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Solver-Independent Aeroelastic Coupling For Large-Scale
Multidisciplinary Design Optimization

Sebastiaan P. C. van Schie ∗, Han Zhao †, Jiayao Yan ‡, Ru Xiang §, John T. Hwang ¶, David Kamensky ‖

University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093

Recent advances in Multidisciplinary Design Optimization (MDO) have opened up the
possibility of solving large-scale MDO problems with appropriate computational tools. One
way in which design space exploration in MDO problems is made possible is by using solvers
with varying levels of fidelity and computational cost. Our aim in this work is to make possible
such an MDO approach by establishing a solver-independent aeroelastic coupling approach.
We show that conservation of aeroelastic work requires an algebraic relation to be satisfied
that involves the projection operators which map displacements and forces between solvers and
states. Implementation examples are given for various combinations of fluid and solid solvers,
and it is shown that these implementations indeed conserve all force components and aeroelastic
work.

I. Introduction
Various new and innovative technologies, such as composite materials and electric propulsion, have emerged over

the last couple of decades. As these technologies mature they are slowly being adopted by the aerospace industry.
However, their adoption so far can be characterized as incremental improvement over the status quo, rather than opening
up new design spaces. This is in part due to limitations in Multidisciplinary Design Optimization (MDO) approaches
that inhibit efficient design space exploration. Additionally, the need for new, high-efficiency aircraft designs has
opened up interest in new air vehicle concepts. The absence of existing baseline designs makes it difficult to confidently
design such new concepts without relying on expensive prototyping and physical testing. The lack of efficient design
space exploration tools furthermore forces designers to stick to tried-and-tested concepts; while these have shown to be
effective and efficient for existing air vehicles through trial-and-error, it is unknown whether this is also the case for the
aforementioned new air vehicle concepts.

Computational analysis capabilities have increased along with the rise of available computing power with Moore’s
law. Whereas nowadays large-scale computational simulations are used to inform engineers during the aircraft design
process, their use in MDO algorithms has been limited due to their significant computational expense coupled with the
large number of design evaluations that are necessary by traditional gradient-free optimization algorithms. In recent
years gradient-based optimization has been on the rise within the MDO community, due to its superior performance for
optimization problems with many design variables. Gradient-based optimization methods have been implemented in
several open-source toolboxes. One example of such is NASA’s OpenMDAO framework [1]. As pointed out by Martins
and Hwang in [2], gradient-based optimization has found limited use outside of the MDO community since most
computational methods do not contain the capabilities that are necessary to efficiently and accurately compute derivatives.

The focus of this work is to establish an aeroelastic coupling approach for use within a large-scale multifidelity
MDO framework where such derivatives are available. This MDO approach consists of linked stages with different
fidelity requirements. Different solvers are used to fulfill these fidelity requirements, and as such the coupling approach
has to be solver-independent. Our goal is to implement a unified aeroelastic coupling formulation that conserves force
& energy and allows for derivative computations in both steady-state and dynamic simulations. We start by going
over the physical aeroelastic coupling mechanisms in section II, followed in section III by a brief overview of relevant
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computational modeling aspects. This is followed by the main technical content of this work. We establish in section IV
a solver-independent framework for aeroelastic coupling, after which we describe in section V the fluid and solid solvers
that are used to demonstrate this framework. These demonstrations are then covered in section VI: Solver-specific
implementation details are provided and results are given of coupled aeroelastic simulations of a wing of an electric
Vertical Take-Off and Landing (VTOL) vehicle, with various numerical models. Lastly conclusions are drawn and
future steps are identified in section VII.

II. Physical coupling mechanisms
The two-way physical interaction between the solid and fluid subdomains in any Fluid-Structure Interaction (FSI)

problem is local to the fluid-solid interface. These interactions manifest itself through the location and displacement of
this interface and the local traction vector 𝑻 that acts upon said interface. Section II.A briefly covers the displacement
coupling, after which section II.B goes over the fluid and solid surface tractions, how these are related to one another
and their functional forms.

