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ABSTRACT OF THE DISSERTATION

Excursions in light-dressed matter systems: From Floquet engineering to molecular polaritonics

by

Kai Schwennicke

Doctor of Philosophy in Chemistry

University of California San Diego, 2024

Professor Joel Yuen-Zhou, Chair

The detection and manipulation of matter with light is a ubiquitous goal of chemists

and physicists. However, this endeavor faces inherent challenges due to the typically “weak”

light-matter interaction and discrepancy in scale between molecules and the spatial variation of

the electromagnetic field. Such limitations hinder the ability to differentiate between similar

molecules and effectively modify their characteristics.

In this dissertation, we seek to transcend the limitations of typical light-matter interactions

by introducing innovative laser protocols and venturing into the realm of strong coupling. We

aim to overcome the challenges attributed to natural and magnetically-induced optically activity

and demystify phenomena intriguing to molecular polaritonic phenomena.

xvi



We begin by proposing a laser setup to generate synthetic gauge fields within molecular

aggregates to induce a molecular excitonic version of the Aharovon-Bohm effect. Even though

the undriven system is achiral, this laser-induced effect generates a non-zero circular dichroism

signal. Notably, an unfeasibly strong static magnetic field is needed to generate a similar effect

in electronic systems.

Next, we introduce a modified microwave three-wave mixing setup to achieve enantios-

elective topological frequency conversion. This approach, representing the first instance of a

chiroptical spectroscopic signal directly linked to a topological invariant, underscores the poten-

tial of using topological principles to enhance the sensitivity and robustness of spectroscopic

techniques for distinguishing between enantiomers.

Transitioning into the realm of strong coupling, we explore the effects of molecular

disorder on the linear response of molecular polaritons. We provide analytical expressions

for the vacuum Rabi splitting observed in the absorption, transmission, and reflection spectra

under conditions of weak disorder, addressing multiple disorder distributions. Additionally, we

introduce a novel sum rule offering a universal methodology for extracting accurate collective

light-matter coupling values from experimental data.

Finally, we address the perplexing fact that classical linear optics can regularly describe

polaritonic effects. We demonstrate that, in the thermodynamic limit, polaritonic transmission

windows function as “optical filters”, and many phenomena attributed to polaritons can be

replicated in bare molecular systems using appropriately configured linear optical sources.

This insight urges a reevaluation of certain “polaritonic” phenomena and identifies promising

directions for future research to uncover genuinely novel polaritonic effects.
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Chapter 1

Introduction

The interplay between light and matter drives numerous chemical, physical, and bio-

logical processes. Traditionally, this interaction operates within the “weak” coupling regime,

where light perturbatively influences matter. Moreover, molecules are typically much smaller

than the wavelength of light, preventing them from fully interacting with the three-dimensional

spatial structure of the electromagnetic field. Such conditions often limit the effectiveness of

light-based techniques in distinguishing between similar molecules or modifying their charac-

teristics. This dissertation explores novel laser protocols and the realm of “strong” coupling,

aiming to transcend these inherent limitations.

The first part of this dissertation addresses optical activity, which manifests as a different

response to right- and left-handed circularly polarized light (RCP, LCP). Chiral molecules are

prototypical examples of optically active materials. Importantly, chiral molecules that are non-

superimposable images of each other, or enantiomers, show opposite optical activity [1]. Taking

advantage of this phenomenon, the traditional chiroptical techniques of circular dichroism (CD)

(difference in the absorption rate of RCP and LCP fields) and optical rotation (OR) (rotation of

the plane of linearly polarized light) are used to measure enantiomeric excess in an ensemble of

molecules. While in Nature optical activity is restricted to chiral media, one can induce the effect

in any material by placing it in a static magnetic field that is perpendicular to the propagation

direction of the probe light field. The magneto-optical (MO) effects that arise are magnetic CD
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(MCD) and magnetic OR (MOR), which are analogous to the naturally occurring effects for

chiral molecules [1]. While MCD is a useful spectroscopic technique for resolving electronic

transitions in congested absorption bands [2, 3], MOR is a phenomenon that is routinely exploited

in the development of optical devices, such as isolators and circulators [4]. While natural and

magnetically-induced optical activity are extremely useful, they both have their shortcomings.

CD and OR suffer from the weak interaction between molecules and the magnetic component

of the optical field, which has led to the recent advocation for techniques that rely solely on

electric dipole interactions; for example, creating synthetic chiral fields [5, 6] and employing

enantiosensitive microwave three-wave mixing [7, 8]. Meanwhile, few materials possess strong

MO effects that fall within the optical frequency regime [9, 10], creating a bottleneck for the

downsizing of MO devices for optical communication and computation.

The latter half shifts focus to molecular systems under strong coupling. In the weak

regime light and matter are considered distinct entities where the former perturbatively influences

the latter, limited by the slow rate of excitation exchange between light and matter compared to

their natural dissipation rates. By confining the radiation field within a small volume, the light

and matter can exchange energy multiple times before the excitation escapes, intensifying the

light-matter interaction such that it enters the strong coupling regime. In this regime, light and

matter coalesce into hybrid states known as polaritons.

The hybridization of light and matter excitations in crystalline solids outside of cavities

has been long known since the seminal works of Tolpygo [11] and Huang [12] on phonon-

polaritons and Agranovich [13] and Hopfield [14] on exciton-polaritons in the 1950s. It was,

however, until 1992 that Weisbuch [15] demonstrated that these strong coupling phenomena in

inorganic semiconductors could be enhanced with optical microcavities (this statement is not

always true, as recent work has shown that dielectric contrast between a bulk semiconductor

and its surroundings can give rise to effective polariton formation too [16]). A few years later,

Lidzey [17] reported the same feat with excitons in disordered organic films. The study of strong

coupling for ensembles of molecular vibrations is much more recent [18, 19], yet serves as a
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testament to the ubiquity of polaritonic phenomena across the electromagnetic spectrum.

Today, the burgeoning field of polaritonics shows promise in diverse applications rang-

ing from manipulating chemical reactivity in both ground [20, 21, 22, 23, 24] and excited

states [25, 26, 27, 28, 29, 30, 31, 32] to enhancing exciton transport [33, 34, 35, 36, 37, 38], facil-

itating long-range energy transfer [39, 40, 41, 42, 43, 44], enabling room temperature polariton

condensation [45, 46, 47, 48, 49], altering organic photophysical dynamics [50, 51, 52, 53, 54],

and modifying phase transitions [55]. Despite these advancements, the field is still marked

by contradictory findings, with some studies reporting no polaritonic modification to chemical

reactivity [56, 57, 58, 59] and no modification to reverse inter-system crossing from triplets

to singlets [60]. Furthermore, with respect to modification of phase transitions, recent reports

find that the re-scaling of the local temperature inside the cavity with respect to the tempera-

ture measured outside the cavity is the dominant mechanism over the proposed mechanism of

renormalization of the material’s free energy [61, 62]. This mix of positive and negative results

underscores the nascent nature of the field and the need for further experimental and theoretical

understanding, as highlighted by recent perspectives [63, 64, 65].

This dissertation seeks to navigate the challenges surrounding natural and magnetically-

induced optical activity through innovative laser setups, including the realization of a molecular

exciton Aharonov-Bohm effect via Floquet engineered synthetic gauge fields [66] and an enan-

tioselective topological frequency conversion construction for the measurement of enantiomeric

excess [67]. Additionally, this dissertation delves into molecular polaritonic phenomenon under

strong coupling by studying molecular disorder effects on the linear response of molecular

polaritons [68] and exploring the convergence of specific molecular polaritonic phenomena with

linear optics [69]. In the latter it observed that for certain phenomena the polaritonic states act

as simple optical filters, implying that identical phenomena can be achieved outside of cavity

by pumping the bare molecular system with a filtered (reshaped) laser pulse whose intensity

profile matches the polariton transmission spectrum. This revelation cautions making claims of

“polaritonic” effects before optical filtering has been judiciously ruled out and underscores the
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necessity for further exploration of systems that go past this linear regime to uncover truly novel

polaritonic phenomena.

1.1 Summary of Contents

In Chapter 2, adapted from [66], we introduce a novel laser setup to generate synthetic

gauge (“pseudomagnetic”) fields, enabling the observation of a molecular exciton version

of the Aharonov-Bohm effect. Using Floquet theory, we analyze the optical activity in an

isotropic ensemble of achiral molecular aggregates driven by an elliptically polarized laser. We

demonstrate that optical activity is absent under linear polarization but maximized with circular

polarization. This distinction correlates with the existence of non-trivial and trivial exciton

Aharonov-Bohm phases. Furthermore, we highlight that achieving a similar non-trivial phase in

electronic with static magnetic fields would require impractically high strengths, far beyond those

attainable in typical nano-ring systems that enclose equivalent areas to our molecular aggregates.

In Chapter 3, adapted from [67], we explore the adaptation of a microwave three-wave

mixing setup, featuring slowly modulated microwave field amplitudes with incommensurate

frequencies, to facilitate topological frequency conversion for enantiomeric mixtures. We derive

an enantioselective topological invariant, proposing its application for precise enantiomeric

excess measurement. This approach represents a significant advancement in chiral analysis,

leveraging topological concepts to enhance selectivity and sensitivity.

In Chapter 4, adapted from [68], we investigate the impact of molecular disorder on

the linear response of molecular polaritons across various disorder distributions and strengths.

We present analytical expressions for the vacuum Rabi splitting in absorption, transmission,

and reflection spectra under conditions of weak disorder, addressing Lorentzian, Gaussian, and

rectangular distributions. Notably, even under strong disorder, rectangular distribution exhibits

the emergence of two distinct side bands. Additionally, we introduce a novel sum rule applicable

to all forms and strengths of disorder, offering a universal methodology for extracting accurate
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collective light-matter coupling values from experimental data.

In Chapter 5, in part adapted from the materials as it appears in [69], we investigate the

convergence of molecular polaritonics with classical linear optics. In the limit that the number of

molecules coupled to a single cavity mode goes to infinity, we provide the analytical exact result

that the polariton absorption is just the product of the bare molecular absorption and the linear

polaritonic transmission spectra. In other words, the polaritonic transmission windows act as

“optical filters” that determine what radiation can enter the cavity, after which the absorption of

these frequencies by the molecules is solely determined by their bare absorption spectra. We

then use this classical linear optics lens to demystify several “polaritonic” phenomena and show

that for each instance the same result can be achieved outside of the cavity if an optical source

with an intensity profile that mimics the linear polaritonic transmission spectrum. Finally, we

discuss what polaritonic phenomenon cannot be explained using this classical optics perspective.

In Chapter 6, we summarize the research findings and provide an outlook on future

research directions to advance the understanding and application of light-matter interactions.
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Chapter 2

Optical activity from the exciton
Aharonov-Bohm effect: A Floquet engi-
neering approach

2.1 Introduction

Molecular enantiomers exhibit slightly different interactions with right and left-handed

circular polarized (RCP, LCP) light fields. There are two important consequences of this effect:

non-racemic samples exhibit finite circular dichroism (CD) (difference in absorption rate of

RCP and LCP fields) and finite optical rotation (OR) (rotation of the plane of linearly polarized

light). The phenomena of CD and OR are intimately related by Kramers-Kronig relations and are

collectively known as “optical activity” [1, 70]. CD and OR are well-established spectroscopic

techniques to probe enantiomeric excess in chemical samples. Interestingly, optical activity is

not restricted to samples involving chiral molecules, but can also arise in a material that interacts

with a static magnetic field parallel to the propagation direction of light. To distinguish the

optical activity due to a magnetic field from that due to the breakdown of molecular inversion

symmetry, the former so-called magneto-optical (MO) effects are known as magnetic CD (MCD)

and magnetic OR (MOR) or the Faraday effect, respectively. MCD is an important spectroscopic

technique that allows one to resolve electronic transitions in congested absorption bands [2, 3],

while MOR is a phenomenon that is routinely exploited in the fabrication of optical devices such
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as isolators and circulators [2, 71, 9].

The fundamental origin of MO effects is the breakdown of time-reversal symmetry

(TRS). It is therefore reasonable that phenomena analogous to MO effects could arise from

replacing a static magnetic field with time-varying electric fields; we shall hereafter term them

pseudo-MO effects. In molecular spectroscopy, these phenomena have been long recognized

since the pioneering work of Atkins and Miller [72]. More recently, within the context of

topological photonics and nonreciprocal media, much attention has been directed towards

exploiting time-varying modulation of material permittivities as a way to generate synthetic

gauge (“pseudo-magnetic”) fields, thereby circumventing magnetic field strengths that could

be prohibitive in general experimental setups or difficult to integrate in optoelectronic devices.

In fact, photonic versions of the Aharonov-Bohm (AB) effect [73] and quantum Hall systems

[74, 75, 76] have been experimentally demonstrated. The AB effect was observed for photons

using a Ramsey-type interferometer [77], while topologically protected photonic edge states were

observed in arrays constructed from optical ring resonators [78]. A hallmark of TRS breaking is

the realization of AB phases that differ from 0 or π mod2π . This version of AB phase is astutely

realized in Reference [79] by driving resonators in adjacent unit cells so that there is a large

phase lag between them, a feature that is facilitated by the relatively big mesoscopic length scales

of the experimental system of interest. Thus, it is not obvious a priori whether such a strategy

would be feasible in the recreation of pseudo-magnetic fields in molecular aggregates or in

general nanoscale scenarios, especially considering the lengthscale mismatch between the typical

interatomic or intermolecular distances and the optical wavelength of the driving field. However,

as we shall show in the present article, such a mismatch can be compensated by invoking rings

of coherently coupled anisotropic nanoscale molecular dipoles which simultaneously interact

with an elliptically polarized laser field, such that different molecules interact with distinct linear

polarizations of the laser and consequently pick up distinct phases from the light to break TRS.

Our work follows a similar spirit to other theoretical proposals where an optically induced AB

effect can be achieved in both electronic [80] and excitonic [81, 82] nanoscopic ring structures
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by exploiting circularly polarized electric fields to break TRS. However, in these cases, the AB

phase varies with field strength, while in our case the AB phase solely depends on the phase

imprinted by the ellipticity of the field.

We present a theoretical proof-of-principle of the possibility of inducing synthetic gauge

fields in the excitonic degrees of freedom of small cyclic molecular aggregates. In particular,

we design a setup consisting of an isotropic ensemble of molecular homotetramers, where each

of the sites has an internal vibronic structure with low-frequency (e.g., vibrational) transitions

that are driven by a near-resonant electric field. Owing to the periodicity of the laser-driving,

we employ Floquet theory [83, 84, 85] to calculate the spectral properties of the driven system

according to a recently developed methodology [86]. These Floquet engineering concepts are

complementary to efforts using strong magnetic fields to dramatically alter the vibronic structure

and consequently the optical properties of molecular aggregates [87], as well as to the design

of topologically nontrivial phases in organic excitonic systems [88]. Although by no means a

new technique, Floquet engineering is regaining interest in the development of materials with

novel properties [89], and in the proposal of using Floquet engineering to influence both energy

[90] and electron transfer [91] in molecular systems. In particular, our study highlights the

simplicity with which large values of AB phases can be Floquet engineered with time-varying

electric fields in nanoscale systems (as shown below, with weak laser intensities), in contrast

with the difficulties of deploying giant magnetic fields to generate similarly large values of AB

phases. Hence, our results suggest much flexibility in the use of elliptically polarized light in the

realization of excitonic AB phases in molecular systems, which could control a variety of charge

and energy transfer processes in molecular aggregates or manipulate the spectroscopic properties

of the latter. While excitonic AB phases that depend on the separation between electrons and

holes have been studied in inorganic Wannier exciton systems [92, 93, 94, 95, 96], similar phases

in Frenkel organic exciton systems are far less explored (see Reference [88] for an example) and

constitute an interesting frontier in physical chemistry.
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Figure 2.1. Carbazole monomer: (a) Molecular structure and dipole moment vector correspond-
ing to the S0→ S1 transition. (b) Simplified displaced harmonic oscillator spectrum of carbazole
along the low-frequency vibrational mode (ωvib = 211 cm−1). Here, ωe = 30,300 cm−1 is the
0−0’ electronic transition frequency, and D = 0.348 is the Huang−Rhys parameter for vibronic
coupling. (c) In this work, we simplify the spectrum in part (b) with a three−level model.

2.2 Theoretical formalism

2.2.1 Definition of excitonic model

The building block of our molecular aggregates is a carbazole molecule, depicted in

Figure 2.1. We shall only be concerned with its S0→ S1 electronic transition (with 0-0’ frequency

ωe = 30,300cm−1 and oscillator strength f = 0.042 [97]) which is coupled to a low-frequency

a1 mode (ωvib = 211cm−1 [98]); the Huang-Rhys factor that characterizes the displacement

of the S1 potential energy surface with respect to the S0 surface is D = 0.348 [99]. The weak

vibronic coupling featured by this transition allows us to simplify the carbazole spectrum as an

effective three-level system featuring ground |g,0〉 and excited |e,0′〉 electronic states with no

phonons, and an excited |e,1′〉 electronic state with one phonon, where |g〉 and |e〉 denote S0

and S1 electronic states, and |ν〉 and |ν ′〉 label vibrational eigenstates of the harmonic potentials

corresponding to S0 and S1, respectively (see Figure 2.1).

For simplicity, let us consider a homotetramer where the chromophores are located at
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the vertices of a square of side length a = 3.5Å (see Figure 2.2), mimicking the value reported

from an ultrafast spectroscopy study of anthracene dimers involving vibrational coherences [100]

(previous theoretical studies addressing how to control excitation-energy transfer by manipulation

ultrafast vibrational dynamics [101, 102] where fitted to the aforementioned experimental data).

To unclutter notation, we introduce the following single-excitation basis:

|G〉=
4

∏
i=1
|gi,0i〉, (2.1a)

|E j〉= |e j,0′j〉
4

∏
i 6= j
|gi,0i〉, (2.1b)

|Fj〉= |e j,1′j〉
4

∏
i 6= j
|gi,0i〉. (2.1c)

The excitonic Hamiltonian of the homotetramer reads (h̄ = 1)

HT =
4

∑
i=1

(
ωE |Ei〉〈Ei|+ωF |Fi〉〈Fi|

)
+∑
〈i j〉

[
(JEi,E j |Ei〉〈E j|+ JEi,Fj |Ei〉〈Fj|+ JFi,Fj |Fi〉〈Fj|)+h.c.

]
, (2.2)

where the sum over 〈i j〉 assumes only nearest-neighbor couplings. Here ωE = ωe and ωF =

ωe +ωvib, and Jαβ = Jβα are the electrostatic couplings between excitonic states |α〉 and |β 〉,

which are calculated assuming the Condon approximation [103, 104], e.g.,

JEi,Fj = 〈eig j|HT |gie j〉〈0′i|0i〉〈0 j|1′j〉, (2.3)

where

〈eig j|HT |gie j〉= η
(µ̂ i · µ̂ j)−3(µ̂ i · r̂i j)(µ̂ j · r̂i j)]

a3 (2.4)

is approximated as the classical dipole-dipole interaction, with µ̂ i being the unit vector of the
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electronic transition dipole moment for the S0 → S1 transition for the i-th chromophore and

r̂i j being the unit vector that connects chromophores i and j. The value η = 982cm−1 Å
3

has

been invoked to account for the effects of transition dipole magnitudes as well as the index of

refraction of the surrounding medium, so that the dipolar coupling between parallel carbazole

molecules 〈eig j|HT |gie j〉= η

a3 = 22.9cm−1 is similar to the value used in theoretical studies of

anthracene dimers [101, 102] that is consistent with quantum beat data in ultrafast spectroscopy

experiments [100]. The scalar |〈n′i|0i〉|2 = exp[−D]Dn

n! is the relevant Franck-Condon factor

[103]. In this work, we fix the orientations of µ2 and µ4 to be along the x̂ and ŷ axes, respectively,

in the molecular aggregate frame, while we vary the orientations of µ1 and µ3 at angles θ1 and

θ3 (Figure 2.2a shows θ1 = 450 and θ3 = 3150). For simplicity, we ignore out-of-plane dipole

orientations; this is not a necessary condition and could be easily lifted if chemical synthesis

favors other geometries. The excitonic transition dipole moments from the ground state, |G〉, are

µEiG = 〈Ei|µ|G〉 = 〈ei,0′i|µ|gi,0i〉 and µFiG = 〈Fi|µ|G〉 = 〈ei,1′i|µ|gi,0i〉. In our calculations

we take 〈ei,0′i|µ|gi,0i〉 = 1.7D and 〈ei,1′i|µ|gi,0i〉 = 0.85D, values which are consistent with

experiments [97].

Given that Jαβ � ωvib, the exciton eigenstates of HT consist of two bands centered at

ωE and ωF , respectively, with bandwidths ∼ 2max|JEiE j |,∼ 2max|JFiFj |. Figure 2.3 shows the

absorption spectrum of an isotropically averaged collection of homotetramers. Notice that due to

different Franck-Condon overlaps, the splitting of the band at ωF is narrower than that at ωE .

Note, that there are multiple vibronic eigenstates whose symmetries result in net zero transition

dipole moments; that is, they are dark with respect to UV-visible light in the absence of laser

driving. Accordingly, these states cannot be observed using absorption spectroscopy, which is

why there are fewer peaks in the spectrum than the number of possible eigenstates of HT .

2.2.2 Floquet theory for laser-driving

The aforementioned two bands can be mixed upon the introduction of a driving laser; the

new Hamiltonian is time-dependent and reads
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Figure 2.2. Realization of excitonic Aharonov-Bohm (AB) effect in cyclic molecular aggregates
via Floquet engineering with elliptically polarized light: (a) Example geometry of a carbazole
homotetramer where relative orientations (θ1, θ3) of transition dipoles together with laser-driving
induces an excitonic AB phase Φ. The carbazole monomers are equidistantly placed at a distance
a from their neighbors forming a square. (b,c) Schematic illustrations of the mechanism whereby
Floquet engineering induces excitonic AB phases. The elliptically polarized field ELD(t) drives
the |Ei〉 → |Fi〉 low-frequency vibrational transition (vertical yellow arrows). Horizontal yellow
arrows denote excitonic couplings mediated by electrostatic interactions. In (b1), excitation of
the first chromophore at |E1〉 is resonantly transferred to the second chromophore |E2〉 via a
dipolar coupling. Next, the laser promotes the |E2〉→ |F2〉 vibrational excitation, “dialing” phase
φ2 onto that transition. Subsequent excitation transfer |F2〉 → |F3〉 → |F4〉 occurs via resonant
dipolar couplings, after which the laser promotes the |F4〉 → |E4〉 vibrational emission, dialing
phase −φ4 onto that transition. Finally another step of resonant dipole-mediated excitation
transfer |E4〉 → |E1〉 closes the loop, yielding an AB phase Φ = φ2−φ4. Φ 6= nπ for integer n
signals time-reversal symmetry breaking. Meanwhile (b2) illustrates a pathway mediated by
electrostatic interactions (and no influence from laser-driving) that does not result in a nontrivial
AB phase.
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Figure 2.3. Absorption spectrum of an isotropic solution of excitonic homotetramers: It can be
approximately understood as consisting of two bands of transitions corresponding to coherent
combinations of 0-0’ transitions (centered at ωE) and 0-1’ transitions (centered at ωF ) respec-
tively. The splitting of each of these bands is due to resonant exciton hopping between molecules,
and correspond to ∼ 2max|JEiE j | and ∼ 2max|JFiFj |, respectively.

