the barrier for individuals with different kinds of disability.

Accessibility issues are found even in the Android templates. Our study provided us with useful

insights as to the underlying reasons for why existing app are so riddled with accessibility

issues. One such reason appears to be the presence of accessibility issues in the templates

provided by IDEs. 5 out of the 10 templates from Android Studio suffer from Text Contrast,

Touch Target and SpeakableText accessibility issues (two of the top three identified accessibility

issues). It is a common practice for developers to build their apps based on these templates.

Interestingly, Android Studio is not only the most popular IDE for Android development,

but it is also from Google, the company that makes the most popular accessibility analysis

tool for Android (i.e., Google Accessibility Scanner).

Developer are generally unaware of the accessibility principles. The pervasiveness of accessibil-

ity issues can also be attributed to the lack of awareness and training among the developers.

This was identified as the top challenge (48.53%) among the survey respondents (Table 5.3).

For example, all of our survey respondents mentioned using Lint. However, prior research

shows that developers do not actually know how accessibility warnings from Lint impact the

44

app’s use by a disabled person [34]. Developers could benefit from training on accessibility

design principles, yet such training is a rarity in most formal academic curricula.

Apps do not get worse over time. When we looked at the evolution of accessibility in apps,

we found that 72% of the apps are either improving or remaining the same in terms of

accessibility (Figure 5.5). This is surprising, for two reasons. First, conventional code quality

attributes, e.g., code smells, tend to degrade over time as the complexity and size of apps

increase [8], while with respect to accessibility we observe a reverse effect. Second, developers

claim to be unaware of accessibility issues and standards (Table 5.3), thus the improvements

in accessibility cannot be attributed to a conscious effort on their part. This warrants further

investigation into why and how the accessibility of apps improve over time.

Tools have ways to go. Our results highlight the limitations of current accessibility analysis

tools. Some of the accessibility issues are not easy to identify. One such example is the

Dropbox app, which requires the user to navigate through all files in the current folder before

accessing the“menu”, “select”, or “more” buttons. This makes it difficult, or even impossible,

for individuals with mobile impairment to use the app. Identifying such accessibility issues is

not straightforward and requires considering the context of interaction. None of the current

accessibility analysis tools consider context. Existing tools are also unable to evaluate apps

with non-native elements in their UIs such as Games. Attention from the research community

is needed to investigate the accessibility issues that are context-specific or occur in non-native

UI elements.

Furthermore, we found that the reported accessibility issues are not equally important. In

some cases, a single inaccessible element undermines the entire purpose of an app. As an

example, we found the rating UI widget of the Yelp app lacks accessibility support, leaving

the core functionality of this app inaccessible to many users. We noticed that none of the

analysis tools report severity of issues. Rather important issues are presented alongside of

those that affect tangential functions of an app, e.g., text contrast on the About screen.

45

The high number of accessibility issues reported by the existing tools, reaching hundreds in

some cases, overwhelm the developers. Therefore, research is needed into identifying effective

means of prioritizing accessibility issues in terms of their importance. We took the first step

and identified three potentially fruitful methods of ranking accessibility issues: severity of

impact on the user, certainty of the warning (true positive), and ease of fix. When asked

to rank these during the survey, developers ranked “severity of impact on the user” as the

primary criterion for prioritizing the accessibility issues. However, further research is required

to identify and compare different prioritization criteria.

Another limitation of the existing accessibility testing tools is the inability to consider all kinds

of impairment. As an example, Google Accessibility Scanner has no support for testing hearing

impairment related issues. Devising new robust tools for automatically testing accessibility

for all kinds of impairment requires further attention from the research community.

An interesting observation is that while accessibility issues can render an app completely

useless for a disabled person, the fixes to many accessibility issues are in fact quite easy.

For instance, text contrast can be easily fixed through simple changes to the font and/or

background colors. Given the recent advances in automated program repair in the software

engineering research community, this appears to be a fruitful avenue of future research.

Finally, one approach for stemming accessibility issues is to plan for accessibility in the early

design phase rather than handling it as an afterthought at the end of the development phase.

Catching accessibility issues early on at the design stage allows the developer to adapt the

UI without significant effort. Automated accessibility analysis tools are needed that can be

applied to early design prototypes, e.g., UI sketches. Furthermore, we found that the most

popular build-time code scanning tool for Android, called Lint, only provides support for

detection of one type of accessibility issue. We believe incorporating more comprehensive

checks in the build process of IDEs could drastically reduce the accessibility issues that creep

into the final product, allowing the developers to resolve the issues early in the development.

46

Gaps between developer and user perception. The preliminary indication from our study is

that developers and users have different perceptions as to the impact of accessibility issues on

the usability of apps. Bridging this gap would help developers prioritize fixes for accessibility

issues that are most critical for users first. However, in order to do a meaningful comparison

and have a better understating of user perspective, a more extensive user study, involving

disabled users, would be needed. This is outside the scope of our current study, given that

property conducting such a study would require, among others, access to users with different

types of disability (e.g., visual, hearing, mobility impairment). Nevertheless, we consider this

to be an interesting avenue of future work.

Organizations need to pay attention. When we tested the relationship between app ratings

and presence of accessibility issues, we did not find any strong association. We posit this has

to do with the fact that disabled people are a small minority of app users, thus, reports by

this category of users do not have a significant impact on the overall app ratings. This became

further evident when we saw a lack of association between presence of accessibility issues and

popularity of an app (Table 5.7). Unfortunately, this implies that disabled users cannot rely

on app ratings to determine which apps to install, and accessibility-related criticism of apps

tends to go unnoticed, as most users do not share the same concerns.

Our analysis revealed that inaccessibility rates for apps developed by top companies are

relatively similar to inaccessibility rates for other apps. Moreover, out of the 32 survey

respondents that are paid developers, 23 did not have any accessibility evaluation as part of

their app development process. Respondents also mentioned that accessibility is not treated

as importantly as other aspects of quality, such as security, in their organization. Lack of

support from management was also identified as one of the challenges (15.53%) with regards

to ensuring accessibility (Table 5.3). All of these indicate that even the top companies in

most cases do not pay attention to accessibility. We believe training the app developers and

increasing their general awareness of the accessibility issues could improve the state of affairs,

47

as they become ambassadors of accessibility in their organizations.

5.5 Threats to validity

We have strived to eliminate bias and the effects of random noise in our study. However, it is

possible that our mitigation strategies may not have been effective.

Bias due to sampling : To increase our confidence that the subject apps are representative,

we used multiple sources (i.e., Google Play Store and F-Droid). We also used large number

of projects belonging to multiple categories. Since we used only two sources, our findings

may not be generalizable to all Android apps. However, we believe that the large number of

projects sampled from multiple sources adequately addresses this concern.

Bias due to tools used: Any error in the tools used may affect our findings. To minimize

this risk, we leverage Google Accessibility Testing Framework which is widely used by other

researchers [77, 41] and practitioners. This is also the underlying framework for the state-of-art

Google Scanner.

Moreover, it is possible that there are defects in the implementation of our tool. To that end,

we have extensively tested our implementation, among others, verifying the results against a

small set of apps for which we manually verified the accessibility issues. Additionally, we do

not claim to identify all accessibility issues, as it is possible that certain accessibility issues

cannot be identified using the existing tools.

Bias due to survey: It is possible that the survey participants misunderstood some of

the survey questions. To mitigate this threat, we conducted a pilot study with Android

developers with different experience levels from both open-source community and industry.

We also conducted a pilot study with survey design experts. We updated the survey based

on the findings of these pilot studies.

48

5.6 Conclusion

We presented the results of a large-scale empirical study aimed at understanding the state of

accessibility support in Android apps. We found accessibility issues to be rampant among

more than 1, 000 popular apps that were studied. We identified a number of culprits, including,

among others, the observation that developers are generally unaware of the accessibility

principles, and that existing analysis tools are not sufficiently sophisticated to be useful, e.g.,

are unable to prioritize accessibility issues. Due to the disproportionately small number of

disabled users, apps with extensive accessibility issues are highly popular and have good

ratings. Thus, disabled people have no way of determining which apps are suitable for their

use based on the app ratings. Moreover, app developers appear to lack the incentives and

backing of their organizations to make their apps usable by this small, yet important, segment

of society.

Our ultimate goal is to help catalyze advances in mobile app accessibility by shedding light

on the current state of affairs. Our findings can help practitioners by highlighting important

skills to acquire, and educators by recommending important skills to include in the curriculum.

The findings also highlight opportunities for researchers to address the limitations of existing

tools.

49

Chapter 6

AccessiText: Automated Detection of

Text Accessibility Issues in Android

Apps

For 15% of the world population with disabilities, accessibility is arguably the most critical

software quality attribute. The growing reliance of users with disability on mobile apps to

complete their day-to-day tasks further stresses the need for accessible software. Mobile

operating systems, such as iOS and Android, provide various integrated assistive services

to help individuals with disabilities perform tasks that could otherwise be difficult or not

possible. However, for these assistive services to work correctly, developers have to support

them in their app by following a set of best practices and accessibility guidelines. Text

Scaling Assistive Service (TSAS) is utilized by people with low vision, to increase the text

size and make apps accessible to them. However, the use of TSAS with incompatible apps

can result in unexpected behavior introducing accessibility barriers to users. This chapter

presents AccessiText , an automated testing technique for text accessibility issues arising

from incompatibility between apps and TSAS. As a first step, we identify five different types

50

of text accessibility by analyzing more than 600 candidate issues reported by users in (i) app

reviews for Android and iOS, and (ii) Twitter data collected from public Twitter accounts.

To automatically detect such issues, AccessiText utilizes the UI screenshots and various

metadata information extracted using dynamic analysis, and then applies various heuristics

informed by the different types of text accessibility issues identified earlier. Evaluation of

AccessiText on 30 real-world Android apps corroborates its effectiveness by achieving 87.92%

precision and 95.3% recall on average in detecting text accessibility issues.

6.1 Introduction

Mobile technology has progressed beyond the scope of communication and has enabled areas

like education, entertainment, and finance. For 15% of the world population with disabilities

[97], accessibility is arguably the most critical software quality attribute. The growing reliance

of users with disability on mobile apps to complete their day-to-day tasks further stresses the

need for accessible software.

Popular mobile operating systems, such as iOS and Android, provide various integrated

assistive services, such as TalkBack (a screen reader for users with visual impairment),

SwitchAccess (a service for navigating an app via switches instead of the touchscreen), or

Voice Access (a service for controlling the device with spoken commands) to help individuals

with various disabilities (e.g., vision, motor) use their phones and perform tasks that could

otherwise be difficult or not possible. However, for these assistive services to work correctly,

developers have to support such services in their apps by following a set of best practices and

accessibility guidelines [24, 17]. Disappointingly, several studies [12, 80, 77] have shown lack

of accessibility and compatibility of mobile apps with assistive services.

