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THE AFFINE SIEVE

ALIREZA SALEHI GOLSEFIDY AND PETER SARNAK

Abstract. We establish the main saturation conjecture in [BGS10] connected
with executing a Brun sieve in the setting of an orbit of a group of affine linear

transformations. This is carried out under the condition that the Zariski closure

of the group is Levi-semisimple. It is likely that this condition is also necessary
for such saturation to hold.

1. Introduction

The purpose of this paper is to complete the program initiated in [BGS10] of devel-
oping a Brun combinatorial sieve in the context of a group of affine linear motions.
As explained below, this is possible in part thanks to recent developments con-
cerning expansion in graphs which are associated with orbits of such groups. We
review briefly the set up in [BGS10]. Let Γ be a finitely generated group of affine
linear motions of Qn, that is transformations of the form φ : x 7→ Ax + b with
A ∈ GLn(Q) and b ∈ Qn. It will be convenient for us to realize Γ as a subgroup of
linear transformations of Qn+1 by setting

φ =

[
A bt

0 1

]
.

Fix v ∈ Qn and let O = Γv be the orbit of v under Γ in Qn. Since Γ is finitely
generated the points of O have coordinates in the ring of S-integers ZS (that is
their denominators have all of their prime factors in the finite set S). In what
follows, we will suppress the behavior of our points at these places in S and we will
even extend S to a fixed finite set S′ when convenient. This is done for technical
simplicity and an analysis of what happens at these places can probably be examined
and controlled, but we will not do so here.

Denote by Zcl(O) the Zariski closure of O in AnQ. Let f ∈ Q[x1, . . . , xn] and de-
note by V (f) its zeros, we will assume henceforth that dim(V (f) ∩ Zcl(O)) <
dim(Zcl(O)), i.e. f is not constantly zero on any of the irreducible components of
Zcl(O). We seek points x ∈ O such that f(x) has at most a fixed number of prime
factors outside of S (or an enlarged S′). For m ≥ 1 and S′ fixed (and finite) set

(1) Om,S′ := {x ∈ O| f(x) has at most m prime factors outside S′}.
Thus O1,S′ ⊆ O2,S′ ⊆ · · · , O = ∪∞m=1Om,S′ and ∪∞m=1 Zcl(Om,S′) ⊆ Zcl(O). We
say that the pair (O, f) saturates if Zcl(O) = Zcl(Or,S′) for some r <∞. In words,
this happens if there is a finite set S′ of primes and a finite number r such that the
set of points x ∈ O at which f(x) has at most r prime factors outside of S′ (that is
to say at most r prime factors as an S′-integer) is Zariski dense in Zcl(O).

In [BGS10] many classical examples and applications of such saturation (or con-
jectured saturation) are given. Here we simply point to Brun’s original work. If

Date: 1/4/2013.
1991 Mathematics Subject Classification. 20G35, 11N35.
A. S-G. was partially supported by the NSF grant DMS-0635607 and NSF grant DMS-1001598

and P. S. by an NSF grant.

1



2 ALIREZA SALEHI GOLSEFIDY AND PETER SARNAK

n = 1 and G = Zcl(Γ) contains no tori, then O (if it is infinite) is essentially an
arithmetic progression. In this case, the pair (O, f) saturates by Brun’s results,
which assert that there are infinitely many x ∈ Z (infinite is equivalent to Zariski
density in A1) such that f(x) has at most a fixed number r = rf prime factors. In
this case after Brun, much effort has gone into reducing the number r (for example
if f(x) = x(x+2), then rf = 2 is equivalent to the twin prime conjecture and rf = 3
is known [Ch73]). On the other hand in this one dimensional case if G = Zcl(Γ)
is a torus, then it is quite likely that (O, f) does not saturate for certain f ’s. For
example if Γ = {2n| b ∈ Z}, v = 1 and f(x) = (x−1)(x−2), then standard heuristic
probabilistic arguments (see for example [HW79, Page 15] or [BLMS05] for a related
conjecture and heuristic argument) suggest that the number of odd distinct prime
factors of (2m − 2)(2m − 1) tends to infinity as m goes to infinity. That is (O, f)
does not saturate.

This feature persists (see the Appendix) for any group which does not satisfy one
of the following equivalent conditions for a group G = Zcl(Γ).

(1) The character group X(G◦) of G◦ is trivial, where G◦ is the connected
component of G.

(2) No torus is a homomorphic image of G◦.
(3) X(R(G)) = 1, where R(G) is the radical of G.
(4) G/Ru(G) is a semisimple group, where Ru(G) is the unipotent radical of

G.
(5) G ' GssnU, where Gss is a semisimple group and U is a unipotent group.
(6) The Levi factor of G is semisimple.

If G satisfies the above properties, we call it Levi-semisimple. We can now state
our main result which is a proof of the fundamental saturation theorem that was
conjectured in [BGS10].

Theorem 1. Let Γ, O and f be as above and assume that G = Zcl(Γ) is Levi-
semisimple, then (O, f) saturates. That is there are a positive integer r and finite
set of primes S′ such that Zcl(Or,S′) = Zcl(O).

Remark 2. (1) The condition on G which is quite mild and easily checked in
examples, is probably necessary for saturation (in particular it is needed
in executing a Brun like sieve), when considering all pairs (O, f) for which
Zcl(Γ) = G. We discuss the heuristics leading to this belief in the Appendix.
(It is worth emphasizing however that we have no example of a pair (O, f)
for which we can prove does not saturate!) These heuristics indicate what
we expect is the case, that the condition on G in the theorem is the exact
one that leads to saturation.

(2) The proof of the Theorem 1 is effective in the sense that given a pair (O, f),
there is an algorithm which will terminate with a value r and the set S′.
However without imposing strong conditions on Γ (such as it being a lattice
in the corresponding group GS, as is done in [NS10]) the bounds for r that
would emerge from our proof would be absurdly large and very far from the
minimal r (called the saturation number in [BGS10]).

We outline the proof of Theorem 1. We start by pulling back f to a regular function
on G and reformulate Theorem 1 to the following form.

Theorem 3. Let Γ be a finitely generated subgroup of SLn(Q). Let G be the Zariski
closure of Γ in (SLn)Q and f ∈ Q[G] which is not constantly zero on any of the
irreducible components of G. If G is Levi-semisimple, then there are a positive
integer r and a finite set S of primes such that

(2) Γr,S(f) := {γ ∈ Γ| f(γ) has at most r prime factors outside S}
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is Zariski dense in G.

To prove Theorem 3, first we find a perfect normal subgroup H of G such that
Γ ∩ H is Zariski-dense in H and G/H is a unipotent group. Let π denote the the
projection map π : G → G/H. Since G/H is a Q-unipotent group, there is a Q-
section φ : G/H→ G and, as a Q-variety, G can be identified with the product of H
and U (see Section 5 for more details). Thus there are polynomials p and pi ∈ Q[U]
and regular functions fi ∈ Q[H] such that gcd(pi) = 1 and
(3)

f(g) = p(π(g))·

[∑
i

pi(π(g)) fi(φ(π(g))−1g)

]
= p(π(g))·

[∑
i

pi(π(g))Lφ(π(g))(fi)(g)

]
,

where Lg : Q[G] → Q[G] is the left multiplication operator, i.e. Lg(f)(g′) =
f(g−1g′).

In the second step, we prove the following stronger version of Theorem 3 for a
unipotent group to get a control on the values of p and pi’s.