HLD(t) = HT −
4

∑
i=1

(µEiFi
·−→E LD(t)|Ei〉〈Fi|+h.c.), (2.5)

where we have introduced an infrared (IR) field at a frequency Ω = ωvib + δ that is slightly

detuned from the Ei→ Fi vibrational transitions by δ :

−→
E LD(t) =

E0
LD√
2
[x̂cos(Ωt +φx)+ ŷcos(Ωt +φy)]. (2.6)

The detuning δ allows us to ignore resonant pumping of vibrational transitions in the ground state

(Figure 2.1b) so that the three-level approximation per molecule (Figure 2.1c) is justified. The

phases φx and φy will play an important role below. The relevant transition dipole moments to

the laser-driving are µFiEi
= 〈Fi|µ|Ei〉= 〈ei,1′i|µ|ei,0′i〉 and we take |µFiEi

|= 0.15Debye, which

is a reasonable value for IR molecular vibrational excitations [105].

For completeness, we shall now lay out the Floquet theory [83, 84, 85] utilized to address

the problem in question. The Hamiltonian HLD(t) is periodic in time with period T = 2π/Ω such
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that HLD(t +T ) = HLD(t). The solutions to the time-dependent Schrödinger equation (TDSE)

i
d
dt
|Ψ(t)〉= HLD(t)|Ψ(t)〉 (2.7)

can be written in the Floquet state basis |Ψ(t)〉= ∑λ Cλ |ψλ (t)〉 where

|ψλ (t)〉= e−iελ t |φλ (t)〉. (2.8)

The Floquet modes can be spectrally decomposed in the single (molecular) excitation basis,

α ∈ {G,Ei,Fi} where i ∈ {1,2,3,4}, introduced in Eq. (2.1),

|φλ (t)〉= ∑
α

|α〉〈α|φλ (t)〉, (2.9)

and are periodic in time with period T . Furthermore, they are eigenfunctions of the Floquet

Hamiltonian

HF |φλ (t)〉=
[

HLD(t)− i
d
dt

]
|φλ (t)〉= ελ |φλ (t)〉, (2.10)

where the eigenvalues {ελ} are known as quasi-energies. Since |φλ (t)〉 and HLD(t) are time-

periodic, we can write Eqs. (2.5) and (2.9) in terms of their Fourier components:

|φλ (t)〉= ∑
α

∞

∑
n=−∞

|α〉〈α|φ (n)
λ
〉einΩt , (2.11a)

〈α|HLD(t)|β 〉=
∞

∑
n=−∞

H(n)
LD,αβ

einΩt , (2.11b)

where H(n)
LD,αβ

= 1
T
∫ T

0 dt〈α|HLD(t)|β 〉e−inΩt . By substituting Eqs. (2.11a) and (2.11b) into Eq.

(2.10), multiplying both sides of the resulting equation by exp(−ikΩt), and taking a time-integral

over one period T , we obtain
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∑
βn

H(k−n)
Fαβ

〈β |φ (n)
λ
〉= ελ 〈α|φ (k)

λ
〉, (2.12a)

H(k−n)
Fαβ

= H(k−n)
LD,αβ

+nΩδαβ δkn. (2.12b)

At this point, we augment the Hilbert space from |α〉 to |α〉⊗ |t〉 , where 〈t|φλ 〉 = |φλ (t)〉,

and introduce the Fourier basis {|n〉} where 〈n|φλ 〉 ≡ |φ (n)
λ
〉, 〈t|n〉= einΩt , |α,n〉 ≡ |α〉|n〉, and

〈α,k|HF |β ,n〉 ≡ H(k−n)
Fαβ

, rendering the eigenvalue problem into the following form:

HF |φλ 〉=
[
H(0)

F +H(1)
F

]
|φλ 〉= ελ |φλ 〉, (2.13a)

H(0)
F =

∞

∑
n=−∞

{ 4

∑
i=1

[
(ωE +nΩ)|Ei,n〉〈Ei,n|+(ωF +nΩ)|Fi,n〉〈Fi,n|

]
+nΩ|G,n〉〈G,n|

+∑
〈i j〉

[
(JEi,E j |Ei,n〉〈E j,n|+ JEi,Fj |Ei,n〉〈Fj,n|+ JFi,Fj |Fi,n〉〈Fj,n|)+h.c.

]}
, (2.13b)

H(1)
F =− E0

LD√
2

∞

∑
n=−∞

{ 4

∑
i=1

∑
q=x̂,ŷ

[
µ

q
EiFi

(
eiφq|Ei,n〉〈Fi,n+1|+ e−iφq|Ei,n+1〉〈Fi,n|

)
+h.c

]}
.

(2.13c)

An intuitive interpretation of this basis, which was originally presented by Shirley [83], comes

from associating n to the number of quanta present in the laser-driving mode; e.g., |E1,3〉 would

refer to the state were the exciton corresponds to the 0-0’ transition in the first chromophore

while the field contains three photons. Following this interpretation, Eq. (2.13b) denotes that

intermolecular interactions between excitonic states preserve photon number, while Eq. (2.13c)

shows that the driving field couples states |Ei〉, |Fi〉 by either absorbing or emitting a photon. To
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gain further insight, we consider the limit where

|JEiFj |, |µLD ·ELD(t)| �Ω, (2.14)

so that we can apply the rotating-wave approximation (RWA) to drop highly off-resonant terms;

Eqs. (2.13b) and (2.13c) can then be reduced to

H(0)
F ≈

∞

∑
n=−∞

{ 4

∑
i=1

[
(ωE +nΩ)|Ei,n〉〈Ei,n|+(ωF +nΩ)|Fi,n〉〈Fi,n|

]
+nΩ|G,n〉〈G,n|

+∑
〈i j〉

[
(JEi,E j |Ei,n〉〈E j,n|+ JFi,Fj |Fi,n〉〈Fj,n|)+h.c.

]}
(2.15a)

H(1)
F ≈−E0

LD√
2

∞

∑
n=−∞

{ 4

∑
i=1,q

[
µ

q
EiFi

e−iφq |Ei,n+1〉〈Fi,n|+h.c.
]}

. (2.15b)

The RWA invokes a physically intuitive constraint: the laser-driving intensity is weak enough

that it can only induce the |Ei〉 → |Fi〉 transition if the exciton absorbs a photon from the field.

Furthermore, the RWA block-diagonalizes Eq. (2.13a) so that HF ≈ ∑
n
(hF,n +hG,n) where the

n-th blocks hG,n and hF,n are defined as:

hG,n = nΩ|G,n〉〈G,n|, (2.16a)

hF,n =
4

∑
i=1

[
(ωE +(n+1)Ω)|Ei,n+1〉〈Ei,n+1|+(ωF +nΩ)|Fi,n〉〈Fi,n|

]
+∑
〈i j〉

[
(JEi,E j |Ei,n+1〉〈E j,n+1|+ JFi,Fj |Fi,n〉〈Fj,n|)+h.c.

]
− E0

LD√
2

4

∑
i=1,q

[
µ

q
EiFi

e−iφq|Ei,n+1〉〈Fi,n|+h.c
]
. (2.16b)

Note that the Floquet states {|ψλ (t)〉} are uniquely characterized by the quasi-energies ελ

mod Ω [85, 83]; therefore, within the RWA, we only need to diagonalize one hF,n block and
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one hG,n block to find a finite set of Floquet modes {|φλ 〉} to construct the Floquet state basis

{|ψλ (t)〉}. We should note that Eq. (2.16b) resembles a lattice Hamiltonian where the quantum

degrees of freedom are influenced by a gauge field~A(r) [106], where φq =
∫
~A(r) ·dr. Typically,

the latter arises from a magnetic field coupling to movable charges, resulting in AB phases; in

our case, we shall see that the gauge field is a result of the elliptically polarized laser, which can

be thought of as a pseudo-magnetic field.

2.2.3 Calculation of circular dichroism spectrum

To calculate the CD signal of the laser-driven system, we invoke the formalism developed

in Reference [86]. We compute the rates of absorption W±(ω) due to weak-intensity continuous-

wave circularly polarized probe laser fields at UV-visible frequency ω ,

EP±(ω, t) =
E0

P√
2
(x̂cosωt± ŷsinωt).

The CD response at each frequency ω is defined as S(ω) = δW (ω)
W+(ω)+W−(ω) , where δW (ω) is the

difference in the rates due to RCP and LCP light:

δW (ω) =−|E0
p|2πIm

[
∑

λ ,α,β

∞

∑
n=−∞

µ
y
αG〈φλ |αn〉µx

Gβ
〈βn|φλ 〉δ (ελ −nΩ−ω)

]
. (2.17)

Here ελ − nΩ denotes the |Gn〉 → |φλ 〉 transition energy, where |φλ 〉 is an eigenstate of hF,1

or hG,1 (see Eqs. (2.16a), (2.16b)) with eigenvalue ελ , and ω is the energy absorbed from the

probe. Note that µGG = 0 and, due to the RWA, hF,1 only couples the states |Ei,2〉 and |Fi,1〉.

Therefore, 〈α,n|φλ 〉 6= 0 only for n = 1,2, which results in Eq. (2.17) being simplified to

δW (ω) =−|E0
p|2πIm

[
∑
λ

∑
i j

{
µ

y
EiG〈φλ |Ei2〉µx

GE j
〈E j2|φλ 〉δ (ελ −2Ω−ω)

+µ
y
FiG〈φλ |Fi1〉µx

GFj
〈Fj1|φλ 〉δ (ελ −Ω−ω)

}]
. (2.18)

Eq. (2.18) corresponds to a single homotetramer of fixed orientation. Since we are interested
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in an isotropic film or solution of such aggregates, we must take an average of δW (ω) and

W (ω)++W−(ω) over different orientations of the tetramer with respect to the incident light k

vector. The average CD response is then

〈S(ω)〉=
∫ 2π

0
∫ 2π

0
∫

π

0 dχdψdθδW (ω; χ,ψ,θ)sinθ∫ 2π

0
∫ 2π

0
∫

π

0 dχdψdθ [W+(ω; χ,ψ,θ)+W−+(ω; χ,ψ,θ)]sinθ
, (2.19)

where we have explicitly written δW (ω) = δW (ω; χ,ψ,θ) and W±(ω) = W±(ω; χ,ψ,θ) to

express the fact that the CD for each aggregate is a function of its orientation, defined by Tait-

Bryan angles χ, ψ, θ [107] (see Figure 2.4). Notice that unlike with perturbative spectroscopy

[108], we cannot analytically carry out this average given that hF,1 is a function itself of χ, ψ, θ ,

as each orientation experiences a different driving due to its different dipole projections with the

IR laser. Hence, we compute the isotropically averaged CD spectrum in Eq. (2.19) via Monte

Carlo integration (see A.1).

2.3 Results

2.3.1 Excitonic AB phases

To illustrate the nontrivial effects produced by Floquet engineering, we now consider

coherent pathways due to the various terms in Eq. (2.16). In particular, we are interested in cyclic

ones, namely, those which begin and end in the same state. For concreteness, let us focus on

the pathway depicted in Figure 2.2b1. Excitation of the first chromophore at |E1〉 is resonantly

transferred to the second chromophore |E2〉 via dipolar coupling. Next, the elliptically polarized

driving laser promotes the |E2〉 → |F2〉 vibrational excitation, imprinting a nontrivial phase φ2

onto that transition. Subsequent excitation transfer via dipolar coupling |F2〉 → |F3〉 → |F4〉 is

followed by a laser-induced vibrational de-excitation |F4〉 → |E4〉, which imprints yet another

nontrivial phase φ4; the pathway is closed by another dipolar coupling |E4〉 → |E1〉. To make

these statements more precise, let us define the Wilson loop [109] corresponding to this pathway:
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W = 〈E1n|hF,n|E4n+1〉〈E4n+1|hF,n|F4n〉〈F4n|hF,n|F3n〉

×〈F3n|hF,n|F2n〉〈F2n|hF,n|E2n+1〉〈E2n+1|hF,n|E1n+1〉

= JE1E2

(
∑

q=x̂,ŷ

E0
LDµ

q
E2F2√
2

eiφq

)
JF2F3

× JF3F4

(
∑

q=x̂,ŷ

E0
LDµ

q
E2F2√
2

e−iφq

)
JE4E1. (2.20)

If we define

φ2 = arg

[
JE1E2

(
∑

q=x̂,ŷ

E0
LDµ

q
E2F2√
2

eiφq

)
JF2F3

]
, (2.21)

φ4 =−arg

[
JF3F4

(
∑

q=x̂,ŷ

E0
LDµ

q
E2F2√
2

e−iφq

)
JE4E1

]
, (2.22)

the excitonic AB phase corresponding to this pathway is equal to Φ = arg(W ) = φ2−φ4. To

gain further intuition on the types of transition dipole arrangements that lead to substantial values

of Φ, let us consider the configuration in Figure 2.2a, where the dipoles in chromophores 2

and 4 are aligned along x̂ and ŷ respectively, and the only positive dipolar couplings within our

gauge convention is JF2F3 ; then, φ2 = φx +π and φ4 =−φy−2π =−φy, so that the phases of the

elliptically polarized field are explicitly imprinted in the resulting excitonic AB phase

Φ = arg(W ) = φx−φy +π = ∆φ +π. (2.23)

A few comments are pertinent at this point. When ∆φ = 0 mod π, the driving laser corresponds

to linearly polarized light and the AB phase Φ = 0,π is trivial; this is expected as TRS is

preserved. However, when ∆φ 6= 0 mod π , the driving laser corresponds to elliptically polarized

light, leading to a nontrivial AB phase Φ 6= 0,π (∆φ = π

2 mod π corresponds to the special case
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of circular polarization) that signals TRS breaking. Hence, our design crucially depends on

chromophores 2 and 4 obtaining different phases φx and φy from the laser-driving; to maximize

this difference, they are placed perpendicular to one another. However, the production of a

nontrivial AB phase relies also on having coherent dipolar couplings throughout the aggregate that

yield a nonzero Wilson loop. To ensure that chromophores 2 and 4 are coupled, chromophores

1 and 3 are positioned along optimal orientations x̂±ŷ√
2

so that the exciton hoppings are enough

to ensure large coherent couplings throughout the cycle. It follows that to realize an exciton

AB phase Φ = π

2 , one simply needs to set ∆φ =−π

2 , corresponding to right circularly polarized

light. At this point, it is worth highlighting that this excitonic AB phase is independent of

laser intensity so long as the RWA is a good approximation. This should be contrasted with

the magnitudes of the magnetic fields used to generate an AB phase Φ = π

2 in a nanoscale

ring supporting electronic currents. In fact, considering a putative loop of the same area a2 as

our molecular aggregate, Φ = eBa2

h̄ [73] would require B = 8400Tesla (an intensity that is only

feasible at present in restricted places such as white dwarfs! [110]). This remark implies that it

should be substantially easier to realize AB phases in nanoscale systems by employing Floquet

engineering via time-varying laser electric fields over giant static magnetic fields. Thus, these

versatile Floquet engineered AB phases could open doors to new ways of coherently controlling

excitonic processes in molecules and nanomaterials.

Our proposal to induce AB phases via Floquet engineering is heavily influenced by

Reference [79], where the authors suggest the periodic modulation of permittivities in arrays

of coherently coupled resonators to generate pseudo-magnetic fields. Crucial to their setup is a

well-crafted spatial distribution of modulation phases which is locally controlled with electrical

circuit elements. This local control of phases is possible in mesoscopic systems but much harder

to realize in the nanoscale. In fact, one could be tempted to think that light-matter interaction

is ineffective in doing so, given the mismatch between the lengthscale of light and molecules.

However, as we show in our example above, we achieve the distribution of modulation phases by

exploiting (a) the phase lag between the x̂ and ŷ components of the electric field of elliptically
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=

(a) (b)

Figure 2.4. Orientational averaging of excitonic homotetramers: (a) Excitonic homotetramer
unit. (b) Depiction of an isotropic ensemble of homotetramers; calculation of circular dichroism
(CD) involves averaging over orientations χ,θ ,ψ with respect to the k vector of the incident
beam. Here, the normal vector to the molecular aggregate plane (blue arrow) is uniquely defined
by the polar coordinates θ and χ , while ψ is the angle of rotation of the aggregate about the
aforementioned vector. Note that the ellipticity of the incident beam is not represented to scale
with respect to the molecular aggregates.

polarized laser light and (b) by designing rings of coherently coupled molecular dipoles where

different sites feature orientations that interact with different polarizations of the laser light.

2.3.2 Features of the CD spectrum

To test the effects of TRS breaking due to nontrivial excitonic AB phases, Figure 2.5 shows the

isotropic averaged CD spectrum. For our simulations, we use E0
LD = 2.7× 108 V

m , which is a

standard value utilized in Floquet engineering experiments with inorganic semiconductors[111],

and take δ =−0.1ωvib. With these parameters we obtain |µLD·ELD(t)|
Ω

= 0.02 , which satisfies the

requirement of Eq. (2.14) above. As expected, when ∆φ = 0,π , 〈S(ω)〉 vanishes for all ω : TRS

is preserved under linearly polarized light driving. However, arbitrary elliptically polarized fields

(∆φ 6= 0,π) give rise to nonzero CD, where a clear pattern of sign switches occurs at the TRS
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Figure 2.5. Computed circular dichroism (CD) spectrum for isotropic ensemble of carbazole-
homotetramers under the influence of elliptically-polarized driving: Clear progressions of the CD
as a function of ellipticity ∆φ can be observed, with sign switches at the time-reversal-symmetry
(TRS) points ∆φ = 0,π . Note we have inserted a break in the frequency axes in order to highlight
the CD signal about ωE and ωF .

points. Notice that despite the laser-driving being weak in comparison to its carrier frequency,

|µLD ·ELD(t)| �Ω (see Eq. (2.14)), the small shifts in peak frequencies in Figure 2.3 give rise

to substantial CD signals, just as in MCD, where moderate values of magnetic fields can easily

dissect congested spectra [2, 3]. Also note that the maximum absolute value of 〈S(ω)〉 occurs at

∆φ = π

2 ,
3π

2 , which corresponds to circularly polarized light. Based on the mechanism outlined

in the previous subsection (see also Figures 2.2a, b), we attribute this symmetry to the fact that

in our homotetramer, the dipoles are all of the same magnitude.

2.4 Conclusion

In this article, we have demonstrated that Floquet engineering with elliptically polarized

laser fields can serve as an alternative to magnetic fields to induce pseudo-MO effects in

molecular systems and nanomaterials. These phenomena should be regarded as complementary

to MCD and MOR effects in molecular systems. Small cyclic molecular aggregates with an

anisotropic arrangement of transition dipoles can support a wide range of excitonic AB phases

upon elliptically polarized laser driving despite the small areas they enclose. A rich ellipticity-

dependent modulation of energy level splittings ensues, which concomitantly manifests in widely
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tunable CD spectra. Within the program of harnessing coherence in light-harvesting systems

[112, 113, 114, 115] and AB effects in quantum tunneling [116], our study emphasizes the

potential that AB phases have in the coherent control of energy and charge transport in molecular

aggregates, as well as in the decongestion of spectra of the latter. While we have previously

proposed the realization of excitonic AB phases in topologically protected porphyrin arrays [88],

such effects have been barely explored in a broader range of systems and they could be appealing

as a way to switch exciton couplings and propagation direction on demand with lasers rather

than by synthetic modification. Moreover, we have recognized that in the nanoscale, Floquet

engineering is a dramatically less challenging tool than using magnetic fields to realize AB

effects. In fact, the nanoscale excitonic AB phases that arise in our designed system depend on

the pump laser ellipticity ∆φ and not on its field strength; thus a large phase of Φ = π

2 can in

principle be readily realized in our protocol. This ease must be contrasted with the prohibitive

magnetic fields that must be used in nanorings to induce an electronic AB phase of the same

magnitude (we must mention, however, ingenious molecular electronics proposals to harness

small AB phases arising from weak magnetic fields to induce substantial control on electronic

currents [117]). Furthermore, it is important to emphasize that while general features of pseudo-

MO and MO effects are similar (they both arise from breaking of TRS), they cannot be easily

compared [72]: the former depends on the coupling of time-varying electric fields with electric

transition dipole moments, while the latter arises from the interaction of static magnetic fields

with the spin and orbital angular momentum of molecular eigenstates. Yet, we suspect that

pseudo-MO effects could provide a convenient alternative in situations where magnetic fields are

experimentally unfeasible.

This work has laid the foundations for the generation of exciton AB phases in molecular

aggregates. However, a detailed exploration of the dissipative effects of a condensed phase

environment must be addressed to ensure the experimental feasibility of our predictions in a wide

range of experimental scenarios. Broadly speaking, we expect exciton AB phases to be resilient

to decoherence as long as the light-matter coupling |µLD ·ELD(t)| and the excitonic couplings
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|Jαβ | are stronger than the spectral linewidths caused by the environment. These issues, together

with the additional effects of intramolecular vibrations, will be addressed in future work.

Note.– After the initial submission of the manuscript, we were made aware of an important

reference by Phuc and Ishizaki [91], which proposes Floquet engineering to control the chirality

of electron transfer in molecular trimers. While the conclusions in that work are similar to the

present, the AB phase in their work is due to linearly polarized light with two driving frequencies

and amplitudes, rather than due to elliptically polarized light. While no isotropic averaging

effects were discussed in that work, the authors carried out a thorough exploration of the effects

of decoherence and concluded that chiral currents survive in the condensed phase. Further

comparison of both strategies to induce AB phases will be the subject of future studies.