App developers can significantly improve the accessibility and readability of text in their

apps by considering factors such as contrast ratio, font selection, and text resizing. From

an accessibility standpoint, in addition to satisfying the minimum text size requirement and

51

providing larger text where possible, it is also essential to ensure that text can be adjusted

according to users’ specific needs. Users with a variety of visual impairments make this

adjustment to improve their ability to read small text on a small screen. Once this setting is

adjusted, the platform and any apps that have built-in support for this feature will resize the

displayed text within the app.

One of the most poplar assistive services among mobile app users is the Text Scaling Assistive

Service (TSAS) [2], which is utilized by people with low vision, to increase the default text size

and make apps accessible to them. The web content accessibility guidelines (WCAG) [94], the

recognized standard for digital accessibility, states the requirement that users must have the

ability to adjust the text size, without losing any content or functionality. However, similar

to other assistive services, the use of TSAS with incompatible apps, i.e., those implemented

without accessibility in mind, can result in unforeseen behavior in the app user interface and

layout, introducing various accessibility issues for users.

While several recent studies have investigated accessibility issues affecting mobile apps

[80, 33, 40, 12], none has focused on studying mobile apps support for low-vision users that

use TSAS. This is a rather surprising gap, since TSAS is one of the most widely used assistive

services [2].

To facilitate a a proper understanding of text accessibility issues, this chapter presents a

study towards characterizing text accessibility issues in mobile apps, as reported by users.

We identify a set of text accessibility classes encountered by users by analyzing more than

600 candidate issues reported by users in (i) app reviews for Android and iOS, and (ii)

discussion and issues reported by users on Twitter. Then, leveraging the identified set of text

accessibility issues, we devise and propose AccessiText , an automated technique for accurate

detection of text accessibility issues. We evaluate our tool on a set of 30 real-world apps

from various categories. Additionally, We discuss how the different types of text accessibility

issues impact users, and discuss the causes and provide suggestions on how developers can

52

improve their apps to mitigate them.

Our findings highlight several important insights, including the presence of various types of

text accessibility issues in mobile apps. Most importantly, the impact of text accessibility

issues is not just limited to a reduced user experience due to a distorted and less appealing

UI, but can also completely break some of the app functionalities and make it inaccessible for

a disabled user relying on TSAS. For example, in some apps, the user is unable to navigate

from one screen to another, as the UI view responsible for handling the user interaction

becomes completely unreachable, rendering the corresponding functions inaccessible.

Overall, the chapter makes the following contributions:

• As a first step, we identify five different classes of text accessibility issues by analyzing

more than 600 candidate issues reported by users in (i) app reviews for Android and iOS,

and (ii) discussion and issues reported by users on Twitter.

• Then, leveraging the identified set of text accessibility issues, we devise and propose

AccessiText , an automated technique for accurate detection of text accessibility issues.

We evaluate our tool on a set of 30 real-world commercial apps.

• We discuss how the different types of text accessibility issues impact users, and discuss the

causes and provide suggestions on how developers can improve their apps to mitigate them.

The chapter is structured as follows: In Section 6.2, we present our study on identifying

the different types of text accessibility issues. In Section 6.3, we describe how our approach,

AccessiText , works. In Section 6.4, we present our findings. Section 6.5 discusses the results

and outline relevant insights.

53

6.2 An empirical study of text-based accessibility issues

in mobile apps

As a first step to our study, we wanted to develop a deeper understanding of the types of

accessibility problems that ensue when an app does not properly handle text scaling. In this

section, we provide an overview of our findings, which set the foundation for our automated

testing technique described later in this chapter.

6.2.1 Design and Data Collection

This section introduces the methodology of our study of users’ feedback regarding the use

of TSAS. We detail how we extracted and processed data. To determine the variety of

accessibility issues that can result from text scaling, we manually analyzed two different

sources of information described below:

• App reviews. These are posts by users of (i) Android apps on the Google Play store, and

(ii) iOS apps on the App Store. App reviews have been identified as a prominent source of

valuable feedback in mobile apps [52, 55, 60].They can provide information such bugs or

issues [72], summary of user experience [48], request for features and enhancements [30].

Our Android reviews dataset includes reviews from 867 top apps. The App Store dataset

includes reviews from 1,350 top apps.

• Twitter data. These are tweet messages collected from public Twitter accounts. It

is common for users to utilize Twitter public platform to provide feedback and report

issues to developers, as the majority of apps have a public presence on the platform.

Additionally, feedback posted on Twitter has been found to sometimes be more relevant

and informative to app developers than other sources [72, 70]. Thus, mining Twitter data

provides significant valuable insights into the types of accessibility issues experienced by

54

Figure 6.1: Examples of (a) unresponsive view issue, and (b) missing view issue

mobile apps users. We used the Twitter Academic API [3] to collect the public tweets.

For both the Twitter and app stores datasets, our analysis covered reviews and tweets in

English only. We first collected candidate tweets and reviews by searching both datasets with

keywords relevant to the use of TSAS. For Twitter data, we only consider tweets with images,

which are typically screenshots of the app containing the issue. Sample queries included

keywords such as ”accessibility”, ”large text”, ”low vision”, and ”visually impaired”. While

some users mentioned the term ”accessibility” when describing a text accessibility issue,

others addressed and described such issues without mentioning the term. As using keywords

to select user reviews and tweets related to accessibility may result in many false positives, in

the first iteration, we manually analysed the content of all selected accessibility reviews and

tweets to exclude those that are not related to accessibility issues. It is important to note

that we did not consider data items tagged as false positive , i.e., discussions not related to

text-based accessibility in mobile apps, in the count of the documents manually analyzed. At

the end, we collected a set of 412 app reviews, and 235 tweets. Given the limited number, we

considered all of them in our manual analysis.

55

Figure 6.2: Examples of (a) overlapping views issue, and (b) cropped view issue

The data collected from the two sources listed above was manually analyzed following a

procedure inspired by open coding [68]. Our goal was to identify and classify the type of

accessibility issue reported by the user, by analysing the tweet/app review text and associated

image, and extract any additional information provided.

We were able to classify the type of text accessibility issue reported by users in 135 data items.

The remaining data broadly falls under two categories: (i) request for an additional feature

from the developer to be able to adjust the font size, from which it was not clear whether

it is because the app does not support TSAS or just because the user is not aware such an

assistive service exists, or (ii) reported a text accessibility issue with the text scaling assistive

service, but did not provide enough information for us to identify the type of issue, e.g., a

user would describe the app UI to be distorted and the text unreadable without providing

much details or a specific description.

Finally, the output of this step was a set of text accessibility issues for mobile apps, described

in the following section.

56

6.2.2 Results

We list and describe a number of text accessibility issues that are the result of the manual

coding process for Twitter and app stores data.

Unresponsive Views: Issues in this category describe textual views with a fixed size, that

do not respond to text size adjustments by TSAS, making this assistive service useless to the

user. Figure 6.1(a) shows an example of an unresponsive textual view (indicated by the red

dashed line) in the login screen for STC app, an account management app with more than

than 10 millions downloads in the Play Store. The main reason for this type of issue is the

use of density independent pixels (dp) for text font sizes, which unlike scale-independent

pixels (sp), do not respond to font size preference specified by the user. Additionally, images

of text can also lead to the same issue as they cannot be scaled up by users. Both of these

options are sometimes used by developers to easily keep a consistent look and feel for the

app across multiple devices and configuration, and unfortunately as a result, reducing the

level of accessibility and compatibility with assistive services for the app.

An example of a user feedback on MyVerizon app for this type of issue: The app itself seems

fine but does not honor the larger text size accessibility option. This has been reported to

them numerous times.

Missing Views: When the text size increases, it is typical for views to be rearranged on the

screen as other textual views occupy more space, and as a result, it is not uncommon for some

views to disappear from the visible part of the screen, and become completely inaccessible by

users. Figure 6.1(b) shows an example of a missing view in the main dashboard for Health

Tracker app where the number of remaining days in the current challenge (delineated using

the dashed red line on the top right) disappears when adjusting the text size. The impact of

this issues is not just limited to distorting the UI and making it less appealing, but can also

break some of the app functions and make it inaccessible for a disabled user relying on TSAS.

57

Figure 6.3: Number of text accessibility issues grouped by platform

An example of a user feedback on Messenger app for this type of issue: Really disappointed

that the app I use the most has been ruined in accessible large font. Pictures next to names

gone, [...]

Overlapping Views: Overlapping happens when two views on the same screen are rendered

fully or partially over each other, resulting in one of the views covering the content of the

other. Figure 6.2 (a) shows an example of two overlapping textual views in the STC app.

We can observe how the product title is covering the price text, making it hardly readable.

The common reason behind this category of issues is poorly defined constraints behind these

views; both the start and end constraints need to be defined.

An example of a user feedback on Discord app, for this type of issue: I have very poor eye

sight due to a genetic condition. I rely on the accessibility options available on the iPhone

and I’m very sad to see that the app doesn’t play well with large text. All the text is over

lapping making it hard to use the app.

Cropped Views: This type of issues happens when the displayed text grows beyond the

constrained height of the containing view, causing part of the text to be invisible. Figure 6.2

58

Figure 6.4: A cropped view accessibility issue for AnovaCulinary app as reported by a user.

(b) shows an example of a cropped view in the Todo List app. The impact of this issue can

range from aesthetically unpleasant text to a completely unreadable and inaccessible one,

depending on the severity of the cropping. Typically these kinds of issues are related to hard

coding layout limits. This allows the content to scale to different lengths and sizes.

An example of a user feedback on AnovaCulinary app, as part of which the user also provided

a screenshot of the app, shown in Figure 6.4, that clearly demonstrated the issue: It’s not

easy to set the timer in your android app when it looks like this. I suspect this is caused by

large settings of Accessibility.

Truncated Views: Text truncation, i.e., shortening, typically happens when the text grows

beyond the constrained width of the containing view. Truncated parts of a text are replaced

by an ellipsis (...). Figure 6.6 shows an example of a truncated view in the Insight

Timer app. While text truncation is an effective way to hide additional details and keep

the UI design consistent, it can negatively impact the UI accessibility by hiding important

information from the user.

59

An example of a user feedback on ANZ bank app, for this type of issue: Can you please test

your Android app when a phone is using largest font [...] As when paying another person the

bank account number gets trimmed & can’t see all the numbers. You need to test applications

with large font sizes & accessibility features enabled.

Figure 6.3 shows the number of text accessibility issues grouped by Android and iOS, the

two mobile platforms considered in our study. The lack of support for text scaling by apps

is disappointing, given that both platforms provide facilities for aiding developers to avoid

these issues. The identified five types of text accessibility issues are present in both platforms.