Theorem 4. Let U be a unipotent Q-group. Let Γ be a finitely generated, Zariski
dense subgroup of U(Q), and p, p1, . . . , pm ∈ Q[U] such that gcd(pi) = 1. Then there
are a finite set S of primes and a positive integer r such that,

{γ ∈ Γ | p(γ) has at most r prime factors in ZS and gcd(pi(γ)) is a unit in ZS}

is Zariski dense in U.

The major inputs in the proof of Theorem 4 are Malcev theory of lattices in Nilpo-
tent Lie groups and Brun’s combinatorial sieve.

In using Theorem 4, to prove Theorem 3, one needs to prove its stronger form for
perfect groups which also provides a uniform control on r and S for all the coprime
linear combinations of a finite set of regular functions fi’s. We get this control in
two steps. Before stating the precise formulation of our results, let us briefly recall
parts of Nori’s results from [N87] and introduce a few notations.

As we said earlier, Γ ⊆ SLn(ZS0
) for some finite set of primes S0. Let G be the

Zariski-closure of Γ in (SLn)ZS0
. It is worth mentioning that G is just the generic

fiber of G. If G is generated by its 1-parameter unipotent subgroups, then, by [N87],
there is a finite set S0 ⊆ SΓ of primes such that

(1) The projection map G × Spec(ZSΓ
)→ Spec(ZSΓ

) is smooth.
(2) All the fibers of the projection map G × Spec(ZSΓ

) → Spec(ZSΓ
) are geo-

metrically irreducible and have the same dimension.
(3) πp(Γ) = Gp(fp) for any p outside of SΓ, where πp : Γ → SLn(fp) is the

homomorphism induced by the residue map πp : Z → fp and Gp = G ×
Spec(fp).

(4)
∏
p 6∈SΓ

G(Zp) is a subgroup of the closure of Γ in
∏
p 6∈S0

SLn(Zp) (where Zp
is the ring of p-adic integers).

For a given f ∈ Q[G], there is a finite set SΓ ⊆ S of primes such that f ∈ ZS [G]
(we take the smallest such set). We say that p is a ramified prime with respect to
Γ and f , if f(γ) ∈ pZS for any γ ∈ Γ. We denote the set of all the ramified primes
with respect to Γ and f by SΓ,f .

We also note that f ∈ Q[G] can be lifted to a regular function f̃ on all the n × n
matrices (we pick one of such lifts with smallest possible degree).
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Theorem 5. In the above setting, if G is perfect and generated by its unipotent
subgroups, then there is a positive integer r depending on Γ, the degree of f̃ , a lift

of f to AN2

, and #SΓ,f such that Γr,SΓ,f
(f) is Zariski dense in G.

To establish Theorem 5, we follow the treatment given in the work of Bourgain,
Gamburd and Sarnak [BGS10] and combine it with a recent result of Salehi Golse-
fidy and Varjú [SV]1. Theorem 5 enables us to get a fixed r that works for all the
linear combinations of a given finite set of regular functions fi’s, as soon as we have
a uniform control on the set of associated ramified primes. In the second step, we
get a uniform upper bound on the ramified primes with respect to Γ and all the
coprime linear combinations of fi’s.

Theorem 6. In the above setting, let G be Zariski-connected and perfect. Then
for any finite set of primes S′ and any given f1, . . . , fm ∈ Q[G] which are linearly
independent over Q, there are a positive integer r and a finite set S of primes
such that Γr,S(fv,g) is Zariski dense in G for any primitive integer vector v =
(v1, . . . , vm) and any g ∈ G(ZS′), where fv,g = Lg(

∑m
i=1 vifi).

Using Theorem 6, we are able to finish the proof of Theorem 3.

We end the introduction by fixing a few notations that will be used in the rest of
article. Let Π be the set of all the primes. For any rational number q, let Π(q)
be the set of all the prime factors of q (with a positive or negative power). For
a Zariski-connected group G, let R(G) (resp. Ru(G)) be the radical (resp. the
unipotent radical) of G and let Gss := G/R(G) be the semisimple factor of G. If G
is a Zariski-connected, Levi-semisimple group, then G ' Gss n Ru(G). Let Zm∗ be
the set of all the primitive m-tuple of integers. For any affine scheme X = Spec(A)
and a regular function f on X, V (f) denotes the closed subscheme of X defined by
f , i.e. V (f) := {p ∈ Spec(A)| f ∈ p}.

2. The unipotent case.

In this section, we prove Theorem 4. We start with the abelian case.

Lemma 7. Let P (x) ∈ Z[x]; then there is a positive integer r = r(degP ) which
depends only on degP such that P (n) has at most r prime factors outside SP =
gcdm∈Z P (m) for infinitely many integer n.

Proof. This is a classical result of sieve theory [HR74]. �

Lemma 8. For a given P (x) =
∑m
i=0 aix

i ∈ Z[x], one has

SP ⊆ [1,degP ] ∪Π(gcd
i

ai).

Proof. It is clear. �

Lemma 9. For M ∈ Z and P1(x), . . . , Pm(x) ∈ Z[x], there are integers a and b
such that

m⋃
i=1

Π(gcd(Pi(aj + b),M)) ⊆
k⋃
i=1

SPi ,

for any integer j.

1This work relies in part on a number of recent developments ([H08], [BG08], [BGT11],[PS],

[V12])
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Proof. For a given prime p which is not in
⋃k
i=1 SPi , by the definition, for some i

and bp, Pi(pj+bp) is coprime to p for any integer j. One can complete the argument
by the Chinese remainder theorem. �

In the following lemma, we prove a stronger version of Theorem 4 when U = Gda.

Lemma 10. Let P, Pij ∈ Z[x1, · · · , xd] for 1 ≤ i ≤ m and 1 ≤ j ≤ m′. Assume

that, for any 1 ≤ i ≤ m, gcdm
′

j=1(Pij) = 1. Then there are a positive integer r, a

finite set S of primes, and a Zariski dense subset X of Zd such that for any x ∈ X,

(1) P (x) has at most r prime factors outside S.

(2)
⋃m
i=1 Π(gcdm

′

j=1(Pij(x))) ⊆ S.

Proof. We proceed by induction on d the number of variables. For d = 1 and any

i, there are integer polynomials Qij such that
∑m′

j=1Qij(x)Pij(x) = mi ∈ Z. Hence

for any x ∈ Z, gcdm
′

j=1(Pij(x)) divides mi, and, by Lemma 7, we are done.

For the induction step, without loss of generality, by increasing m if necessary,
we may and will assume that Pij ’s are irreducible polynomials. Viewing Pij ’s
as polynomials on xd, for any i, we can find polynomials Qij(x1, . . . , xd) such

that
∑m′

j=1QijPij = Qi ∈ Z[x1, . . . , xd−1]. Let Pij =
∑
lH

(l)
ij x

l
d, where H

(l)
ij ∈

Z[x1, . . . , xd−1]. Since Pij is irreducible, either Pij is independent of xd or gcdl(H
(l)
ij ) =

1. We also write P as a polynomial in xd:

P (x1, . . . , xd) = H(x1, . . . , xd−1)
∑

Hi(x1, . . . , xd−1)xid,

where gcdiHi = 1. Now let’s apply induction hypothesis for the following polyno-
mials:

(1) Let H(x1, · · · , xd−1) be the new P .
(2) Let {Hi} be one of the sequence of coprime polynomials.

(3) For a given i, either {Pij}j if all of them are independent of xd or {H(l)
ij }l

where Pij depends on xd.

