
UCLA
UCLA Electronic Theses and Dissertations

Title
Multinomial Probit Model for Panel Data

Permalink
https://escholarship.org/uc/item/24r48411

Author
DAS GUPTA, APARUPA

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/24r48411
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Multinomial Probit Model for Panel Data

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Aparupa Das Gupta

2014



c© Copyright by

Aparupa Das Gupta

2014



Abstract of the Thesis

Multinomial Probit Model for Panel Data

by

Aparupa Das Gupta

Master of Science in Statistics

University of California, Los Angeles, 2014

Professor Mark Stephen Handcock, Chair

In this thesis we applied the multinomial probit model to a panel dataset to study

the brand preference for a consumer product that various households purchased

over multiple purchase occasions by 100 households. There are four brands avail-

able for the consumer product. The dataset comprises information regarding the

brand of item purchased by a household given their annual income, household

size, and purchase quantity along with the price for each brand of the product.

We analyzed the effect of the three individual specific covariates, namely, annual

income, household size, and quantity purchased, and the choice specific co-

variate of price of each unit of the product for every brand. We used the MNP

package in R by Imai and van Dyk for our analysis. The package does not have

any function for model selection. Hence, we introduced a new approach to per-

form model selection for multinomial probit model by applying Kullback-Leibler

divergence to evaluate the mean divergence of the average posterior predictive

probabilities in the presence and absence of each of the three individual specific

covariates. Finally, we obtain insights regarding how consumer preference across

brands changes with the covariate values in terms of the posterior predictive prob-

abilities of purchasing a brand.
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CHAPTER 1

Introduction

For a long period of time, it was recognized that maximum likelihood analysis

of nonlinear limited dependent variable (LDV) models with panel data is feasible

only under restrictive assumptions [Butler and R.Moffitt, 1982]. Such models in

general pose difficulty in the evaluation of a likelihood function containing multi-

variate integrals that are often analytically intractable. In the last few decades,

advances in computation methodologies such as data augmentation [Tanner and

Wong, 1987], has led to an increase of interest in Bayesian models that had pre-

viously been regarded as numerically infeasible. Under this framework, the latent

variables within multivariate integrals are treated as model parameters and are

sampled along with them. The Bayesian Gibbs sampling scheme is suitable for

scenarios where the likelihood function comprises high-dimensional multivariate

integrals which are factorized into sequences of low-dimensional conditional den-

sities each of which is sampled individually. By embedding these low-dimensional

subproblems within a Markov chain one can draw from the joint posterior distri-

bution which are then used directly for inference.

Bayesian methods successfully compete against simulation-based frequentist

techniques, such as Simulated Maximum Likelihood (SML) [Gourieroux and Mon-

fort, 1996], due to their flexibility and conceptual simplicity. The advantages of

Bayesian method is more pronounced when the dimension of the underlying prob-

lem is large. For instance, in our model setup SML approach would require a

large set of latent variable draws in order to accurately approximate the integral
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likelihood function for each parameter value embedded within an optimization

algorithm. In contrast, Gibbs sampling takes one latent variable draw for each

parameter value until convergence which often leads to substantially faster param-

eter estimation than SML. Moreover, Bayesian hierarchical models can be readily

extended to incorporate inference on latent classes of similar individuals Rossi

et al. [2005]. Other advantages of Bayesian inference in latent variable models are

discussed in Paap [2002].

In this thesis, we perform a Bayesian analysis of the multinomial probit model

and apply it on scanner panel data of consumer purchase decision of yogurt from

four different brands across multiple periods of time in response to product prices

and other individual specific variables like household size, annual household in-

come, and number of items that were purchased. The multinomial probit model

is a generalization of the probit model where there are several possible categories

that the dependent variable can fall into. The model is often used to describe how

individuals choose among a number of different alternatives, for instance, how a

voter chooses which candidate to vote for among four candidates running for a

particular office. The multinomial probit model differs from the ordinal probit

model in that the former does not assume any inherent ordering on the choices.

Hence, although the individuals may have preferences among the available alter-

natives, these ordering are individual specific rather than being dependent on the

nature of alternatives themselves.

This thesis is organized in the following way. In Chapter 2, we discuss the

literature on probabilistic choice models and in particular the multinomial probit

model. In Chapter 3, we discuss the model used in the MNP package by Imai

and van Dyke. In this thesis we used the MNP package in R to analyze the data.

The package does not provide any function to perform model selection. Hence,

the primary contribution of this thesis is the introduction of a novel approach

to perform model selection for multinomial probit models by applying Kullback-
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Leibler divergence. This is further discussed in Chapter 4 along with complete

data analysis for the yogurt panel dataset. In Chapter 5, we discuss the main

insights obtained from the data using the multinomial probit model. Finally, we

conclude with Chapter 6 by summarizing the model results, insights from the

dataset, and the drawbacks of our analysis.
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CHAPTER 2

Literature Review

For over a decade barcode readers at checkout have become ubiquitous in retailing.