Unresponsive views, overlapping views, and cropped views are the most common issues

reported by users. The high number of unresponsive views in iOS is consistent with the

results of a recent survey by Diamond [5], a technology consulting company. By default,

Android development supports text resize, while iOS requires developers to use built-in fonts

and enable a specific flag in the system, or modify their custom fonts to accommodate resizing.

This difference between the two platforms may explain the significant increase in unresponsive

issues in iOS compared to Android.

6.3 Approach

Given the insights from our empirical study, we set out to develop an automated tool for

testing and detecting text accessibility issues in Android. Although iOS can also benefit from

such a tool, our current implementation only supports Android. Extending our work to iOS

will be an area of our future work. Figure 6.5 shows an overview of our approach, called

AccessiText , consisting of two main components:

(I) Test Runner component that executes a given GUI test script for an app under two

settings, first, with the default text size, and then, with larger text by activating TSAS.

During the test execution, AccessiText captures a series of screenshots, and collects various

metadata related to the UI view components present on each screen that was explored during

60

Figure 6.5: Overview of AccessiText

the test execution.

(II) Result Analyzer component that utilizes the information from the previous component,

and applies various checks, i.e., predefined rules, to detect any text accessibility issues

encountered. Finally, Result Analyzer generates an accessibility report that provides a

detailed description of all the accessibility issues and their contextual information.

We implemented AccessiText using Python programming language and utilized Appium

testing Framework [23]. In the remainder of this section, we describe AccessiText ’s two

components in detail.

6.3.1 Test Runner

Test Runner takes a GUI test script as input and executes it twice, first with device default

text size, and then with the larger text size. AccessiText uses Android Debug Bridge (adb)

tool to control the text size and activate/deactivate TSAS at each run. A GUI test case

represents an actual use-case provided by the app, and consists of basically a sequence of

steps, where each step typically identifies a particular UI view, i.e., Button, and specifies an

61

action, e.g., click or scroll, that is performed on that view.

While executing each step in the test, AccessiText takes a screenshot, and extract an XML

dump for the currently displayed screen. XML dump file is parsed to get hierarchical views

and properties details of each UI view in the current screen. Properties details include

information such app-name, view-class, bounds, and text. Listing 6.1 shows an example

of the list of properties parsed from the XML dump for a UI view in the hierarchy. View

metadata information will later be used by Result Analyzer component to compare the

different UI views and identify various text accessibility issues.

AccessiText presumes the test cases are (1) written for each app using the default text size,

and (2) actions in the test cases identify the UI views through either resource-id or text

containment (i.e., static attributes). These types of tests are also expected to work with

TSAS activated. AccessiText does not support tests cases in which UI views are identified

using absolute coordinates on the screen. If a test uses absolute coordinates, it may not work

when TSAS is activated, because the positions of views change due to the increase in text

size. These assumptions are reasonable and widely applicable. Indeed, developers almost

always write tests for their apps with the default text size. Developers typically do not write

tests with absolute coordinates, because regardless of TSAS, tests using absolute coordinates

cannot be executed on devices with different screen resolutions.

During the test execution, Test Runner component performs additional exploration steps

that are not defined in the provided test. For example, when executing a test case with TSAS

activated, after each step, AccessiText will try to identify whether the currently displayed

screen is scrollable either horizontally or vertically. If so, it will perform a scrolling action,

and collect the additional UI views displayed after scrolling. This step is critical to identifying

additional views that were originally part of the screen under the original settings (default

text size) but have been pushed down (due to increased text size) and became hidden. This

list of additional views (after scrolling) will enable us to perform an accurate and complete

62

index="0"

text="Get started"

resource -id="com.google.android.apps.authenticator2:id/howitworks_button_get_started"

class="android.widget.Button"

package="com.google.android.apps.authenticator2"

content -desc=""

checkable="false"

checked="false"

clickable="true"

enabled="true" focusable="true"

focused="false"

scrollable="false"

long -clickable="false"

password="false"

selected="false"

bounds="[231 ,1176][488 ,1272]"

Listing 6.1: UI view properties parsed from the XML dump for a Button with the text: Get
Started

comparison for all the views rendered with and without TSAS activated.

In some cases, Test Runner may not be able to execute certain steps with the TSAS activated.

This is likely to happen when a view handling the action is missing or inaccessible (e.g.,

clicking on a missing TextView). In this case, the accessibility issue is flagged as a

functionality failure. When this occurs, Test Runner component deactivates TSAS, falls back

to the original setting (i.e., the default text size), executes the step, and then activates TSAS

and continues with executing the remaining steps in the test case. This way AccessiText is

able to identify all text accessibility issues in the use case exercised by the test.

6.3.2 Result Analyzer

The Result Analyzer utilizes the information collected by Test Runner, e.g., the list of UI

views and their metadata along with the UI screenshot for each step, and performs a set of

checks to detect the text accessibility issues described in Section 6.2.

Unresponsive Textual Views: This check identifies textual views that do not respond

to text size changes by TSAS, making this assistive service useless to the user. To detect

this issue, first, AccessiText filters textual views, i.e., views of type Button, EditText, and

TextView based on class property from the metadata in the parsed XML. For each view that

63

satisfies this selection criteria, AccessiText then obtains an image for the view by cropping the

corresponding step screenshot based on bounds property from the XML. Finally, AccessiText

utilizes Tesseract, an open-source OCR engine, to identify the bounding box for the text

inside the selected view, and calculates the text height.

For the setting S with default text size, and setting S' with TSAS activated, we can conclude

that a textual view is unresponsive if the view vi under setting S, and vi' under setting S'

have the same text height.

Figure 6.1(a) shows an example of an unresponsive text (indicated by the red dashed line)

in the login screen for STC app. The main reason for this type of issue is the use of density-

independent pixels (dp) for text font sizes, which unlike scale-independent pixels (sp), do not

respond to font size preference specified by the user. Additionally, images of text can also lead

to the same issue as they cannot be scaled up by users. Both of these options are sometimes

used by developers to easily keep a consistent look and feel for the app across multiple devices

and configuration, and unfortunately as a result, reducing the level of accessibility for the

app.

Missing Views: When the text size increases, it is typical for views to be rearranged on

the screen as other textual views occupy more space. As a result, it is not uncommon for

some views to disappear and become completely inaccessible by users. Figure 6.1(b) shows

an example of a missing view in the main dashboard for Health Tracker app where the

number of remaining days in the current challenge disappears when using ATAS.

To detect such issues, AccessiText ensures that each view vi under setting S, is also present

on the same screen under setting S'. It is worth noting that a view vi' is likely to have

different coordinates than vi and in some cases even not visible on the currently displayed

part of the screen. However, it can still be found when a user scrolls down. AccessiText takes

into consideration this scenario, and checks for vi' in the additional views after scrolling as

64

Figure 6.6: Example of a truncated view

provided by Test Runner component.

Overlapping Views: Overlapping happens when two views on the same screen are rendered

fully or partially over each other, resulting in one of the views covering the content of the

other. Figure 6.2(a) shows an example of overlapping views in the STC app. We can observe

how the product title is covering the price text.

AccessiText obtains (x, y) coordinates of the upper left corner and the lower right corner of

each view vi from bounds property from the XML. Overlapping issue happens if two views, vi'

and vj' in the same screen overlap each other under setting S' but not under S. Intentional

overlapping elements such as Floating Action Button (FAB), or overlapping views that are

part of the original design are ignored and not flagged as issues. The assumption here is

that any unintended overlap between two elements under settings S’ but not under S, is

undesirable and likely to cause accessibility issues.

65

Cropped Views: This type of issue occurs when the text grows beyond the constrained

height of the containing view, causing part of the text to be invisible. The impact of this issue

can range from aesthetically unpleasant text to a completely unreadable and inaccessible one,

depending on the severity of the cropping.

To detect this issue, first, AccessiText filters textual views, i.e., views of type Button,

EditText, and TextView, based on class property from the metadata in the parsed XML.

It then obtains an image for the view by cropping the corresponding step screenshot based

on bounds property from the XML. Finally, AccessiText utilizes Tesseract to identify the

bounding box for the text inside the view, and calculates the text height. Given the text

height under setting S, we can easily calculate the expected text height under setting S' by

multiplying default text height by the scale factor provided to TSAS.

For the same view vi under setting S, and vi' under setting S', if the text height difference

between vi multiplied by the scale factor (expected height) and actual height of vi' is above a

specific threshold, the text within view vi' is determined to be cropped. The above-mentioned

threshold is configurable, allowing the user of AccessiText to select a threshold that best fits

the desired trade-off between the number of false positives (when the threshold is set too

low) and true negatives (when the threshold is set too high) reported by the tool.

Truncated Views: Text truncation, i.e, shortening, typically occurs when the text grows

beyond the constrained width of the containing view. Truncated parts of a text are represented

by an ellipsis (...). At a minimum, AccessiText ensures that there is at least one word of

non-truncated content in a truncated text. While this is the default setting, the minimum

required number of non-truncated words is configurable, and would affect the rate of false

positives and true negatives. AccessiText utilizes Tesseract to extract the text from view’s

image, and compares it with text property from the XML. If the first word is truncated,

then that view is considered to have a truncated text issue.

66

6.4 Evaluation

We have evaluated AccessiText on real-world apps to answer the following research questions:

• RQ1. How effective is AccessiText for detection of text accessibility issues? What are the

precision and recall for our approach?

• RQ2. How efficient is AccessiText in terms of its running time for detection of text

accessibility issues?

6.4.1 Experimental Setup

We evaluated our proposed technique using 30 apps. 15 of these were selected from the set of

apps reported by users to have text accessibility issues, identified in the empirical study in

Section 6.2. We complemented our data set with another 15 apps randomly selected from

different categories on Google Play (e.g., travel, productivity, communication).

We created one test case per app using Appium [23], which is an open-source testing framework.

Each test case reflects a sample of an app’s main use cases (e.g., register an account, add a

task, view a product), as provided in its description. Our experiments were conducted on a

laptop with Intel Core i7-8550U, 1.80GHz CPU, and 16GB of RAM. We used an Android

device configured with API level 28 and 1440× 2960 pixel display resolution. The text scaling

factor was set to two, allowing TSAS to resize the text to double default text size. Although

TSAS can be set higher, we believe doubling the text size is an appropriate choice as it

follows the requirements specified by the accessibility guidelines outlined in WCAG [94],

which requires that an app’s textual content be resizable up to double the default size without

losing content or functionality.