A. Displacements
Applying external loads to the solid (sub)domain results in a deformation field over said subdomain. This deformation

can be non-zero on the boundary of the solid subdomain, leading to displacement of the fluid-solid interface. While the
fluid solver does not have any dependence on the deformation of the interior of the solid subdomain, the displacement of
the fluid-solid interface results in a change of the shape of the fluid subdomain, which in turn affects the solution fields
on said domain. This change in the solution fields over the fluid subdomain can produce a change in the external load
that is being applied to the boundary of the solid subdomain. For coupled time-dependent problems the displacement
rate of the fluid-solid interface plays a role as well: Flow-tangency conditions imply that no fluid can pass through the
fluid-solid interface, and thus the interface’s displacement rate prescribes an interface-normal fluid velocity.

B. Surface tractions
Consistent with the available literature on FSI we take a general continuum mechanics approach to define the

surface traction interactions, based on textbooks such as Bonet & Wood [3] and Chung [4]. This is also touched
upon in several of the works cited in section III. Denote the Cauchy stress tensor in some fluid parcel with 𝝈 ( 𝑓 ) , and
the outward-pointing normal vector of the fluid domain with 𝒏( 𝑓 ) . Conversely, denote the Cauchy stress tensor and
outward-pointing normal vector of the solid domain with 𝝈 (𝑠) and 𝒏(𝑠) respectively. Newton’s third law (action equals
reaction) implies compatibility of the tractions 𝑻 ( 𝑓 ) and 𝑻 (𝑠) that act upon the fluid and solid at the fluid-solid interface:

𝑻 ( 𝑓 ) = 𝝈 ( 𝑓 ) · 𝒏( 𝑓 ) = −𝝈 (𝑠) · 𝒏(𝑠) = 𝑻 (𝑠) (1)

Where we note that the outward-pointing normal vectors of the fluid and solid subdomains are collinear and opposite, i.e.
𝒏( 𝑓 ) = −𝒏(𝑠) . The choice of a specific approach for using Eq. (1) depends on whether the subdomain meshes are con-
forming or non-conforming at their interface, and whether there is exact correspondence between the Degrees of Freedom
(DoFs) of each subdomain on their interface. Only when this exact correspondence exists can Eq. (1) be used directly.
With non-conforming meshes a projection is required in order to map the traction components from one subdomain to
the other. This projection often entails relaxing pointwise traction compatibility, especially when different discretization
approaches are used for both subdomains (and their DoFs thus have different interpretations). The details of these projec-
tions vary depending on the choice of fluid and solid model. We give a brief general overview of the implications of Eq. (1)
for partitioned FSI models and how these impact the fluid and solid subdomains. Both subdomains are covered separately.

1. Fluid traction
Boundary conditions are the standard method of modeling the effects of solid boundaries on the fluid domain. The

fluid’s velocity components normal and tangential to the fluid-solid interfaces are set to predefined values. Whereas for
standard solid boundaries these velocity components are both equal to zero, applications with nonzero wall-normal
or nonzero wall-tangential velocities exist. One example of the former is active flow control, where boundary layer
suction and blowing is used in an attempt to improve lift or drag performance [5]. Examples of the latter are external
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aerodynamics simulations in the automotive industry: Instead of modeling cars as moving over a static floor, the car is
defined as being static whereas the floor is given a tangential velocity boundary condition. Doing this greatly reduces
the computational complexity of such simulations, since modeling the car as being static removes mesh motions in
Eulerian discretizations of the fluid flow.

The role of the geometry of the fluid-solid interface is not immediately obvious in Eq. (1). Solving the solid model
entails computing the deformation of the solid domain under an applied load, and thus involves movement of the
fluid-solid interface. Any consistent numerical solution of the solid and fluid subdomains must thus take into account
the effects that this deformation imposes upon the fluid.