The opportunities offered by scanner data are particularly attractive in situations

where customers typically purchase a number of items on each store visit and visit

stores in a particular retail sector on a number of occasions over a period of time.

The prime example is grocery retailing where the majority of households use one

or more supermarkets frequently and regularly.

Two of the most widely used probabilistic choice models to estimate purchase

probabilities from scanner data are the multinomial logit (MNL) and multinomial

probit (MNP) models. These two models differ in the distribution of the error

terms. MNL has errors which are independent and identically distributed accord-

ing to the type-1 extreme value distribution, which is also sometimes called the

log Weibull distribution (see Greene [2000], p.858 for a discussion on this distribu-

tion). MNP has errors which are not necessarily independent, and are distributed

by a multivariate normal distribution (see Greene [2000], p.856).

The independent errors of MNL force an assumption called the independence

of irrelevant alternatives (IIA) assumption. The IIA assumption requires that

an individual’s evaluation of an alternative relative to another alternative should

not change if a third (irrelevant) alternative is added to or dropped from the

analysis. So if a consumer is twice as likely to buy brand 1 over brand 2, she

should remain twice as likely to do so even if a third brand becomes a viable

option. When IIA is violated, MNL is an incorrectly specified model, and MNL
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coefficient estimates are biased and inconsistent. MNP does not assume IIA. In

fact, an MNP model estimates the error correlations along with the coefficients.

In the context of maximum likelihood estimation, a choice probability is a formula

to predict the probability that an individual chooses a certain alternative and the

likelihood function for such models is the product of the choice probabilities for

each individual. Choice probabilities in an MNL model are relatively simple, and

computers can maximize the resulting likelihood function almost instantaneously,

even for a large number of choices. For MNP, choice probabilities involve multiple

integrals: as many integrals as one fewer than the number of choices. Computers

can typically maximize likelihood functions with double or triple integrals, and

may take a while to do so. But when computers must deal with higher integrals,

MNP will often fail to converge or provide useful estimation. MNL, therefore, is a

much more stable model. But since MNP does not assume IIA it is often assumed

to be more accurate than MNL.

Alvarez and Nagler [1998] strongly advocate the use of MNP as a less re-

strictive model. Chintagunta [1992] compared the multinomial logit model with

a multinomial probit model, first by developing the probit model using the IRI

saltine (Rome, Georgia) data and then applying it to Nielsen data on catsup from

Springfield, Missouri. His argument is that the logit model’s implicit IIA assump-

tion is violated in these purchasing situations because of the similarity of directly

competing brands leading to correlations in the data. Gonul and Srinivasan [1993]

commented that the multinomial probit model is more difficult to compute and

offer a variant of the multinomial logit model that is non-IIA at the aggregate but

not at the household level.

In this thesis we adopted the multinomial probit model. There are two pack-

ages available in R that cover multinomial probit models, namely, bayesm by Rossi

[2010] and MNP by Imai and van Dyk [2005]. We used the MNP package to

estimate the purchase probabilities for four different brands of yogurt. Neither
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package provides a function for model selection. This thesis contributes to the lit-

erature of multinomial probit models by applying the Kullback-Leibler divergence

measure to perform model selection.

6



CHAPTER 3

Methodology

We analyzed an unbalanced panel dataset that contains purchase history of N

households over Ti, i = 1, . . . , N time periods. The dependent variable yit takes the

value { Brand 1, Brand 2, Brand 3, Brand 4} indicating the brand purchased by

household i on purchase occasion t. The K-vector of control variables is denoted

by xit and the corresponding vector of parameters to be estimated by β. We define

matrix Xi corresponding to each household i, that has Ti rows and K columns.

The independent variables refer to the household size, annual income, quantity of

yogurt bought, and the price of yogurt for each brand.

3.1 The Pooled Panel Probit Model

The simplest probit estimator treats the entire sample as if it were a large cross-

section. Specifically, it postulates the latent variable probit model specification

y?it = β
′

0
xit + εit (3.1)

with the observation rule

yit = 1(y?it ≥ 0), i : 1, . . . , N ; t = 1, . . . , Ti (3.2)

where 1(.) denotes the indicator function. The error terms εit are normally dis-

tributed with zero mean and unit variance. This assumption rules out state per-

sistence, or the presence of lagged dependent variables [Greene, 2004] in model

(3.1).
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3.2 Multinomial Probit Model