67

Table 6.1: The number of detected accessibility issues and running time for each app

Unresponsive
View

Missing
View

Overlapping
View

Cropped
View

Truncated
View

Total
Issues

Running
Time
(seconds)

NZCovid Tracer * - 2 1 - - 3 58
Al-chan * 1 1 16 - - 18 46
Accor All * - - - 3 1 4 32
Instagram * 6 - - 4 1 11 68

Uber * - 1 - 3 - 4 47
AnovaCulinary * 8 - 2 10 - 20 90
ABC news * 2 1 4 - - 7 51
CNET * - - 10 1 - 11 37
Chase * 1 1 1 1 - 4 49
MyQ * 1 - 3 - - 4 71
Delta * - - 1 2 - 3 39

Allegiant * 8 - 4 - - 12 50
Rush * 1 1 4 - - 6 64

Pocket Casts * - - 4 4 2 10 36
Medium * - - 1 1 - 2 45
Zoom - - 1 8 - 9 47

StepTracker - 1 3 2 - 6 60
Goal Tracker - - 4 1 - 5 48
GetUpside - 1 5 2 - 8 56

STC 17 - 6 - - 23 83
Insight Timer 1 - - 3 2 6 31
To Do List - - - 1 - 1 53
Vocabulary - 6 5 2 - 13 92
Google Auth 1 - 2 2 - 5 59

Lose it - 3 10 1 - 14 51
AllTrails - 3 - - - 3 63
Roadie - - 5 4 - 9 95
Fedex 3 - - 5 - 8 49

RecipeKeeper - 1 4 - - 5 80
Investment Portfolio - - 11 3 4 18 168

6.4.2 Effectiveness of AccessiText

To answer this question, we carefully checked each accessibility issue found by AccessiText to

ensure their correctness. Table 6.1 shows, for each issue type, the number of accessibility

issues detected. Apps with a star (*) after the app name are from the set of apps reported by

users to have text accessibility issues, identified in the empirical study in Section 6.2. Table

6.2 demonstrates the effectiveness of AccessiText in terms of correctly detecting accessibility

issues discussed earlier. These results demonstrate that on average, AccessiText has an overall

87.6% precision and 95.8% recall for the different types of issues. Thereby, AccessiText is

68

Table 6.2: Precision and recall of AccessiText

of Detected Issues Precision Recall

Unresponsive Views 50 98% 100%

Missing Views 28 82.14% 100%

Overlapping Views 109 88.07% 100%

Cropped Views 63 71.42% 95.83%

Truncated Views 10 100% 83.33%

Total 260 87.92% 95.83%

substantially effective at detecting accessibility issues.

The relatively lower precision score for issues of type Cropped Views is mainly caused by

inaccurate results returned by the OCR tool. recall that AccessiText utilizes the tool to

measure and compare the text height based the bounding boxes returned by the tool. Text

that has low contrast with its background can be difficult to localize accurately. This also

applies to the results of Truncated Views. A false positive Missing View can occur when the

Test Runner component is unable to automatically scroll either horizontal or vertically to

reach the view, due to a limitation in the Accessiblity API utilized by Appium framework

for interacting with the app.

Overall, the results in this table show that AccessiText was able to find accessibility issues in

all of the apps in our dataset. The number of issues detected in each app range from 1 to

23 with an average of 8.3 issues per app. We can also observe that all the apps, except two,

suffer from two or more types of accessibility issues.

We can see that Overlapping View, Cropped View, and Missing View are the most common

types of accessibility issues, and are present in 23, 21, and 12 apps, respectively, of the 30

apps in our dataset. Overlapping views has the highest average number of occurrences in

each app.

Table 6.1 indicates that a few applications have accessibility issues of Truncated View. The

low number of issues could be attributed to the conservative approach that AccessiText uses

when checking for issues of type Truncated View, where the presence of only one word of

69

the original text for the view is sufficient to not be flagged. Additionally, this issue can only

occur in UI views that have their ellipsize property set to true by the developer (in the

layout XML file), which is not the default option.

6.4.3 Performance of AccessiText

The last column of Table 6.1 shows, for each application, the total running time that

AccessiText needed to execute the test case and produce its analysis results. The running

time ranges from 31 seconds to 168 seconds (with an average of 1 minute and median of 51

seconds). Overall, the results for RQ2 show that AccessiText was able to detect accessibility

issues within a short time, as the average running time for our approach is around 1 minute.

The running time shown includes running the test case and interacting with the app, obtaining

screenshots and xml dump data for the different screens, performing the various heuristics to

check accessibility issues, and generating the final report with the list of accessibility issues.

Several factors affect the running time of our approach, including the number of screens and

the complexity (i.e., number of UI views) of the UI layout. As the number of screens and the

complexity of those screens grow, AccessiText needs to examine and validate more UI views

for potential accessibility issues.

Another factor is the network delay due to the communication between AccessiText running

on the laptop and Appium running on the mobile device. To improve the execution time,

AccessiText minimizes the requests sent to the Appium server by fetching the UI screenshots

and their XML layouts in one call, storing them locally on the laptop, and subsequently

processing that information locally to determine the properties of UI views comprising each

screen. This architecture allows for a faster analysis compared to sending separate requests

to Appium for information about each UI view. Although not the setup we used in our

experiment, running the test cases in parallel on two devices for the two settings (default and

enlarged text) would further cut the running time by half.

70

6.5 Discussion

Here, we elaborate further on findings and observations drawn from both our empirical study

of text accessibility issues and our experiments with AccessiText:

• The impact of text accessibility issues goes beyond aesthetics. The impact of text accessibility

issues is not just limited to a reduced user experience due to a distorted and less appealing

UI, but can also completely break some of the app’s functionalities and make it inaccessible

for a disabled user relying on TSAS. For example, in AllTrails app (recall Figure 6.1),

the user is unable to navigate to the other tabs on the main on-boarding screen, as the

UI view responsible for handling the swiping event is pushed off the screen and becomes

completely unreachable, rendering this function inaccessible. Similarly, in cases when the

screen has overlapping UI views, the impact can be very serious, especially if both UI views

are interactive (clickable) with each view performing a different functionality, resulting in

one of them to be inaccessible.

• Various factors influence the severity of text accessibility issues. For each type of text

accessibility issue, there are factors that can influence its severity. For issues of type

Overlapping Views, the level of overlap between the views is the main factor: the more area

of overlap there is, the higher the chances that one or both UI views become unreadable or

inaccessible. For issues of type Cropped Views and Truncated Views, the extent of cropping

(or shortening) determines how they affect users. In cases where the cropping is high, the

words can be completely unreadable, making the view containing the text inaccessible. For

issues of type Missing Views, the type of view and its content, in addition to whether it is

an interactive UI view or not, determine its impact. When a view goes missing, it is mainly

due to the fact that it was pushed beyond the bounds of the current screen. Missing views

can be a major issue, as the user is not even aware that an element on the screen is missing.

71

It is even more significant when the missing view is an interactive view, i.e., a button or a

clickable text that performs some functionality in the app, as explained earlier.

• Improperly designed layouts lead to text accessibility issues. An important consideration

when creating large and complex layouts is to use UI view components that are flexible

and responsive, such that they can gracefully adapt to larger text size, and ensure that all

the UI views are arranged according to the relationships between sibling views and the

parent layout. Missing properly formulated constraints between neighboring UI views may

cause various text accessibility issues when scaling an app’s text. According to Android

documentation, responsive layouts can be achieved through a number of best practices.

These include (1) avoiding hard-coding specific value for any UI view components and

alternatively using wrap content or match parent, which allow a view to set its size to

whatever is necessary to fit the content within that view or expand as much as possible

within the parent view, respectively, and (2) using ConstraintLayout to specify the

position and size for each view according to spatial relationships with other views on the

screen. This way, all the views can move and stretch together as the screen size changes.

• Accessibility testing is a challenge for developers. Previous studies [12, 44, 4] indicate a

lack of awareness among developers about basic access principles. Further exacerbating

this general lack of knowledge about accessibility, testing of software for accessibility is a

difficult problem, challenged by the availability of numerous assistive services (e.g., screen

reader, switch access, TSAS, etc.) and device models (e.g., devices with different screen

sizes). Without proper tools and automated techniques, developers are simply overwhelmed

with the number of settings under which they have to test accessibility properties of their

apps.

• Consistent design vs accessible design. Many instances of text accessibility issues found in

our study are caused by hard-coded UI view dimensions and font sizes. To ensure that

the app looks and feels consistent, developers are tempted to use specific values for the

72

width and height attributes when defining the UI views. These practices may result in

apps that are not accessible or compatible with assistive services, including TSAS.

• Certain lack of empathy. Although it was not a goal of our study to report how developers

respond to user feedback, we noticed that app developers responded differently to user

feedback related to text accessibility issues. In numerous cases the developer response to

the issue was to recommend that users go back to the default text size to solve the issue,

considering this to be an unreasonable user expectation, instead of acknowledging this

as an accessibility issue that needs to be fixed. For example, the following is an example

response from a developer of PulsePoint, an app for requesting emergency assistance, to

a user feedback: If you’re using a very large default font, the ’agree’ button may be pushed

off of the page. Reduce your font size and try again.

• Shifting accessibility to earlier stages of software development. Accessibility can be better

supported when it is deliberately considered in the early phases of the development life-cycle.

User experience design teams should consider assistive-service users when drafting early

artifacts, such as app UI mock-ups. This would allow developers to determine how the app

UI layout should adjust and behave to variable text size preferences from the early stages

of development.

6.6 Threats to validity

Our work is prone to several threats to validity:

• Threats to internal validity concern factors internal to our settings that could have influenced

our results. This is, in particular, related to possible errors in the manual process of tagging

the set of text accessibility issues from the various data sources. To reduce the threat,

we followed the widely-adopted open coding approach [77] and validated all results for

consistency. Additionally, to minimize the risk of bias due to implementation errors in

73

our tool, we have extensively tested our implementation, verifying the results manually to

confirm the accuracy of our approach at finding the accessibility issues.

• Threats to external validity concern the generalizability of our findings. To maximize

the generalizability of the categories of text accessibility issues, we have considered two

different data sources (app reviews and Twitter data), across two mobile platforms (iOS

and Android). However, it is still possible that we could have missed some accessibility

issue types available in sources we did not consider. Additionally, For experimental setup,

we used apps that have been reported to have confirmed text accessibility issues by users.

We also complemented our data set with additional apps from different categories like

finance, communication, travel and shopping.

6.7 Conclusion

This chapter presents an automated testing technique, called AccessiText , for text accessibility

issues when using text scaling assistive services. The design and implementation of our

approach is informed by a large analysis of reported issues by users on mobile app stores and

Twitter. Evaluation of AccessiText on real-world Android apps corroborates its effectiveness.

Apart from the accessibility issue detection, we investigated and discussed possible causes of

these issues, and how developers can improve their apps to mitigate such issues.