Because of the way we chose the sequences of polynomials, certainly, the g.c.d. of
each sequence is 1, and we can use the induction hypothesis. So we get a positive
number r, a finite set S of primes, and a Zariski dense subset X of Ad−1, such that
for any x = (x1, · · · , xd−1) ∈ X,

(1) H(x) has at most r prime factors in the ring of S-integers.
(2) Π(gcdi(Hi(x))) ⊆ S.
(3) For a given i, either Π(gcdj(Pij(x))) ⊆ S if all of {Pij}j are independent of

xd or Π(gcdl(H
(l)
ij (x))) ⊆ S where Pij depends on xd.

Let us fix x ∈ X, and set M =
∏
iQi(x). For a given i, if {Pij}j are independent

of xd, for all j, we have already got the condition on the g.c.d. of their value. So
let us just focus on i’s for which there is a j such that Pij depends on xd. For

all such i and j, consider the single variable polynomials Pij(xd) =
∑
kH

(k)
ij (x)xkd.

Let us also introduce P(xd) =
∑
Hi(x)xid. By Lemma 8 and Lemma 9, there is an

arithmetic progression ax+ b, such that for any x ∈ Z,

Π(gcd(P(ax+ b),M)) ∪
⋃
i,j

π(gcd(Pij(ax+ b),M)) ⊆ [1,deg p+
∑
i,j

deg pij ] ∪ S.
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Let S̃ = Π∩ ([1,degP +
∑
i,j degPij ]∪ S). Thus, by this discussion and Lemma 8,

we have that for any integer x and x ∈ X,

SP(ax+b) ∪
⋃
i

Π(gcd
j

(Pij(x, ax+ b))) ⊆ S̃.

Now an application of the classical sieve on P(ax+ b) and the induction hypothesis
give us r̃ such that, for any x ∈ X, we can find an infinite subset of integer numbers
Vx with the following properties:

(1) P (x, xd) has at most r̃ prime factors in the ring of S̃-integers, for any
xd ∈ Vx.

(2)
⋃
i Π(gcdj(Pij(x, xd))) ⊆ S̃, for any xd ∈ Vx.

Hence r̃, S̃, and
⊔

x∈X{x} × Vx satisfy our claim. �

Lemma 11. A finitely generated subgroup of the group of unipotent upper-triangular
rational matrices Un(Q) is discrete in Un(R).

Proof. Let dN = diag(Nn−1, Nn−2, · · · , 1). The claim is a clear consequence of the
fact that

Un(Q) =
⋃
N∈N

d−1
N ·Un(Z) · dN ,

and if N divides M ,

d−1
N ·Un(Z) · dN ⊆ d−1

M ·Un(Z) · dM .

�

Lemma 12. Let U be a unipotent Q-group. If Γ is a finitely generated, Zariski
dense subgroup of U(Q), then there is a lattice Λ in u = Lie(U)(R) such that exp(Λ)
is a subset of Γ.

Proof. By Lie-Kolchin theorem, U can be embedded in Un, for some n, as a Q-group.
Therefore, by Lemma 11, Γ is a closed subgroup of U = U(R). Hence by [Ra72,
Theorem 2.12], it is a lattice in U . So Λ0 the Z-span of log Γ is a lattice in u, and

Γ̃ = 〈exp(Λ)〉 is a finite extension of Γ. In particular, for some m, exp(mΛ0) is a
subset of Γ, as we desired. �

Proof of Theorem 4. Since U is a unipotent group, Lie(U) can be identified with
the underlying Q-variety of U via the exponential map exp : Lie(U)→ U. Via this
identification, we can and will view p and pi’s as regular functions on Lie(U), i.e.
polynomials in d = dimU variables. By Lemma 12, we find a lattice Λ of Lie(U)(R)
such that exp(Λ) ⊆ Γ. Since the logarithmic map is defined over Q, Λ is a subgroup
of Lie(U)(Q). Hence we can identify Lie(U)(Q) with Qd so that Λ gets identified
with Zd. The proof is completed, using Lemma 10. �

3. The perfect case I.

The goal of this section is to prove Theorem 5. To do so, we essentially fol-
low [BGS10]. However we have to be extra careful as we need to understand how r
and S depend on f .

In this section, we will assume that the Zariski-closure Γ is perfect and it is generated
by its unipotent subgroups. This is equivalent to saying that G ' Gss n Ru(G) is
perfect and Gss is Zariski-connected and simply connected.
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Proposition 13. In the above setting, let f be a non-zero element of Q[G] and let

f̃ be a lift of f to An2

Q . Then there is a positive integer M which depends only on

the degree of f̃ such that V (f) has at most M geometric irreducible components.

Proof. Let gi ∈ Q[AN2

] be defining relations of G. So V (f) is isomorphic to

Spec(Q[x1, . . . , xN2 ]/〈f̃ , g1, . . . , gk〉).

We also observe that the number of irreducible components of a subvariety of AN2

is the same as the number of irreducible components of its closure in PN2

. On the
other hand, by the general Bezout’s theorem [Sch00], we have that∑

i

degWi ≤ deg V (f̃) ·
∏
i

deg V (gi),

where Wi are the irreducible components of the projective closure of V (f). This
completes the proof. �

Lemma 14. Let V be a closed subset of Anfp defined over fp. If f is a non-trivial

extension of fp and Aut(f) acts simply transitively on the geometric irreducible com-
ponents of V , then

#V (fp) = O(pdimV−1),

where the constant depends only on n, the geometric degree and the geometric di-
mension of V .

Proof. By the assumption, V =
⋃
σ∈Aut(f)W

σ and dim(W ∩Wσ) ≤ dimV −1 when

σ is not identity. It is clear that V ′ =
⋂
σ∈Aut(f)W

σ is also defined over fp. We

claim that

V (fp) = V ′(fp).

To show this, we note that any irreducible component is also affine. Let x0 ∈ V (fp).
Then x0 ∈ Wσ for some σ ∈ Aut(f), i.e. f(x0) = 0 for any f ∈ f[x1, . . . , xn]
which vanishes on Wσ. Let f =

∑
j λjfj where {λj} is an fp-basis of f and fj ∈

fp[x1, . . . , xn]. Thus fj(x0) ∈ fp. Since λj ’s are linearly independent over fp and∑
j λjfj(x0) = 0, we have that fj(x0) = 0 for any j. Hence σ′(f)(x0) = 0 for any

σ′ ∈ Aut(f), which completes the proof of the claim. We can also control the degree
of V ′ by the degree and the dimension of V . Hence, by [FHM94, Lemma 3.1], the
Lemma follows. �

If V is a closed subset of AnQ, by the definition there are polynomials p1, . . . , pk ∈
Q[x1, . . . , xn] such that V = {p ∈ SpecQ[x1, . . . , xn]| 〈p1, . . . , pk〉 ⊆ p}. For a large
enough prime p, we can look at pi’s modulo p and get a new variety Vp over fp.
Changing pi’s to another set of defining relations only changes finitely many Vp.
Hence for almost all p, Vp just depends on V . We will abuse notation and use V (fp)
instead of Vp(fp) in the following statements.