Chapter 2, in full, is adapted from the material as it appears in “Optical activity from

the exciton Aharonov–Bohm effect: A Floquet engineering approach,” by K. Schwennicke and

J. Yuen-Zhou, J. Phys. Chem. C. 124.7, 42026-4214 (2020) [66]. The adaptations made here

were informed by and aligned with corrections provided in “Corrections to ‘Optical activity

from the exciton Aharonov–Bohm effect: A Floquet engineering approach,”’ by K. Schwennicke

and J. Yuen-Zhou, J. Phys. Chem. C. 126.36, 15547-15548 (2022) [118], which was published

subsequently. These adaptations were introduced because we realized that although the qualitative

basis of our model is correct, its application to anthracene is erroneous. Specifically, in our

model, we want to drive a Fanck–Condon (FC) active mode, which is a totally symmetric mode,

with an infrared (IR) laser. This is not possible for anthracene, which belongs to the D2h point

group, because the totally symmetric mode, ag, is IR inactive (it does not transform as x, y, or

z). For the totally symmetric mode to be IR active, the molecule must lack an inversion center.

An example of such a molecule is carbazole (see Figure 2.1). The dissertation author was the

primary investigator and author of these papers.
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Chapter 3

Enantioselective topological frequency con-
version

3.1 Introduction

In the mid-nineteenth century, Louis Pasteur discovered that molecules can possess

handedness, or chirality, an attribute that influences how they interact with their surroundings

[119]. More generally, the two species of a chiral molecule, referred to as enantiomers, are

non-superimposable mirror images of each other and, while they feature many identical physico-

chemical properties (up to very small parity violation corrections [120]), they can also exhibit

drastically different behavior when exposed to chiral environments or stimuli. Thus, enantiose-

lectivity plays a crucial role in biological activity as well as in the synthesis, purification, and

characterization of pharmaceuticals [121, 122, 123]. Traditionally, optical rotation and circular

dichroism have served as optical tools to obtain enantioselective information; however, these

techniques rely on the weak interaction between molecules and the magnetic component of

the optical field. A very active effort in chirality research consists of spatially shaping electro-

magnetic fields [124, 125, 126] to enhance these weak interactions. Other techniques that rely

solely on electric dipole interactions [127] have been recently advocated. For instance, many

efforts are currently invested in photoelectron circular dichroism (PECD) [128, 129, 130, 131].

Yet, others focus on nonlinear optical signals that depend on the sign of the electric fields

with which the molecules interact [132, 133], including photoexcitation circular dichroism

25



[134], the use of synthetic chiral fields [5, 6, 135, 136], and microwave three-wave mixing

[7, 8, 137, 138, 139]. More precisely, the latter technique can be understood through cyclic

three-level models [140, 141, 142, 143, 144, 145, 146] where the product of three light-matter

couplings [hereafter referred to as the Král-Shapiro (KS) product] differs by a phase of π between

the two enantiomers. This remarkable symmetry has been exploited to propose cyclic population

transfer schemes [140, 146] or the use of cross-polarized terahertz pulses [147] to prepare the

enantiomers in different energy configurations or orientations for separation. This symmetry

has also been utilized to suggest an enantioselective generalization of the Stern-Gerlach [148]

or spin Hall [149] experiments, where spatial separation of enantiomers, rather than spins, is

achieved using artificial gauge fields [150, 151, 152]. The analogy between enantiomer and spin

labels is intriguing and surprisingly underexplored, and serves as the motivation for our present

work. More specifically, we wish to demonstrate an enantioselective analogue to the Quantum

Spin Hall Effect (QSHE) [153].

On the other hand, since the pioneering work of Thouless, Kohmoto, Nightingale, and

den Nijs in relation to the Quantum Hall Effect (QHE) [154], notions of symmetry-protected

topological phases (SPTPs) have been at the heart of condensed matter research, and have only

been exacerbated in the past fifteen years with the discovery of topological insulators [155].

These notions guarantee that certain response properties of so-called topologically nontrivial

systems are largely independent of material specification, instead depending only on products of

universal constants and integer quantities known as topological invariants. The discrete nature

of these properties implies that they are robust against material imperfections, thus making

them attractive for metrology, among other applications. While topological protection was

originally identified in translationally invariant 2D systems, its scope has been enlarged through

the use of Floquet engineering in systems of different dimensionality [156, 157, 158, 89] and the

consideration of the 2D phase space of 1D systems [159, 160]. Of particular interest is an elegant

construction due to Martin, Refael, and Halperin [161] called topological frequency conversion

(TFC), where quantized “current” is observed. In this Letter, we design a novel spectroscopic
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scheme that generalizes TFC to the microwave spectroscopy of an ensemble of chiral molecules.

The very first link between chiroptical spectroscopy and topology was suggested recently in

work by Ordóñez and Smirnova [162] within the context of PECD. These authors showed that

the propensity field (a pseudoscalar) as a function of ejected photoelectron direction (Berry

curvature) can be integrated over all solid angles to yield a quantized enantiosensitive flux which

is proportional to a Chern number. Similarly, the authors showed that microwave three-wave

mixing signals can be interpreted in terms of an analogous quantity to the propensity field [127].

However, it is not clear from that work if there exists a parameter space upon which integration

of the signals leads to topological invariants, so geometric and topological consequences of these

nonlinear spectroscopies were not explored. In this Letter, we use TFC to identify time as the

missing parameter space and for simplicity, restrict our attention to frequency conversion rather

than three-wave mixing. The result is a signal that is proportional to enantiomeric excess (EE),

with a simple prefactor containing the sign of the KS product. Owing to the topological nature

of the signal, it should also serve as a very sensitive detection of EE. As far as we are aware, our

work provides the first connection between topological physics, chiroptical spectroscopy, and

nonlinear spectroscopy, and anticipates a fertile ground for further exploration.

3.2 Theory

3.2.1 Model

Following the principles of enantioselective microwave three-wave mixing [163, 164],

we treat the enantiomers as asymmetric tops whose Hamiltonian is

H0 = AJ2
a +BJ2

b +CJ2
c , (3.1)

where Ja, Jb, Jc are the angular momentum operators with respect to the principal axes â, b̂,

ĉ, and A > B > C are the corresponding rotational constants. The eigenstates are labeled as

|J,τ,M〉, where J = 0,1,2... is the rotational quantum number, M =−J,−J+1,−J+2, ...,J is
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|1,3,−1⟩ |1,3,0⟩ |1,3,1⟩

|1,2,−1⟩ |1,2,1⟩

|0,1,0⟩

|1,2,0⟩

−𝜇3,0;1,0
𝑅,𝑆 ℰ31(𝑡)

−𝜇2,1;1,0
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𝑅,𝑆 ℰ21(𝑡)

−𝜇3,0;2,1
𝑅,𝑆 ℰ32(𝑡)−𝜇3,0;2,−1

𝑅,𝑆 ℰ32(𝑡)
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Figure 3.1. Asymmetric top model: (a) Cyclic three-level transitions for an asymmetric top, such
as enantiomers. Three near-resonant, linear polarized lasers with modulated field amplitudes
Ei j(t) interact with these transitions. (b) The principal axes components of the dipole moments
for the R− and S−1,2-propanediol enantiomers. Note that (µR

a · â)(µR
b · b̂)(µR

c · ĉ) = −(µS
a ·

â)(µS
b · b̂)(µS

c · ĉ)

the quantum number that characterizes the projection of the total angular momentum along the

z-laboratory-fixed axis, and τ serves as the quantum number to differentiate between states with

the same J and M. We consider the following low angular momentum eigenstates of Eq. 3.1

with a rotational quantum number of J = 0 or J = 1

|0,τ = 1,0〉,

|1,τ = 2,M〉,

|1,τ = 3,M〉, (3.2)

where M = −1,0,1 [165] (see B.1). The ground state |0,τ = 1,0〉, with energy h̄ε1, and the

excited states |1,τ = 2,M〉 and |1,τ = 3,M〉, with energies h̄ε2, h̄ε3, respectively, are coupled to

each other using a set of three orthogonally-polarized time-dependent electric fields

E21(t) = E21(t)sin(Ω21t)ŷ,

E32(t) = E32(t)cos(Ω32t)x̂,

E31(t) = E31(t)cos(Ω31t)ẑ, (3.3)
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where x̂, ŷ, ẑ denote the three laboratory-fixed axes, the frequencies Ω21 = ε2− ε1−δ , Ω32 =

ε3− ε2−δ , Ω31 = ε3− ε1−2δ , are slightly detuned from the system’s natural frequencies, and

the field amplitudes E21(t), E32(t), E31(t) are slowly modulated. Note from the selection rules

for electric dipole interactions [164], that ∆M = 0 for the z polarized field and ∆M = ±1 for

the x and y polarized field (see Fig. 3.1). Ignoring all states that are not coupled through the

driving electric fields, and assuming that |µR,S
i,M′; j,MEi j(t)|/2� h̄Ωi j, the Hamiltonian for the

laser dressed R− and S−enantiomer, after making the rotating wave approximation, is

HR,S(t) = ∑
i=1,3

h̄εi|i,0〉〈i,0|+ h̄ε2 ∑
M=±1

|2,M〉〈2,M|

−E21(t) ∑
M=±1

( iµR,S
2,M;1,0e−iΩ21t

2
|2,M〉〈1,0|+h.c.

)
−E32(t) ∑

M=±1

(µ
R,S
3,0;2,Me−iΩ32t

2
|3,0〉〈2,M|+h.c.

)
−E31(t)

(µ
R,S
3,0;1,0e−iΩ31t

2
|3,0〉〈1,0|+h.c.

)
, (3.4)

where for simplicity we have introduced the notation |1,0〉 ≡ |0,τ = 1,0〉, |2,M〉 ≡ |1,τ = 2,M〉,

|3,0〉 ≡ |1,τ = 3,0〉. In Eq. 3.4 µ
R,S
i,M′; j,M is the component of the transition-dipole moment for

the | j,M〉 → |i,M′〉 transition that is projected along the polarization axis of Ei j(t). Following

the procedure of Refs. [163, 164], the values of µ
R,S
i,M′; j,M are

µ
R,S
2,±1;1,0 =−

iµR,S
b√
6
,

µ
R,S
3,0;2,±1 =

µ
R,S
a

2
√

2
,

µ
R,S
3,0;1,0 =−

iµR,S
c√
3
, (3.5)

where µ
R,S
a , µ

R,S
b , µ

R,S
c are the components of the dipole moment along the principal molecular

axes. These components are real valued and |µR
a,b,c|= |µS

a,b,c|. Note that for the chosen polar-
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izations for the three electric fields (see Eq. 3.3) and studied energy levels, µ
R,S
i,M′; j,M does not

depend on the quantum number M. The associated time-dependent wavefunction for the R− and

S− enantiomer the system is |ψR,S(t)〉.
Next, we consider the rotating frame

U(t) = e−i(ε2−Ω21)t |1,0〉〈1,0|+ ∑
M=±1

e−iε2t |2,M〉〈2,M|+ e−i(ε2+Ω32)t |3,0〉〈3,0|, (3.6)

such that |ψR,S(t)〉=U(t)|ψ̃R,S(t)〉, in order to remove the central frequencies Ωi j. In this frame,

ih̄∂t |ψ̃R,S(t)〉= H R,S(t)|ψ̃R,S(t)〉, with the effective Hamiltonian:

H R,S(t) =
1
2



−2h̄δ − µ
R,S
b√
6
E21(t) − µ

R,S
b√
6
E21(t) − iµR,S

c√
3

E31(t)

− µ
R,S
b√
6
E21(t) 0 0 − µ

R,S
a

2
√

2
E32(t)

− µ
R,S
b√
6
E21(t) 0 0 − µ

R,S
a

2
√

2
E32(t)

iµR,S
c√
3

E31(t) − µ
R,S
a

2
√

2
E32(t) − µ

R,S
a

2
√

2
E32(t) 2h̄δ


. (3.7)

After a change of basis (see B.2), we arrive at the following effective Hamiltonian

H R,S(t) =−µ
R,S
b E21(t)

2
√

3h̄
Lx−

µ
R,S
a E32(t)

4h̄
Ly

+
µ

R,S
c E31(t)
2
√

3h̄
Lz−

δ

2h̄
(L2

++L2
−) (3.8)

where Lx =
h̄√
2


0 1 0

1 0 1

0 1 0

, Ly =
h̄√
2


0 −i 0

i 0 −i

0 i 0

, Lz = h̄


1 0 0

0 0 0

0 0 −1

 are the angular mo-

mentum operators for a spin-1 particle and L+ =
√

2h̄


0 1 0

0 0 1

0 0 0

, L−=
√

2h̄


0 0 0

1 0 0

0 1 0

 are

the corresponding ladder operators. We use the form of the effective Hamiltonian in Eq. 3.8

to calculate the topology of the system. Hereafter, we will assume that the slowly-modulated
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electric field amplitudes are

E21(t) = E21 sin(ω1t),

E32(t) = E32 sin(ω2t),

E31(t) = E31[m− cos(ω1t)− cos(ω2t)], (3.9)

where ω1 and ω2 are two modulation frequencies, and m is a scalar that characterizes a non-

modulated component of the electric field. These functional forms are inspired by the TFC

scheme reported in Ref. [166].

3.3 Results

3.3.1 Enantioselective TFC

For completeness, we briefly rederive the TFC formalism using adiabatic perturbation

theory (the original paper does so within Floquet theory [161]). In the rotating frame, the rate of

the system’s energy absorption for the enantiomers is given by

∂tER,S(t) = 〈ψ̃R,S(t)|∂tH
R,S(t)|ψ̃R,S(t)〉. (3.10)

In the long time limit, t→ ∞, the time-averaged energy-absorption rate, or average power, is

PR,S
av = lim

t→∞

1
t

∫ t

0
dt ′∂t ′E

R,S(t ′) = ∑
ωi

PR,S
av (ωi), (3.11a)

PR,S
av (ωi) = lim

t→∞

1
t

∫ t

0
dt ′ωi〈∂ωit ′H

R,S(t ′)〉, (3.11b)

where PR,S
av (ωi) is the average power at the modulation frequency ωi.

Let |εR,S
l (t)〉 denote the l−th adiabatic state of H R,S(t), where H R,S(t)|εR,S

l (t)〉 =

ε
R,S
l (t)|εR,S

l (t)〉 (Fig. 3.2). If ω1,ω2 are incommensurate, i.e., ω1/ω2 is irrational, H R,S(t) is not

periodic. However, if we write H R,S(t) =H R,S(θ) =H R,S(θ1,θ2) with θi = ωit (mod2π), we
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notice that H R,S(θ) is quasiperiodic, H R,S(θ1 +2π,θ2) = H R,S(θ1,θ2 +2π) = H R,S(θ1,θ2),

and the domain of H R,S(θ1,θ2) is a two-dimensional torus T = [0,2π)⊗ [0,2π). Near the

adiabatic limit where ω1, ω2 are much smaller than the instantaneous energy gap of H R,S(t),

and if the system is initiated in the l−th adiabatic state, i.e., |ψ̃R,S(0)〉= |εR,S
l (0)〉, the expected

quantities 〈∂ω1tH R,S(t)〉 and 〈∂ω2tH R,S(t)〉 for |ψ̃R,S(t)〉, to first order in ω1 and ω2 are

〈∂ω1tH
R,S(t)〉= 〈∂θ1H

R,S(θ)〉= ∂θ1ε
R,S
l (θ)− h̄ω2FR,S

l (θ) (3.12a)

〈∂ω2tH
R,S(t)〉= 〈∂θ2H

R,S(θ)〉= ∂θ2ε
R,S
l (θ)+ h̄ω1FR,S

l (θ) (3.12b)

where FR,S
l (θ) = i〈∂θ1ε

R,S
l (θ)|∂θ2ε

R,S
l (θ)〉+ h.c. is the Berry curvature of the l−th adiabatic

state (see B.4).

According to the mean-value theorem for incommensurate ω1 and ω2 [167], the linear

flow of θ covers the torus densely for long enough times. Thus, the time average of FR,S
l (t) is

the same as the average of FR,S
l (θ) over the entire torus T:

lim
t→∞

1
t

∫ t

0
dt ′FR,S

l (t ′) =
1

4π2

∫
T

dθFR,S
l (θ). (3.13)

From a practical standpoint, t→ ∞ means t > p2π

ω1
= q2π

ω2
, where ω1

ω2
≈ p

q for p,q ∈ Z+. Substi-

tuting Eqs. 3.12a and 3.12b into Eq. 3.11b gives rise to the average power lost by the fields at

ω1 and ω2 when the system is initiated in the l−th adiabatic state, PR,S
av (ω1) =−PR,S

av (ω2) =

− h̄ω1ω2CR,S
l

2π
. Here the average of ∂θiε

R,S
l (θ) is zero since ε

R,S
l (θ) is quasiperiodic in θ , and

CR,S
l = 1

2π

∫
T dθFR,S

l (θ) is the Chern number of the l−th adiabatic state for the corresponding

enantiomer. Thus, the enantiomer dependent average energy-pumping rate between the two

modulation fields PR,S
2→1 = [PR,S

av (ω2)−PR,S
av (ω1)]/2 is quantized,

PR,S
2→1 =

h̄ω1ω2CR,S
l

2π
, (3.14)
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Figure 3.2. Example adiabatic states giving rise to enantioselective TFC: The color gradient is
a visual aid for the band dispersion.

or in other words, after one period of the ω2 modulation, CR,S
l photons with frequency ω1 are

produced. The photons produced are in the same spatial modes as the incoming electric fields.

The very off-resonant nature of this process guarantees that the molecule does not retain energy

and the energy transfer process occurs only between the fields.

For δ = 0, H R,S(θ) (see Eq. 3.8), resembles half of the Bernevig-Hughes-Zhang

Hamiltonian [168], except that the Pauli matrices are replaced with the spin-1 angular momentum

operators. As expected, H R,S(θ) is topologically non-trivial for |m| < 2, where the Chern

numbers for the upper (U) and lower (L) adiabatic states remarkably acquire the value

CR,S
U = 2sgn(m)sgn(OR,S) =−CR,S

L , (3.15)

and that for the middle (M) band CM = 0 (for an analytical proof, see B.5 ). Here OR,S =

(µR,S
b E12)(µ

R,S
a E23)(µ

R,S
c E31) is the KS product which obeys the enantioselective symmetry

relation OR =−OS, since µR
a µR

b µR
c =−µS

a µS
b µS

c , and we have assumed that Ei j = E ji. Therefore
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Figure 3.3. Topological phase diagram: The value of CR
L is calculated by taking the magnitudes

of the light-matter couplings to be equal, i.e., |µR
2,M′;1ME21|= |µR

3,M′;2,ME32|= |µR
3,M′;1,ME31|=

h̄D, while the laser-driving parameters m and δ are varied. We obtain CR
L =−2sgn(m)sgn(OR)

at the vicinity of δ = 0, where OR =−OS is the Král-Shapiro product, which is enantioselective.

CR
L =−CS

L, and the TFC for the two enantiomers initiated in the lower (upper) adiabatic band

at t = 0 is expected to have the same magnitude but opposite sign, i.e., PR
2→1 =−PS

2→1. This

result begs us to consider the fruitful analogy between enantiomer label and spin degrees of

freedom. Just like in the QSHE, where the transverse conductivity for opposite spins bears

opposite signs, so does the TFC for opposite enantiomers. Eq. 3.15 is the central result of this

work and relates a fundamental topological invariant from chiroptical spectroscopy (sgnO =±1)

with the notions of SPTPs. Fig. 3.3 shows the computed value of CR
L for different values of m

when δ 6= 0.

By analogy with Eq. 3.11, we can compute the enantiomer dependent average power

absorbed in the original frame as PR,S
av (Ω) = limt→∞

1
t
∫ t

0 dt ′Ω〈∂Ωt ′HR,S(t ′)〉, obtaining:

PR,S
av (ω1)

h̄ω1
=

PR,S
av (Ω21+1)

h̄Ω21+1
− PR,S

av (Ω21−1)

h̄Ω21−1
(3.16a)

+
PR,S

av (Ω31+1)

h̄Ω31+1
− PR,S

av (Ω31−1)

h̄Ω31−1
,

PR,S
av (ω2)

h̄ω1
=

PR,S
av (Ω32+2)

h̄Ω32+2
− PR,S

av (Ω32−2)

h̄Ω32−2

+
PR,S

av (Ω31+2)

h̄Ω31+2
− PR,S

av (Ω31−2)

h̄Ω31−2
, (3.16b)

where Ωi j±1,2 = Ωi j±ω1,2. Thus, the quantization due to the enantioselective TFC can be
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extracted from an experimentally detected difference power spectrum of the fields interacting with

the molecule. Notice that the topology is preserved for δ 6= 0 as long as h̄|δ |< |µR,S
i,M′; j,MEi j|/2.

In general, we expect our scheme to maintain the nontrivial topology with respect to changes in

experimental conditions (such as laser spot size or collection efficiency) so long as adiabaticity

still holds and the necessary peaks in the power spectrum can be resolved.

−10 0 10
ω2t
2π

0.00

0.25

0.50

0.75

1.00 α(t)

β(t)

|c̃RL |2

|c̃SL|2

Figure 3.4. Adiabatic state preparation: Presented are the plots for the functions α(t) and β (t).
We also feature the populations |c̃R

L|2, |c̃S
L|2 (shifted vertically slightly to be visible) of the lower

adiabatic state for each enantiomer. As shown, the system is effectively prepared in the lower
adiabatic bands for both enantiomers.

3.3.2 Numerical results

The dynamics of the system are calculated by numerically integrating the Schrödinger

equation in the rotating frame (Eq. 3.7), and the power spectrum is obtained by returning

to the original frame. In atomic units (h̄ = 1), the electric field amplitudes are taken to be

E21 = 5
√

3E0, E32 = 6E0, E31 =
√

3E0, where E0 = 4.0×10−9 a.u., the dipole moment principal

axes components are µR
a = µS

a = 0.47 a.u., µR
b = µS

b = 0.75 a.u., µR
c = −µS

c = 0.14 a.u., and

the molecular transition energies are ε2− ε1 = 4.4× 10−8 a.u. and ε3− ε1 = 4.7× 10−8 a.u.