In our future work, in addition to extending our current implementation to support the

detection of text accessibility issues in iOS, we will devise automated program repair techniques

for text accessibility issues. We believe it is possible to leverage an approach similar to

AccessiText to evaluate alternative, potentially automatically generated, UI designs that

contain fixes to a variety of text accessibility issues. The challenge lies in ensuring such

automatically generated designs conform to the original look and feel of the app. We also

plan to integrate our approach into the development environments used by developers to

support just-in-time analysis and detection of text accessibility issues and layout violations,

74

allowing developers to immediately see the impact of their decisions and how they may render

the app inaccessible for assistive-service users.

75

Chapter 7

ARTEX: Automated Repair of Text

Accessibility Issues in Android Apps

7.1 Introduction

Mobile technology has evolved beyond improving communication and now plays a crucial role

in fields like education, entertainment, and finance. With about 15% of the global population

living with disabilities [97], and an increasing number of people relying on mobile applications

to access essential services, accessibility features are becoming increasingly important in

software development.

Mobile operating systems, such as iOS and Android, continue to enhance their assistive

services to accommodate users with various disabilities, including those with visual, motor,

and hearing impairments. These systems often provide built-in accessibility tools that can

significantly improve the user experience for these individuals. However, for these tools

to be effective, app developers need to ensure that their software adheres to accessibility

guidelines and best practices [24, 17]. Unfortunately, recent studies have demonstrated that

76

many mobile apps are still lacking in accessibility and compatibility with assistive services

[12, 80, 77] , which can lead to a suboptimal experience or even exclude some users entirely.

Earlier research on the text scaling assistive service (TSAS), a tool meant to support low

vision users by enlarging text for better readability, revealed that compatibility issues with

certain apps can create numerous accessibility challenges [13]. Applications that are not

designed with accessibility in mind can lead to text access problems that negatively impact

users’ experience and create barriers for those who rely on such assistive services.

In this chapter, our work builds upon previous findings and goes a step further by introducing

an automated approach for repairing text accessibility issues. Our method aims to address

the compatibility problems between assistive services like TSAS and applications that were

not developed with accessibility in mind. By employing this automated solution, we hope to

enhance the user experience for low-vision individuals and make mobile apps more inclusive

for all users.

We derive our approach from the field of Automatic Program Repair (APR), which focuses on

automatically detecting and repairing software faults. One significant subset of APR is search-

based techniques, which treat repairs as search problems and optimize program modifications

using Genetic Algorithms (e.g., GenProg [58]) or pre-established transformation rules (e.g.,

PAR [56]). These techniques have significantly contributed to the progression of automatic

program repair. APR has been utilized in various domains and contexts, including functional

correctness [37, 88], security [50, 62, 63], test repair [85, 36], and UI repair [65, 53, 14].

Our proposed approach not only aims to address and resolve text accessibility issues but

also ensures that the fixes have minimal impact on the UI. By introducing only necessary

modifications, we strive to maintain UI consistency and avoid unwanted changes that could

disrupt the overall user experience. Moreover, we prioritize preserving the original UI when

using the default text size. This ensures that our solution caters to the needs of low-vision

77

Figure 7.1: Overview of Artex

users without compromising the experience for those using the standard settings.

Overall, the chapter makes the following contributions:

• We present a novel technique that can automatically resolve text accessibility issues while

preserving consistency and the original UI appearance.

• We provide a comprehensive evaluation of our proposed approach, including experiments

demonstrating its effectiveness, efficacy, and user studies to show that users rate the

resulting fixes positively in terms of both effectiveness and visual appeal.

7.2 Approach

We have developed an automated tool, Artex, which aims to automatically repair text acces-

sibility issues in Android applications. The approach is composed of two main components,

as illustrated in Figure 7.1:

(I) The Fault Localization component accepts an Android app Apk file, and a list of text

accessibility issues as input. Its primary function is to identify the areas likely responsible

78

for these issues. To achieve this, the component initially constructs a Consolidated Layout

Tree representing all views (UI elements) and view groups present on the target screen when

the text accessibility issue arises. This Layout Tree serves as a comprehensive representation

of the app’s user interface elements at that specific moment. Subsequently, the component

analyzes the Layout Tree, and identifies the most relevant parts of the tree that, when

modified, are likely to provide fixes for the text accessibility issues.

(II) The Candidate Solutions Generation component employs a genetic algorithm, a search-

based technique, to create a set of candidate solutions by modifying the previously generated

Consolidated Layout Tree. The evaluation of each solution uses a multi-objective fitness

function that takes into account two aspects: accessibility and consistency. By consider-

ing consistency, the search process remains driven to create solutions that maintain both

accessibility and consistency with the original design, preserving the overall look and feel.

Eventually, the candidate solution with the highest fitness value is chosen, and a patched

APK is generated based on this optimal solution.

We implemented Artex using Python programming language. In the remainder of this section,

we provide a detailed description of the two components of our approach.

7.2.1 Fault Localization

The Fault Localization component involves two primary steps:

• Building the Consolidated Layout Tree

• Identifying the scope of the search space

Step 1: Building the Consolidated Layout Tree

In the initial step of this component, the focus lies on constructing a Consolidated Layout

Tree for the screen displaying the accessibility issue. This Consolidated Layout Tree forms a

79

hierarchical tree structure, capturing all visible UI elements in the current state of the user

interface. The tree structure represents not only the parent-child relationships among the

distinct UI elements but also captures their associated properties. These properties include

dimensions (height and width), orientation, and resources like colors and string values.

Artex generates the Consolidated Layout Tree by effectively integrating data from two main

sources: (1) static, declarative XML layout files, and (2) run-time view hierarchy. The XML

layout files, created by developers, serve as the blueprint for the User Interface, specifying

view types, layout styles, attributes, relationships, and constraints. On the other hand, the

runtime view hierarchy reflects the actual structure of the app’s UI while it is running and

can be gathered using tools such as Android Debug Bridge (ADB). This combination of static

and dynamic data results in a comprehensive representation of the app’s UI.

To create the Consolidated Layout Tree, the approach follows a series of well-structured

steps that ensure a comprehensive representation of the application’s UI design and structure.

Initially, the approach decompiles the APK file using APKTool [1] to access the application’s

source code and resources. Subsequently, it installs the application, launching the screen

containing text accessibility issues.

Artex then utilizes Android Debug Bridge (ADB) [16] to acquire the runtime view hierarchy,

which captures the app’s UI structure as it appears during execution. By examining each

view’s unique ID within the runtime view hierarchy, the approach identifies the corresponding

view in the layout files extracted from the APK. Next, it retrieves view properties from the

layout file and integrates them into the consolidated layout structure. In the final stage, the

approach iteratively traverses the view hierarchy, adding child views to their parent views

within the consolidated layout. This process continues until all views in the XML view

hierarch have been successfully incorporated into the Consolidated Layout Tree, resulting in

a clear and informative representation of the app’s UI.

80

Building a consolidated layout tree faces the challenge that not all views have unique IDs, as

the ID attribute in Android is optional. To address this issue, a one-time preprocessing step

is applied to the APK. In this step, IDs are added to all views in every layout file within the

APK before the app starts running. This ensures that each node or view is mapped to its

specific layout file where it is defined. Having IDs for all views is essential for analyzing the

APK later, as it results in a more accurate representation of the app’s structure and allows

for a thorough examination of the app’s UI components.

Step 2: Identifying the search space

The second step of the Fault Localization component focuses on identifying the scope of the

search space. The search space refers to specific areas within the Consolidated Layout Tree

where accessibility issues may be originating. Scoping the search space is an essential step to

ensure that the search process is both efficient and effective, as it allows for a targeted and

precise examination of potential problem areas in the app’s UI.

Artex employs a tiered approach with three levels to identify the search space. The first level

involves the specific UI element with the accessibility issue, known as the target element level.

The second level, i.e, the immediate context level, encompasses UI elements related to the

target element including siblings and the immediate parent. The third level, or the layout

hierarchy level, includes the entire layout hierarchy of the target element, starting from the

grandparent and ancestor nodes up to the root of the Consolidated Layout. By including the

properties of these elements, Artex can include potential areas of the user interface that are

likely impacting the accessibility issue.

While Artex three-level approach is comprehensive in identifying potential problem areas

related to the accessibility issue, it intentionally excludes UI elements that are unrelated to

the target element or its context, such as non-ancestor nodes that are not involved in the

layout hierarchy of the target element, or elements without any connection to the accessibility

81

issue, helps avoid unnecessary examination of the app’s UI components. This exclusion

ensures a more targeted approach, saving time and resources in the fault localization process.

7.2.2 Repair Generation Phase

In this section, we discuss the Repair Generation component, which is the second component

of our proposed technique. We approach this problem as an optimization problem using a

search-based method, specifically employing genetic algorithms to find optimal solutions.

As our approach follows the genetic algorithm, next, we’ll describe some of the key steps and

parts involved in applying the genetic algorithm to our problem, discussing how each step

contributes to finding optimal solutions for addressing text accessibility issues within user

interfaces.

Candidate Solution Representation: In our approach, a candidate solution is represented

as an XML tree that outlines the UI layout. Within this representation, the genes correspond

to individual views or UI elements in the tree. The population of candidate solutions consists

of such XML trees. Utilizing a tree-like representation for the candidate solution is particularly

suitable because it allows for a clear and structured way to represent UI elements and their

hierarchical relationships. Additionally, with this approach, we can efficiently design genetic

operators that manipulate the tree’s genes and attributes, while also adhering to problem

constraints. This ultimately results in a more effective search process for addressing text

accessibility issues.

Selection: In our genetic algorithm, we employ tournament selection as the method for

selecting individuals from the population. Tournament selection entails randomly choosing a

small subset of individuals who then compete against one another, with the one demonstrating

the highest fitness value being selected as a parent for the next generation. This method is

advantageous for preserving population diversity and encouraging exploration. By occasionally

selecting less fit individuals, the algorithm’s sensitivity to changes in the fitness function is

82

reduced, which ultimately contributes to a more effective optimization process.

Mutation Operators: To introduce variability within our search space, we have designed

mutation operators that incorporate domain-specific knowledge and tackle the primary

aspects of our problem: size, position, placement, and relationships between UI elements.

By concentrating on these vital aspects, we have developed a variety of mutation operators

specifically crafted to effectively address text accessibility issues. These include Dimensions

Mutation, Orientation Mutation, Constraint Mutation, and Container Type Mutation.

• Dimensions Mutation: Adjusts the size of UI elements by modifying the

android:layout width and android:layout height attributes. This operator

changes the dimensions of UI elements.

• Orientation Mutation: Alters the orientation of a layout or group of views by modifying

the android:orientation attribute, impacting the overall organization of the UI and

allowing exploration of different orientations.

• Constraint Mutation: Modifies the position and placement of UI elements by altering

their app:layout constraint attributes, enabling exploration of various alignments

and relationships among elements.

• Container Type Mutation: Alters the container view group for a UI element, experi-

menting with different layouts and arrangements.