Proposition 15. Let V be a closed subset of AnQ all of whose geometric irreducible
components are defined over k and the group of automorphism Aut(k) of k acts
simply transitively on the geometric irreducible components of V . Then for almost
all p,

#V (fp) =

{
O(pdimV−1) if p does not split completely over k,

deg(k) pdimV +O(pdimV− 1
2 ) otherwise,

and the implied constants depend only on n, the degree of k, the geometric degree
and the geometric dimension of V .
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Proof. Let W be an irreducible component of V ; then, by the assumption, we have
V =

⋃
σ∈Aut(k)W

σ, W σ’s are distinct irreducible components of V and

Vp =
⋃
p|p

⋃
σ∈Aut(fp)

Wσ
p ,

where Wp is defined by defining relations of W modulo p (it is well-defined for almost
all p). Let Vp =

⋃
σ∈Aut(fp)W

σ
p . By Nöether-Bertini’s theorem, Wp is irreducible

for almost all p. In particular,

dim(Vp1
∩ Vp2

) ≤ dimV − 1,

for p1 6= p2 and the degree of this variety has an upper bound which only depends
on the degree and the dimension of V . Hence, by [FHM94, Lemma 3.1],

#Vp(fp) =
∑
p|p

#Vp(fp) +O(pdimV−1),

where the constant just depends on the degree and the dimension of V . By
Lemma 14, #Vp(fp) = O(pdimV−1) unless p splits completely over k. If p splits
completely over k, Vp is an irreducible variety. Thus, by Lang-Weil [LW54], we
have that

#Vp(fp) = pdimV +O(pdimV− 1
2 ),

where the constant depends on n and the degree and the dimension of V , which
completes the proof. �

Corollary 16. Let V be a closed subset of AnQ. Then there are number fields ki’s
such that

#V (fp) =

 ∑
p splits completely/ki

deg(ki)

 pdimV +O(pdimV− 1
2 ),

where the constant depends only on n, the geometric degree and the geometric di-
mension of V . Moreover

∑
i deg ki is at most the number of geometric irreducible

components of V .

Proof. This is a direct corollary of Proposition 15 and [FHM94, Lemma 3.1]. �

Corollary 17. In the above setting, there exists a positive integer M depending only
on the degree of f̃ such that one can find number fields ki’s where

∑
i deg ki ≤ M

and such that for almost all p,

#V (f)(fp) =

 ∑
p splits completely/ki

deg(ki)

 pdimG−1 +O(pdimG− 3
2 ).

Proof. This is a consequence of Proposition 13 and Corollary 16. �

Since we assumed that G is perfect and Zariski-connected, we can find a free Zariski-
dense subgroup of Γ (e.g. see [SV]). So without loss of generality, we can and will
assume that Γ is a free group.

Let us also recall that since Γ is finitely generated, it is a subgroup of SLn(ZS0
). Its

Zariski-closure in (SLn)ZS0
is denoted by G. As we said in the introduction, when-

ever G is generated by its unipotent subgroups, the closure of Γ in
∏
p 6∈SΓ

SLn(Zp)
is equal to

∏
p 6∈SΓ

G(Zp).

Let πd : Γ → SLn(ZSΓ,f
/dZSΓ,f

) be the homomorphism induced by the quotient
(residue) map πd : ZSΓ,f

→ ZSΓ,f
/dZSΓ,f

for any d which is not a unit in the ring
of SΓ,f -integers. If d is a unit in the ring of SΓ,f integers, we set πd to be the
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trivial homomorphism. Let Γ(d) := ker(πd). From the definition it is clear that if
πd(γ1) = πd(γ2), then πd(f(γ1)) = πd(f(γ2)).

Lemma 18. Let Nf (d) = #{πd(γ) s.t. πd(f(γ)) = 0}. Then Nf (d) is a multiplica-
tive function for square free integer numbers d.

Proof. For any square-free integer d, let dΓ,f =
∏
p|d,p6∈SΓ,f

p. Note that πd(γ) =

πdΓ,f
(γ) and ZSΓ,f

/dZSΓ,f
is isomorphic to Z/dΓ,fZ. Thus Nf (d) = Nf (dΓ,f ).

On the other hand, we know that the closure of Γ in
∏
p 6∈SΓ

SLn(Zp) is equal to∏
p 6∈SΓ

G(Zp). Hence

(4) Γ/Γ(d) '
∏
p|dΓ

Γ/Γ(p) '
∏
p|dΓ

Gp(fp),

where dΓ =
∏
p|d,p6∈SΓ

p. Therefore Nf (d) =
∏
p|dΓ,f

#V (f)(fp). �

In order to prove Theorem 5, we use the combinatorial sieve formulated in [BGS10].
However we need to adjust some of the definitions before we proceed as we are
working with rational numbers instead of integers. Let fΓ : Γ→ Z+ be the following
map

fΓ(γ) :=
∏

p6∈SΓ,f

|f(γ)|−1
p = |f(γ)|

∏
p∈SΓ,f

|f(γ)|p,

where | · | is the usual absolute value and | · |p is the p-adic norm. Note that
fΓ(γ)ZSΓ,f

= f(γ)ZSΓ,f
. In particular, πd(f(γ)) = 0 if and only if πd(fΓ(γ)) = 0.

Let Γ be freely generated by Ω, dΩ±1(·, ·) = d(·, ·) the relative word metric, l(γ) =
d(I, γ) and

an(L) = #{γ ∈ Γ| l(γ) ≤ L, fΓ(γ) = n}.
Let ‖γ‖SΓ,f

= max{‖γ‖, ‖γ‖p| p ∈ SΓ,f}, where ‖γ‖ (resp. ‖γ‖p) is the operator
norm of γ on Rn (resp. Qnp ). It is clear that, if l(γ) ≤ L, then ‖γ‖SΓ,f

is at most

CL, where C = max{‖γ‖SΓ,f
| γ ∈ Ω}. Hence

(5) fΓ(γ) ≤ Cf · Cdeg f̃(#SΓ,f+1)·L,

if l(γ) ≤ L. We also observe that if an(L) 6= 0, then n has no prime factor in SΓ,f .

Following the same computation as in [BGS10, Pages 18-20] and using the main
result of Salehi Golsefidy and Varjú [SV] yield that, for any square free d,

(6)
∑
d|n

an(L) = β(d)X + r(d, {ai}),

where X =
∑
n an(L), |r(d, {ai})| � Nf (d)Xτ , τ < 1 is independent of the choice

of the regular function f , and, if d has no prime factor in SΓ,f , then

(7) β(d) =
Nf (d)

#Γ/Γ(d)
.

If d has a prime factor in SΓ,f , then β(d) = 0.

Lemma 19. In the above setting, β is multiplicative on the square-free numbers d.
Moreover there is c1 a positive real number (which may also depend on f) such that
β(p) ≤ 1− 1

c1
.

Proof. By Equations (4) and (7), and the proof of Lemma 18, we have that

β(d) =
∏
p|d

#V (f)(fp)

#Gp(fp)
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if d does not have a prime factor in SΓ,f and β(d) = 0 if d has a prime factor in
SΓ,f . Hence β is a multiplicative function for square-free integers and, for almost all
p, by Corollary 17, we have that β(p) ≤M/p, where M just depends on the degree

of f̃ . We also notice that β(p) < 1 for any p from which the Lemma follows. �

Lemma 20. In the above setting, for any positive integer number D and any positive
number ε, we have ∑

d≤D

|r(d, {ai})| � XτDdimG+ε,

where the constant only depends on ε and the degree of f̃ .