The dipole moment components and molecular energies are extracted from a microwave three-

wave-mixing model for R− and S−1,2-propanediol [7]. Using these parameters, it is true that

|µR,S
i,M′; j,MEi j|/2� h̄Ωi j, so the rotating wave approximation holds. The slow incommensurate

35



modulation frequencies and laser detuning are taken to be ω1 = ω2/φ = δ = 1× 10−11 a.u.,

where we take φ =
√

5−1
2 as in Ref. [161], satisfying the perturbative condition h̄|δ |, h̄ω1,

h̄ω2� |µR,S
i,M; j,M′ ·Ei j|/2. Setting m = 1.4, the system is in the topologically nontrivial regime.

To obtain the desired enantioselective TFC, both enantiomers need to be prepared in

the lowest adiabatic states in the rotating frame at t = 0. Suppose that before fields are turned

on (µR,S
i,M′; j,MEi j(t)→ 0 as t→−∞), the molecules start in the ground state |1,0〉. Under those

circumstances, the eigenstates of Eq. 3.7 are the states |1,0〉, |2,M〉, |3,0〉 with eigenenergies

ε
R,S
L,M,U(−∞) =−δ ,0,δ , and the state of each molecule is |εR,S

L (−∞)〉. If the electric fields are

slowly turned on at a rate ωr that is much smaller than the instantaneous band gaps |εR,S
l (t)−

ε
R,S
l′ (t)|, both enantiomers are prepared in the lower band, i.e. |εR,S

L (0)〉. Note that the modulating

frequencies ω1 and ω2 must also be much smaller than |εR,S
l (t)− ε

R,S
l′ (t)| at all times. Chirped

microwave fields for t < 0 satisfy this constraint. The adiabatic protocol we choose is Ei j →

Ei jα(t) and ω1,2 → ω1,2β (t), where the ramp-up functions slowly vary at the rate ωr = 2×

10−13 a.u. (see Fig. 3.4),

α(t) =



0 t <−2π

ωr
,

1−cosωrt
2 −2π

ωr
< t <− π

ωr
,

1 − π

ωr
< t,

(3.17a)

β (t) =



0 t <− π

ωr
,

1+cosωrt
2 − π

ωr
< t < 0,

1 0 < t.

(3.17b)

After a sufficiently long time (we choose t∗ = 2000×2π/ω2), the frequency-resolved

time-averaged power spectrum Pav(Ω) lost by the fields is numerically calculated considering

only t ≥ 0. This quantity is indeed enantioselective, and using Eqs. 3.16a and 3.16b, each

enantiomer Chern number for the lower adiabatic state CR
L =−2 =−CS

L is extracted, revealing
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Figure 3.5. Enantioselective TFC: Plotted is the difference power spectrum for the driving
electric field when coupled to a single R− (red) and S− (cyan) 1,2-propanediol enantiomers.
In terms of intensity, assuming the laser beam waist area is ∼ 1 cm2, the change observed is
∼ 10−15 W ·m−2 per molecule. This spectrum is enantioselective, and using Eqs. 3.16a and 3.16b,
we can see that the frequency conversion in the rotating frame is topological, 2π

h̄ω1ω2
PR

2→1 =

− 2π

h̄ω1ω2
PS

1→2 =−2.

the topological nature of this nonlinear optical phenomenon (Fig. 3.5).

3.3.3 Detecting enantiomeric excess

For an ensemble containing NR R−molecules and NS S−molecules, which are all prepared

in the ground state |1,0〉, the expected pumping rate is

P2→1 =
h̄ω1ω2CR

L
2π

(NR−NS). (3.18)

which is zero for a racemic mixture, but otherwise, reveals the EE |NR−NS| and chirality

sgn(NR−NS). Notice that in line with other nonlinear chiroptical signals that depend on electric

but not magnetic dipole contributions [127], Eq. 3.18 contains no background achiral signal,

unlike traditional circular dichroism, where both enantiomers have the same electric dipole and

magnetic dipole absorption strengths for circularly polarized light [169].

Let us briefly discuss the limits of enantioselective TFC. First, the linewidths of mi-

crowave transitions are on the order of 10-100 kHz [170], which are smaller than the adiabatic

state preparation gap δ ≈ 1MHz, as well as the light-matter interactions |µi jEi j|/h̄≈ 10MHz

37



inducing the topological gap, or even the smallest difference in energies in the power spectrum

(see, Fig. 3.5, Ω31±1−Ω31±2 ≈ 1MHz). Thus, the described protocol should be resilient to the

finite linewidths of these transitions. Second, another source of imperfections stems from laser

shot noise. Assuming that the laser beam waist area is ∼ 1 cm2 and considering the field strength

above, the shot noise for a time interval t∗ is
√

N ∼ 109 (where N is the expected number of

photons produced by the field, see B.6). From the power spectrum (Fig. 3.5), we find that for

the same time interval, that the minimal magnitude of the change in the photon number due to

the TFC is min
(∣∣∣Pav(Ωi j±1,2)t∗

h̄Ωi j±1,2

∣∣∣)≈ 100×|NR−NS|. Therefore, as long as the magnitude of the

enantiomer excess |NR−NS| is much larger than∼ 107 molecules, the signal should be detectable

above the shot noise. In terms of percentage of the total molecule count NR+NS, the lower end of

the EE detection limit for 1 mL of a 1 µM solution is 10−6%. We conclude with a few comments

on the observability of our predictions. First, this study has assumed the ideal limit that the

molecules are at 0 K. Under typical experimental conditions for microwave-three wave mixing at

7 K [7] all three rotational energy levels used in our model are substantially thermally occupied.

In this scenario, enantioselective frequency conversion still survives; however, the integer Chern

number will be replaced by a thermal average of the Chern numbers CR
L ,C

R
M,CR

U . Second, the

excited-state thermal populations can be bypassed by working in a different energy range, such

as the UV-visible one involving electronic transitions and the infrared one involving vibrations

[171, 172]; the price to pay in the first case is the complication introduced by electron-vibration

coupling. These complications will be addressed in future works.

3.4 Conclusion

In summary, we have presented an enantioselective TFC setup for an ensemble of

chiral molecules. Owing to the dependence of the topological invariant on the sign of the

KS product (Eq. 3.15), which differs by a phase of π for the two enantiomers, the quantized

time-averaged energy-pumping rate is of opposite sign for the R− and S− molecules, just like
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how the transverse conductivity is of opposite sign for up and down spins in the QSHE. We show

that the computed signal is non-zero for any sample with EE and vanishes for a racemic mixture.

An intriguing consequence of Eq. 3.14 is that as long as the timescale separations required by

the model are fulfilled, the chemical identity of the probed molecules (e.g., through the strengths

of the transition dipole moments) in the rotating frame is erased by the signal, leading to a

universal nonlinear optical response which acknowledges the enantiomeric excess only. This

characteristic is reminiscent of the very accurate determination of the quantum of conductance

with a wide range of QHE systems. Thus, from a metrological standpoint, the generality of the

enantioselective TFC can be exploited to accurately measure EE by running a linear fit of the

pumping rate P2→1 for a series of experiments where ω1 (or ω2) is varied. Furthermore, if one

is only concerned with |EE|, a practical asset of the presented methodology is that there is no

need to calibrate the signal with an enantiopure sample beforehand. We believe that the removal

of calibration counterbalances the complexity of the experimental setup proposed in this Letter.

While concepts of topology have been very productive in the exploration of new con-

densed matter physics phenomena, most of them are restricted to periodic solids (see Ref.

[173, 66] for a few molecular exceptions). TFC [161, 158] is a powerful tool that opens doors

to the application of those concepts to 0D systems such as finite molecular and non-periodic

nanoscale systems. In particular, this work reveals that laser-dressed chiral molecules support

SPTPs that are not adiabatically connected to their non-laser-dressed counterparts. It also pro-

vides a fruitful playground to explore further conceptual connections between topological physics

and molecular chirality [162, 174]

Chapter 3, in full, is adapted from the material as it appears in “Enantioselective Topolog-

ical Frequency Conversion,” by K. Schwennicke and J. Yuen-Zhou, J. Phys. Chem. Lett. 13.10,

2434-2441 (2022) [67]. The dissertation author was the primary investigator and author of this

paper.
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Chapter 4

Extracting accurate light-matter coupling
from disordered polaritons

4.1 Introduction

In the realm of molecular polaritons, the phenomenon of vacuum Rabi splitting (VRS)

stands as an established metric for gauging the strength of collective light-matter coupling.

Traditionally, this interaction is classified into several regimes: weak, strong, ultrastrong, and

deep-strong [175]. In particular, molecular polaritons are often observed in the realm of strong

coupling, with a wide range of potential applications such as catalysis [25, 20, 21, 24], exciton

transport [33, 34, 35, 36, 37, 176], and Bose-Einstein condensation [45, 47, 48]. While reaching

the ultrastrong coupling regime remains experimentally challenging, there are a number of

experiments that have pushed the limits of molecular systems into this intriguing regime [177,

178, 179, 180].

In the idealized scenario of N identical molecules strongly coupled to a single pho-

tonic mode, the magnitude of VRS scales linearly with
√

N [181, 182]. However, the inherent

complexity of molecular ensembles introduces a compelling challenge, as molecular disorder

becomes an inescapable feature. Molecular disorder exerts a profound influence on various

aspects of polariton physics, including transport [183, 184, 185, 186, 34, 37, 35, 187], photo-

conductivity [188], photoreactivity [189], and vibropolaritonic chemistry [23]. In the solid-state

physics community, using polaritons to reduce the linewidth of quantum emitters has potential
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applications in the storage of quantum information [190, 191]. Surprisingly, even though the

effects of disorder were theoretically studied early on [192, 193, 194, 195], the effects of disorder

on VRS splitting are still a debate within the community. Early explorations by Houdré et al.

[194] suggested that disorder (or inhomogeneous broadening) should have no impact on the

size of the splitting. However, these conclusions have been contested in recent investigations

[196, 35, 197, 198, 199, 200, 201] which note that disorder can both enhance and suppress the

VRS.

In this article, we revisit the problem of VRS and disorder, embarking on a comprehensive

study of linear absorption A, transmission T , and reflection R properties of molecular polaritons,

considering various distributions and magnitudes of disorder. Our aim is not only to elucidate the

intricate interplay between molecular disorder and VRS, but also to provide a robust method for

accurately extracting light-matter coupling parameters. Our findings align with recent reports,

demonstrating that VRS tends to increase with disorder, reaches a saturation point, and eventually

decreases to zero for a wide range of disorder distributions. Note that A,T,R do not in general give

the same value of VRS [193]. Hence, while some of the results are already known in the literature,

we deem it valuable to collect all the results in a single study. Significantly for experiments,

we unveil what seems to be a ubiquitous scenario: the presence of substantial disorder can

dramatically enhance the VRS leading to an apparent onset of the ultrastrong coupling regime,

despite the underlying collective light-matter coupling firmly residing within the strong coupling

regime. Moreover, we introduce a novel sum rule that proves instrumental in extracting precise

values of collective light-matter coupling, particularly when both absorption and transmission can

be measured in the experimental setup. Crucially, this sum rule demonstrates generality across

all types of disorder. In the case of a rectangular distribution (which was briefly discussed in Ref.

[197]), we observe the emergence of two narrow polariton peaks in the spectra, reminiscent of

the pronounced spectral narrowing witnessed in the context of surface lattice resonances [202]

and other phenomena associated with Wood anomalies [203, 204, 205, 206, 207].
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4.2 Theory

4.2.1 Model

𝑅(𝜔) 𝑇(𝜔)
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Figure 4.1. Disorder effects on linear polariton spectra: (a) Linear spectroscopy of molecular
polaritons as absorption A(ω), transmission T (ω), and reflection R(ω) (b) For weak disorder, a
perturbative approach to understand the role of disorder is useful. The zeroth-order Hamiltonian
can be taken to be the disorderless system, comprising of the photon mode interacting with the
N degenerate molecules to form the upper (UP) and lower (LP) polaritons, alongside N−1 dark
states ({D1, ...,DN−1}). The VRS at resonance in this case happens to be 2g

√
N, where g is the

single molecule light-matter coupling. The molecular disorder then perturbatively couples the
polaritons to the manifold of dark states, inducing level repulsion between the polaritons, as
discussed in Refs. [196, 199], and [200], thus increasing the VRS. This repulsion depends on
the variance of the disorder distribution (〈δ 2

i 〉, where δi = ωi−ω0 and ω0 represents the center
of the distribution). Given the perturbative character of this analysis, it does not apply to strong
disorder.

For concreteness, we consider N two-level systems coupled to a single photon mode [in

the rotating wave approximation (RWA), Tavis–Cummings model [181]]:

H = h̄ωpha†a+
N

∑
i=1

h̄ωex,iσ
†
i σi− h̄λ

( N

∑
i=1

µiaσ
†
i +h.c.

)
, (4.1)

where ωph and a are the photon frequency and annihilation operator, ωex,i and σi = |gi〉〈ei| are

the frequency and annihilation operator for the i−th two-level system, µi is the amplitude of

the i−th transition dipole, and h̄λ =
√

h̄ωph
2ε0Vph

is the vacuum field amplitude where ε0 is the
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Table 4.1. Real and imaginary parts of the molecular susceptibility

Susceptibility
Real or Imaginary Gaussiana Lorentzian Rectangle

ωph
2 χ ′(ω) −g2N

√
2

σ
F(ω−ω0√

2σ
) −g2N (ω−ω0)

(ω−ω0)2+(σ/2)2 −g2N
σ

ln |ω−ω0+σ/2
ω−ω0−σ/2 |

ωph
2 χ ′′(ω) g2N

σ

√
π

2 exp[−1
2(

ω−ω0
σ

)2] g2N σ/2
(ω−ω0)2+(σ/2)2

g2Nπ

σ
rec[2(ω−ω0)/σ ]

aHere F(y) = exp[−y2]
∫ y

0 dtet2
is the Dawson function.

vacuum permittivity and Vph is the mode volume. In the thermodynamic limit (N → ∞), the

linear absorption, transmission, and reflection spectra are given by (see Refs. [208] and [209])

A(ω) =
κLωphχ ′′(ω)

|ω−ωph + iκ

2 +
ωph

2

[
χ ′(ω)+ iχ ′′(ω)

]
|2
, (4.2)

T (ω) =
κLκR

|ω−ωph + iκ

2 +
ωph

2

[
χ ′(ω)+ iχ ′′(ω)

]
|2
, (4.3)

R(ω) = 1−A(ω)−T (ω). (4.4)

Note, for simplicity we are considering the case where the volume of the molecular sample is

equal to the cavity mode volume (i.e. Vmol = Vph). Here κ = κL +κR is the total cavity decay

rate, and the respective decay rates into the left and right photon continua are denoted by κL and

κR. The linear molecular susceptibility χ(ω) is given by

χ(ω) =− lim
γ→0+

1
h̄ε0Vmol

N

∑
i

tanh
( h̄ωex,i

2kBT

) |µi|2
ω−ωex,i + i γ

2
. (4.5)

Considering the case when h̄ωex,i� kBT and assuming that all N two-level systems have the

same transition-dipole amplitude µ , the molecular susceptibility, multiplied by a factor ωph
2 ,
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becomes

ωph

2
χ(ω) =− lim

γ→0+
g2N

∫
dωex

p(ωex)

ω−ωex + i γ

2

=
ωph

2

[
χ
′(ω)+ iχ ′′(ω)

]
, (4.6)

where g2 = |λ µ|2 is the square of the single molecule light-matter coupling, p(ωex) is the proba-

bility distribution of excitation frequencies, and the real and imaginary parts of the molecular

susceptibility, multiplied by a factor ωph
2 , are ωph

2 χ ′(ω) = −g2NP
∫

dωex
p(ωex)
ω−ωex

, where P is

the Cauchy principal value, and ωph
2 χ ′′(ω) = g2Nπ p(ω). It is insightful to note that the simple

dependence of the polariton absorption spectrum on the bare molecular linear susceptibility is

similar to the simple dependence of the spectroscopic response of molecular aggregates, under

the coherent potential approximation, on the response of the isolated monomeric units [210].

To explore the effects of p(ωex), we consider Lorentzian,

p(ωex) =
1
π

σ/2
(ωex−ω0)2 +(σ/2)2 , (4.7)

Gaussian,

p(ωex) =
1√

2πσ
e−

1
2 (

ωex−ω0
σ

)2
, (4.8)

and rectangular

p(ωex) =
1
σ

rec[2(ωex−ω0)/σ ], (4.9)

rec[y] =


1, |y| ≤ 1

0, |y|> 1
(4.10)

disorder. Table 4.1 lists the analytical expressions of χ ′(ω) and χ ′′(ω) for the three different
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distributions.

4.3 Results

4.3.1 Lorentzian disorder

For Lorentzian disorder, the real and imaginary parts of the susceptibility, multiplied by

a factor ωph
2 , are

ωph

2
χ
′(ω) =−g2N

(ω−ω0)

(ω−ω0)2 +(σ/2)2 , (4.11)

ωph

2
χ
′′(ω) = g2N

σ/2
(ω−ω0)2 +(σ/2)2 . (4.12)

From Eqs. 4.2 and 4.3, the absorption, transmission, and reflection spectra are given by

A(ω) =
κLσg2N

|(ω−ωph + iκ

2 )(ω−ω0 + iσ

2 )−g2N|2 , (4.13)

T (ω) =
κLκR[(ω−ω0)

2 +(σ/2)2]

|(ω−ωph + iκ

2 )(ω−ω0 + iσ

2 )−g2N|2 , (4.14)

R(ω) = 1−
κL

{
κR[(ω−ω0)

2 +(σ/2)2]+σg2N
}

|(ω−ωph + iκ

2 )(ω−ω0 + iσ

2 )−g2N|2 . (4.15)

Figure 4.2 presents the numerically calculated spectra.

To find the extrema of each spectrum, we solve for d
dω

T (ω) = 0, d
dω

A(ω) = 0, and

d
dω

R(ω) = 0 separately. Lorentzian disorder affords exact analytical expressions for all regimes

of σ . In the case where the photon mode is resonant with the center of the Lorentzian distribution,

i.e., ωph = ω0, we find that the upper (ωA
+) and lower (ωA

−) polariton peaks in the absorption are

located at the frequencies

ω
A
± = ω0±I

[√1
8
(σ2 +κ2)−g2N

]
. (4.16)
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(a) (b) (c)

Figure 4.2. Numerically calculated spectra for a Lorentzian distribution: (a) absorption, (b)
transmission, and (c) reflection spectra for a Lorentzian distribution of excitation energies p(ωex)
centered at ωex = ω0; ωph = ω0 and κL = κR = 1

2g
√

N. The white dashed lines indicate our
analytical results for the polariton frequencies, showing strong agreement with the calculated
spectra over all magnitudes of disorder. As done in Ref. [196], the white solid lines in (B)
represent individual spectra for weak and strong disorder systems, highlighting the transition
from two distinct peaks to a broad central peak as disorder increases.

Similarly, the upper and lower polariton peaks in the transmission spectrum are located at

ω
T
± = ω0±I

[√√√√σ2

4
−g2N

√
1+

σ(κ +σ)

2g2N

]
, (4.17)

and the peaks in the reflection spectrum are at

ω
R
± = ω0±I

[(
σ2

4
+

σg2N
κR

−g2N

√
σ(κ +σ)(σ −κ +2κR)

4κRg2N
+
(

1+
σ

κR

)2
)1/2]

. (4.18)

With prior information on the molecular disorder (σ ) and cavity linewidth (κ), one can use the

above equations to extract the correct value for the collective coupling g
√

N from experimentally

obtained spectra. For the transmission spectra, we observe similar behavior to that was shown

in Refs. [196, 197, 198, 199, 200] for Gaussian disorder: the VRS initially increases with
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Table 4.2. Vacuum Rabi splitting trends with disorder

Gaussian Lorentzian Rectangle

Optical Signal σ < g
√

N σ > g
√

N σ < g
√

N σ > g
√

N σ < g
√

N σ > g
√

N

A(ω) increases decreases decreases decreases increases decreases; narrow side bands
T (ω) increases decreases increases decreases increases decreases; narrow side bands
R(ω) increases decreases increases or decreasesa decreases increases decreases; narrow side bands

aFor the Lorenzian, the VRS in the reflection spectrum increases if κ2
L/κ2

R < 1 and decreases if κ2
L/κ2

R > 1 (See Table 4.3)

increasing disorder; as disorder increases further, the VRS saturates, and then decreases to

zero. It is interesting that this trend is not observed for absorption, as VRS only decreases

with disorder. Table 4.2 summarizes the intricate behavior of VRS across spectra for different

disorder distributions. Qualitatively, the increase of VRS with weak disorder is a manifestation

of level repulsion (see Figure 4.1b). Additionally, the collapse of the VRS and the transition

from two peaks to a single central peak can be related to an exceptional point pertaining to the

complex-valued pole of the polariton transmission spectrum [35]. It should be noted that Eqs.

4.13-4.14 are the same as those presented in Ref. [193]. Furthermore, the expressions for κ = 0,

Eq. 4.16 looks similar to the analytical expressions derived by Refs. [35, 197] and [201], but the

decrease in VRS for weak disorder differs by a factor of a half compared to our result. This is

due to the fact that the real parts of the poles for Eqs. 4.16-4.18 do not correspond to the true

extrema along the real-value frequency axis.

4.3.2 Gaussian and rectangular disorder

For Gaussian and Rectangular disorder, we can still extract semi-analytical results when

σ � g
√

N (weak disorder) and |ω−ω0| ≈ g
√

N (about the polariton peaks). For the Gaussian

distribution, we employ the asymptotic expansion of the Dawson function [211], similar to Ref.

[197], up to O[( σ

ω−ω0
)3] to obtain an approximate expression for the real part of the susceptibility,

multiplied by a factor ωph
2 ,

ωph

2
χ
′(ω)≈−g2N

[
1

ω−ω0
+

σ2

(ω−ω0)3

]
. (4.19)

47



(a) (b) (c)

Figure 4.3. Numerically calculated spectra for a Gaussian distribution: (a) absorption, (b)
transmission, and (c) reflection spectra for a Gaussian distribution of excitation energies p(ωex)
centered at ωex = ω0; ωph = ω0 and κL = κR = 1

2g
√

N. The white dashed lines indicate our
analytical results for the polariton frequencies, showing strong agreement with the calculated
spectra for weak disorder. The white solid lines in (b) represent individual spectra for weak and
strong disorder systems, highlighting the transition from two distinct peaks to a broad central
peak as disorder increases.