Fitness Function: The fitness function is one of the most crucial components in determining

the quality of candidate solutions and guiding the search process. In our approach, the

evaluation of each candidate solution is carried out using a multi-objective fitness function

that takes two aspects into account: accessibility and consistency. While our main goal is

to improve the accessibility level, maintaining a balance between accessibility and design

consistency is equally essential. By incorporating the consistency objective, the search process

83

is motivated to generate solutions that seamlessly integrate accessibility fixes into the original

design. This ensures that the modifications made retain the overall look and feel of the

original design while addressing the identified accessibility issues.

To address the accessibility objective, our approach employs an improved version of Acces-

siText [13], an automated tool for detecting text accessibility issues. This tool evaluates

the presence and severity of such issues in UI designs in order to enhance user experience.

Overall, the fitness function will favor and reward candidate solutions that reduce the number

of text accessibility issues, or reduce their severity.

The second objective focuses on maintaining consistency by maximizing the similarity between

candidate layouts and the original base layout. In order to accomplish this, Artex measures

the similarity between each candidate layout and the original layout by utilizing spatial

graphs. Spatial graphs are data structures that represent the spatial relationships between

objects in a two-dimensional or three-dimensional space [35]. In the context of UI layout

optimization, spatial graphs capture various aspects of UI elements, such as their existence,

area, distances between views, and angles between views. These graphs provide a way to

quantify and analyze the geometric and topological relationships between elements in complex

layouts.

A spatial graph for comparing layouts is formally defined as G = (V,E,A), where:

• V : Set of vertices representing the UI elements in the layout.

• E: Set of edges indicating the spatial relationships between the pairs of vertices (UI

elements).

• A: Set of attributes associated with the vertices and edges, which include the following

properties:

1. View existence: Represented by a node in the graph.

84

2. View area: The size of each UI element, and is determined from its bounds

attribute.

3. Distance between views : The Euclidean distance between the centers of each pair

of UI elements.

4. Angle between views : The angle formed by the line connecting the centers of each

pair of UI elements relative to the positive x-axis.

By capturing these properties in a graph, spatial graphs allow for the quantitative comparison

of two layouts, facilitating the identification of similarities and differences between them.

Artex utilizes the spatial graph comparison algorithm to compare two layouts by quantifying

their similarities and differences. This algorithm helps measure how similar or dissimilar the

layouts are.

To compare layout similarity, the algorithm first identifies shared nodes or UI elements,

and edges, which represent spatial relationships, within the graphs of both layouts. It then

proceeds to evaluate various attributes associated with the edges in the graphs. The next

step involves calculating the normalized differences between the corresponding pairs of edge

attributes, such as distance and angle, while considering the maximum possible difference for

each attribute. This calculation leads to normalized values within a consistent range.

Subsequently, the algorithm adds up these normalized differences to determine the total

accumulated difference between the graphs. Using this accumulated difference, a similarity

score is generated, which indicates the degree of similarity between the two layouts. A higher

similarity score suggests that the layouts are more alike, while a lower score indicates that

they are significantly different from each other. A similarity score of zero means that the

layouts share no nodes or edges, making them completely dissimilar. On the other hand, a

similarity score of 100 implies that the layouts are identical in terms of their nodes, edges,

and attributes.

85

Crossover: Crossover is a vital genetic operator that combines genetic materials of two

parent solutions to generate offspring in the context of the genetic algorithm. In our approach,

we use the uniform crossover technique for this purpose. This method functions by randomly

selecting a gene from one of the parent solutions at each gene position, relying on a fixed

crossover probability to determine the gene contribution to the offspring. Utilizing uniform

crossover is advantageous, as it supports the preservation of good gene combinations through

equally probable inheritance from either parent. This, in turn, contributes to a more efficient

optimization process.

Managing the Search Space

In order to efficiently manage the search space, two key steps can be employed to improve the

process: eliminating irrelevant search areas and excluding invalid candidates. By implementing

pruning strategies, we effectively reduce unnecessary parts of the search tree that are unlikely

to provide optimal solutions. This not only saves computational resources but also enhances

overall efficiency. Moreover, it is essential to exclude any invalid candidates by removing

those that violate the system constraints.

In summary, our strategy for the repair generation phase revolves around the utilization

of genetic algorithms, incorporating tournament selection, uniform crossover, and custom-

designed mutation operators that are based on domain-specific knowledge. We effectively

manage the search space by performing pruning operations to eliminate irrelevant portions

and exclude any invalid candidates.

86

7.3 Evaluation

We have evaluated Artex on real-world apps to answer the following research questions:

• RQ1. How effective is Artex for repairing text accessibility issues?

• RQ2. How efficient is Artex in terms of its running time for repairing text accessibility

issues?

• RQ3. Does Artex provide fixes that are preferred by users?

7.3.1 Experimental Setup

We evaluated our proposed approach using a set of apps from prior work [13], which included

apps with confirmed issues reported by users. After excluding non-native apps, we ended up

with a final sample of 15 apps for our study.

Our experiments were conducted on a laptop with Intel Core i7-8550U, 1.80GHz CPU, and

16GB of RAM. We used an Android device configured with API level 28 and 1440× 2960

pixel display resolution.

7.3.2 Effectiveness of Artex

In response to our first research question (RQ1), we analyzed the fix rates of the various text

accessibility issues addressed by Artex. The fix rate is defined as the percentage of successfully

repaired issues compared to the total number of identified issues for each specific type. Table

7.1 displays five different issue types: Unresponsive Views, Missing Views, Overlapping Views,

Cropped Views, and Truncated Views.

The average fix rate of 85% across all issue types shows that Artex is effective in fixing a

variety of text accessibility issues. Our approach performs exceptionally well in resolving

87

Table 7.1: Accessibility issue types and their respective fix rates using Artex

A11y Issue Type Fix Rate

Unresponsive Views 100%

Missing Views 71%

Overlapping Views 73%

Cropped Views 85%

Truncated Views 100%

Average 85%

Unresponsive and Truncated Views, with a 100% fix rate for both, and in Cropped views

with an 85% fix rate. Although the fix rates for Missing and Overlapping views (71% and

73%, respectively) are slightly lower, Artex still demonstrates promising results in addressing

these issues.

In addition to the previously discussed aggregated results, we also present a detailed breakdown

in Table 7.2, which displays the app IDs and their corresponding fix rates for each of the 15

applications included in the analysis. For the majority of the applications, Artex achieved a

perfect fix rate, meaning that it was able to resolve all issues within the app. Nonetheless,

Artex was not successful at finding a correct fix in 2 apps and achieved a lower fix rate

(28% and 85%) in two other apps. These results suggest an overall high effectiveness of our

approach but also highlight some limitations.

Figures 7.3 and 7.3 illustrate example fixes for Cropped View, and Overlapping View issues,

respectively, with the left images displaying the apps before the fixes and the right images

showing the apps after the issues have been resolved.

To better understand the limitations of our approach, we closely examined the cases where

Artex was unable to effectively address text accessibility issues. This investigation allows us

to identify specific challenges that our approach may struggle with and to suggest possible

improvements.

Some of the observed limitations include WebViews and overly complex constraint layouts.

88

Table 7.2: Running time and fix rates for Artex across different apps

App id Fix Rate Running Time (minutes)

com.splendapps.splendo 100% 19

nz.govt.health.covidtracer 100% 25

com.alltrails.alltrails 100% 39

com.google.android.apps.authenticator2 100% 35

com.fedex.ida.android 100% 373

com.accor.appli.hybrid 100% 196

au.com.shiftyjelly.pocketcasts 28% 58

com.lixar.allegiant 100% 25

com.chamberlain.myq.chamberlain 100% 41

com.cbsinteractive.cnet 100% 40

com.abc.abcnews 85% 55

com.finangeros.investgeros 100% 28

steptracker.healthandfitness.walkingtracker 0% 135

com.delta.mobile.android 0% 15

com.way4app.goalswizard 100% 44

Web views are components in Android that allow developers to display web content directly

within the native app interface, effectively embedding web pages into the application. For

example, in delta.mobile app, some UI elements are made entirely of WebView components,

even though it is a native app. Artex is not designed to handle WebViews, as their layout is

not part of the app and is fetched from the internet instead. Our approach mainly focuses on

addressing layouts made using the default method, through XML layout declarations.

Additionally, overly complex cases of constraint layout can also pose challenges to our

approach. Constraint layouts are essentially containers in Android that allow developers to

create dynamic and flexible user interfaces by defining relationships between UI elements.

While our dataset included many constraint layout cases that were successfully resolved by

Artex, handling those with extreme complexity, involving various interdependent constraints,

may prove difficult. In such situations, Artex might struggle to find a correct solution that

can resolve the issue, as any changes in the layout have the potential to impact the entire UI.

89

Figure 7.2: A comparison of a screen displaying a Cropped View issue; the left image shows
the app before the fix, while the right image demonstrates the app after the issue has been
resolved.

7.3.3 Performance of Artex

To answer our second research question (RQ2), we assessed the performance of our approach

by measuring the time taken (in minutes) to resolve accessibility issues for each app. The last

column of Table 7.2 presents, for each application, the total running time Artex required to

find a fix or terminate if no solution could be identified. The running time needed to resolve

accessibility issues across various apps exhibits notable variation. On average, the entire

process takes approximately 77 minutes to complete. The repair process includes multiple key

tasks, which contribute to the overall time required. These tasks include the decompilation

of APKs and generation of Constraint Layout Trees (CLTs), the rebuilding and regeneration

of APKs (which is the most time-consuming task), and the evaluation of candidate solutions.

The running time of our approach is influenced by several factors, which can result in

variability in the time taken to resolve accessibility issues for different apps. These factors

encompass aspects such as app size, which involves the number of activities and resources;

90

Figure 7.3: A comparison of a screen displaying an Overlapping View issue; the left image
shows the app before the fix, while the right image demonstrates the app after the issue has
been resolved.

the complexity of the UI layout, affecting the number of UI views to be managed; and the

total number of text accessibility issues to be resolved. Each of these factors can individually

or collectively contribute to the overall duration, potentially leading to variability in the time

required for addressing accessibility issues in various apps.

7.3.4 User Preferences for Provided Fixes

In response to our third research question (RQ3), which focuses on a user study to evaluate

users’ preferences, we conducted a survey comparing the original UI and the fixed UI in

terms of addressing accessibility issues. A total of 100 participants, recruited using Amazon

Mechanical Turk, assessed 10 distinct screens. These participants were from the US (to

ensure English proficiency) and were Master Workers (to ensure higher quality responses).

Participants were provided with two options — the original UI and the fixed UI — and were-

asked to rate their experiences with the fixed UI in terms of effectiveness and aesthetics. The

91

Figure 7.4: A graph summarizing how users rated Artex’s proposed fixes for effectiveness.

following questions were presented to the participants:

1. How effective was the automated repair tool in resolving the accessibility issue?

2. How satisfied are you with the aesthetics of the fixed UI, in comparison with the original

UI?