The multinomial probit model is a generalization of the probit model, and it is

used when there are several possible categories that the dependent variable can

fall into. Suppose that we have a series of observations Yi, i = 1, . . . , n of the

outcomes of multi-way choices from categorical distribution of size p (i.e., there

are p possible choices). Each observation Yi is associated with a set of K observed

values xi1, . . . , xiK . We introduce a set of latent variables Wi = (Wi1, . . . ,Wi,p−1),

where

Wi = Xiβ + ei, ei ∼ N(0,Σ), i = 1, . . . , n.

where Xi is a (p−1)×K matrix of covariates, β is K×1 vector of fixed coefficients,

ei is (p−1)×1 vector of disturbances, and Σ is a (p−1)× (p−1) positive definite

matrix. We further use the restriction that the first diagonal element of Σ is

constrained to be one, i.e., σ11 = 1. The response variable Yi is the index of the

choice of individual i among the alternatives in the choice set and is modeled as

follows,

Yi(Wi) =


0 if max(Wi) < 0

j if max(Wi) = Wij > 0,

for i = 1, . . . , n, and j = 1, . . . , p− 1

where Yi = 0 corresponds to a base category.

The matrix Xi can include both choice-specific and individual-specific vari-

ables. A choice-specific variable has a value for each of the p choices, and these p

values may be different for each individual. Choice specific variables are recorded

relative to the baseline choice and thus there are p − 1 recorded values for each

individual. In this way choice-specific variable is tabulated as a column in Xi.

Individual specific variables, on the other hand, have a fixed value for each indi-

vidual that is constant across choices, e.g., the age or gender of the individual.

These variables are tabulated via their interaction with each of the choice indica-
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tor variables. Thus, an individual-specific variable corresponds to p − 1 columns

of Xi and p− 1 components of β.

MNP implements the marginal data augmentation algorithms for posterior

sampling in the multinomial probit model. The MCMC algorithm is described in

Imai and Dyk [2005].

3.3 Prior Specification

The prior distribution for the multinomial probit model is β ∼ N(0, A−1) and

p(Σ) ∝ |Σ|−(ν+p)/2[trace(SΣ−1)]−ν(p−1)/2, where A is the prior precision matrix of

β, ν is the prior degrees of freedom parameter for Σ, and the (p − 1) × (p − 1)

positive definite matrix S is the prior scale for Σ. A scalar input can be used

to set the scale matrix to a diagonal matrix with diagonal elements equal to the

scalar input value. The default value is 1. We assume that the first diagonal

element of S is one. The prior distribution on S is proper if ν ≥ p− 1, the prior

mean of Σ is approximately equal to S if ν > p − 2, and the prior variance of Σ

increases as ν decreases as long as this variance exists. The model also allows for

an improper prior on β, which is p(β) ∝ 1. Other alternate prior specifications are

available but this choice is preferred because it allows to directly specify the prior

distribution on the identifiable model parameters, allows to specify an improper

prior distribution on regression coefficient, and results in a Monte Carlo sampler

that is relatively quick to converge.

3.4 Prediction under the Multinomial Probit Model

Predictions of individual preferences given particular values of the covariates can

be useful in interpreting the fitted model. Consider a value of the (p − 1) × k

matrix of covariates, X?, that may or may not correspond to the values for one of
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the observed individuals. We are interested in the distribution of the preferences

among the alternatives in the choice set given this value of the covariates. Let

Y ? be the preferred choice among the available alternatives. As an example, one

might be interested in Pr(Y ? = j|X?) for some j. By varying X?, one could

explore how preferences are expected to change.

In Bayesian analysis, such predictive probabilities are computed via the pos-

terior predictive distribution. This distribution conditions on the observed values

of Y = (Y1, . . . , Yn), but averages over the uncertainty in the model parameters.

For instance,

Pr(Y ? = j|X?, Y ) =

∫
Pr(Y ? = j|X?, β,Σ, Y )p(β,Σ|Y )d(β,Σ).

Thus, the posterior predictive distribution accounts for both variability in the

response variable given the model parameters and the uncertainty in the model

parameters as quantified in the posterior distribution.
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CHAPTER 4

Data Analysis

4.1 Data Description

In this section we analyze the yogurt data with R-package MNP, using Bayesian

multinomial probit model by Markov Chain Monte Carlo (MCMC) techniques.

We look at customer purchase history of yogurt from retailer scanner panel

data. The data set consists of 2430 purchases of four brands of yogurt by 100

households. The data comprises information regarding which brand of yogurt

does a customer buy among four brands available at the retail store. The four

brands were named as Brand 1, Brand 2, Brand 3, and Brand 4. At every purchase

occasion, the prices of all the four brands, the household size and income of

the customer, and quantity of yogurt purchased by her is generated by point-

of-sales systems. We observed that household size varied from single person

to five people. The quantity bought also varied from one to fourteen. Large

size of quantity were purchased on fewer occasions. The household income was

represented on a scale of one to fourteen, where one represented the lowest income

level and fourteen represented the highest income level. There were 2430 purchase

instances in the data set.