Meanwhile, for the rectangular distribution, we get,

ωph

2
χ
′(ω)≈−g2N

[
1

ω−ω0
+

σ2

12(ω−ω0)3

]
. (4.20)

Note that for both distributions χ ′′(ω)≈ 0 at the polaritonic windows, so no VRS is predicted in

the absorption spectrum for both Gaussian and rectangular distributions for low disorder. The

lack of VRS in the absorption spectrum in the case of low disorder for these distributions is due to

the minimal overlap between the molecular absorption spectrum and the polariton transmission,

since the tails of the Gaussian die quickly away from ω0, while the rectangular distribution

has no tails. Contrast this observation with the analogous one for the Lorentzian distribution,

which does present VRS in its absorption spectrum owing to the long tails of the Lorentzian. As

disorder increases, the tails of the Gaussian and rectangular distributions overlap more with the

polariton transmission peaks, and VRS begins to appear in the polariton absorption spectrum.

However, as disorder becomes increasingly stronger, the VRS collapses, resulting in a broad

central peak (see Figs. 4.3A and 4.4A). Understanding the difference in overlap of the Lorenzian
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and Gaussian tails with the polariton transmission peaks can be used to engineer systems with

higher polariton quality factors; for example, Ref. [212] proposes using an applied magnetic

field to convert a Lorentzian disorder distribution into a Gaussian one in order to remove the

influence of the Lorentzian tails.

(a) (b) (c)

Figure 4.4. Numerically calculated spectra for a rectangular distribution: (a) absorption, (b)
transmission, and (c) reflection spectra for a rectangular distribution of excitation energies p(ωex)
centered at ωex = ω0; ωph = ω0 and κL = κR = 1

2g
√

N. The white dashed lines indicate our
analytical results for the polariton frequencies, showing strong agreement with the calculated
spectra for weak disorder. The white solid lines in (B) represent individual spectra for weak and
strong disorder systems, highlighting the transition from two distinct peaks to a broad central
peak as disorder increases. Remarkably, for large disorder, two peaks that are narrower than the
line width of the cavity and molecular disorder emerge on either side of the broad central peak.

Using these approximations, we find that for ωph = ω0, the transmission and reflection

spectra for Gaussian distribution are approximately

T (ω)≈ κLκRg6N3

|(ω−ω0)4−g2N(ω−ω0)2−g2Nσ2 + ig3N
3
2 κ

2 |2
, (4.21)

R(ω)≈ 1−T (ω), (4.22)

with the polariton frequencies for both spectra approximately located at

ω± = ω0±
√

1
2

g2N +
1
2

√
g4N2 +4g2Nσ2. (4.23)
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Similarly, we find that the transmission and reflection spectra for the rectangular distribution are

approximately

T (ω)≈ κLκRg6N3

|(ω−ω0)3−g2N(ω−ω0)− g2Nσ2

12 + ig3N
3
2 κ

2 |2
, (4.24)

R(ω)≈ 1−T (ω). (4.25)

In this case the polariton frequencies are approximately located at

ω± = ω0±

√
1
2

g2N +
1
2

√
g4N2 +

σ2g2N
3

, (4.26)

which is similar to Eq. 4.23.

Figure 4.3 shows the numerically calculated spectra for Gaussian disorder. The trend

in VRS in the transmission and reflection spectra as a function of σ is qualitatively the same

as that for the Lorentzian: the VRS initially increases for σ < g
√

N, and then decreases to

zero for σ > g
√

N (see Table 2). Additionally, the initial increase in VRS for the Gaussian and

rectangular distributions, for weak disorder, can be understood through the mechanism of level

repulsion between the polariton states and the dark states, which are coupled by the molecular

disorder. Eq. 4.23 is in good agreement with the numerical results for σ � g
√

N, and upon

Taylor expanding around σ = 0 to second order, reduces to the analytical results of Refs. [197]

and [200]. The analytical results of Refs. [196] and [199] qualitatively capture the behavior of

the transmission spectrum; however, quantitatively they fit better with the Lorentzian disorder.

The transformation of Gaussian into Lorentzian disorder in these references appears to be due

to the usage of the Markovian approximation. Figure 4.3 also highlights the dangers for taking

VRS at face value. We observe that the largest VRS in the transmission and reflection spectra

is approximately 1.5×2g
√

N. This implies that one must be careful using VRS to determine

the strength of the collective light-matter coupling. For example, if VRS/2ω0 ≈ 0.1 one may
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mistakenly claim to be in the ultrastrong coupling regime, which is typically defined as the

region where g
√

N/ω0 & 0.1 [213, 214], while in reality the collective light-matter coupling

g
√

N/ω0 ≈ 0.07 is still within the strong coupling regime.

Figure 4.4 displays the numerically calculated spectra for the rectangular disorder. Such

a scenario was briefly considered in Ref [197]; here, we provide further analysis. At low disorder,

the rectangular distribution exhibits similar behavior to the Gaussian distribution, as predicted by

Eq. 4.26. As disorder increases, a broad central peak forms, consistent with both the Lorentzian

and Gaussian distributions. Intriguingly, as disorder increases, two sharp sidebands for the

polaritons also emerge, each narrower than the cavity linewidth and the width of the rectangular

distribution, respectively. This is reminiscent of the pronounced spectral narrowing witnessed

in plasmonic surface lattice resonances [202]. The unique characteristics of the rectangular

disorder, including singularities in its real part of the susceptibility χ ′(ω) near these polariton

peaks (see Table 4.1), are responsible for this phenomenon. The reduced linewidth of these

peaks indicates a higher degree of coherence lifetime within the system, even in the presence of

significant energetic disorder. Consequently, this observation presents a promising avenue for

applications in molecular polariton systems requiring prolonged coherences between the cavity

and molecules. In a realistic experiment, this phenomenon will only occur if the underlying

members of the disorder distribution have a small Lorentzian homogeneous linewidth (which has

not been treated in this work); a large such linewidth will smoothen the singularity and reduce

the problem to the Lorentzian case.

For completeness, we study the effects of rounding the discontinuous edge of the rectan-

gular distribution. Consider the continuous distribution

pm(ωex) =
1
σ

Rm[2(ωex−ω0)/σ ], (4.27)

where

Rm[y] =
1

y2m +1
(4.28)
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(a) (b)

Figure 4.5. Discontinuous versus continuous disorder distribution edge: (a) Comparing the
discontinuous rectangular (rec) distribution with the continuous function Rm for different values
of m. As m increases, the edge becomes sharper, such that the continuous distribution begins to
mimic the rectangular one. (b) Comparing the resulting polariton transmission spectra for large
disorder where the rectangular distribution has sharp sidebands. For m = 2, only a broad central
peak is observed, but as m increases the sidebands emerge and become sharper.

and m is a positive integer. In the limit m→ ∞, Rm[y] mimics the rectangular function rec[y] (see

Eq. 4.9). Figure 4.5 shows that for small values of m, where the “edge” of the distribution is

relatively smooth, only a single broad central peak is observed. As m increases, the two sidebands

emerge and become sharper, as does the edge of the distribution. These results highlight that

the survival of these sidebands heavily depends on the steep rise at the edge of the distribution,

though this edge need not be perfect due to the fact that these spectral features are observed

for finite m where the corners of the distribution are rounded. A candidate system would be a

uniform distribution of quantum emitter frequencies, possibly engineered with quantum dots that

have a narrow homogeneous linewidth.
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Table 4.3. Vacuum Rabi splitting expressions for when σ � g
√

N

Vacuum Rabi Splitting
Optical Signal Gaussian Lorentziana Rectangle

A(ω) 0 2g
√

N− σ2

8
√

g2N− κ2
8

0

T (ω) 2
√

1
2g2N + 1

2

√
g4N2 +4g2Nσ2 2g

√
N + κσ

4g
√

N
2

√
1
2g2N + 1

2

√
g4N2 + σ2g2N

3

R(ω) 2
√

1
2g2N + 1

2

√
g4N2 +4g2Nσ2 2g

√
N− (

κ2
L

κR
−κR)σ

8g
√

N
2

√
1
2g2N + 1

2

√
g4N2 + σ2g2N

3

aFor larger values of σ , Eqs. 4.16-4.18 should be used to extract the correct value for g
√

N.

4.3.3 Sum rule

From our extensive study of disorder effects on the polariton linear spectrum, it is evident

from the three disorder distributions studied in this work, that disorder significantly impacts

the value of VRS, seemingly posing a challenge in extracting the precise value of the collective

light-matter coupling. However, a simple sum rule can be utilized when both the absorption

and transmission polariton spectra are accessible. By integrating the ratio of these two signals

(I), which is proportional to the imaginary part of the linear molecular susceptibility multiplied

by a factor of ωph
2 [i.e. ωph

2 χ ′′(ω) = g2Nπ p(ω)], a robust method for determining the collective

light-matter coupling is revealed (see Eqs. 4.2 and 4.3):

I =
∫

dω
A(ω)

T (ω)
=

2π

κR
g2N. (4.29)

Importantly, this expression is general for any form and strength of disorder. The final form of

this sum rule is similar to the well-established sum rule for the bare molecular system [215].

Note that Eq. 4.29 is presented in the low-temperature limit. For finite temperature effects, see C.

Therefore, experimental setups that enable the measurement of both absorption and transmission

spectra are deemed ideal for extracting accurate collective-light-matter coupling values.
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4.4 Conclusions

Our comprehensive investigation has unraveled the intricate relationship between molec-

ular disorder and VRS in molecular polaritons. We have derived precise analytical expressions

for absorption, transmission, and reflection spectra across various disorder distributions. Further-

more, our study introduces a generalized sum rule for determining the collective light-matter

coupling under any form of disorder. These findings not only clarify the nuanced behavior of

VRS amidst disorder but also establish a reliable framework for extracting light-matter coupling

parameters with high accuracy from experimental data. In practical terms, when the experimental

setup allows access to both transmission and absorption signals, the sum rule can be readily

applied. In situations where accessing both signals is not possible, researchers can leverage Eq.

4.2-4.4, coupled with the analytical forms of the molecular susceptibility outlined in Table 4.1,

to effectively fit their experimental results. Both these approaches ensure the extraction of the

correct value of g
√

N in the presence of disorder of any magnitude. Additionally, for scenarios

involving mild disorder, the simplified expressions provided in Table 4.3 offer a convenient

solution for data fitting. Furthermore, our study has unveiled a fascinating phenomenon associ-

ated with rectangular disorder – the emergence of narrow sidebands alongside a broad central

peak. This intriguing line narrowing, observed in the presence of significant disorder, suggests a

higher degree of coherence lifetime within the system. Such behavior is especially promising for

applications requiring long-lived coherences between the cavity and molecules, providing an

exciting avenue for future research in the realm of molecular polaritons.

Chapter 4, in full, is adapted from the material as it appears in “Extracting accurate

light-matter coupling from disordered polaritons,” by K. Schwennicke, N. C. Giebink, and J.

Yuen-Zhou, Nanophotonics (2024) [68]. The dissertation author was the primary investigator

and author of this paper.
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Chapter 5

Classical linear optics effects in molecular
polaritonics

5.1 Introduction

The interaction of matter with light drives numerous chemical, physical, and biological

processes, and typically lies within the “weak” coupling regime in nature. Here, light and

matter are considered distinct entities where the former perturbatively influences the latter. This

weak coupling is attributed to the rate of energy exchange between light and matter being slow

compared to their natural dissipation rates, and well-defined light absorption and emission events

can be identified. By confining the radiation field within a small mode volume, light and matter

can coherently exchange energy multiple times before the photon escapes, giving rise to the

“strong” coupling regime. In this regime, light and matter yield hybrid eigenmodes known as

polaritons.

The hybridization of light and matter excitations in crystalline solids outside of cavities

has been long known since the seminal works of Tolpygo [11] and Huang [12] on phonon-

polaritons and Agranovich [13] and Hopfield [14] on exciton-polaritons in the 1950s. It wasn’t,

however, until 1992 that Weisbuch [15] demonstrated that these strong coupling phenomena in

inorganic semiconductors could be enhanced with optical microcavities (this statement is not

always true, as recent work has shown that dielectric contrast between a bulk semiconductor

and its surroundings can give rise to effective polariton formation too [16]). A few years later,
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Lidzey [17] reported the same feat with excitons in disordered organic films. The study of strong

coupling for ensembles of molecular vibrations is much more recent [18, 19], yet serves as a

testament to the ubiquity of polaritonic phenomena across the electromagnetic spectrum.

Today, the burgeoning field of polaritonics shows promise in diverse applications ranging

from manipulating chemical reactivity in both ground [20, 21, 22, 23, 24] and excited states [25,

26, 27, 28, 29, 30, 31, 32, 216] to enhancing exciton transport [33, 34, 35, 36, 37, 38], facilitating

long-range energy transfer [39, 217, 40, 41, 42, 43, 44], enabling room temperature polariton

condensation [45, 46, 47, 48, 218, 49], altering organic photophysical dynamics [50, 51, 52, 53,

54, 219], and modifying phase transitions [55]. Despite these advancements, the field is still

marked by contradictory findings, with some studies reporting no polaritonic modification to

chemical reactivity [56, 57, 58, 59] and little to no modification to spin conversion rates [60, 220].

Furthermore, with respect to modification of phase transitions, recent reports find that the re-

scaling of the local temperature inside the cavity with respect to the temperature measured

outside the cavity is the dominant mechanism over the proposed mechanism of renormalization

of the material’s free energy [61, 62]. This mix of positive and negative results underscores the

nascent nature of the field and the need for further experimental and theoretical understanding,

as highlighted by recent perspectives [63, 64, 65].

In an attempt to deepen this understanding at the recent Strong Coupling with Organic

Molecules Conference (SCOM 2023 in La Jolla, California), an important discussion came

to the limelight as to the need of drawing a clear divide between phenomena that can be

understood solely through the language of classical optics, and those that go beyond this

description. Amidst this and similar discussions, a curious revelation has emerged: consistently,

classical optical methods, notably linear ones like transfer matrix methods [221, 222, 223,

224], elucidate many experimental findings [225, 226, 227], even in the realm of nonlinear

optics [228, 229, 43, 230, 231, 232]. This begs the question: Why does classical linear optics

elucidate phenomena attributed to molecular polaritons? Could it be that the language of cavity

quantum-electrodynamics is unnecessary under certain circumstances?
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This perspective endeavors to provide a succinct yet comprehensive, account of a class

of molecular polaritonic phenomena that can be easily understood through the lens of classical

optics, and in particular, of linear optics. Drawing from our own work [209] and seminal

works of Keeling and coworkers [208, 233], we begin by establishing a theoretical framework

for understanding linear polaritonic spectra in the limit N → ∞, where N is the number of

molecules coupled to each photon mode. In the regime where the polaritonic transmission and

bare molecular absorption spectra are well separated in frequency, we make a connection to

classical transfer matrix methods, demonstrating the agreement between the large N limit and

the classical linear optics. Finally, we connect this frequency domain picture to the dynamical

perspective offered by the recently developed Collective dynamics Using Truncated Equations

(CUT-E) method [234, 189].

We provide explicit examples where seemingly nontrivial polaritonic phenomena can be

easily explained with linear optics concepts. In the examples presented, it observed that both

the relative steady-state populations and short-time dynamics obtained by pumping polaritonic

systems with a broadband pulse, are identical to the situation of pumping the bare molecular

system outside of the cavity with a filtered laser pulse whose intensity profile matches the

polariton transmission spectrum. This observation cautions making claims of “polaritonic”

effects before optical filtering has been judiciously ruled out. We further argue that a large

number of nonlinear optical experiments can also be understood via optical filtering arguments,

albeit with the caveat that the corresponding transmission spectrum through which filtering

occurs is itself a (time-dependent) function of the molecular excitation dynamics. Finally, we

discuss the limitations of this approach, particularly in the limit of finite N (i.e., few-molecule

strong coupling), and in other situations that extend beyond this classical optics treatment of

molecular polaritons.
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Figure 5.1. Molecular polaritons and their spectroscopies: (a) Linear spectroscopy as trans-
mission, absorption, and reflection. (b) The molecular polariton problem, where anharmonic
degrees of freedom of a large number N of molecules are coupled to a single (harmonic) photon
mode can be regarded as a quantum impurity model. When N→ ∞, the reduced dynamics of the
photon can be computed exactly by replacing the molecular degrees of freedom with a surrogate
harmonic bath (Figure adapted from Ref. [209]).

5.2 Theory

5.2.1 Exact solutions of the polariton Hamiltonian

This section explores the scenario where N molecules are coupled to a single (harmonic)

cavity mode of frequency ωph. The relevant Hamiltonian is the Tavis-Cummings Hamiltonian,

extended to include the molecular vibrational degrees of freedom [181, 234, 209, 235]:

H = Hmol +Hph +V, (5.1)

where,

Hph = h̄ωpha†a, Hmol =
N

∑
i

Hi(qi,Qi), (5.2)

are the zeroth order bare cavity and molecular Hamiltonians respectively and

V =−h̄λ (a+a†)µ (5.3)
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is the dipolar light-matter interaction. Here a is the photon annihilation operator that satisfies

[a,a†] = 1, and Hi(qi,Qi) is the molecular Hamiltonian for the i-th molecule, depending on the

respective electronic qi and nuclear Qi degrees of freedom. In Eq. 5.3, µ = ∑i µi(qi,Qi) is the

molecular dipole operator and h̄λ =
√

h̄ωph
2ε0Vph

is the vacuum electric field. The scalar ε0 is the

vacuum permittivity and Vph is the cavity mode volume (hereafter, we consider for simplicity

the case where the molecular sample volume Vmol = Vph).

Typically, the number of molecules per cavity modes is N ≈ 107 for electronic strong

coupling [236] and N ≈ 1012 for vibrational strong coupling [237] (See Section D.1 for calcu-

lations). Considering the photon mode as the system and the molecular degrees of freedom as

the bath, the polariton setup can be mapped to a quantum impurity model with the impurity

(system) being coupled to a ‘large’ environment. Makri [238] has demonstrated that, in the limit

of an infinite bath size (N→∞), and starting from an uncorrelated thermal system-bath state, the

reduced system dynamics can be exactly obtained by replacing the complex anharmonic molecu-

lar bath with a surrogate bath of harmonic oscillators, Hmol → Heff
mol = ∑ j h̄ω jb

†
jb j, coupled to

the impurity (cavity mode), V →V eff =−(a+a†)∑ j h̄c̄ j(b j +b†
j), where c̄ j are the respective

effective couplings.

In recent work, we have generalized this result to any arbitrary uncorrelated stationary

initial state (not necessarily thermal) [209]. This mapping is a consequence of the central limit

theorem, and relies on the fact that the nth order bath correlation functions, for n > 2, decay with

increasing system size at a rate of O(N−1/2), given that the single molecule coupling strengths,

c̄i = O(N−1/2), a condition typically satisfied in the polariton problem [209]. This vanishing of

the higher-order correlations essentially translates to the cavity probing only the linear response

of the molecular bath. Owing to an argument by Fano, the linear response of an anharmonic

n-level system can be decomposed into the response of independent harmonic oscillators at

each transition frequency (see Eq. 5.6) [239, 240]. These transitions correspond to the harmonic

frequencies contributing to the surrogate bath [209, 241, 208].

59



Table 5.1. Molecular polariton linear spectra for arbitrary N and N→ ∞

Signal Arbitrary Na N→ ∞

A(ω) −κL[κ|D(R)(ω)|2 +2ℑD(R)(ω)]
κLωphℑχ(ω)

|ω−ωph+i κ

2 +
ωph

2 χ(ω)|2

T (ω) κLκR|D(R)(ω)|2 κLκR

|ω−ωph+i κ

2 +
ωph

2 χ(ω)|2

R(ω) 1+2κLℑD(R)(ω)+κ2
L|D(R)(ω)|2 1−

κL

[
κR+ωphℑχ(ω)

]
|ω−ωph+i κ

2 +
ωph

2 χ(ω)|2

aHere D(R)(ω) =−i
∫

∞

−∞
dteiωtΘ(t)〈[a(t),a†]〉 is the retarded Green’s function of the cavity.

5.2.2 Spectroscopic observables from the photon Green’s function

It can be shown that standard polaritonic linear spectroscopic observables can be ex-

pressed in terms of the retarded Green’s function of the cavity,

D(R)(ω) =−i
∫

∞

−∞

dteiωt
Θ(t)〈[a(t),a†]〉 (5.4)

(see Tab. 5.1), where 〈. . .〉 denotes a trace with respect to the initial system bath density matrix.

In the limit N→ ∞, the mapping discussed above reduces the polariton problem into one of the

linearly coupled harmonic oscillators: the originally harmonic cavity photon mode couples to the

surrogate harmonic bath, leading to readily obtainable analytical solutions [209, 208, 233, 68].

In the N→ ∞ limit, the frequency-resolved absorption, transmission, and reflection in

the first excitation manifold, under the rotating wave approximation (RWA) in the cavity-laser

interaction, are [209]:

A(ω) =
κLωphℑχ(1)(ω)

|ω−ωph + iκ

2 +
ωph

2 χ(1)(ω)|2
, (5.5a)

T (ω) =
κLκR

|ω−ωph + iκ

2 +
ωph

2 χ(1)(ω)|2
, (5.5b)

R(ω) = 1−A(ω)−T (ω). (5.5c)
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Here the cavity line width is κ = κL +κR, with the cavity decay rates into the left and right

photon continua denoted by κL and κR. The molecular linear susceptibility [240] is given by

χ
(1)(ω) = lim

γ→0+

1
h̄ε0Vmol

∑
y,z
[py− pz]

|〈z|µ|y〉|2
ωzy−ω− i γ

2
(5.6)

where Vmol is the volume of the molecular sample, |y〉 and |z〉 are the many-body eigenstates

of Hmol in Eq. 5.2, and py and pz are the corresponding initial populations. It is important to

note here that although Eqs. 5.5a, 5.5b, and 5.5c assume the RWA in the cavity-laser interaction

and a single photon mode interacting with the molecules, the implications hold beyond the RWA

and for a multimode cavity as Ćwik et al. [208] imply. The validity of this formalism for a

multimode cavity relies on the fact that, in the regime of N → ∞, the different cavity modes

do not couple [208, 36], allowing for mode-wise separation of the photon Green’s function,

D(R)
k (ω).

This formalism presented above is quite significant, given that, over the years, a variety

of computational methods have been developed for the simulation of the polariton spectra. These

include quantum optical methods based on input-output theory that require simplification of the

rich molecular complexity [242, 243, 244, 245], to models incorporating ab initio treatments, but

limited to a single or a few molecules within a cavity [246]. Eqs. 5.5a, 5.5b, and 5.5c essentially

demonstrate that linear polaritonic spectra can be computed directly using the molecular linear

susceptibility of the bare molecule outside the cavity, avoiding explicit simulations with N

molecules coupled to a photon mode. This idea is reminiscent of classical optical transfer matrix

methods, presented in the following section.