Lastly we go over the stresses that these conditions impose upon a fluid domain. Throughout literature the Cauchy
stress tensor components 𝝈 ( 𝑓 )

𝑖 𝑗
in fluid mechanics are usually written as:

𝝈 ( 𝑓 )
𝑖 𝑗

= −𝑝𝛿𝑖 𝑗 + 𝝉𝑖 𝑗 (`) (2)

Where 𝑝 is the local hydrodynamic pressure, 𝛿𝑖 𝑗 is the Kronecker delta and 𝝉 is the viscous (shear) stress tensor. The de-
pendence of 𝝉 on the fluid’s dynamic viscosity ` is explicitly shown. Inviscid flowmodels do not take the shearing effects
of viscosity into account, which causes 𝝉 to drop out of Eq. (2). Viscous flow models often take the viscous (shear) stress
imposed by solid (wall) boundaries into account by using some type of wall model. The universality of near-wall (bound-
ary layer) velocity profiles is well-known in the mechanics community, and is treated extensively in any textbook that
covers viscosity or turbulence effects in fluid flows. Some examples are the books of Landau & Lifshitz [6] andWhite [7].

2. Solid traction
Boundary conditions can also be involved in modeling the effects of the fluid-solid interface on the solid domain.

The traction that acts on the solid domain’s boundary can be taken from Eq. (1) as 𝑻 (𝑠) . With the fluid’s Cauchy stress
as given in Eq. (2) this means that:

𝑻 (𝑠) =
(
𝑝𝛿𝑖 𝑗 − 𝝉𝑖 𝑗 (`)

)︸             ︷︷             ︸
=−𝝈 ( 𝑓 )

·𝒏(𝑠) = 𝝈 (𝑠) · 𝒏(𝑠) (3)

This traction is often taken into account in solid models in one of two ways. The first of these is as a traction boundary
condition:

𝝈 (𝑠) · 𝒏(𝑠) = 𝑻 (𝑠) on 𝜕Ω̂(𝑠) (4)

Where 𝜕Ω̂(𝑠) is the part of the solid domain boundary where 𝑻 (𝑠) is known. Alternatively some discretization methods
include 𝑻 (𝑠) as external forcing term instead of as explicit boundary condition.

As was the case for the fluid domain, the formulation of 𝝈 (𝑠) is dependent on whether a viscous or inviscid fluid
model is used. In the latter case the fluid’s shear stress 𝝉 = 0, leaving hydrodynamic pressure 𝑝 as the only source of
traction.

III. Computational coupling
Several approaches exist for resolving computational FSI problems. We highlight some relevant works from

literature, with a focus on establishing the desirable properties of any aeroelastic coupling method.

As mentioned by Hou et al. in [8] one way in which aeroelastic coupling approaches can be classified is according
to the degree to which the numerical fluid and solid models are intertwined. On one end of this classification spectrum
are the monolithic approaches, which simultaneously solve the numerical models that are posed on the fluid and solid
subdomains with a single solver. Whereas this leads to fully consistent numerical solutions on both subdomains it is
also an intrusive approach, since the coupling between the subdomains is explicitly encoded in the numerical problem
definition. It furthermore requires one to solve linear systems that contain both the fluid and solid subproblems, plus
possibly parameters that couple both subproblems. The size of this combined system can lead to excessive computational
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costs. In the current work a partitioned solution approach is used, in which the fluid and solid subproblems are solved in
an alternating way until a predefined convergence tolerance is satisfied. The use of such a partitioned scheme is not
without reason: Various fluid and solid solvers are used in the current multi-fidelity MDO framework, with different
discretization approaches. With a partitioned solution approach the fluid and solid solvers can be changed without
requiring significant modifications to the MDO workflow.