We took the logarithm of all the variables, both individual and choice specific,

to normalize the data and ensure convergence of Gibbs sampling.

The description of variables is summarized in Tables 4.1 and 4.2.
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Table 4.1: Description of Variables

Variables Description

Choice Brand purchased out of four brands

Price1 Log price of one unit of product of brand 1

Price2 Log price of one unit of product of brand 2

Price3 Log price of one unit of product of brand 3

Price4 Log price of one unit of product of brand 4

HHS Log of total number of family members in a household

Income Log of annual income of the household

Quantity Log of number of units of the product purchased

Table 4.2: Summary of Variables

Choice Statistic Income HHSize Quantity Price1 Price2 Price3 Price4

Brand1:831 Min 0.0000 0.0000 0.0000 -0.0120 0.00000 0.02500 0.00400

Brand2:975 1st Qu 0.7782 0.3010 0.0000 0.1030 0.08100 0.05000 0.07900

Brand3: 71 Median 0.9542 0.4771 0.3010 0.1080 0.08600 0.05400 0.07900

Brand4:553 Mean 0.8781 0.4027 0.3189 0.1062 0.08153 0.05362 0.07951

3rd Qu 1.0792 0.6021 0.4771 0.1150 0.08600 0.06100 0.08600

Max 1.1461 0.7782 1.1461 0.1930 0.11100 0.08600 0.10400
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4.2 Fitting the Multinomial Probit Model using MNP

MNP returns the estimated probabilities for each brand in the model by MCMC.

First, we ran pilot analysis with small iterations (10000) with 2000 burnin by

calling “mnp” in MNP package. By calling the function

res=mnp(Choice Income + HHSize + Quantity, choiceX=list(B1=Price1,

B2=Price2, B3=Price3, B4=Price4), cXnames=c("price"), data=yogurt,

n.draws=10000, burnin = 2000, thin = 3, verbose=TRUE)

we obtained the following result,

Call:

Coefficients: mean std.dev. 2.5% 97.5%

(Intercept):B2 0.26784 0.09514 0.08886 0.454

(Intercept):B3 -1.39954 0.24281 -1.86194 -0.932

(Intercept):B4 -1.27343 0.20894 -1.70977 -0.878

Income:B2 -0.47454 0.10708 -0.68816 -0.261

Income:B3 -0.87891 0.27848 -1.40878 -0.349

Income:B4 0.94758 0.19844 0.57243 1.355

HHSize:B2 -0.54429 0.13731 -0.82467 -0.287

HHSize:B3 -0.45546 0.31585 -1.06586 0.183

HHSize:B4 -1.78714 0.24706 -2.28164 -1.345

Quantity:B2 -0.02239 0.07912 -0.18237 0.135

Quantity:B3 0.53739 0.19145 0.16127 0.911

Quantity:B4 0.60966 0.13531 0.35734 0.889

price -16.53935 1.68637 -20.21440 -13.524
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Covariances: mean std.dev. 2.5% 97.5%

B2:B2 0.44057 0.10647 0.28528 0.705

B2:B3 0.23061 0.25879 -0.29389 0.619

B2:B4 0.04471 0.18204 -0.36714 0.345

B3:B3 1.38476 0.22072 1.01672 1.838

B3:B4 0.99597 0.12700 0.71352 1.186

B4:B4 1.11920 0.20544 0.74417 1.521

Base category: B1

Number of alternatives: 4

Number of observations: 2430

Number of estimated parameters: 18

Number of stored MCMC draws: 2000

The dependent variable choice is defined in the model. We listed the choice-

specific variable in choiceX and we also defined the name of these variables as

“price” in cXnames. We named the data yogurt and MNP returned parameter

estimates from 10000 replications with 2000 burnin. Here, we use non informative

and improper prior, by default.

4.3 Running Convergence Diagnostic

We used coda package by Plummer et al. [2005] to perform convergence diagnos-

tics. The coda package takes a matrix of posterior draws for relevant parameters

to be saved as an mcmc object. We use the coda package to evaluate the Gelman

Rubin convergence diagnostic statistic (Gelman and Rubin [1992]). This diag-

nostic is based on multiple independent Markov chains initiated at over-dispersed

starting values. Here, we obtain these chains by independently running the mnp()

command three times, specifying different starting values for each time. This can
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be accomplished by typing the following commands at the R prompt,

res1=mnp(Choice ∼ Income+HHSize+Quantity, choiceX=list(B1=Price1,

B2=Price2, B3=Price3, B4=Price4), cXnames=c("price"), data=yogurt,

n.draws=120000, verbose=TRUE)

res2=mnp(Choice ∼ Income+HHSize+Quantity, choiceX=list(B1=Price1,

B2=Price2, B3=Price3, B4=Price4), coef.start=c(1,-1,1,-1),

cov.start=matrix(0.5,ncol=3,nrow=3)+diag(0.5,3),cXnames=c("price"),

data=yogurt, n.draws=120000, verbose=TRUE)

res3=mnp(Choice ∼ Income+HHSize+Quantity, choiceX=list(B1=Price1,

B2=Price2, B3=Price3, B4=Price4), coef.start=c(-1,1,-1,1),

cov.start=matrix(0.9,ncol=3,nrow=3) +diag(0.1,3),cXnames=c("price"),

data=yogurt, n.draws=120000, verbose=TRUE)