5.2.3 Connection to classical linear optics: Transfer matrix methods

The simplified dependence on the molecular linear susceptibility within Eqs 5.5a-5.5c

parallels classical optics treatments, particularly transfer matrix methods (TMM) [221, 222, 223].

A typical TMM expression for the transmission through a Fabry-Perot cavity of length L
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containing a dielectric molecular sample is

T (ω) =
TLTRe−α(ω)L

|1−√RLRRe−α(ω)L ei 4ωn(ω)L
c |2

, (5.7)

where TL,R and RL,R are the transmission and reflective of the left and right mirrors and α(ω) and

n(ω) are the frequency-dependent absorption coefficient and refractive index for the molecular

sample. Assuming that the cavity mirrors are highly reflective and the molecular absorptivity

rapidly decays away from the molecular resonance, the TMM expression for transmission near

the polariton frequencies approximates to:

T (ω)≈ TLTRωFSR
2

4π2|ω−mωFSR + i ωFSR
4π

(TL +TR)+
ω

2 χ(1)(ω)|2 , (5.8)

where ωFSR = πc
L , m is a positive integer, and χ(1)(ω) = [n(ω)+ i1

2
c
ω

α(ω)]2−1 is the linear

susceptibility of the molecular sample. By taking TL,RωFSR
2π

→ κL,R and mωFSR → ωph, and

ω

2 χ(1)(ω)→ ωph
2 χ(1)(ω), the quantum mechanical expression emerges (see Eq. 5.5b). This

agreement between TMM and the quantum treatment in the large N limit elucidates the success

of classical linear optics methods at modeling the molecular polariton spectra in the collective

strong coupling regime.

5.2.4 Polariton linear absorption as optical filtering

A closer inspection of Eqs. 5.5a and 5.5b reveals an intuitive relation,

A(ω) =
ωphℑχ(1)(ω)

κR
T (ω). (5.9)

This equation shows that absorption within the cavity is directly proportional to the product of the

bare molecular absorption ℑχ(1)(ω) outside of the cavity and the polariton transmission spectrum

T (ω). Viewed through the lens of linear optics (pun intended), the polariton transmission peaks

function as “optical filters” [32], selectively allowing radiation from select frequencies from
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outside to enter the cavity, where the molecules absorb based on their bare spectrum. This is

consistent with the work of Groenhof et al. which finds through molecular dynamics calculations

that the population transfer between polaritons and dark states is determined by the overlap

between the polaritonic and molecular absorption spectra [247].

5.2.5 Quantum dynamics perspective

The result that the polariton transmission peaks function as optical filters not only applies

to the linear polaritonic response, but also to all dynamical processes occurring before high-

order bath correlation functions become relevant [238]. In this context, this corresponds to all

molecular processes before relaxation from dark states to polaritons. We can understand this by

carefully examining the large N limit at the core of the derivation of Eq. 5.9. Here we do so using

our formalism called Collective dynamics Using Truncated Equations (CUT-E) [234], which in

the large N limit is equivalent to the formalism independently developed by Cui and Nitzan [248],

and whose implications are consistent with the works by the group of Keeling [233, 249].

CUT-E is a formalism that dramatically simplifies the quantum dynamics of molecular

polaritons by separating the light-matter coupling term into its collective and single-molecule

components [234, 189]. In the large N limit, the latter can be treated perturbatively, which gives

rise to a hierarchy of timescales where ultrafast collective effects O(g
√

N) are separated by much

slower single-molecule effects O(g), where g= λ ·µi is the single molecule light-matter coupling

strength. Notably, this hierarchy is preserved even in the presence of disorder (dCUT-E) [189].

The most important conclusion from CUT-E is that collective light-matter coupling operates

while molecules remain at their Franck-Condon (FC) configuration. Therefore, Rabi oscillations

are dominated by Rayleigh-like molecular processes, while Raman-like processes (emission and

absorption events that create phonons in the ground electronic state) become relevant only at

longer timescales (see Fig. 5.2). This observation is consistent with previous works by Spano

in the context of J-aggregates [250], and the works by Cui [248] and Keeling [233, 249] in the

context of molecular polaritons. Keeping the collective coupling g
√

N constant and finite (since

63



Figure 5.2. Collective and single-molecule coupling effects: Light-matter coupling is collectively
enhanced while molecules remain at their FC region, i.e., while inter-exciton coherence is
preserved. This implies that only Rayleigh-like processes are relevant in the large N limit (Figure
adapted from Refs. [234, 189]).

it is an experimental observable), the limit N→∞ is equivalent to g→ 0, and consequently leads

to the dismissal of single-molecule light-matter processes O(g) such as radiative pumping and

Raman scattering (an approximation referred to as zeroth-order CUT-E). This limit is valid for

Eqs. 5.5a-5.5c since the spectroscopic measurement is faster than single-molecule processes (∼

ns for the UV-visible and ∼ ms for the IR). Therefore, the cavity can solely probe Rayleigh-like

processes, and hence only the molecular linear susceptibility χ(1)(ω) (which is proportional

to the two-point correlation function of the molecules, and hence harmonic) contributes to the

polaritonic response [209] (See Section 5.2.1).

Under the assumptions discussed in the previous paragraph and in Section 5.2.1, Eq. 5.9

suggests that molecular dynamics triggered by pumping the polaritonic system with a linear

optical source can be reproduced by choosing the right linear laser pulse outside of the cavity.

In Section 5.3.3 we provide quantum dynamics simulations to demonstrate this. Crucially, in

the example mentioned, the polaritonic system is initiated with a broadband pulse, while the

bare molecular system is initiated with a pulse whose intensity profile mimics the polariton

transmission spectrum. In the bare molecular case, the shaped pulse initiates the same excited

state wavepacket that is created in-situ via Rabi oscillations for the broadband excited polaritonic
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case. This analysis indicates that, although changes in chemical dynamics between inside and

outside the cavity are observed when identical pulses are used (e.g., one of our recent works in

Ref. [189]), such differences vanish with the right choice of the laser pulse that prepares the bare

molecular system in the correct initial state (see Section 5.3.3).

It is worth mentioning that using an optically filtered linear source to excite the bare

molecules will not reproduce the ultrafast polariton dynamics unless the resulting light is also

coherent. However, it is well known that coherent and incoherent optical sources yield the same

result at steady state (in this context, steady-state occurs after decay to dark states but before

relaxation back to the polaritons), as pointed out by Brumer and Shapiro when demystifying

one-photon laser control schemes [251]. Therefore, whether one uses a shaped coherent pulse or

a filtered incoherent source, the same steady-state will be observed outside as compared to inside

the cavity.

5.3 Examples of collective polaritonic effects behaving as
optical filtering

This section employs a linear optics viewpoint to demystify cavity-mediated non-

statistical energy redistribution, control of photoreactivity, and short-time excited state dynamics.

These phenomena have been discussed in the literature as polaritonic phenomena of interest.

While we do not question their correctness, we want to demystify them in light of the very

simple insights discussed in the last section. In each instance, the limit N→ ∞ is considered,

enabling direct application of Eq. 5.9. As such, we find that we can obtain similar results outside

of the cavity by using a laser field that has the same intensity profile |E(ω)|2 as the polariton

transmission spectrum T (ω). As discussed in the previous Section, Eq. 5.9 not only pertains

solely to steady-state molecular populations but also implies that even the short-time (t < 1/g)

excited state dynamics coincide. In this Section, we numerically verify this result. It is important

to note, however, that these findings do not consider dynamics at longer times nor when strong
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coupling is attained with small N, caveats that will be discussed in subsequent sections.

5.3.1 Non-statistical energy redistribution
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Figure 5.3. Demystifying cavity-mediated “non-statistical” energy redistribution: Molecular
species α and β are modeled as two Voigt profiles centered at the same frequency. The two
species are simultaneously coupled with the same collective coupling strength g

√
N/ωph =

0.1 to a single resonant cavity mode with κ/ωph = 2κR/ωph = 2κL/ωph = 0.01. (a) In this
instance, α and β have the same Lorentzian (homogeneous) broadening (σα,β

L /ωph = 0.001),
but α features larger Gaussian (inhomogeneous) broadening (σα

G/ωph = 0.04) compared to β

(σβ

G/ωph = 0.025). Here, the spectral overlap between α and the polariton transmission T (ω)
spectrum is notably larger, and the result is that the ratio of the total energy absorbed by α

over that absorbed by β is ∆Eα/∆Eβ = 2.2. (b) Here α and β have the same inhomogeneous
broadening σ

α,β
G = 0.025, but α has larger homogeneous broadening, σα

L /ωph = 0.005, than
β , σ

β

L /ωph = 0.001. Despite the superficial similarity of their absorption bands outside of the
cavity due to the predominant inhomogeneous broadening, we find that ∆Eα/∆Eβ = 2.7, an
outcome that seems surprising at first glance. The inset (which is log scale) highlights that while
the centers of the molecular profiles are similar, the tails of α are considerably fatter, leading to
a larger spectral overlap with T (ω). Therefore, while scenarios (a) and (b) may seem distinct,
their outcomes are explained by the same underlying mechanism.

In this example, we consider a system where two molecular species couple to a single

cavity mode, and upon optical excitation of the cavity, the polaritons selectively funnel energy

into one of the species with a “non-statistical” energy redistribution that differs from what one

would expect if the same excitation acted directly on the molecules outside the cavity. This
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intriguing phenomenon has been originally studied with computational rigor by Groenhof and

Toppari [252] for a scenario involving up to 1,000 molecules of one species and revisited by

Pérez-Sánchez et al. [234] in the limiting case that the number of both molecules tends to infinity.

The intriguing observation in both studies is that even though excitation energy might start in one

of the species or in both, eventually it can funnel selectively into the molecule that features the

fastest dephasing. This phenomenon was explained with a time-domain interpretation where the

cavity and the molecules exchange energy, and the molecule with the fastest dephasing absorbs

energy at a faster rate, therefore returning less of its excitation energy back to the cavity at every

Rabi oscillation. There is no mistake in this interpretation, but there is a much simpler reasoning

behind the observations. The Rabi cycling of energy between molecules and cavity is just the

filtering of a broadband pulse through the polariton windows. At long times, a frequency-domain

picture clarifies the mechanism behind this energy funneling. From Eq. 5.9, for two distinct,

non-interacting molecular species α and β coupled to the same cavity mode, the collective

molecular absorption inside the cavity is

A(ω) = A(α)(ω)+A(β )(ω) (5.10)

where A(α,β )(ω) =
ωphℑχ(1α,β )(ω)

κR
T (ω) is the absorption by molecular species α,β in the cavity.

The insight from Eq. 5.10 clarifies the origin of the non-statistical energy redistribution, or

funneling, for this system: the molecular species exhibiting the largest overlap between its bare

absorption spectrum and the polariton transmission peaks absorbs the most energy.

Fig. 5.3 showcases two instructive theoretical scenarios that elucidate the connection

between the bare molecular spectral overlap with the polariton transmission spectrum and the

ratio of the total energy absorbed by molecular species α (∆Eα ) to the total energy absorbed by

molecular species β (∆Eβ ) upon broadband excitation:

∆Eα

∆Eβ
=

∫
dωℑχ(1α)(ω)T (ω)∫
dωℑχ(1β )(ω)T (ω)

, (5.11)
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In both instances, the species with a more significant spectral overlap with the polariton transmis-

sion spectrum exhibits greater energy absorption. Notably, Fig. 5.3b emphasizes the significance

of the Lorentzian (homogeneous) tails of the linear molecular absorption spectrum in this energy

absorption process (see inset). In passing, we note that a similar explanation also serves to

demystify the celebrated result by Houdré [194] on why for sufficiently strong light-matter cou-

pling, polaritons showcase the homogeneous (Lorentzian) but not the inhomogeneous (Gaussian)

broadening of their parent molecules: Gaussian tails die faster than Lorentzian ones so, for large

Rabi splittings, polaritons only overlap significantly with the latter.

Viewed through the lens of linear optics, polariton peaks function as optical filters,

determining the specific frequencies from the broadband pulse that are permitted into the cavity.

Consequently, the molecular species that overlaps more substantially with these frequencies

absorbs the greater amount of energy. In fact, if a linear optical source mimicking the intensity

profile of the polariton transmission spectrum is employed outside of the cavity, the ratio of the

energy absorbed by the two molecular species is the same outside of the cavity as it would be by

shining a broadband pulse onto the polaritonic system:

∆Eα

∆Eβ
=

∫
dωωℑχ(1α)(ω)|E(ω)|2∫
dωωℑχ(1β )(ω)|E(ω)|2 , (5.12)

where |E(ω)|2 ∝
T (ω)

ω
. This linear optics perspective offers a unified framework for interpret-

ing previous findings. In Ref. [252], the preferential energy channeling to hydroxyphenyl-

benzothiazole (HBT) over rhodamine (Rho) when the lower polariton is excited can be attributed

to the bare HBT linear absorption having more substantial overlap with the lower polariton

compared to that of Rho. Similarly, the observation that one molecular species predominates

in energy absorption over the other, despite apparent spectral similarities [234], is explained by

the dominant molecule having more pronounced tails in its absorption spectrum that align with

the polariton peaks. The complex dynamics at each Rabi cycling corresponds to transients of

the frequency filtering that the cavity polaritons enact on a broadband pulse. However, these
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transients are immaterial if one is asking for steady-state observables such as the energy redis-

tribution into molecules excitations of α and β . These insights underscore that in the limit of

N→ ∞, the relative steady-state molecular populations can be straightforwardly deduced from

the interplay between the linear polariton and the bare molecular spectra.

5.3.2 Changes in photoreactivity

Figure 5.4. Photoreactivity of molecular polaritons I: We consider a molecule that consists
of a ground electronic state g and two excited electronic states e1 and e2, where only the
g→ e1 transition is coupled to the cavity mode. The potential energy surfaces Vg/e1,2(Q) are
parameterized by a single nuclear vibrational coordinate Q. The inset illustrates, for zero disorder,
the spectral overlap between the linear polariton transmission T (ω) under strong coupling and
the bare molecular absorption ℑχ(ω) outside of the cavity. Note that the upper polariton (UP)
overlaps with states high in e2 character, while the lower polariton (LP) does not overlap with
any significant features of the bare molecular spectrum.

Here, we delve into changes in photoreactivity of a disordered ensemble of molecules

coupled to a single cavity mode, utilizing a similar d-CUT-E effective Hamiltonian that we

previously deployed [189] (see Fig. 5.4). Just like in the previous section, both inside and outside

the cavity, the system is excited with a broadband pulse facilitating a comparison of the excited

state population dynamics in both scenarios (see Fig. 5.5). In the absence of disorder (Fig. 5.5b),

initial observations suggest that strong coupling significantly alters photoreactivity compared to

the bare molecule scenario, as evidenced by an increased e2 to e1 population ratio Pe2(t)/Pe1(t)

at a time t ∼ 30 fs. As disorder increases (Figs. 5.5d and 5.5f), this population ratio gradually
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Figure 5.5. Photoreactivity of molecular polaritons II: Panels (a,c,e) depict the overlap between
the bare molecular absorption spectrum with the polariton transmission spectrum T (ω) under
strong coupling and a laser field with an identical intensity |E(ω)|2 across varying degrees of
molecular disorder σ . The in-cavity simulations were carried out with a collective light-matter
coupling of g

√
N = 0.816 eV. Panels (b,d,f) present the corresponding short-time excited state

dynamics for inside and outside the cavity. In the latter case both a shaped pulse E(t) = E0D(R)(t)
and a delta pulse E(t) = E0δ (t) are considered. Notably, the photoreactivity appears enhanced
in the cavity when compared to the delta pulse scenario; however, the dynamics align with
those observed using an external pulse shaped to match the polariton transmission spectrum’s
intensity profile. As molecular disorder increases, the dynamics for both in-cavity and shaped
external pulse scenarios converge with those observed using a broadband pulse externally. This
convergence is attributed to the increased spectral overlap between T (ω) and |E(ω)|2 with the
bare molecular absorption, mirroring the conditions of employing a broadband pulse externally.
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aligns with that observed outside the cavity.

Drawing from the insights gained in Section 5.3.1, in the disorder-free scenario, the

upper polariton (UP) transmission window coincides with a peak in the bare molecular spectrum

predominantly characterized by e2, while the lower polariton (LP) transmission overlaps slightly

with the low-energy tail of the molecular spectrum (see Fig. 5.4 inset). Eq. 5.9 aids in rationaliz-

ing the observed photoreactivity enhancement under strong coupling: the light that the cavity

selectively channels through the polaritonic transmission windows significantly overlaps with the

portion of the bare molecular absorption spectrum that is rich in product character. Additionally,

as disorder increases, the polariton transmission spectrum more closely aligns with the reactant

features of the bare molecular spectrum (see Figs. 5.5c and 5.5e), leading to a scenario where,

within the cavity, linear absorption mimics that of a broadband pulse outside the cavity. This

explains why our simulations inside the cavity tend towards the out-of-cavity scenario under

broadband excitation with increasing disorder.

These results are in alignment with recent reports in the literature. Thomas et al. [58] has

reported experimental results for the modification of the photoisomerization of spiropyran to

merocyanin under strong coupling, proposing that the change was due to a non-polaritonic effect

predominantly influenced by molecular absorption of ultraviolet radiation within the cavity. Con-

currently, Dutta et al. [32] explored the ultrafast photochemistry of 10-hydroxybenzo[h]quinoline

under strong coupling through molecular dynamics simulations and experiments, suggesting a

key role played by the congruence between bright polaritons and molecular dark states. Together

with our study, these findings indicate that at short times (t < 1/g), polaritons serve as selective

optical “filters” [32] that allow specific frequencies into the cavity, which are then absorbed by

the molecular (dark) states. As a result, when compared to excitation outside with a pulse whose

intensity profile significantly differs from the polariton transmission spectrum, the photoreactivity

changes under strong coupling because the available light within the cavity is now different

in terms of its frequency distribution juxtaposed to the optical pump outside the cavity. For

instance, if the polaritonic windows coincide with the bare molecular energy levels that lead
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to a desired reaction pathway, that pathway will be selectively enhanced due to the increased

relative absorption at those frequencies. Conversely, if the polaritonic windows overlap with less

reactive, or unreactive, bare molecular states, the photoreactivity can be suppressed.

Similarly, this linear optics viewpoint provides another way to explain the same strong

coupling control of photochemical processes through polaron decoupling [26, 27] in the N→ ∞

limit. This phenomenon was explained as a version of motional narrowing where the exchange

of energy between light and matter is so fast that the LP does not “feel” much coupling to

vibrations, with the consequence of suppressed reactivity. Calculations showed that the UP

does not enjoy such polaron decoupling to the same degree, presumably due to strong mixing

with high-lying vibronic states [233]. As an illustration, the inset of Fig. 5.4 shows that the LP

transmission peak is off-resonant from any bare molecular vibronic transitions, therefore little

to no absorption occurs so it is not surprising that no nuclear motion occurs upon excitation

of the LP, and we expect a decrease in photoreactivity [26, 27]. There is nothing wrong about

adjudicating the suppression of reactivity to polaron decoupling of the LP potential energy

surface, but we believe it is much simpler to understand it in terms of the lack of absorption

cross-section. Conversely, the UP is off-resonant from the dominant vibronic features, so we

do expect some polaron decoupling, but the UP is resonant with a product peak leading to an

enhancement in photoreactivity compared to exciting the reactant peak. Importantly, regardless

of interpretation, in both scenarios the same suppression or enhancement can be achieved outside

of the cavity by driving at the corresponding polariton frequencies: pumping at the LP frequency

implies off-resonant pumping of the system, so little photoreactivity is expected, while at the UP

frequency one is resonantly driving the product peak so an increase in photoreactivity is expected.

This selective enhancement or suppression of reaction pathways based on the alignment of

polaritonic and bare molecular states underscores the nuanced interplay between polaritonic

effects and bare molecular linear absorption, highlighting the importance of considering both in

the analysis of the excited state dynamics of polaritonic systems, as well as the importance of

providing the correct comparison between inside and outside of cavity scenarios. It is crucial to
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emphasize that the linear polaritonic response for systems under strong coupling with sufficiently

small N may not be accurately captured by Eq. 5.9. Consequently, polaritonic phenomena in

such cases cannot be described using an optical filtering viewpoint.

5.3.3 Short-time coherent dynamics

Until now, we have contrasted the short-time excited state dynamics under strong coupling

with those obtained by broadband excitation of the molecular ensemble outside the cavity.

However, as discussed in Section 5.2.5, we should observe exactly the same photoreactivity

between this setup and the strong coupling arrangement if we instead use an optical pulse

outside the cavity whose intensity profile has been “shaped” to mimic the polariton transmission

spectrum. As an example, let us consider the case where the polaritonic system is pumped with

a broadband pulse (a delta pulse in time). An appropriate choice for the optical pulse acting

of the bare molecules is the one where the time-dependent electric field matches the strong

coupling photon-photon correlation function, i.e., E(t) = E0D(R)(t). The value of the constant

field amplitude E0 is chosen to be low enough to ensure we remain in the linear regime. Our

simulations using the CUT-E method confirm that the photoreactivity of the bare molecules

triggered by E(t) is, up to a constant that depends on the value of E0, identical to that observed

inside the cavity (see Figs. 5.5b, 5.5d, 5.5f and Fig. 5.6). A common misunderstanding in

the field is that Rabi oscillations, which give rise to the Rabi splitting in the linear polaritonic

response, imply the existence of nonlinear optical processes. Here, we show that they can be

reproduced in the linear regime simply via constructive and destructive interference between the

excited state amplitudes promoted by the filtered pulse at different times (see Fig. 5.6). This

phenomenon has been well-known for a long time in the field of ultrafast spectroscopy as linear

wavepacket interferometry [253, 85]; in fact, nonlinear wavepacket interferometry has been

suggested as an alternative to provide real “pump-dump” control and detection of molecular

dynamics beyond the FC region [254, 255].