Proof. By the above discussion, we know that |r(d, {ai})| � Nf (d)Xτ . On the
other hand,

Nf (d) =
∏
p|dΓ,f

Nf (p) ≤
∏
p|dΓ,f

CpdimG−1,

where C only depends on the degree of f̃ . Thus

Nf (d) ≤ C ′ddimG−1+ε,

where C ′ only depends on ε and the degree of f̃ . Hence∑
d≤D

|r(d, {ai})| � XτDdimG+ε,

as we wished. �

Lemma 21. In the above setting, there are constants T , cf and tf such that

(1) T depends on the degree of f̃ .
(2) tf ≤ T ,
(3) |

∑
w≤p≤z β(p) log p− tf log z

w | ≤ cf , for maxSΓ,f = p0 < w ≤ z.

Proof. By Equation (7) and Corollary 17,∑
p0≤p≤z β(p) log p =

∑
p0≤p≤z

(∑
p splits completely/ki

deg(ki)
)

log p
p +O(1)

=
∑
i deg(ki)

∑
p0≤p≤z&s.c./ki

log p
p +O(1).

where the constant and ki’s depend on f and
∑
i deg(ki) has an upper bound which

only depends on deg f̃ . By Chebotarev’s density theorem, we have∑
p0≤p≤z&s.c./ki

log p

p
=

1

deg ki
log z +O(1).

Hence ∑
p0≤p≤z

β(p) log p =
∑
i

log z +O(1) = tf log z +O(1),

where tf ≤ T for some T which depends only on the degree of f̃ . Note that the
implied constants might depend on f but they do not depend on w and z. �

Proposition 22. In the above setting, there is a positive number T depending on
the degree of f̃ such that for z = X(1−τ)/9T (dimG+1) and large enough L we have

X

(logX)tf
�

∑
Π(n)∩[1,z]=∅

an(L)� X

(logX)tf
,

where tf ≤ T and the implied constants depend on f and Γ.
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Proof. This is a direct consequence of the formulation of the statement of combi-
natorial sieve recounted in [BGS10], Lemma 19, Lemma 20 and Lemma 21. �

Corollary 23. In the above setting, there are constants r and T such that

(1) r only depends on deg f̃ , #SΓ,f and Γ.

(2) T only depends on deg f̃ .
(3) For large enough L (depending on f), we have

X

(logX)T
� #{γ ∈ Γ| l(γ) ≤ L, fΓ(γ) has at most r prime factors}.

Proof. If γ contributes to the sum in Proposition 22, then any prime factor of
fΓ(γ) is larger than X(1−τ)/9T (dimG+1). On the other hand, by (5), we have that

fΓ(γ) ≤ Cf · Cdeg f̃(#SΓ,f+1)·L. Thus the number of such factors is at most

9T (logCf + L(#SΓ,f + 1) deg f̃ · logM0)(dimG + 1)

(1− τ)(L+ 1) log #Ω
.

So, for large enough L, the number of prime factors is at most

r =

⌊
9(#SΓ,f + 1) deg f̃ · T · (dimG + 1) · logM0

(1− τ) log #Ω

⌋
+ 1.

�

Proof of Theorem 5. This is now a direct consequence of [BGS10, Proposition 3.2]
and Corollary 23. �

4. The perfect case II.

In this section, we prove Theorem 6. We assume that the Zariski-closure of Γ is
perfect and Zariski-connected.

Lemma 24. It is enough to prove Theorem 6 when the semisimple part of G is
simply connected.

Proof. Since G is equal to its commutator subgroup, its Levi component is semisim-
ple and, as it is also Zariski-connected, G ' Gss n Ru(G) as Q-groups (see [M55]

or [PR94, Theorem 2.3]). Let G̃ss be the simply connected covering of Gss and

G̃ = G̃ss nRu(G). Thus we have the following short exact sequence

1→ µ→ G̃ ι−→ G→ 1,

where µ is the center of G̃. Let Γ̃ = ι−1(Γ) and Λ = Γ̃∩G̃(Q). One has the following
long exact sequence

µ(Q)→ G̃(Q)
ι−→ G(Q)→ H1(Q, µ).

Thus Γ/ι(Λ) is a finitely generated, torsion, abelian group, and so it is finite. As µ

is also finite, Γ̃/Λ is also finite. Therefore Λ and ι(Λ) are Zariski-dense in G̃ and G,

respectively, as G̃ and G are Zariski-connected. Moreover Λ is finitely generated as
Γ is finitely generated and Γ/ι(Λ) and µ are finite.

Now let us take a Q-embedding of G̃ in SLN ′ for some N ′. It is clear that we can
find a finite set S̃ of primes such that

(1) Λ ⊆ SLN ′(ZS̃) and Γ ⊆ SLN (ZS̃).

(2) ι can be extended to a map from G̃ to G×Spec(ZS̃), where G̃ is the Zariski-
closure of Λ in (SLN ′)ZS̃ .
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Let f∗i ∈ Q[G̃] be the pull back of fi, then the f∗i ’s are Q-linearly independent. So if

Theorem 6 holds for G̃, then there are r and S such that Λr,S(f∗v,1) is Zariski-dense
for any v ∈ Zm∗ . By the definition, this means that ι(Λ)r,S(fv,1) is Zariski-dense.
By the above discussion, we have that Γr,S(fv,1) is Zariski-dense for any v ∈ Zm∗ .

We are assuming that f ∈ ZS [G] is not constant and ι(Λ)r,S(f) is Zariski-dense for
a positive integer r. We would like to show that after enlarging S, if necessary, we
have that ι(Λ)r,S(Lg(f)) is also Zariski-dense for any g ∈ G(ZS′). Without loss of

generality, let us assume that S contains both S′ and S̃. Now let f∗g ∈ ZS [G̃] be the
pull back of Lg(f). By a similar argument to the above it is enough to show that

after enlarging S we have that Λr,S(f∗g ) is Zariski-dense in G̃ for any g. To see this,
it is enough, by Theorem 5, to get a uniform bound on the degree of lifts of f∗g and
a uniform upper bound for their sets of ramified primes. The claim on the degree
of these functions is clear. Now let p be a ramified prime of f∗g , this means that for

any λ ∈ Λ we have that f∗g (λ) ∈ pZS . Hence πp(f(g−1ι(λ))) = 0. Thus by [N87]

we have that a coset of ι(G̃p(fp)) is a subset of V (f)(fp). This implies that

(8) #V (f)(fp) >> pdimG,

where the implied constant just depends on G. By Corollary 17, (8) cannot hold
for large enough p unless it is a ramified prime of f . This completes the proof of
Lemma 24. �

For the rest of this section, by Lemma 24, we can and will assume that the semisim-
ple part of G is simply connected. Let us continue with a few elementary lemmas
in commutative algebra.

Lemma 25. Let A be a finitely generated integral domain of characteristic zero.
Then there exists a finite set S of primes such that AS = A ⊗Z ZS is a free ZS-
module. Moreover there are Q-algebraically independent elements x1, . . . , xd in A,
such that AS is a finitely generated ZS [x1, . . . , xd]-module.

Proof. By the assumptions, AQ is a finitely generated Q-integral domain. By the
Nöether normalization lemma, AQ is an integral, and so a finite, extension of a
polynomial algebra BQ = Q[x1, . . . , xd]. One can easily find a finite set of prime
numbers S, such that AS is a finite extension of BS = ZS [x1, . . . , xd], i.e. it is
a finitely generated BS-module. Let L (K, resp.) be the field of fractions of AS
(BS , resp.). Since BS is integrally closed and L/K is a separable extension, there
is {v1, . . . , vn} a K-basis of L such that

AS ⊆ BSv1 ⊕BSv2 ⊕ · · · ⊕BSvn,

(see [AM69, Proposition 5.17]). Hence AS is a ZS-submodule of a free module, and
so it is a free ZS-module. �

Corollary 26. Let A be as above. If a1, . . . , am are Q-linearly independent ele-
ments of A, then there is a finite set S of primes such that ai(mod p)’s are linearly
independent over fp, for any p ∈ Π \ S.