We ran three different chains to assess convergence by setting up the different

initial values for each chain. For the first chain, the initial values for coefficients

were zero for all coefficients and for covariance matrix initial values were set to

be an identity matrix by default. The second chain is run starting from a vector

of three 2’s and three -2’s and a matrix with all diagonal elements equal to 1

and all correlations equal to 0.5. Finally, the third chain is run starting from

a vector of three 1’s and three -1’s, and a matrix with all diagonal elements

equal to 1 and all correlations equal to 0.9. Each chain performed 120,000 draws

and stored corresponding parameter estimates in res1, res2, and res3. The

calculated estimates are summarized in Appendix A.

The R package coda gave the Gelman Rubin diagnostics. First, we combined

the stored MCMC output into single list, res.coda. And then, the first element of

diagonal in covariance matrix was eliminated since it is always equal to 1. Table

4.3 lists the value and a 97.5% upper limit of the Gelman-Rubin statistic for

each parameter. The Gelman-Rubin statistics are all less than 1.1 for most cases,
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Table 4.3: Potential scale reduction factors
Point estimate Upper C.I. Point estimate Upper C.I.

Intercept:B2 1.07 1.20 Quantity:B3 1.01 1.04

Intercept:B3 1.08 1.24 Quantity:B4 1.01 1.04

Intercept:B4 1.01 1.03 price 1.05 1.15

Income:B2 1.01 1.01 B2:B2 1.04 1.06

Income:B4 1.03 1.10 B2:B3 1.11 1.22

HHSize:B2 1.05 1.16 B2:B4 1.05 1.14

HHSize:B3 1.03 1.09 B3:B3 1.04 1.13

HHSize:B4 1.07 1.24 B3:B4 1.08 1.17

Quantity:B2 1.01 1.04 B4:B4 1.08 1.23

Multivariate perf 1.1

suggesting satisfactory convergence has been achieved. We also plot the change

in the value of the Gelman-Rubin statistic over the iterations in Figures 7.7-7.11

in Appendix B. The figure shows a cumulative evaluation of the Gelman-Rubin

statistic over iterations for eighteen parameters.

We also use the coda package to produce univariate time-series plots of the

three chains and univariate density estimate of the posterior distribution. Figures

7.1-7.6 in Appendix B present the resulting plots for selected parameters. The left

panel shows the kernel-smoothed density estimate of the posterior distribution for

each chain with a different color representing each chain. The right panel shows

the density estimate plots for individual specific variables.

4.4 Model Comparison

In this section we evaluate the importance of each individual specific covariate

for the predictive probabilities. In the complete model, we have three individual

specific covariates, namely, income, household size, and quantity. In order to

study the effect of each individual covariate we remove them one at a time or in
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pairs from the model and compare how much the posterior predictive probability

diverges from the predictions obtained from the complete model on an average.

We apply the Kullback-Leibler (KL) divergence criterion to measure the mean

divergence.

The KL divergence is a measure of the difference between two probability

distributions. For a discrete probability distribution p and q, the KL divergence

of q from p is defined to be

DKL(p||q) =
∑
i

ln

(
p(i)

q(i)

)
p(i). (4.1)

In words, it is the expectation of the logarithmic difference between the probabil-

ities p and q, where the expectation is taken using the probabilities p. The KL

divergence is only defined if p and q both sum to 1 and if q(i) = 0 implies p(i) = 0

for all i (absolute continuity). The quantity 0 ln 0 in the formula is interpreted as

zero because limx→0 x ln(x) = 0.

Therefore, if q and p are the posterior predictive distribution from the full

model and the model without an individual specific covariate respectively then

the mean KL divergence is evaluated as

KL =
1

2430

2430∑
i=1

4∑
j=1

pij log(
pij
qij

) (4.2)

where pi and qi are the posterior predictive probabilities for the ith row of co-

variates from the yogurt data. We compared six models: modelI that has only

income, modelH that has only household size, modelQ that has only quantity,

modelIH has only income and household size, modelIQ has only income and

quantity, and modelHQ has only household size and quantity. We compare

each of these six models with the model with all covariates which we will call

modelFull henceforth in the paper.