3. Were there any aspects of the fix that you did not like?

By conducting this user study, we aimed to gather valuable insights from users about the

automated repair tool’s performance in resolving accessibility issues and obtain feedback on

the visual appeal of the fixed UI. Following the completion of the user study, we analyzed

the participants’ responses.

Figure 7.4 provides a summary of the effectiveness ratings given by the users. The y-axis

represents the percentage of respondents, while the x-axis illustrates the ratings on a scale of

1 to 5, where 1 signifies ”least effective” and 5 indicates ”most effective.” Overall, the average

effectiveness rating is 4.2, which implies a generally favorable perception of the solution’s

92

Figure 7.5: A graph summarizing how users rated Artex’s proposed fixes for aesthetics.

effectiveness. A majority of the respondents rated our approach as ”extremely effective,”

further emphasizing the positive reception of the solution.

Figure 7.5 displays the users’ satisfaction ratings regarding the fixed UI aesthetics compared to

the original UI. When rating their satisfaction on a scale from 1 (not satisfied) to 5 (extremely

satisfied), participants reported an average score of 4.4. This outcome demonstrates that

users generally found the aesthetics of the fixed UI to be satisfactory, indicating a positive

perception of the solution’s visual design.

Regarding the third question, which was an optional open-ended inquiry, participants were

given the opportunity to provide their opinions on any aspects of the fix that they did not

like. This feedback can help identify areas for further improvement of how Artex works.

The majority of respondents reported that they were satisfied with the solution and had no

suggestions. However, some participants did provide recommendations for improvement. For

instance, one common theme involved optimizing UI space more effectively by adjusting the

layout spacing to accommodate more information on a single screen without overwhelming

the user or cluttering the interface.

93

In conclusion, the user study reveals that users generally found the automated repair tool

effective in resolving accessibility issues and were satisfied with the aesthetics of the fixed UI.

7.4 Threats to validity

Our work is prone to several threats to validity:

• Threats to external validity refer to the factors that can limit the generalizability of

our research findings to a broader context or other populations. In our evaluation and

experimental setup, we assessed our approach on a dataset of apps that was utilized in

prior work [13]. This specific dataset consists of apps that have been reported by users to

exhibit confirmed text accessibility issues. Additionally, we applied multiple evaluation

approaches and criteria, including quantitative experiments and qualitative user studies, in

order to strengthen the external validity of our findings.

• Threats to internal validity relate to factors that affect the accuracy of cause-and-effect

relationships within the study. To address these concerns, we implemented Artex using

well-known libraries and tools, such as ADB and UIautomator, which have been extensively

used in prior work. We also tried to minimize potential bugs by thoroughly testing our

tool prototype to ensure reliability and robustness in our research findings.

7.5 Conclusion

In this chapter, we presented, Artex, an approach to automatically fix text accessibility

issues in mobile apps. Our approach, which employs Genetic Algorithms (GA), focuses on

resolving the accessibility issues while preserving the consistency of the original layout. We

have discussed key GA components used in our approach, including representation, mutation,

and fitness function. In addition, we explored the use of spatial graphs for layout comparison,

and efficient ways utilized in our approach to manage the search space.

94

To evaluate the effectiveness of our approach, we used a dataset of apps with known text

accessibility issues from prior work. Our approach demonstrates a promising solution to

repair text accessibility issues in mobile apps, delivering both practical and aesthetically

pleasing results.

95

Chapter 8

Conclusion

The dissertation focused on improving software accessibility for users with disabilities, specifi-

cally targeting users with low vision, and improving compatibility with Text Scaling Assistive

Services (TSAS). The research began with a large empirical study of accessibility issues

in Android apps, shedding light on common issues, developer challenges, and accessibility

practices.

The contributions of this research include the development of AccessiText and Artex, au-

tomated tools to detect and repair text accessibility issues in Android apps. AccessiText

efficiently detects text accessibility issues using heuristics backed by user feedback, with an

average precision of 88% and recall of 95%. Furthermore, Artex repairs text accessibility

issues employing the genetic algorithm as a search-based technique, on average fixing 83% of

all identified text accessibility issues. User studies corroborate the overall effectiveness and

usefulness of the generated fixes.

Future work involves enhancing our technique to support a wider range of app frameworks,

particularly focusing on cross-platform app development tools such as React Native and

Flutter. Apps built using these frameworks are rapidly gaining popularity; however, research

96

suggests that they are often less accessible. Another research direction involves incorporating

our detection tool into Integrated Development Environments (IDEs) and other development

tools for just-in-time analysis. This real-time feedback will enable developers to identify and

resolve accessibility issues within their code more efficiently than waiting to run the UI on

a physical device or emulator. To achieve this, the detection method must be capable of

identifying these accessibility issues based on XML code patterns or other static information.

Developing a robust set of heuristics and rules that can effectively recognize potential problems

in the source code will allow developers to create more accessible apps.

97

Bibliography

[1] Android Apktool. http://code.google.com/p/android-apktool/.

[2] Accessibility research mobile apps, 2021.

[3] Twitter api for academic research — products — twitter developer platform, 2021.

[4] Hayfa Y Abuaddous, Mohd Zalisham Jali, and Nurlida Basir. Web accessibility
challenges. International Journal of Advanced Computer Science and Applications
(IJACSA), 2016.

[5] Diamond Accessibility. 2021 state of accessibility report: Where do we stand today?,
Dec 2021.

[6] ADAlaws. Adalaws, 2019.

[7] Gaurav Agrawal, Devendra Kumar, Mayank Singh, and Diksha Dani. Evaluating
accessibility and usability of airline websites. In Mayank Singh, P.K. Gupta, Vipin
Tyagi, Jan Flusser, Tuncer Ören, and Rekha Kashyap, editors, Advances in Computing
and Data Sciences, pages 392–402, Singapore, 2019. Springer Singapore.

[8] Iftekhar Ahmed, Umme Ayda Mannan, Rahul Gopinath, and Carlos Jensen. An
empirical study of design degradation: How software projects get worse over time. In
Empirical Software Engineering and Measurement (ESEM), 2015 ACM/IEEE Interna-
tional Symposium on, pages 1–10. IEEE, 2015.

[9] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:
Collecting millions of android apps for the research community. In 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR), pages 468–471.
IEEE, 2016.

[10] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. Automated repair of size-based
inaccessibility issues in mobile applications. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 730–742. IEEE, 2021.

[11] Ali S. Alotaibi, Paul T. Chiou, and William G.J. Halfond. Automated detection
of talkback interactive accessibility failures in android applications. In 15th IEEE
International Conference on Software Testing, Verification and Validation (ICST),
April 2022.

98

http://code.google.com/p/android-apktool/

[12] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. Accessibility issues in android
apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering, pages 1323–1334, Virtual, 2020.
ICSE.

[13] Abdulaziz Alshayban and Sam Malek. Accessitext: automated detection of text
accessibility issues in android apps. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 984–995, 2022.

[14] Ibrahim Althomali, Gregory M Kapfhammer, and Phil McMinn. Automated repair of
responsive web page layouts. In 2022 IEEE Conference on Software Testing, Verification
and Validation (ICST), pages 140–150. IEEE, 2022.

[15] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine,
and Atif M Memon. Using gui ripping for automated testing of android applications.
In 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pages 258–261. IEEE, 2012.

[16] Android. Android debug bridge, 2020.

[17] Android. Build more accessible apps, 2020.

[18] AndroidAccessibility. Android accessibility overview. accessed april 12th, 2018, 2019.

[19] Androidguide. Android accessibility developer guidelines, 2019.

[20] androidmonkey. Application exerciser monkey:android developers, 2019.

[21] Androiduse. Android user worldwide, 2019.

[22] AndroZoo. Androzoo, 2019.

[23] Appium. Mobile app automation made awesome. http://appium.io/, 2020.

[24] Apple. Accessibility on ios, 2020.

[25] AppleAccessibility. Apple accessibility - iphone. accessed april 12th, 2018, 2018.

[26] Appleguide. Apple accessibility developer guidelines, 2018.

[27] AppleScanner. Apple accessibility scanner., 2019.

[28] Young-Min Baek and Doo-Hwan Bae. Automated model-based android gui testing using
multi-level gui comparison criteria. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages 238–249. ACM, 2016.

[29] BlindUserworldwide. Blind user worldwide, 2019.

99

http://appium.io/

[30] Laura V Galvis Carreno and Kristina Winbladh. Analysis of user comments: an
approach for software requirements evolution. In 2013 35th international conference on
software engineering (ICSE), pages 582–591. IEEE, 2013.

[31] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, and Guoqiang
Li. Unblind your apps: Predicting natural-language labels for mobile gui components
by deep learning. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering, page 322–334, Virtual, 2020. ICSE.

[32] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey Nichols, and Xiaoyi
Zhang. Towards complete icon labeling in mobile applications. In Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems, pages 1–14, 2022.

[33] Paul T Chiou, Ali S Alotaibi, and William GJ Halfond. Detecting and localizing
keyboard accessibility failures in web applications. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 855–867, 2021.

[34] Santiago Liñán Christopher Vendome, Diana Solano and Mario Linares-Vásquez. Can
everyone use my app? an empirical study on accessibility in android apps. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2019.

[35] Mark R.T. Dale. Spatial Graphs, page 191–221. Cambridge University Press, 2017.

[36] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. Reassert: Suggest-
ing repairs for broken unit tests. In 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 433–444. IEEE, 2009.

[37] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. Automatic
repair of buggy if conditions and missing preconditions with smt. In Proceedings of the
6th international workshop on constraints in software testing, verification, and analysis,
pages 30–39, 2014.

[38] Trinidad Domı́nguez Vila, Elisa Alén González, and Simon Darcy. Website accessibility
in the tourism industry: an analysis of official national tourism organization websites
around the world. Disability and rehabilitation, 40(24):2895–2906, 2018.

[39] Werner Dubitzky, Olaf Wolkenhauer, Hiroki Yokota, and Kwang-Hyun Cho. Encyclo-
pedia of systems biology. Springer Publishing Company, Incorporated, 2013.

[40] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. Automated
accessibility testing of mobile apps. In 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation, pages 116–126, Väster̊as, Sweden, 2018.
ICST.

[41] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. Automated
accessibility testing of mobile apps. In 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST), pages 116–126. IEEE, 2018.

100

[42] espresso. Espresso : Android developers, 2019.

[43] forbes. forbes, 2019.

[44] Andre P Freire, Cibele M Russo, and Renata PM Fortes. A survey on the accessibility
awareness of people involved in web development projects in brazil. In Proceedings of
the 2008 international cross-disciplinary conference on Web accessibility (W4A), pages
87–96, 2008.