Proof. This is a direct consequence of Lemma 25. �

Definition 27. For any P (T ) =
∑
i ciT

i in the ring of polynomials with coefficients
in Q[x1, . . . , xd], we define the height of P to be

H(P ) = max
i
{deg ci}.
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Lemma 28. Let AS be a finitely generated ZS-integral domain which is a finite
extension of a polynomial ring BS = ZS [x1, . . . , xd]. If a1, . . . , am are Q-linearly
independent elements of A, then there exists D > 0, depending on ai’s, such that
any integer combination of ai’s satisfies a monic polynomial over BS whose height
is at most D.

Proof. We prove the lemma for m = 2 and the general case can be deduced by
induction. Let Pα and Pβ be monic polynomials with coefficients in BS which are
satisfied by α = a1 and β = a2, respectively. It is clear that, for any integer n,
there is a monic polynomial Q(T ) ∈ BS [T ] such that Q(nT ) = ndegPαPα(T ). In
particular, nα satisfies a monic polynomial in BS [T ] with height at most equal to
H(Pα) and degree at most deg(Pα). Thus it is enough to show that α+β satisfies a
monic polynomial over BS whose height is bounded by a function of H(Pα), H(Pβ),
deg(Pα) and deg(Pβ).

Let x−α(1), . . . , x−α(n1) and x− β(1), . . . , x− β(n2) be the linear factors of Pα(x)
and Pβ(x), respectively, in an extension of the field of fractions of A. So α + β
satisfies

Pα+β(x) =

n1∏
i=1

n2∏
j=1

(x− α(i) − β(j)).

On the other hand, consider the n1 + n2 + 1 variable polynomial

P (T, α1, . . . , αn1 , β1, . . . , βn2) =

n1∏
i=1

n2∏
j=1

(T − αi − βj).

Since P is invariant under any permutation of αi’s, there are linearly independent
symmetric polynomials Sn’s in αi’s and polynomials Qn in T and βj ’s such that

P (T, αi, βj) =
∑
n

Qn(T, βj)Sn(αi) , and degQn + degSn ≤ n1n2.

As P is also invariant under any permutation of βj ’s, we have

P (T, αi, βj) =
∑
n,l

Sn(αi)S ′nl(βj)Qnl(T ) , and degSk + degS ′nl ≤ n1n2,

where S ′nl’s are symmetric polynomials in βj ’s. Thus

Pα+β(x) =
∑
n,l

Sn(α(i))S ′nl(β(j))Qnl(x).

Moreover Sn(α(i)),S ′nl(β(j)) ∈ Z[x1, . . . , xd] and

deg(Sn(α(i))S ′nl(β(j))) ≤ D = D(H(Pα), H(Pβ),deg(Pα),deg(Pβ)),

which finishes the proof. �

Proposition 29. Let G = Zcl(Γ) be a Zariski-connected perfect group such that its
semisimple factor is simply-connected. Let f ∈ Q[G] be a non-zero function and let
S′ be a finite set of primes. Then there is a finite set S of primes such that⋃

g∈G(ZS′ )

⋃
v∈Zm∗

SΓ,fv,g ⊆ S.

Proof. Since Gss is simply connected, by Nori’s theorem [N87], the closure of Γ in∏
p∈Π\SΓ

SLN (Zp) is equal to
∏
p∈Π\SΓ

G(Zp). In particular, #πp(Γ) = #Gp(fp) =

pd +O(pd−
1
2 ), for any p ∈ Π \ SΓ, where d = dimG.
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We also note that by a similar argument to that in Lemma 24, a large enough p is
a ramified prime of fv,g if and only if it is a ramified prime of fv,1. So it is enough
to prove the proposition only for fv = fv,1’s.

On the other hand, by Corollary 26, there is a finite set S1 of primes such that fi’s
modulo p are linearly independent over fp. Also, by Lemma 25, there is a finite set
S2 of primes such that ZS2 [G] is a finite extension of a polynomial ring over ZS3 .
Let p ∈ SΓ,

∑m
i=1 vifi

\(SΓ∪S1∪S2), where v ∈ Zm∗ . It follows that φ(
∑m
i=1 vifi) = 0,

for any homomorphism φ : Z[G] → fp. Any such homomorphism can be extended
to a homomorphism from Z[G] ⊗ ZS3

to fp. Let A = Z[G], then we have that AS3

is a finite extension of BS3
= ZS3

[x1, . . . , xd]. Hence there is a positive number D1

(independent of v) such that at most D1 homomorphisms φ : AS3
→ fp have the

same restriction on BS3 . In particular,

(9) #{φ′ : BS3
→ fp : ∃φ ∈ Hom(AS3

, fp) s.t. φ′ = φ|BS3
} ≥ 1

2D1
pd.

On the other hand, by Lemma 28, there is a positive number D2 depending only
on fi’s such that fv =

∑
i vifi satisfies an equation of degree at most D2

(10)
∑
i

c
(v)
i f iv = 0,

where c
(v)
i ∈ BS3 and deg c

(v)
i ≤ D2. Thus, for any φ ∈ Hom(AS3 , fp), we have

φ(fv) = 0 as p is in SΓ,fv \ (S1 ∪S2 ∪SΓ). Hence, by Equation (10), φ(c
(v)
i ) = 0 for

some i. Therefore, by (9), we have

(11) #V (
∏
i

c
(v)
i )(fp) = #{φ′ ∈ Hom(BS3

, fp) : φ′(
∏
i

c
(v)
i ) = 0} ≥ 1

2D1
pd.

Notice that, since p 6∈ S2, fv(mod p) is not zero and neither is
∏
i c

(v)
i (mod p). Thus

(see [Sc74])

(12) #V (
∏
i

c
(v)
i )(fp) ≤ deg(

∏
i

c
(v)
i )pd−1 ≤ DD2

2 pd−1.

Proposition 29 now follows from (11) and (12). �

Lemma 30. In the above setting, for any g ∈ SLN (Q) and v ∈ Zm,

degLg(

m∑
i=1

vif̃i) ≤ max
i

deg f̃i.

Proof. It is clear. �

Proof of Theorem 6. This is a direct consequence of Theorem 5, Proposition 29,
and Lemma 30. �

5. The general case.

In this section, we complete the proof of Theorem 3. To do so, first we reduce it to
the case of Zariski connected groups, and then carefully combine the perfect case
with the unipotent case.

Lemma 31. If Theorem 3 holds when G is a Zariski connected group, then it holds
in general.
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Proof. Let Γ◦ = Γ∩G◦, where G◦ is the connected component of G containing the
identity element. Since Γ is Zariski dense in G, G/G◦ ' Γ/Γ◦. Let {γi} be a set of
coset representatives of G◦ in G chosen from Γ. Hence

Z(f) =
⊔
γi(Go ∩ Z(Lγi(f))).