We fit the modelFull and use the function predict() as follows

Q=predict(res1,newdraw=rbind(res1$param[8909:10909,],

17



Figure 4.1: The mean Kullback-Leibler divergence from the full model.

res2$param[8909:10909,], res3$param[8909:10909,]), type="prob")

to obtain the posterior predictive probabilities for modelFull using the last 20000

draws from the three chains. We further obtain the Monte Carlo sample of the

preferred choice for each row of covariates from yogurt data by using the function

Y=predict(res1,newdraw=rbind(res1$param[8909:10909,],

res2$param[8909:10909,], res3$param[8909:10909,]), type="choice").

We further use this Monte Carlo sample Y to fit all the six models and obtain

the corresponding posterior predictive probabilities PI , PH , PQ, PIH , PIQ, and

PHQ. These posterior predictive probabilities are then used to measure the mean

divergence from Q using equation 4.2.
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Table 4.4: Summary of Mean KL Divergence for Each Model

Statistic modelHQ modelIQ modelIH modelI modelH modelQ

Min 0.04314 0.03397 0.009359 0.04351 0.04827 0.06950

1st Qu 0.04667 0.03674 0.013720 0.04874 0.05082 0.07363

Median 0.04907 0.03856 0.016450 0.05077 0.05226 0.07547

Mean 0.05228 0.04296 0.020040 0.05076 0.05255 0.07565

3rd Qu 0.05222 0.04362 0.020710 0.05233 0.05419 0.07692

Max 0.12480 0.14210 0.067930 0.06074 0.06011 0.08604

The corresponding mean divergence for each sample of Y was plotted in Figure

4.1. Table 4.4 shows the descriptive statistic related to the mean divergence for

each model. We see that average mean divergence is smallest for modelIH and

largest for modelQ. Clearly, this indicates that income and household size are

the most important covariates in the model and quantity is the least important

covariate. This is so since the model with more covariates will have more accurate

predictive probabilities, so we can use modelFull as a benchmark. Consequently, a

model that diverges less from modelFull has more accurate predictive probabilities

than a model that diverges greatly from modelFull.

Therefore, from Table 4.4 we conclude that modelIH is the preferred model

among all other models since it has the smallest divergence from the full model

and it requires fewer parameters for estimation.
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CHAPTER 5

Predictions

The MNP model can be used to predict the likely outcome of an unobserved

multi-way trial given the associated explanatory variables. In this thesis we apply

the model to predict which brand of yogurt will be purchased by a consumer with

given values for income, household size, and quantity. To analyze the data

using the MNP model we combine the second half of each of the three chains. We

use the command

res.coda=mcmc.list(chain1=mcmc(res1$param[5455:10909, -5],

start=5455), chain2=mcmc(res2$param[5455:10909, -5], start

=5455), chain3=mcmc(res3$param[5455:10909, -5], start=5455))

The summary of the output (see Appendix A) shows the mean, standard devi-

ation, and various percentiles of the posterior distributions of the coefficients and

the elements of the variance-covariance matrix. The base category is B1. Separate

intercepts are estimated for each brand. The price coefficient is negative which

is consistent with the fact that consumers are less likely to buy more expensive

products.

We used the predict() function of MNP to calculate the posterior predictive

probabilities of each alternative being the most preferred given a particular value

of the covariates. We set the data used for prediction(newdata) to be the first

10 rows of the original yogurt dataset. To predict the probability for each brand

we specified to use additional matrix of MCMC draws (newdraw) that are com-

bined estimates from three chains. Option type = “prob” induces the function

20



Table 5.1: Posterior Predictive Probabilities for the Brands
B1 B2 B3 B4

[1, ] 0.3000000 0.3666667 0.00000000 0.3333333

[2, ] 0.2666667 0.2666667 0.00000000 0.4666667

[3, ] 0.4000000 0.3333333 0.03333333 0.2333333

[4, ] 0.3333333 0.3000000 0.00000000 0.3666667

[5, ] 0.3000000 0.3333333 0.03333333 0.3333333

[6, ] 0.2666667 0.3666667 0.03333333 0.3333333

[7, ] 0.3000000 0.4000000 0.00000000 0.3000000

[8, ] 0.5000000 0.2333333 0.00000000 0.2666667

[9, ] 0.5333333 0.2333333 0.06666667 0.1666667

[10, ] 0.3666667 0.5333333 0.00000000 0.1000000

predict() to return the posterior predictive probabilities. The function called to

obtain the predictive probabilities is as follows:

predict(res1, newdata=yogurt[1:10,] , newdraw = rbind(res1$

param[10900:10909,], res2$param[10900:10909,], res3$param[10900:10909,]),

type = "prob")

Table 5.1 summarizes the posterior predictive probabilities obtained for co-

variates corresponding to the first ten data points. These correspond to high

income households with two family members. We observe that B3 is the cheapest

brand during this period and these households have lowest probability of buying

this brand. In a similar way, by changing the covariate values we can obtain the

posterior predictive probabilities for choosing a brand.