[45] Yi Gao, Yang Luo, Daqing Chen, Haocheng Huang, Wei Dong, Mingyuan Xia, Xue Liu,
and Jiajun Bu. Every pixel counts: Fine-grained ui rendering analysis for mobile appli-
cations. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications,
pages 1–9. IEEE, 2017.

[46] Google. google/accessibility-test-framework-for-android, Mar 2018.

[47] Khronos Group. The industry’s foundation for high performance graphics, 2019.

[48] Emitza Guzman and Walid Maalej. How do users like this feature? a fine grained
sentiment analysis of app reviews. In 2014 IEEE 22nd international requirements
engineering conference (RE), pages 153–162. Ieee, 2014.

[49] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan. Puma:
programmable ui-automation for large-scale dynamic analysis of mobile apps. In
Proceedings of the 12th annual international conference on Mobile systems, applications,
and services, pages 204–217, 2014.

[50] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher Reale, Rebecca Russell, Louis
Kim, et al. Learning to repair software vulnerabilities with generative adversarial
networks. Advances in neural information processing systems, 31, 2018.

[51] Cuixiong Hu and Iulian Neamtiu. Automating gui testing for android applications. In
Proceedings of the 6th International Workshop on Automation of Software Test, pages
77–83, 2011.

[52] Claudia Iacob and Rachel Harrison. Retrieving and analyzing mobile apps feature
requests from online reviews. In 2013 10th working conference on mining software
repositories (MSR), pages 41–44. IEEE, 2013.

[53] Stéphane Jacquet, Xavier Chamberland-Thibeault, and Sylvain Hallé. Automated
repair of layout bugs in web pages with linear programming. In Web Engineering: 21st
International Conference, ICWE 2021, Biarritz, France, May 18–21, 2021, Proceedings,
pages 423–439. Springer, 2021.

[54] Mark Kasunic. Designing an effective survey. Technical report, Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, 2005.

[55] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan. What
do mobile app users complain about? IEEE software, 32(3):70–77, 2014.

101

[56] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In 2013 35th International Conference
on Software Engineering (ICSE), pages 802–811. IEEE, 2013.

[57] Royce Kimmons. Open to all? nationwide evaluation of high-priority web accessibility
considerations among higher education websites. Journal of Computing in Higher
Education, 29(3):434–450, 2017.

[58] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Genprog: A
generic method for automatic software repair. Ieee transactions on software engineering,
38(1):54–72, 2011.

[59] Wenjie Li, Yanyan Jiang, Chang Xu, Yepang Liu, Xiaoxing Ma, and Jian Lü. Char-
acterizing and detecting inefficient image displaying issues in android apps. In 2019
IEEE 26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 355–365, 2019.

[60] Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk. How
developers detect and fix performance bottlenecks in android apps. In 2015 IEEE
international conference on software maintenance and evolution (ICSME), pages 352–
361. IEEE, 2015.

[61] Lint. Improve your code with lint checks., 2019.

[62] Siqi Ma, David Lo, Teng Li, and Robert H Deng. Cdrep: Automatic repair of
cryptographic misuses in android applications. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, pages 711–722, 2016.

[63] Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H Deng. Vurle: Automatic
vulnerability detection and repair by learning from examples. In Computer Security–
ESORICS 2017: 22nd European Symposium on Research in Computer Security, Oslo,
Norway, September 11-15, 2017, Proceedings, Part II 22, pages 229–246. Springer, 2017.

[64] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation
system for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 224–234, 2013.

[65] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond. Xfix:
an automated tool for the repair of layout cross browser issues. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
368–371, 2017.

[66] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner, Bruno
Ferreira, Luiz Carvalho, and Baldoino Fonseca. Discipline matters: Refactoring of
preprocessor directives in the# ifdef hell. IEEE Transactions on Software Engineering,
44(5):453–469, 2017.

102

[67] Forough Mehralian, Navid Salehnamadi, and Sam Malek. Data-driven accessibility
repair revisited: on the effectiveness of generating labels for icons in android apps.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 107–118,
2021.

[68] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. Qualitative data analysis:
A methods sourcebook. Sage publications, 2018.

[69] Lauren R Milne, Cynthia L Bennett, and Richard E Ladner. The accessibility of mobile
health sensors for blind users. 2014.

[70] Maleknaz Nayebi, Henry Cho, and Guenther Ruhe. App store mining is not enough for
app improvement. Empirical Software Engineering, 23(5):2764–2794, 2018.

[71] nltk. Natural language toolkit¶, 2019.

[72] Dennis Pagano and Walid Maalej. User feedback in the appstore: An empirical study. In
2013 21st IEEE international requirements engineering conference (RE), pages 125–134.
IEEE, 2013.

[73] Kyudong Park, Taedong Goh, and Hyo-Jeong So. Toward accessible mobile application
design: developing mobile application accessibility guidelines for people with visual
impairment. In Proceedings of HCI Korea, pages 31–38. Hanbit Media, Inc., 2014.

[74] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven Apel,
Krzysztof Czarnecki, and Jesus Padilla. A study of feature scattering in the linux kernel.
IEEE Transactions on Software Engineering, 2018.

[75] Neha Patil, Dhananjay Bhole, and Prasanna Shete. Enhanced ui automator viewer with
improved android accessibility evaluation features. In 2016 International Conference on
Automatic Control and Dynamic Optimization Techniques (ICACDOT), pages 977–983.
IEEE, 2016.

[76] qualtrics. qualtrics. https://www.qualtrics.com/, 2019. Accessed: 2019-08-17.

[77] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob OWobbrock. Epidemiology
as a framework for large-scale mobile application accessibility assessment. In Proceedings
of the 19th International ACM SIGACCESS Conference on Computers and Accessibility,
pages 2–11. ACM, 2017.

[78] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. Examining
image-based button labeling for accessibility in android apps through large-scale analysis.
In Proceedings of the 20th International ACM SIGACCESS Conference on Computers
and Accessibility, pages 119–130. ACM, 2018.

[79] Kabir S Said, Liming Nie, Adekunle A Ajibode, and Xueyi Zhou. Gui testing for mobile
applications: objectives, approaches and challenges. In 12th Asia-Pacific Symposium
on Internetware, pages 51–60, 2020.

103

https://www.qualtrics.com/

[80] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy Bran-
ham, and Sam Malek. Latte companion website. https://github.com/seal-hub/

Latte, 2020.

[81] Navid Salehnamadi, Ziyao He, and Sam Malek. Assistive-technology aided manual
accessibility testing in mobile apps, powered by record-and-replay. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–20, 2023.

[82] Navid Salehnamadi, Forough Mehralian, and Sam Malek. Groundhog: An automated
accessibility crawler for mobile apps. In 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–12, 2022.

[83] scanner. Accessibility scanner - apps on google play, 2019.

[84] Leandro Coelho Serra, Lucas Pedroso Carvalho, Lucas Pereira Ferreira, Jorge Beli-
mar Silva Vaz, and André Pimenta Freire. Accessibility evaluation of e-government
mobile applications in brazil. Procedia Computer Science, 67:348–357, 2015.

[85] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. ifixflakies: A framework
for automatically fixing order-dependent flaky tests. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 545–555, 2019.

[86] Android Accessibility Study. Android accessibility study, 2019.

[87] Amanda Swearngin and Yang Li. Modeling mobile interface tappability using crowd-
sourcing and deep learning. In Artificial Intelligence for Human Computer Interaction:
A Modern Approach, pages 73–96. Springer, 2021.

[88] Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. Repairing crashes
in android apps. In Proceedings of the 40th International Conference on Software
Engineering, pages 187–198, 2018.

[89] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi Mat-
sumoto. An empirical comparison of model validation techniques for defect prediction
models. IEEE Transactions on Software Engineering, 43(1):1–18, 2016.

[90] Jason Taylor. 2018 ada web accessibility lawsuit recap report [blog], 2018.

[91] Unity Technologies. Unity, 2019.

[92] w3c. w3c, 2019.

[93] Bruce N Walker, Brianna J Tomlinson, and Jonathan H Schuett. Universal design of
mobile apps: Making weather information accessible. In International Conference on
Universal Access in Human-Computer Interaction, pages 113–122. Springer, 2017.

[94] WCAG. Web content accessibility guidelines (wcag) overview, 2019.

[95] WebAIM. Screen reader user survey 7 results. retrieved may 10, 2018, 2018.

104

https://github.com/seal-hub/Latte
https://github.com/seal-hub/Latte

[96] Brian Wentz, Dung Pham, Erin Feaser, Dylan Smith, James Smith, and Allison Wilson.
Documenting the accessibility of 100 us bank and finance websites. Universal Access in
the Information Society, pages 1–10, 2018.

[97] WHO. World report on disability, 2011.

[98] who. World health organization. (2011). world report on disability, 2019.

[99] Shunguo Yan and PG Ramachandran. The current status of accessibility in mobile
apps. ACM Transactions on Accessible Computing (TACCESS), 12(1):3, 2019.

[100] Bo Yang, Zhenchang Xing, Xin Xia, Chunyang Chen, Deheng Ye, and Shanping
Li. Don’t do that! hunting down visual design smells in complex uis against design
guidelines. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 761–772, 2021.

[101] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang Li,
and Jinshui Wang. Seenomaly: Vision-based linting of gui animation effects against
design-don’t guidelines. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pages 1286–1297. IEEE, 2020.

105

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Dissertation Structure

	Background
	GUI in Android
	Mobile Apps Accessibility
	Supporting Text Scaling for Accessibility

	Related Work
	Accessibility Standards and Guidelines
	Previous Empirical Studies
	Accessibility Testing and Repair
	GUI Testing

	Research Problem
	Problem Statement
	Research Hypothesis

	Understanding App Accessibility at Scale
	Introduction
	Methodology
	Study Subjects
	Accessibility Evaluation Tool
	Data Collection and Analysis
	Survey

	Results
	App Perspective
	Developer Perspective
	User Perspective

	Discussion
	Threats to validity
	Conclusion

	AccessiText: Automated Detection of Text Accessibility Issues in Android Apps
	Introduction
	An empirical study of text-based accessibility issues in mobile apps
	Design and Data Collection
	Results

	Approach
	Test Runner
	Result Analyzer

	Evaluation
	Experimental Setup
	Effectiveness of AccessiText
	Performance of AccessiText

	Discussion
	Threats to validity
	Conclusion

	ARTEX: Automated Repair of Text Accessibility Issues in Android Apps
	Introduction
	Approach
	Fault Localization
	Repair Generation Phase

	Evaluation
	Experimental Setup
	Effectiveness of Artex
	Performance of Artex
	User Preferences for Provided Fixes

	Threats to validity
	Conclusion

	Conclusion
	Bibliography