Let ι : Q[G]→ Q[G◦] be the homomorphism induced by the restriction map. Then
by the assumption on the dimension of Z(f), ι(Lγi(f)) are non-zero, and clearly for
any choice of finite sets of prime numbers Si’s and positive integer numbers ri’s,⊔

γiΓ
◦
Si,ri(ι(Lγi(f))) ⊆ Γ∪Si,max ri(f),

finishing the proof of the lemma. �

From this point on we will assume that G is Zariski-connected. Thus all of its
derived subgroups are also connected. Let us recall that derived subgroups are
defined inductively, G(0) = G, and G(i+1) = [G(i),G(i)].

Lemma 32. (1) Let G be Levi-semisimple. Then G(i) is also Levi-semisimple,
G/G(i) is unipotent, and G is homeomorphic to G/G(i) × G(i), as a Q-variety. In
particular, if G is solvable and Levi-semisimple, then it is unipotent.
(2) Γ(i) is Zariski dense in G(i), for any i.

Proof. If G is Levi-semisimple, G ' Gss n Ru(G) as Q-groups. Therefore for any
i, G(i) = Gss n Ui, for some Q-subgroup Ui of Ru(G). Using [Sp98, Theorem
14.2.6], Ru(G) is homeomorphic to Ru(G)/Ui × Ui, as a Q-variety, and so G is
homeomorphic to G/G(i) ×G(i) as a Q-variety. The other parts are clear. �

Since G is connected, for some i ≤ dimG, G(i) = G(i+1). Let us call

H = G(dimG)

the perfect core of G. Note that the perfect core might be trivial.

Proof of Theorem 3. By Lemma 32, Q[G] ' Q[H] ⊗ Q[G/H] and U = G/H is a
unipotent Q-group. Let π : G → G/H be the projection map and φ : G/H → G a
Q-section. Hence φ ◦ π is a Q-morphism from G to itself. Thus there is a finite set
S′ of primes such that

φ ◦ π(Γ) ⊆ G(ZS′).
Let H be the Zariski-closure of Γ(H) = Γ ∩ H in (SLN )ZS0

. By Lemma 25, we can

find a finite set S of primes and a ZS-basis of ZS0
[H] ⊗ ZS . So f is mapped to∑m

i=1Qi ⊗ ai for some Qi ∈ Q[U], which means that for any g ∈ G we have

f(g) =

m∑
i=1

Qi(π(g))ai(φ(π(g))−1g) =

m∑
i=1

Qi(π(g))Lφ(π(g))(ai)(g).

Let P = gcdi(Qi) and Pi = Qi/P . Applying Theorem 4 to π(Γ), P , and Pi’s, we
can find a positive integer r, a finite set S′′ of prime numbers, and a Zariski dense
subset X of π(Γ) such that

(1) P (u) has at most r prime factors in the ring of S′-integers, for any u ∈ X.
(2) Π(gcd(P1(u), . . . , Pm(u))) ⊆ S′, for any u ∈ X.

By the definition, any u ∈ X is equal to π(γu) for some γu ∈ Γ. We can identify G
with U×H as Q-varieties via

(u, h) 7→ φ(u)h and g 7→ (π(g), φ(π(g))−1g).

For any u ∈ X and γH ∈ Γ(H), we have that

(13) γuγH 7→ (u, φ(u)−1γuγH),
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and

(14) f(γuγH) =

m∑
i=1

Qi(u)Lγ−1
u φ(u)(ai)(γH).

On the other hand, by the above properties and Theorem 6, there are a positive
integer r′ and a finite set S′′′ of prime numbers such that, for any u ∈ X,

Yu = Γ
(H)
r′,S′′′

(
P (u)

m∑
i=1

Pi(u)Lγ−1
u φ(u)(ai)

)
= Γ

(H)
r′,S′′′

(
m∑
i=1

Qi(u)Lγ−1
u φ(u)(ai)

)
is Zariski dense in H. Therefore φ(u)−1γuYu is also Zariski dense in H, for any
u ∈ X, as γ−1

u φ(u) ∈ H. Thus

X̃ =
⊔
u∈X
{u} × φ(u)−1γuYu

is Zariski dense in U×H, and, by Equations (13) and (14), we are done. �

6. Effectiveness of our arguments.

In order to avoid adding unnecessary complications, we did not discuss the effec-
tiveness of our argument in the course of the paper. In this section, we address four
issues from which one can easily verify that our arguments are effective.

(1) Let Γ be the group generated by a finite subset S of GLn(Q). Let G be the
Zariski-closure of Γ and assume that G is Zariski-connected. Then in the
course of our arguments (e.g. proof of Proposition 13), we need to be able
to compute a presentation for G, i.e. compute a finite subset F of Q[GLn]
such that Q[G] ' Q[GLn]/〈F 〉.

(2) Computing the irreducible components of a given affine variety and an ef-
fective version of Nöether-Bertini theorem is needed in the proof of Propo-
sition 15.

(3) The spectral gap of the discrete Laplacian on the Cayley graphs of πq(Γ)
with respect to πq(Ω), where Ω is a symmetric finite generating set of Γ, if
the connected component of the Zariski-closure of Γ is perfect.

(4) An effective version of Nori’s strong approximation theorem is needed in
various parts of this article, e.g. in understanding the density of the sieve.
We need a more or less equivalent formulation. To be precise, we need to
say that πq(Γ) =

∏
p|q G(fp) if Γ is a Zariski-dense subgroup of G and G is

generated by its Q-unipotent subgroups.

The first three items are dealt with in [SV]. [SV, Lemma 62] gives us the first
item. In order to get the second item, first we use [BW93, Chapter 8.5], to compute
the primary decomposition of the defining ideal of the variety, which gives us the
irreducible components. Then we use [SV, Theorem 40] to get an effective version
of Nöether-Bertini theorem. In fact, [SV, Theorem 40] proves an effective version
of [G69, Theorem 9.7.7 (i) and Theorem 12.2.4 (iii)] which is a generalization of
Nöether-Bertini theorem. The third item is the main result of [SV] and they also
show that their result is effective.

Let Γ be the group generated by a finite subset Ω of SLn(ZS0
). Let G be the

Zariski-closure of Γ in (SLn)ZS0
and Gp = G × Spec(fp).

Theorem 33 (Effective version of Theorem 5.4 in [N87]). In the above setting,
assume that the generic fiber G of G is generated by Q-unipotent subgroups. Then
there is a recursively defined function f from finite subsets of SLn(Q) to positive
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integers such that for any square-free integer q with prime factor at least f(Ω), we
have

πq(Γ) =
∏
p|q

Gp(fp),

where Γ = 〈Ω〉 and p runs through the prime divisors of q.

Remark 34. (1) In [N87], it is said that (the non-effective version of) Theo-
rem 33 can be deduced from [N87, Theorems A, B and C] and the reader is
referred to an unpublished manuscript. As we need the effective version of
this result, we decided to write down a proof of this statement.

(2) In the appendix of [SV], the effective versions of [N87, Theorem A, B and
C] are given. Furthermore [SV, Theorem 40] provides an effective version
of [N87, Theorem 5.1], when G is perfect.

Lemma 35. Let {Gi}i∈I be a finite collection of finite groups such that Gi and
Gi′ do not have a (non-trivial) common homomorphic image for i 6= i′. Let H be a
subgroup of G =

∏
iGi. If the projection πi(H) of H to Gi is onto, i.e. πi(H) = Gi,

then H = G.