Further analysis shows that the cheapest brand is not always most preferred

by consumers. In fact if the household falls in the high income class and they have

low household size then they are more likely to prefer the brand with higher price.

If the household has lower income or higher household size then they are more

sensitive to price and will prefer the cheaper brands. This indicates sensitivity

towards price increases with decrease in income or increase in household size.
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Whereas, when both income and household size are fixed such that income is

low or household size is high then quantity purchased is inversely related to the

sensitivity to price and consumer prefers cheaper brands.
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CHAPTER 6

Conclusion

In this thesis we analyze a panel dataset of consumer purchase history for four

different brands of yogurt. We apply the multinomial probit model to estimate

the posterior predictive probability of any consumer purchasing a specific brand

of yogurt given the price of all the brands and the individual specific information

regarding the consumer’s annual income, household size, and quantity purchased.

We perform model selection by applying Kullback-Leibler divergence and find

that income and household size together fit the set of observations well and we

can drop quantity from the model. This allows us to simplify the model and

have fewer parameters to estimate.

The posterior predictive probabilities indicate that consumers with high in-

come and low household size prefer more expensive brands whereas consumers

with low income or high household size are more sensitive to price and have

higher probability of purchasing cheaper brands.

The drawbacks of our analysis is that the estimated models may be mis-

specified to varying degrees and the insights may not extend to other datasets

or for the same brands in future. In this thesis we only consider price as the

choice specific variable. But we know that products can be differentiated by

many attributes, like nutrition content. Therefore, inclusion of other choice spe-

cific variables that can be attributed to the products can provide more insights

towards understanding the purchase preference of consumers.
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CHAPTER 7

Appendices

7.1 Appendix A

This Appendix contains the summary of the results obtained by calling the mnp()

function for model fitting. The summary of result from

res1=mnp(formula = Choice ∼ Income + HHSize + Quantity, data = yogurt,

choiceX = list(B1 = Price1, B2 = Price2, B3 = Price3, B4 = Price4),

cXnames = c("price"), n.draws = 120000, thin = 10, verbose = TRUE)

Coefficients: mean std.dev. 2.5% 97.5%

(Intercept):B2 0.20814 0.13321 -0.05395 0.465

(Intercept):B3 -1.58266 0.37478 -2.29366 -0.918

(Intercept):B4 -1.49610 0.37693 -2.22416 -0.652

Income:B2 -0.48198 0.14856 -0.76452 -0.154

Income:B3 -1.12089 0.38779 -1.97337 -0.463

Income:B4 1.09943 0.31362 0.52146 1.769

HHSize:B2 -0.43763 0.16983 -0.77443 -0.106

HHSize:B3 -0.11401 0.42795 -0.90406 0.769

HHSize:B4 -1.75575 0.37565 -2.46026 -1.029

Quantity:B2 -0.06389 0.09247 -0.24971 0.104

Quantity:B3 0.51638 0.24652 0.05006 1.029

Quantity:B4 0.61064 0.15583 0.30892 0.922

price -15.38517 2.97751 -20.19082 -7.710
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Covariances: mean std.dev. 2.5% 97.5%

B2:B2 0.44997 0.16161 0.11855 0.775

B2:B3 -0.03556 0.51609 -0.91965 0.663

B2:B4 -0.12776 0.24691 -0.58258 0.280

B3:B3 1.42335 0.41348 0.68094 2.327

B3:B4 0.61948 0.57217 -1.12683 1.136

B4:B4 1.12668 0.35783 0.48482 1.877

The summary of result from

res2=mnp(formula = Choice Income + HHSize + Quantity, data = yogurt,

choiceX = list(B1 = Price1, B2 = Price2, B3 = Price3, B4 = Price4),

cXnames = c("price"), n.draws = 120000, coef.start = c(1, -1, 1, -1,

1, -1, 1, -1, 1, -1, 1, -1, 1) * 2, cov.start = matrix(0.5, ncol = 3,

nrow = 3) + diag(0.5, 3), thin = 10, verbose = TRUE)