The presented example makes it evident that choosing the same initial state preparation
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Figure 5.6. Short-time coherent dynamics: Short-time excited dynamics inside the cavity versus
when the system outside of the cavity is driven with a time-dependent pulse E(t) that has the
same intensity profile as the polariton transmission spectrum. It is observed that the dynamics, up
to a constant, are identical, with both scenarios presenting Rabi oscillations in the e1 population
dynamics.

conditions inside and outside of the cavity when performing quantum dynamics simulations can

be misleading. Initial conditions outside the cavity must be sampled in a way that they account

for the filtering of the hypothetical laser acting on the polaritonic system; otherwise, erroneous

differences in the subsequent dynamics may occur.

5.4 Long-time polaritonic dynamics as optical filtering

As we have made clear throughout the discussion so far, the presented examples of linear

optics, or “optical filtering”, do not consider the long-time dynamics, i.e., t ∼ 1/g or t > 1/g.

At long times, Raman-like processes of O(g) begin to matter, leading to relaxation from the

incoherent dark states to coherent polaritons. This relaxation can be through the single-molecule

emission of a photon, i.e., radiative pumping, or through vibrational relaxation [256]. The

timescales of these processes are much slower than the Rabi oscillations.

Although we do not explicitly perform calculations that include these dark-state-to-

polariton processes, the timescale hierarchy described in Section 5.2.5 allows us to understand the

long-time dynamics as the alternation of two basic mechanisms that can be addressed separately:

(1) relaxation from polaritons to dark states as optical filtering, and (2) slow relaxation from dark
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states back to polaritons via radiative pumping and vibrational relaxation [257, 258]. We argue

that in the large N limit step (1) can be described by linear optics even if multiple instances of

step (2) have previously occurred, given that the latter is sufficiently slow to allow for “complete”

exciton decoherence before polaritons are repopulated. In the following sections, we explain

how decay to dark states to polaritons via radiative pumping can also be described as optical

filtering, which allows the description of slow O(g) processes as multiple instances of optical

filtering events.

5.4.1 Incoherent nonlinear spectroscopy of polaritons

The linear response implications of the quantum impurity model presented in Section 5.2

for N → ∞ hold for arbitrary initial states so long as the light and matter are decoupled and

stationary. As discussed in Subsection 5.2.1, this does not only include thermal states but can

be equally applied to nonequilibrium stationary states resulting from optical pumping. As we

shall argue, the stationarity condition can be taken liberally to mean “slowly varying with respect

to the timescale corresponding to the spectral resolution”. This is particularly relevant for a

large class of incoherent nonlinear spectroscopy experiments, where, upon optical pumping,

polaritons have relaxed into incoherent “dark states” away from the FC region, but have not fully

thermalized, provided that the timescale corresponding to the dynamics of the dark states τ� 2π

Γ
,

where Γ can be regarded as the minimum of the cavity and molecular dephasing linewidth.

The latter is a parameter that characterizes the decay rate of the photon-photon correlation

function and hence dictates the resolution of the acquired spectrum. Thus any dynamics slower

than the corresponding timescale, 2π

Γ
, can be treated adiabatically, ensuring the validity of the

stationarity condition within the spectral resolution of the polaritonic spectrum; in other words,

the molecular state can be regarded as frozen during that timescale. This means that the response

triggered by the probe pulse can be regarded as the linear response of this “stationary state” which

parametrically changes as a function of a coarse-grained waiting time τ [sampled at intervals

coarser than O(2π/Γ)] and can be characterized by an effective (time-dependent) molecular
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susceptibility χ(ω; t). Figs. 5.7 shows an illustration of an incoherent pump-probe experiment

after optical pumping, for a simplified three-level system. Here a, b, and c represent the system

at three different stationary non-thermal configurations at times t1 < t2 < t3. In the regime where

the time delay in the acquisition of the spectra, ∆t = ti− ti+1, is greater than τ , the equations

presented in Eq. 5.5 can be used to compute the spectroscopic observables. Thus the implications

of the optical filtering presented in the previous sections hold, but with an important caveat:

here the polariton windows change in time t, adiabatically adjusting to the χ(ω; t = nτ) at each

configuration. It is not surprising then that a wide range of experimental ultrafast nonlinear

spectroscopy studies [228, 229, 43, 230, 231, 232] successfully use transfer matrix methods with

an effective time-dependent χ(ω; t) (Eqs. 5.5, 5.7, and 5.8 ) to model their data.
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Figure 5.7. Incoherent nonlinear spectroscopy of polaritons: A representative example of a
polaritonic incoherent nonlinear spectroscopic experiment showing transmission, reflection, and
absorption for an ensemble of identical three-level systems with µ = µ12 +µ23 +µ13, at three
different configurations, (a) p1 = p2 = p3, (b) p1 = 0.45, p2 = 0.45, p3 = 0.1, (c) p1 = 0.7,
p2 = 0.2, p3 = 0.1, at times t1 < t2 < t3 respectively and ∆t� τ , obtained upon optical pumping.
The parameters used are: ωph = ω12,ω23 = 2ω12, κ = 0.1,γ = 0.3, and the collective light-
matter coupling

√
Ng = 1 (arbitrary frequency units). Configuration (a) represents the state

created upon optical pumping with complete saturation rendering the medium transparent to
the cavity. After a time of t2− t1, upon relaxation, the system moves to (b) where the |1〉 → |2〉
transition is still saturated; hence we see three polariton peaks. Note that the molecules are still
in a non-thermal stationary state. The system further relaxes to reach (c) at time t3 and we can
see all four polariton peaks appearing. The time-varying spectra have been computed using
Eq. 5.5 with a molecular susceptibility, χ(ω; t), that adjusts adiabatically to each configuration.
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5.4.2 Radiative pumping as a form of optical filtering

For large but finite N, both experimental results [39] and phenomenological models [257,

258] suggest that the rate of radiative pumping is proportional to the bare molecular emission into

polariton modes, modulated by the photon Hopfield coefficients. Therefore, photoluminescence

via radiative pumping can be thought of as a form of optical filtering of molecular emission

through polariton windows if photons quickly leak out of the cavity.

This phenomenon is analogous to bare molecular emission outside of a cavity. Despite

laser-induced fluorescence being technically a third-order nonlinear optical signal, owing to the

large separation of timescales between photoexcitation of the molecule and the formation of the

Stokes-shifted incoherent emissive state, the emission of the latter can be regarded as the linear

response triggered by the photonic vacuum. Similarly, in the cavity emission from the dark states

can be regarded as the linear response of the bare molecules triggered by the empty polariton

modes.

This optical filtering perspective of photoluminescence breaks down in two scenarios:

1) for small N, and 2) if the decay of polaritons to dark states is faster than cavity leakage, i.e.,

polaritons significantly overlap with the bare absorption of the molecules. We elaborate on the

latter case below.

5.5 What is beyond optical filtering: The nontrivial polari-
tonic effects

5.5.1 Vibrational relaxation and other nontrivial ultrafast phenomena

Experimental studies report that there is an alternative mechanism for the repopulation of

polaritons starting from incoherent dark states which is mediated by the matter component of

the polaritons; this is known as vibrational relaxation [259, 260, 261] and cannot be explained

as an optical filtering effect. However, this O(g) mechanism remains somewhat of a mystery,

as it seems uncompetitive with radiative pumping when N is large [256, 237, 262]. A possible
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resolution to this conundrum is to note that this value of N is at most a parameter that is made

to fit the coarse-grained model of a molecular ensemble coupled to a single-mode cavity, while

the real system contains many modes, albeit still at a giant ratio of ∼ 106 molecules per photon

mode. It could be that upon account of the photon dispersion, vibrational relaxation rates can

become competitive with radiative pumping, although this is not easy to demonstrate beyond the

weak vibronic coupling limit originally explored by Litinskaia and co-workers [256].

Similarly, a number of nonlinear spectroscopy experiments keep surprising us by reveal-

ing polaritonic effects in photochemistry and photophysics [217, 44, 37] (and their vibrational

counterparts [263, 232]) that do not seem to be understandable using optical filtering arguments.

They are surprising in that they occur in ultrafast timescales, yet cannot be explained with the

hereby presented framework of classical optics, so they must be due to single-molecule O(g)

light-matter couplings. The puzzle is: why are they manifesting in ultrafast timescales?

5.5.2 Few molecule strong coupling

In scenarios where strong coupling is achieved with small N, higher-order correlations

that go as O(N−1/2) can no longer be disregarded (see Section 5.2.1), rendering effects which

go beyond the linear optics and optical filtering perspective laid out here. From a dynamics

viewpoint, this means that the O(g) processes are no longer considered to be slow, and thus need

to be taken into account in the short-time dynamics. Promising environments for this regime are

plasmonic nano- and picocavites, where the small mode volumes allow for strong coupling with

a single or few molecules [264, 265, 266, 267], as well as specialized optical setups that do not

require such tiny mode volumes [268, 269].

5.5.3 Large number of excitations

The model presented in Sec 5.2 only considers the first excitation manifold, i.e. Nex/N→

0, where Nex is the number of excitations per cavity mode. In this limit it is highly unlikely

for a single molecule to be excited more than once. This is based on the assumption that the
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probe laser is of low intensity, as is the internal (circulating) field of the cavity. If either of

these conditions is violated, two interesting situations may occur: (1) higher-order molecular

susceptibilities, i.e. χ(i>1)(ω), become important and (2) phenomena that were of O(1/N) in

the first excitation manifold can now be magnified. An example of this is the radiative pumping

rate into an exciton-polariton condensate. The radiative decay is filtered by the polaritons and

stimulated by the number of excitations [270, 218, 49], whose rate now becomes of O(Nexc/N).

Notably, in the limit of Nexc ∼ N, photoluminescence can be faster than the dephasing rate and

the dynamics can no longer be separated into fast and slow components.

5.6 Conclusion and outlook

This perspective explores the linear optical behavior of molecular polaritons within the

collective regime, focusing on the implications of the large N limit. It is established that in this

limit, the molecular absorption inside a cavity solely depends on the overlap between the polariton

linear transmission and the bare molecular absorption spectrum. This re-evaluation of multiple

observations in the molecular polaritonics field suggests that as N→∞, polaritons fundamentally

function as optical filters, selectively allowing certain frequencies to enter the cavity and be

absorbed by the molecules. Through the examples presented, it is demonstrated how this linear

optics perspective can straightforwardly account for various polaritonic phenomena and that

similar outcomes can be replicated outside the cavity using appropriately tailored laser pulses.

This finding urges caution in attributing phenomena solely to “polaritonic” effects without first

thoroughly excluding the possibility of optical filtering.

This linear optical treatment of polaritons is exact in the asymptotic limit of N →

∞ and remains accurate for short times when N is large. However, it breaks down at long

times, especially as the role of O(g) processes becomes significant. Similarly, in systems

under strong coupling with a small number of molecules or with many excitations, the slow

relaxation from dark states to polariton begins to coincide with the short-time dynamics, further
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limiting the scope of the linear optical perspective. Finally, there is experimental evidence

for ultrafast single-molecule processes that cannot be reconciled. Thus, for both theorists and

experimentalists aiming to uncover polaritonic phenomena that transcend the realm of linear

optics, the focus should shift toward these regions of interest. This approach will not only expand

our understanding of polaritonic effects beyond the linear regime but also pave the way for

novel applications and insights into the complex interplay between light and matter under strong

coupling.

Chapter 5, in full, is adapted from the materials as it appears in “Classical linear optics

effects in molecular polaritonics” by K. Schwennicke, A. Koner, J. B. Pérez-Sánchez, and J.

Yuen-Zhou, in preparation (2024) [69]. The dissertation author was the primary investigator and

author of this paper.
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Chapter 6

Conclusion

This dissertation employs novel laser protocols and strong coupling to traverse the

challenges in molecular detection and modification that arise from traditionally weak light-matter

couplings. Here we employ laser driving setups to generate Aharonov-Bohm phases and pseudo-

magneto optical effects in molecular systems as well as a modified microwave-three wave mixing

protocol to generate a topological chiroptical spectroscopic technique for sensitize and robust

enantiomeric discrimination. Additionally, we demystify molecular disorder effects in molecular

polaritonics, as well as other “exotic” polaritonic phenomena. We show that in many cases the

polaritonic windows act as “optical” filters, implying that the same phenomena can be observed

in a bare molecular system if the correct filtered (or shaped) linear optical source is employed.

First, we proposed the use of elliptically polarized light to realize a molecular exciton

version of the Aharonov-Bohm effect in an isotropic ensemble of achiral homotetramers. The

generation of a nontrivial Aharonov-Bohm phase results in a nonzero circular dichroism signal.

This pseudo-magnetic effect is maximized when the Aharonov-Bohm phase is Φ = π

2 ,
2π

3 .

Unfeasible static magnetic field strengths would be required to observe such large Aharonov-

Bohm phases in electronic systems of similar size to the homotetramers we studied. This

work highlights the advantage of using time-varying electric fields and electric transition dipole

moments in place of static magnetic fields in certain scenarios, supporting further exploration

into pseudo-magneto optical effects in molecular systems.
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Next, we presented a modified microwave three-wave mixing setup to realize enantios-

elective topological frequency conversion. We derived that the resulting chiroptical signal is

proportional to the following topologically invariant Chern number: CR
L =−2sgn(m)sgn(OR).

Since OR =−OS for the R- and S-enantiomers, that toplogical invariant is enantiomer-dependent.

Due to its topological nature, the chiroptical signal is robust to perturbative changes to the

molecular structure and electric field parameters. Therefore, we propose that this technique can

be used for robust and sensitive measurement of enantiomeric excess. This work is the first to

show the explicit dependence of a chiroptical spectroscopic signal on a topological invariant,

providing an exciting new area of interest for further conceptual connections between topological

phases of matter and molecular chirality.

We then transition from classical optical sources to cavity quantum electrodynamics

and strong coupling. We began by studying molecular disorder effects on the linear response

of molecular polaritons. For weak disorder, compared to the collective light-matter coupling,

we derived analytical expressions for the absorption, transmission, and reflection spectra for

Lorentzian, Gaussian, and rectangular disorder. Notably, for rectangular disorder, we observed

the emergence of two narrow side bands in the presence of strong disorder. These sharp

peaks appear to arise due to the sharp edge of the rectangular distribution, but our numerical

calculations show that this edge does not need to be discontinuous and therefore could be

realizable in realistic systems. Additionally, we derive a novel sum rule by integrating the ratio of

the polariton absorption and transmission spectra. This resulting signal is directly proportional to

the square of the collective light-matter coupling and has no dependence on the strength or type

of disorder. Thus, this sum rule offers a generalized method for extracting accurate collective

light-matter coupling values from experiments.

Finally, we show that in the thermodynamic limit, the polariton absorption spectrum is the

product of the bare molecular absorption and polariton transmission spectra. This realization led

to a remarkable revelation: the polariton transmission windows act as “optical filters” that dictate

what radiation frequencies enter the cavity which are then absorbed by the molecules following
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their intrinsic absorption spectra. This implies that the same “polaritonic” effect can be observed

outside of the cavity if the right linear optical source, i.e., one whose intensity profile mimics

the polariton transmission profile, is chosen. We provide non-statistical energy redistribution,

changes in photoreactivity, and short-time coherent dynamics as explicit examples of this

statement. This classical linear optics treatment is exact in the limit that the number of molecules

and accurate for large, but finite, number of molecules at short times (t . 1/g). In the latter case,

even at long times certain phenomena can be explained through an optical filtering lens. For

example, relaxation from the incoherent dark states to the coherent polaritons through radiative

pumping is proportional to the bare molecular emission into the polariton modes modulated by

the photon Hopfield coefficients. Additionally, if the incoherent dynamics of the dark states is

slow compared to the decay of the photon-photon correlation function, the dynamics of the dark

state population can be treated adiabatically. In this scenario, the bare molecular susceptibility is

replaced by an effective, time-dependent, molecular susceptibility. This observation, along with

previous statements in this paragraph, demystifying why classical techniques like transfer matrix

methods consistently elucidate phenomena attributed to molecular polaritonics. We do concede

that this optical filter perspective breaks down for few molecule strong coupling and when

there is a large number of excitations inside the cavity since in these scenarios the distinction

between “short-” and “long-time” dynamics is blurred. Furthermore, our approach cannot rectify

experimental observations of ultrafast relaxation from dark state to polaritons (possibly due to

vibrational relaxation). Thus our work highlights that both experimental and theorist should shift

their focus to these ultrafast dynamics, and the scenarios discussed prior, to uncover truly novel

polaritonic phenomena that transcend the realm of classical linear optics.
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Appendix A

Supplementary Information: Optical ac-
tivity from the exciton Aharonov-Bohm
effect: A Floquet engineering approach

A.1 Isotropic average of circular dichroism signal: Monte
Carlo integration

Here we present the Monte Carlo integration method used to compute the isotropic CD

spectrum, followed by a discussion on the convergence of the spectrum. To reiterate, the isotropic

CD spectrum is defined in the main text in Eq. 2.19, which we rewrite as:

〈S(ω)〉= 〈δW (ω)〉
〈W+(ω)〉+ 〈W−(ω)〉 (A.1)

where

〈δW (ω)〉= 1
8π2

∫ 2π

0

∫ 2π

0

∫
π

0
dχdψdθδW (ω; χ,ψ,θ)sinθ (A.2a)

〈W±(ω)〉= 1
8π2

∫ 2π

0

∫ 2π

0

∫
π

0
dχdψdθW±(ω; χ,ψ,θ)sinθ . (A.2b)

Consider the average of a function f (x,y,z) over the interval x ∈ [a,b],y ∈ [c,d],z ∈ [l,m]:

fav =
1
V

∫ b

a

∫ d

c

∫ m

l
dxdydz f (x,y,z), (A.3)
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where V = (b− a)(d− c)(m− l) is the volume that the function is integrated over. One can

approximate fav by randomly selecting a finite number N of points {(xi,yi,zi)} within V and

then find the average of the value of f (xi):

fav ≈
1
N

N

∑
i=1

f (xi,yi,zi). (A.4)

As N approaches infinity, the value of Eq. (A.4) approaches that of Eq. (A.3). Then the integral

can be calculated as:

∫ b

a

∫ d

c

∫ m

l
dxdydz f (x,y,z) = lim

N→∞

V
N

N

∑
i=1

f (xi,yi,zi). (A.5)

For our calculations we set f (χ,ψ,θ) = δW (ω; χ,ψ,θ)sinθ and selected a finite number N

points {(χi,ψi,θi)}. Using the prescription of Eq. (A.5), we can approximate Eq. (A.2a) as:

〈δW (ω)〉 ≈ 〈δW (ω)〉(N) =
1

8π2
V
N

N

∑
i=1

δW (ω; χi,ψi,θi)sinθi, (A.6)

where V = 4π3. To test for optimal values of N, we computed the 〈δW (ω)〉 when ∆φ = π

2 for

increasing values of N (in increments of 100). We compared the new spectrum with the previous

spectrum by calculating the relative error:

〈∆2(N)〉= 1
k

k

∑
i=1

[
〈δW (ωi)〉(N)−〈δW (ωi)〉(N−100)

]2
, (A.7)

where N = 100z+ 10 and z is a positive integer, k is the number of different frequencies that

the CD signal was calculated at, and 〈δW (ωi)〉(N), 〈δW (ωi)〉(N−100) are the computed isotropic

values at frequency ωi using N and N−100 points in the Monte Carlo Integration. The quantity√
〈∆2(N)〉 is the L2-norm of the difference between the two spectra.

Since the absorption spectrum is sparse, we calculated Eq. (A.7) by only sampling

two different sets of frequencies ωi, each spanning 50cm−1, where one set was centered at
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Figure A.1. Convergence of Monte Carlo integration. Plot of the relative error of the numerical
isotopic average of the CD signal,

√
〈∆2(N)〉, as a function of N random molecular aggregate

orientations. The relative error falls below the tolerance value 4× 10−4. Hence we choose
N = 2000 for our calculations.

ωE and the other at ωF . We selected 50 distinct frequencies from each set; therefore, in our

calculations k = 100. As seen in Fig. A.1, the calculations are already converged at N = 2000,

when
√
〈∆2(N)〉 ≤ 4×10−4. We then approximate A.2b, employing the same procedure as Eq.

A.6 with N = 2000. Finally, we then substitute the calculated values for 〈δW (ω)〉 and 〈W±(ω)〉

into Eq. A.1 to calculate the CD spectrum presented in Fig. 2.5 in the main text.
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Appendix B

Supplementary Information: Enantioselec-
tive topological frequency conversion

B.1 Rotational eigenstates

Here we present the low angular momentum eigenstates of the asymmetric top. For

completeness, we reintroduce the asymmetric top Hamiltonian

H0 = AJ2
a +BJ2

b +CJ2
c , (B.1)

where Ja, Jb, Jc are the angular momentum operators with respect to the principal axes â, b̂,

ĉ, and A > B > C are the corresponding rotational constants. The B = C case corresponds to

a prolate top with eigenstates labeled |J,K,M〉, where J = 0,1,2... is the rotational quantum

number and M,K = −J,−J + 1,−J + 2, ...,J are the quantum numbers that characterize the

projection of the total angular momentum along the a-principal axis and z-laboratory-fixed axis.

The eigenstates of the asymmetric top Hamiltonian can be expressed as superpositions of the

prolate top eigenstates as follows:

|J,τ,M〉= ∑
K

AJ,M
K (τ)|J,K,M〉. (B.2)

Note that the quantum numbers J, M are conserved by H0, and τ serves as the quantum number to

differentiate between states with the same J and M. The eigenstates of Eq. B.1 with a rotational
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quantum number of J = 0 or J = 1 are

|0,τ = 1,0〉 ≡ |0,K = 0,0〉,

|1,τ = 1,M〉 ≡ |1,K = 0,M〉,

|1,τ = 2,M〉 ≡ 1√
2
|1,K = 1,M〉− 1√

2
|1,K =−1,M〉,

|1,τ = 3,M〉 ≡ 1√
2
|1,K = 1,M〉+ 1√

2
|1,K =−1,M〉, (B.3)

where M =−1,0,1 [165]. In the main text, we do not couple the states |1,τ = 1,M〉 to others,

and thus ignore them.

B.2 Change of basis

We present the necessary change of basis to obtain the effective Hamiltonian presented

in Eq. 3.8 in the main text. We first introduce |2,B〉 = 1√
2
(|2,1〉+ |2,−1〉) and |2,D〉 =

1√
2
(|2,1〉− |2,−1〉), which we refer to as the “bright” and “dark” state respectively. It is easy

to see that bright state couples to |1,0〉 and |3,0〉, while the dark state is uncoupled (see Eq. 7).