Proof. We proceed by induction on the order of G. Let Hi = Gi ∩ H. Since
πi(H) = Gi, Hi is a normal subgroup of Gi. Let G′i := Gi/Hi, H

′ := H/
∏
iHi and

G′ :=
∏
iGi/Hi. It is clear that πi(H

′) = G′i for any i. If Hi 6= 1 for some i, then
|G| > |G′|. Hence by the induction hypothesis we have that H ′ = G′, which implies
that H = G and we are done. So without loss of generality we can assume that

(15) H ∩Gi = 1,

for any i. For a fixed i0, let H ′i0 be the projection of H to
∏
i 6=i0 Gi. It is clear that

πi(H
′
i0

) = Gi for any i 6= i0. Hence by the induction hypothesis we have that

(16) πI\{i0}(H) =
∏
i 6=i0

Gi,

where πI\{i0} is the projection to
∏
i 6=i0 Gi. By Equations (15) and (16), we have

that Gi0 is a homomorphic image of
∏
i 6=i0 Gi. Let N be the normal subgroup of∏

i 6=i0 Gi such that (
∏
i 6=i0 Gi)/N ' Gi0 . Then again by the induction hypothesis

there is some i1 6= i0 such that πi1(N) 6= Gi1 . Thus Gi0 and Gi1 have a (non-trivial)
common homomorphic image, which is a contradiction. �

Proof of Theorem 33. Let H = D(dimG)(G). Then the generic fiber H of H is the
perfect core of G and D(dimG)(Γ) ⊆ Γ ∩ H(ZS0

) is Zariski-dense in H. Since H is
Zariski-connected, by [SV, Lemma 62], we can find a finitely generated subgroup
of D(dimG)(Γ) which is Zariski-dense in H. Hence by [SV, Theorem 40] we can
compute p0 such that for any p > p0 we have

(17) πp(D(dimG)(Γ)) = Hp(fp),
where Hp = H ×Spec(ZS0

) Spec(fp). On the other hand, U = G/H is a unipotent

Q-group and the image φ(Γ) of Γ to U is a Zariski-dense group. We can compute
an embedding of U to (GLm)Q for some m. By enlarging S0, if necessary, we
can compute the Zariski-closure U of π(Γ) in (GLm)ZS0

and extend φ to a ZS0
-

homomorphism from H to U . Using the logarithmic and exponential maps, we can
effectively enlarge p0, if necessary, to make sure that

(18) πp(φ(Γ)) = Up(fp),
where Up = U ×Spec(ZS0

) Spec(fp) and p > p0. Hence by (17) and (18) we have

that πp(Γ) = Gp(fp), for any p > p0. By [SV, Lemma 64] we know the composition
factors of Gp(fp). In particular, if p and p′ are primes larger than 7, then Gp(fp) and
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Gp′(fp′) do not have a (non-trivial) common homomorphic image. Thus Lemma 35
finishes the proof. �

Appendix A. Heuristics.

Finding primes or almost primes in very sparse sequences of integers is notoriously
difficult and the most believable speculations are based on probabilistic reasoning.
Such an argument for Fermat primes Fn = 22n+1 suggest that their number is finite
[HW79, Page 15]. Similar arguments have been carried out for other sequences such
as Fibonacci numbers [BLMS05]. Here we pursue such probabilistic heuristics for
tori.

Let Γ ⊆ GLn(Q) be a (finitely generated) torus. That is to say it is conjugate to a
group of diagonal matrices; there is g ∈ GLn(K), K a number field, such that

(19) g−1Γg ⊆ D(K) = {diag(a1, . . . , an)| ai ∈ K×},

where

diag(a1, . . . , an) =

 a1

. . .

an

 .
The heuristics will show that there is an f ∈ Q[An2

] for which not only does
(Γ, f) not saturate, but Γr,S(f) is finite for every r and S. To this end, we can
assume that g−1Γg is a subgroup of the S-units of K for some finite set of places
(with ε → diag(σ1(ε), . . . , σn(ε)) and σi’s the embeddings of K). For simplicity
we assume that S is empty and since the torsion is finite we can ignore it for our
purposes. That is Γ is a free abelian group of rank t ≥ 1 with generators γ1, . . . , γt
and Γ ⊆ GLn(Z). For x ∈ GLn(Q) let F (x) = Tr(xtx) ∈ Q[An2

] be its Hilbert-
Schmidt norm. It is clear from discreteness property of the log of units map and
(19) that for m = (m1, . . . ,mt) in Zt

(20) A
|m|
2 � F (γm1

1 · · · γmtt )� A
|m|
1 ,

where A1 > A2 > 1 and the implied constants are independent of m. Fix ν > t and
set

(21) f(x) := f1(x)f2(x) · · · · · fν(x),

where

fj(x) = F (x) + j, j = 1, 2, . . . , ν.

The heuristic argument is that for each m ∈ Zt, F (γm1
1 · · · γmtt ) is a “random”

integer in the range (20) and that fj(x) for j = 1, 2, . . . , ν are independent as far as
the number of their prime factors. Actually there may be some small forced prime
factors of f but these will only enhance the reasoning below. Now let r be a large
integer and for m ∈ Zt let p(m, r) be the probability that an integer in the range
(20) has at most r-prime factors. According to the prime number theorem

(22) p(m, r)� [log(|m|+ 1)]r−1

|m|+ 1

(again the implied constants being independent of m).

Hence assuming that the number of prime factors of the fj , j = 1, . . . , ν are inde-
pendent and that these values are “random” we see that pf (m, r), the probability
that f(γm1

1 · · · γmtt ) has at most r-prime factors satisfies:

(23) pf (m, r)� [log(|m|+ 1]ν(r−1)

(|m|+ 1)ν
.
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Hence since ν > t

(24)
∑
m∈Zt

pf (m, r) <∞

By the Borel-Cantelli Lemma it follows that the probability that there are infinitely
many m’s for which f(γm1

1 . . . γmtt ) has at most r-prime factors, is zero. That is for
any r we should expect that Γr(f) is finite!

For a general Γ ⊆ GLn(Z) (or finitely generated in GLn(Q)) if G = Zcl(Γ) is not
Levi-semisimple, then there is an onto Q-homomorphism φ : G◦ → T, where T is
a non-trivial Q-torus. Hence Λ = φ(Γ) is a finitely generated subgroup of T(Q).
Thus one can use the heuristics above to show there is an f ∈ Q[T] such that Λr(f)
is finite for any r. In particular, as in the proof of Theorem 3, Γr(f) cannot be
Zariski-dense in G for any r. The conclusion is that if we accept the probabilistic
heuristics, then the condition that G be Levi-semisimple in Theorem 1 is necessary
if we allow all f ’s.
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[G69] A. Grothendieck, EGA IV, triosiéme partie, Publ. Math. IHES 20 (1964).
[HR74] H. Halberstam and H. Richert , Sieve method, Academic press, New York, 1974.

[HW79] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford

Uiversity press, fifth edition, New York, 1979.
[H08] H. A. Helfgott, Growth and generation in SL2(Z/pZ), Ann. of Math. (2nd series) 167

(2008) 601-623.

[LW54] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76
(1954) 819-827.

[M55] G. D. Mostow, Self-sdjoint groups, Ann. math. 62 1 (1955) 44-55.
[NS10] A. Nevo and P. Sarnak, Prime and almost prime integral points on principal homoge-

neous spaces, Acta Math. 205 (2010) 361-402.

[N87] M. V. Nori, On subgroups of GLn(fp), Invent. Math. 88 (1987), no. 2, 257-275.
[PR94] V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Academic press,

San Diego, 1994.
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