Coefficients: mean std.dev. 2.5% 97.5%

(Intercept):B2 0.261993 0.099336 0.073356 0.464

(Intercept):B3 -1.405677 0.286741 -2.040756 -0.903

(Intercept):B4 -1.521751 0.334661 -2.185126 -0.863

Income:B2 -0.517754 0.132125 -0.790069 -0.270

Income:B3 -1.061567 0.370136 -1.804490 -0.391

Income:B4 1.141650 0.290528 0.608201 1.740

HHSize:B2 -0.506294 0.145843 -0.796158 -0.219

HHSize:B3 -0.243944 0.394872 -0.945070 0.595

HHSize:B4 -1.898736 0.288693 -2.465401 -1.321

Quantity:B2 -0.046985 0.085327 -0.218483 0.114

Quantity:B3 0.455880 0.222366 0.008275 0.893

Quantity:B4 0.638921 0.143558 0.373204 0.934

price -16.679083 1.966512 -20.404778 -12.685
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Covariances: mean std.dev. 2.5% 97.5%

B2:B2 0.47678 0.13330 0.25232 0.770

B2:B3 0.22391 0.30783 -0.55474 0.667

B2:B4 -0.04936 0.17922 -0.41078 0.268

B3:B3 1.29550 0.29358 0.75235 1.914

B3:B4 0.65904 0.53074 -0.98818 1.190

B4:B4 1.22772 0.27474 0.70211 1.791

The summary of result from

res3=mnp(formula = Choice Income + HHSize + Quantity, data = yogurt,

choiceX = list(B1 = Price1, B2 = Price2, B3 = Price3, B4 = Price4),

cXnames = c("price"), n.draws = 120000, coef.start = c(-1, 1, -1, 1,

-1, 1, -1, 1, -1, 1, -1, 1, -1) * 1, cov.start = matrix(0.9, ncol = 3,

nrow = 3) + diag(0.1, 3), thin = 10, verbose = TRUE)

Coefficients: mean std.dev. 2.5% 97.5%

(Intercept):B2 0.172041 0.199223 -0.458240 0.436

(Intercept):B3 -1.601575 0.363652 -2.350592 -0.972

(Intercept):B4 -1.549517 0.394158 -2.289440 -0.766

Income:B2 -0.505608 0.139611 -0.789343 -0.235

Income:B3 -1.173222 0.437004 -2.039085 -0.408

Income:B4 1.111678 0.366705 0.377940 1.809

HHSize:B2 -0.463692 0.183680 -0.847188 -0.116

HHSize:B3 -0.035211 0.455798 -0.848106 0.912

HHSize:B4 -1.751306 0.416066 -2.462519 -0.843

Quantity:B2 -0.060092 0.094495 -0.249844 0.124

Quantity:B3 0.488764 0.250608 -0.004726 0.984

Quantity:B4 0.619720 0.158270 0.305695 0.938

price -16.053037 2.639978 -20.642921 -9.774
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Covariances: mean std.dev. 2.5% 97.5%

B2:B2 0.49292 0.19210 0.16074 0.914

B2:B3 -0.05841 0.52645 -1.08738 0.655

B2:B4 -0.16768 0.25083 -0.72075 0.234

B3:B3 1.38573 0.39277 0.74984 2.335

B3:B4 0.47221 0.70381 -1.14868 1.149

B4:B4 1.12135 0.35591 0.36884 1.789

Base category: B1

Number of alternatives: 4

Number of observations: 2430

Number of estimated parameters: 18

Number of stored MCMC draws: 10909

7.2 Appendix B

This Appendix contains all the figures related to the analysis of the estimates of

the multinomial probit model.
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Figure 7.1: Time-series plot of three independent markov chains (Left Panel)

and a density estimate of the posterior distribution of the price coefficient (Right

Panel)
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Figure 7.2: Time-series plot of three independent markov chains (Left Panel) and a

density estimate of the posterior distribution of selected household size coefficient

(Right Panel) for Brand 2.
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Figure 7.3: Time-series plot of three independent markov chains (Left Panel)

and a density estimate of the posterior distribution of selected income coefficient

(Right Panel) for Brand 2.
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Figure 7.4: Time-series plot of three independent markov chains (Left Panel) and

a density estimate of the posterior distribution of selected quantity coefficient

(Right Panel) for Brand 2.
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Figure 7.5: Time-series plot of three independent markov chains (Left Panel) and

a density estimate of the posterior distribution of selected quantity coefficient

(Right Panel) for Brand 3.
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Figure 7.6: Time-series plot of three independent markov chains (Left Panel) and

a density estimate of the posterior distribution of selected intercept (Right Panel)

for Brand 2.
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Figure 7.7: The Gelman-Rubin statistic computed with three independent Markov

chains for selected parameters in the yogurt data.
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Figure 7.8: The Gelman-Rubin statistic computed with three independent Markov

chains for selected parameters in the yogurt data.
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Figure 7.9: The Gelman-Rubin statistic computed with three independent Markov

chains for selected parameters in the yogurt data.
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Figure 7.10: The Gelman-Rubin statistic computed with three independent

Markov chains for selected parameters in the yogurt data.
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Figure 7.11: The Gelman-Rubin statistic computed with three independent

Markov chains for selected parameters in the yogurt data.
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