Ignoring the dark state, the Hamiltonian in the rotating frame becomes

H R,S(t) =
1
2


−2h̄δ −µ

R,S
b√
3
E21(t) − iµR,S

c√
3

E31(t)

−µ
R,S
b√
3
E21(t) 0 −µ

R,S
a
2 E32(t)

iµR,S
c√
3

E31(t) −µ
R,S
a
2 E32(t) 2h̄δ

 (B.4)

In the complex basis |+Π〉, |0〉, |−Π〉, where —±Π〉= 1√
2
(|1,0〉± i|3,0〉) and |0〉= |2,B〉, Eq.

B.4 becomes

H R,S(t) =−µ
R,S
b E21(t)

2
√

3h̄
Lx−

µ
R,S
a E32(t)

4h̄
Ly

+
µ

R,S
c E31(t)
2
√

3h̄
Lz−

δ

2h̄
(L2

++L2
−) (B.5)
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where Lx =
h̄√
2


0 1 0

1 0 1

0 1 0

, Ly =
h̄√
2


0 −i 0

i 0 −i

0 i 0

, Lz = h̄


1 0 0

0 0 0

0 0 −1

 are the angular mo-

mentum operators for a spin-1 particle and L+ = h̄
√

2


0 1 0

0 0 1

0 0 0

, L− = h̄
√

2


0 0 0

1 0 0

0 1 0

 are

the corresponding ladder operators. Eq. B.5 is the effective Hamiltonian used to study the

topology of the system presented in the main text.

B.3 Adiabatic perturbation theory

For completeness, we briefly review adiabatic perturbation theory. Let

|ψ̃(t)〉= ∑
l

c̃l(t)|εl(t)〉 (B.6)

be the solution of the time-dependent Schrödinger equation (TDSE) ih̄∂t |ψ̃(t)〉= H (t)|ψ̃(t)〉,

where {|εl(t)〉} are the adiabatic eigenstates satisfying H (t)|εl(t)〉= εl(t)|εl(t)〉. Employing

the TDSE, the following differential equation is obtained for c̃l(t),

ih̄∂t c̃l(t) = εl(t)c̃l(t)− ih̄∑
l′
〈εl(t)|ω ·∇ωt |εl′(t)〉c̃l′(t), (B.7)

where ω = (ω1,ω2). Ignoring non-adiabatic terms in Eq. B.7 for l′ 6= l,

c̃l(t)≈ c̃l(0)e−i
∫ t

0 dt ′[εl(t ′)−ih̄〈εl(t ′)|ω·∇ωt |ε l(t ′)〉]/h̄. (B.8)

Hereafter, we assume that the system is initialized in the l−th adiabatic state |ψ̃(0)〉= |εl(0)〉.

Eq. B.8 is a statement of the adiabatic theorem and implies that the system shall remain in the

l−th adiabatic state, |ψ̃(t)〉 ≈ (phase factor)×|εl(t)〉.
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However, we are interested in O(h̄ω) non-adiabatic corrections to Eq. B.8. We rewrite

c̃l′ = h̄ω c̃l(t)al′(t) for l′ 6= l,

|ψ̃(t)〉= c̃l(t)[|εl(t)〉+ ∑
l′ 6=l

h̄ωal′(t)|εl′(t)〉], (B.9)

and insert this ansatz into Eq. B.7,

εl(t)c̃l(t)al′(t)h̄ω +O(h̄2
ω

2) = h̄ωεl′(t)c̃l(t)al′(t)− ih̄〈εl′(t)|ω ·∇ωt |εl(t)〉c̃l(t)+O(h̄2
ω

2),

(B.10)

where we used ∂tal′(t) = h̄ω ·∇ωtal′(t). Solving for al′(t), the O(h̄ω) wavefunction is,

|ψ̃(t)〉= c̃l(t)

[
|εl(t)〉− ih̄ ∑

l′ 6=l

|εl′(t)〉〈εl′(t)|ω ·∇ωt |εl(t)〉
εl(t)− εl′(t)

]
. (B.11)

B.4 Deriving Eq. 3.12a and 3.12b

Here, 〈ψ̃(t)|∂ωitH (t)|ψ̃(t)〉 is derived when the system is initiated in the adiabatic state

|εl(0)〉 and evolved near the adiabatic limit. Employing Eq. B.11 for |ψ̃(t)〉, and making the

change of variables (ω1t,ω2t) = (θ1,θ2), the following expression to O(h̄ω) is obtained:

〈ψ̃(t)|∇ωtH (t)|ψ̃(t)〉= 〈εl(θ)|∇θH (θ)|εl(θ)〉

−
{

ih̄ ∑
l′ 6=l

〈εl(θ)|∇θH (θ)|εl′(θ)〉〈εl′(θ)|ω ·∇θ |εl(θ)〉
εl(θ)− εl′(θ)

+h.c
}

= ∇θ εl(θ)−
{

ih̄〈∇θ εl(θ)|ω ·∇θ |εl(θ)〉+h.c]
}

= ∇θ εl(θ)− h̄ω× v̂⊥Fl(θ), (B.12)
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where ω× v̂⊥ = (ω2,−ω1) and Fl(θ) = i〈∂θ1εl(θ)|∂θ2εl(θ)〉+h.c. is the Berry curvature of the

l−th band.

B.5 Analytical evaluation of Chern numbers

Here, we analytically compute the Chern numbers for the bands of the system in the main

text when δ = 0. We follow the procedure described in [271]. We first consider the three-level

Hamiltonian:

H (θ) = ∑
s=±1

sh3(θ)|s〉〈s|+
{
[h1(θ)− ish2(θ)]|s〉〈0|+h.c.

}
, (B.13)

where h1(θ), h2(θ), h3(θ) are real valued. Next, we invoke the unitary transformation U(θ) =

∑s=0,±1 eisα(θ)|s〉〈s|, such that tanα(θ) = h2(θ)/h1(θ), to define the real-valued Hamiltonian,

H ′(θ) =U(θ)H (θ)U†(θ)

= ∑
s=±1

sh3(θ)|s〉〈s|+
√

h2
1(θ)+h2

2(θ)(|s〉〈0|+h.c.). (B.14)

A set of eigenstates for H ′(θ) can be defined as |ε ′l (θ)〉= ∑s=0,±1 cl,s(θ)|s〉, where the coeffi-

cients cl,s(θ) are real. The eigenstates of H (θ) are

|εl(θ)〉=U†(θ)|ε ′l (θ)〉= ∑
s=0,±1

cl,s(θ)e−isα(θ)|s〉. (B.15)

The Berry connection for the l−th band is

Al(θ) = i〈εl(θ)|∇θ |εl(θ)〉

= ∇θ α(θ) ∑
s=±1

sc2
l,s(θ), (B.16)
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Figure B.1. Contour integration procedure to evaluate Chern number CR,S
l . The closed curve

∂r bounds both the pink region, which contains the singularity of AR,S
l (θ), and the blue region,

which is rest of the torus. To apply Stokes theorem, we integrate counter-clockwise (red curve)
along ∂r to find the surface integral for the pink region, and clockwise along ∂R (green curve)
to find the surface integral for the blue region. The procedure can be extended to an arbitrary
number of singularities of AR,S

l (θ).

where we used the fact that ∑s=0,±1 cl,s(θ)∇θ cl,s(θ) =
1
2∇θ ∑s=0,±1 |cl,s|2 = 0. The Berry

curvature is defined as the z-component of the curl of the Berry connection, i.e., Fl(θ) =

(∇θ ×Al(θ)) · ẑ. Note that there are singularities in the Berry connection when ∇θ α(θ) =

h1(θ)∇θ h2(θ)−h2(θ)∇θ h1(θ)

h2
1(θ)+h2

2(θ)
is undefined; they occur at the critical points where h1(θ) = h2(θ) = 0.

Considering Eqs. 3.8 and 3.9 from the main text and taking δ = 0, the values hR,S
1 (θ),

hR,S
2 (θ), hR,S

3 (θ) are

hR,S
1 (θ) =−µ

R,S
b E21 sin(θ1)

4h̄
√

6
,

hR,S
2 (θ) =−µ

R,S
a E32 sin(θ2)

5h̄
√

2
,

hR,S
3 (θ) =

µ
R,S
c

2h̄
√

3
E31[m− cos(θ1)− cos(θ2)], (B.17)

and the aforementioned singularities occur at the θ = (θ1,θ2) values θ 00 = (0,0), θ 0π = (0,π),

θ π0 = (π,0), and θ ππ = (π,π). Physically, these critical points indicate geometric conditions

where certain components of light-matter coupling vanish.

The Chern number for the R− and S− enantiomer is proportional to the surface integral
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of the corresponding Berry curvature over the torus T,

CR,S
l =

1
2π

∫
T

dθFR,S
l (θ). (B.18)

Using Stokes theorem, it can be written as a contour integral of the Berry connection; however,

the singularities must be removed. To motivate the general procedure, first consider the case

where the Berry connection AR,S
l (θ) contains only one singularity. The curve ∂r can be drawn,

such that it defines an infinitesimal region containing the singularity (region I) and the rest of the

torus (region II) (see Fig. B.1). Applying a gauge transformation |εR,S
l (θ)〉 → eiφ R,S

l (θ)|εR,S
l (θ)〉

in region I can remove the singularity, AR,S
l (θ)→ A′R,Sl (θ) = AR,S

l (θ)−∇θ φ
R,S
l (θ), while the

Berry curvature is unaffected [272, 271]. Taking ∇θ φ
R,S
l (θ) = AR,S

l (θ) achieves this desired

result. The Chern numbers can then be written as the summation of contour integrals for each

region:

CR,S
l =

1
2π

∫
T

dθFR,S
l (θ)

=
1

2π

∮
∂r

dθ ·A′R,Sl (θ)− 1
2π

∮
∂R

dθ ·AR,S
l (θ)

=
1

2π

∮
∂r

dθ · [AR,S
l(θ)−∇θ φ

R,S
l (θ)]− 1

2π

∮
∂R

dθ ·AR,S
l (θ)

=− 1
2π

∮
∂r

dθ ·∇θ φ
R,S
l (θ)

=− 1
2π

∮
∂r

dθ ·AR,S
l (θ). (B.19)

In going from the first to the second line, we applied Stokes’ theorem in region I by traversing ∂r

in a counterclockwise fashion, and in region II by doing so in a clockwise way (see Fig. B.1).

If the Berry connection AR,S
l (θ) contains multiple singularities θ i j, then local gauge

transformations must be carried out in multiple regions to remove all of them. Then the Chern
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number results in

CR,S
l =−∑

i j

1
2π

∮
∂ri j

dθ ·AR,S
l (θ) (B.20)

where the curves {∂ri j} enclose an infinitesimal region around each of the singularities θ i j.

Therefore, the Chern number can be calculated by studying the behavior of AR,S
l (θ) near the

singularities.

Let q = (q1,q2) be a small displacement from the point θ i j. Since sin(x) ≈ x and

sin(π + x)≈−x as x→ 0, then

α
R,S(θ 00 +q)≈ β

R,S,

α
R,S(θ 0π +q)≈−β

R,S,

α
R,S(θ π0 +q)≈−β

R,S,

α
R,S(θ ππ +q)≈ β

R,S, (B.21)

where tanβ R,S = 4
√

3µ
R,S
a E32q2

5µ
R,S
b E21q1

. The gradients ∇qαR,S(θ) near the critical points can be readily

evaluated in polar coordinates, |q|eiγ = q1 + iq2,

∇qα
R,S(θ 00 +q) =−∇qα

R,S(θ π0 +q)

=−∇qα
R,S(θ 0π +q)

= ∇qα
R,S(θ ππ +q)

≈ 1
|q|

(4
√

3µ
R,S
a E32)(5µ

R,S
b E21)

(4
√

3µ
R,S
a E32)2 sin2

γ +(5µ
R,S
b E21)2 cos2 γ

γ̂. (B.22)

The line integral of ∇qαR,S(θ 00 +q) over a small circle in the limit when |q| → 0,
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∮
|q|→0

dq ·∇qα
R,S(θ 00 +q)

=
(∫ π/2−

0
dγ +

∫ 3π/2−

π/2+
dγ

+
∫ 2π

3π/2+
dγ

) (4
√

3µ
R,S
a E32)(5µ

R,S
b E21)

(4
√

3µ
R,S
a E32)2 sin2

γ +(5µ
R,S
b E21)2 cos2 γ

=
(∫ sgn[(µR,S

a E32)(µ
R,S
b E21)]∞

0
dx+

∫ sgn[(µR,S
a E32)(µ

R,S
b E21)]∞

−sgn[(µR,S
a E32)(µ

R,S
b E21)]∞

dx

+
∫ 0

−sgn[(µR,S
a E32)(µ

R,S
b E21)]∞

dx
) 1

1+ x2

=2πsgn[(µR,S
a E32)(µ

R,S
b E21)]. (B.23)

In the second line, we split the integral into three parts, noticing that the integral in the re-

maining infinitesimal regions around γ = π/2 and γ = 3π/2 vanish given that the integrand is

finite,
∫ π/2+

π/2− dγ(·) = ∫ 3π/2+

3π/2− dγ(·) = 0. In the third line, we let x = 4
√

3µ
R,S
a E32

5µ
R,S
b E21

tanγ, and dx =

4
√

3µ
R,S
a E32

5µ
R,S
b E21

sec2 γdγ and recognized that x→ sgn[(µR,S
a E32)(µ

R,S
b E21)]∞ as γ→ (π/2)−,(3π/2)−

and x→−sgn[(µR,S
a E32)(µ

R,S
b E21)]∞ as γ → (π/2)+,(3π/2)+.

The procedure of Eqs. (B.22) and (B.23) can be repeated for the other critical points,

yielding,

∮
|q|→0

dq∇qα
R,S(θ 0π +q) =−2πsgn[(µR,S

a E32)(µ
R,S
b E21)],∮

|q|→0
dq∇qα

R,S(θ π0 +q) =−2πsgn[(µR,S
a E32)(µ

R,S
b E21)],∮

|q|→0
dq∇qα

R,S(θ ππ +q) = 2πsgn[(µR,S
a E32)(µ

R,S
b E21)]. (B.24)

Using Eqs. B.16 and B.20, the Chern number for the l-th band is
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Table B.1. Example Chern number calculation. Shown are the values of the |s =±1〉 amplitudes
|cR,S

U,s(θ 00)|2 for the upper band eigenstate at the singularity points θ i j for |m|< 2. Using these

values and Eq. B.25, we find that CR,S
U = 2sgn[m(µR,S

a E32)(µ
R,S
b E21)(µ

R,S
c E31)].

|cR,S
U,s(θ 00)|2 |cR,S

U,s(θ 0π)|2 |cR,S
U,s(θ π0)|2 |cR,S

U,s(θ ππ)|2

s = 1 1
2 − 1

2sgn[(µR,S
c E31)]

1
2 +

1
2sgn[m(µR,S

c E31)]
1
2 +

1
2sgn[m(µR,S

c E31)]
1
2 +

1
2sgn[(µR,S

c E31)]

s =−1 1
2 +

1
2sgn[(µR,S

c E31)]
1
2 − 1

2sgn[m(µR,S
c E31)]

1
2 − 1

2sgn[m(µR,S
c E31)]

1
2 − 1

2sgn[(µR,S
c E31)]

CR,S
l =−∑

i j

1
2π

∮
∂ri j

dθ ·AR,S
l (θ)

=−sgn[(µR,S
a E21)(µ

R,S
b E32)] ∑

s=±1
s[|cR,S

l,s (θ 00)|2

−|cR,S
l,s (θ 0π)|2−|cR,S

l,s (θ π0)|2 + |cR,S
l,s (θ ππ)|2] (B.25)

For |m|< 2 the Chern numbers for the upper, middle, and lower adiabatic states can be

seen to yield,

CR,S
U = 2sgn[m(µR,S

a E32)(µ
R,S
b E21)(µ

R,S
c E31)],

CR,S
M = 0,

CR,S
L =−2sgn[m(µR,S

a E32)(µ
R,S
b E21)(µ

R,S
c E31)]. (B.26)

For |m|> 2, all CR,S
l = 0. For the benefit of the reader, Table B.1 provides an example calculation

of the upper band Chern number CR,S
U for |m|< 2.

B.6 Laser shot-noise

The laser shot noise is defined as the width of the photon distribution of the driving field.

In the main text, the laser field strength is assumed to be approximately E = 10−9 a.u., or 500 V
m .
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Assuming that the laser-beam waist area is A = 1cm2, its power is given by,

P =
cAε0E2

8π

=
3×108 m

s ×1cm2× 1m2

1002cm2 ×8.85×10−12 C2

J·m × (500 V
m)2

8π

= 3mW (B.27)

where c is the speed of light and ε0 is the permittivity of free space. The frequencies of the

molecular transitions in the main text are on the order of v = 10GHz. Then the expected number

of photons produced by the laser after a long enough time t∗ = 2000×2π/ω2 which guarantees

TFC is

N =
Pt∗

hv
=

3×10−3W×8×10−3s
6.63×10−34J·s×10×109s−1 = 4×1018 (B.28)

The photon distribution is taken to be Poissonian. The standard deviation of this distribution is
√

N, so the laser shot noise is
√

N ∼ 109.
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Appendix C

Supplementary Information: Extracting
accurate light-matter coupling from disor-
dered polaritons

C.1 Sum rule for finite temperature

From Eqs. 4.2 and 5.5b, we have that

I =
∫

dω
A(ω)

T (ω)
=

ωph

κR

∫
dωχ

′′(ω) (C.1)

From Eq. 4.5, for N two-level systems coupled to a single cavity mode at a given temperature T ,

Eq. C.1 becomes:

I =
i

κR
lim

γ→0+

N

∑
i=1

tanh
( h̄ωex,i

2kBT

)
|λ µi|2

×
∫

dω

[ 1
ω−ωex,i + i γ

2
− 1

ω−ωex,i− i γ

2

]
(C.2)
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Note that if we evaluate the integral counterclockwise over a semicircle S+ with an infinite radius

in the upper half of the complex plane, we have that

0 =
∮

S+
dω

[ 1
ω−ωex,i + i γ

2
]

=
∫

dω

[ 1
ω−ωex,i + i γ

2

]
+ iπ (C.3a)

i2π =
∮

S+
dω

[ 1
ω−ωex,i− i γ

2
]

=
∫

dω

[ 1
ω−ωex,i− i γ

2

]
+ iπ (C.3b)

This implies that
∫

dω

[
1

ω−ωex,i+i γ

2

]
=−iπ and

∫
dω

[
1

ω−ωex,i−i γ

2

]
= iπ . Substituting these values

into Eq. C.2, we arrive at the generalized sum rule for arbitrary T :

I =
2π

κR

N

∑
i=1

tanh
( h̄ωex,i

2kBT

)
|λ µi|2 =

2π

κR
Ng2

e f f (C.4)

where

g2
e f f =

∫
dωex p(ωex) tanh

( h̄ωex

2kBT

)
|λ µ(ωex)|2 (C.5)

is the square of the effective single-molecule light-matter coupling. Here p(ωex) is the probability

distribution of excitation frequencies. Note in the limit that h̄ωex,i� kBT and µ(ωex)→ µ , we

have that g2
e f f → g2, recovering the version of the sum rule presented in the main text.
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Appendix D

Supplementary Information: Classical lin-
ear optics effects in molecular polaritonics

D.1 Estimating number of molecules per cavity mode

For a one-dimensional cavity of length Lz, the dispersion for the m−th transversal mode

is:

ω =
c√
ε

√
|~k‖|2 +

(mπ

Lz

)2
, (D.1)

where~k‖ is the component of the wave vector parallel to the plane of the cavity mirrors, c is the

speed of light, and ε is the background permittivity. Assuming periodic boundary conditions

parallel to the mirrors, the wave vector values are discrete points in a reciprocal lattice with

grid spacing ∆kx,y =
2π

Lx,y
, where Lx and Ly refer to the height and width of the cavity mirrors.

The protocol is to define an area in this reciprocal lattice and then divide by the area unit of the

grid (∆kx∆ky) to calculate the number of cavity modes Nmodes within this area of interest. Next

the total number of molecules Nmol within the cavity is calculated, and finally, the number of

molecules per cavity modes is estimated as N = Nmol/Nmodes.

D.1.1 Electronic strong coupling

Here we estimate N for electronic strong coupling following the protocol of Ref. [236].

The authors consider a square in reciprocal space of length |~kmax|= 2π

λ
, where λ is a characteristic
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wavelength associated with UV-visible organic exciton-polaritons (∼ 500 nm). Assuming a one-

dimensional cavity, the total number of cavity modes is:

Nmodes = 2× |
~kmax|2
∆kx∆ky

= LxLy
2

λ 2 (D.2)

where the factor of two accounts for the fact that for each k there are two polarizations. The

number of molecules in the cavity is given by

Nmol = ρLxLyLz, (D.3)

where ρ is the molecule number density. Then the number of molecules per mode is:

N =
Nmol

Nmodes
=

ρLzλ
2

2
. (D.4)

Taking ρ = 109 µm−3 and Lz = 100 nm from Ref. [236], we estimate the number of molecules

per mode for electronic strong coupling to be N ∼ 1.25×107 as reported in the main text.

D.1.2 Vibrational strong coupling

Here we estimate N following the protocol of Ref. [237]. From Eq. D.1, the magnitude

of the parallel wave vector component for m = 1 is:

|~k‖|=
√

εω2

c2 −
(

π

Lz

)2
. (D.5)
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Considering a circle in reciprocal space of radius |~kmax|, the number of photon cavity modes is

Nmodes =
π|k‖,max|2

∆kx∆ky

=
π

[
εω2

max
c2 −

(
π

Lz

)2]
∆kx∆ky

=
LxLy

4π

[
εω2

max
c2 −

(
π

Lz

)2]
(D.6)

The number of molecules in the cavity is given by

Nmol = ρLxLyLz (D.7)

where ρ is the molecule number density. Then the number of molecules per mode is:

N =
Nmol

Nmodes
=

4πρLz[
εω2

max
c2 −

(
π

Lz

)2] . (D.8)

From Ref. [237], we take ε = (1.41)2, ωmax = 0.3581× 1015 s−1 (which is characteristic for

vibrational strong coupling), Lz = 2 µm, and ρ = 8× 109 µm−3, resulting in N ∼ 1012 as

reported in the main text.
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and G. Juzeliūnas, “Three-level haldane-like model on a dice optical lattice,” Phys. Rev. A
92, 033617 (2015).

[272] N. Goldman, E. Anisimovas, F. Gerbier, P. Öhberg, I. B. Spielman, and G. Juzeliūnas,
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