Another FSI solution procedure classification mentioned in [8] has to do with mesh conformity. This classification
is concerned with whether both meshes on the fluid-solid interface share all of their vertices, edges and faces. Whereas
using conforming meshes simplifies the transfer of loads and displacements between both subdomains due to the
one-to-one correspondence of mesh elements on the fluid-solid interface, it requires both meshes to be constructed
according to the most restrictive fidelity requirements of either domain. Mesh conformity furthermore also requires
conformity of the non-discretized computational subdomains. Next to mesh conformity we consider in this work
conformity of the non-discretized fluid and solid subdomains. Domain conformity is dependent on whether both fluid
and solid method use a reduced domain representation approach. Methods that use such representations are often
used in large-scale design optimization problems due to their reduced computational cost. These include (for fluids)
potential flow methods such as the Vortex Lattice Method (VLM) [9, Sec. 12.3] and (for solids) beam methods [10].
Having mesh conformity implies domain conformity; non-conforming meshes on conforming domains are an example
of domain conformity without mesh conformity.

A significant amount of published work on aeroelastic coupling for FSI problems already exists, owing to the
ubiquity of coupled fluid-structure models. We highlight here some works from the relevant literature. In the aeroelastic
coupling methods presented by Farhat et al. in [11] domain conformity is used to construct pointwise maps that
directly associate the Finite Element Analysis (FEA) quadrature points of the solid subdomain to points on the boundary
of the fluid subdomain. They identify consistency and conservation as important properties of any projection that
maps loads from the fluid to the solid domain. Consistent methods are surface interpolation methods that take the
shape functions used in the fluid simulation to compute the nodal surface traction terms in the quadrature points of
the solid method. This results in “consistency", i.e. conservation of the total aerodynamic forces when projecting
to the solid subdomain. Conservative methods are those that conserve the work done by aerodynamic forces in the
coupled simulation. Conservation involves both the local forces and local deformation of the fluid-solid interface,
whereas consistency depends solely on how the aerodynamic forces are transferred to the solid subdomain. As Farhat
et al. point out, consistency is easier to attain for fluid and solid domains with different discretization methods than
conservation. Furthermore, they find consistency to be more important for accuracy than exact conservation in their
primary applications in compressible sub- and supersonic flow.

The properties of consistency and conservation are also highlighted in the work of Brown [12], which is in turn
used by Kennedy and Martins in [13]. Kennedy and Martins couple an inviscid panel method to an FEA method to do
aerostructural optimization and solve the coupled system with a monolithic/fully-coupled approach, wherein the fluid
and solid solutions are computed simultaneously. For mapping aerodynamic pressure loads to the structural model they
employ an expression for the virtual work of the pressure load. Posing this expression on the fluid boundary allows to
insert the definition of the fluid’s surface displacement in terms of the solid displacement and rotation. This gives a compu-
tation scheme that maps the pressure load from the fluid to the solid domain boundary in a consistent and conservative way.

Rendall and Allen in [14] focus on using radial basis functions for the displacement transfer from solid to fluid. This
makes the load transfer map meshfree and (nearly) independent from the discretization approaches of both subdomains.
Through the principle of virtual work the (conservative) load transfer map follows from the displacement map. Rendall
and Allen point to two other desirable property for an aeroelastic coupling approach:
1) When mapping displacements between both subdomains, points in both domains that are initially coincident
should remain so during the coupled simulation.

2) Any load transfer approach should reduce to the identity map in the limit of the fluid and solid meshes and
discretization methods matching exactly, such that the load is transferred in a pointwise-exact way.

A significant difference between the aforementioned sources and this work is the inclusion of the coupling approach
within an MDO framework that employs multiple fluid and solid solution methods. We thus aim to first establish a
general coupling framework that is solver-independent. The solver-specific details are filled in afterwards, and will
(naturally) vary depending on which fluid and solid solvers are used.
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IV. Solver-independent aeroelastic coupling framework
The coupling approach presented here is to be included in an MDO environment that includes solvers for various

disciplines, each with its own input and output requirements. A solver-independent state representation is defined in
order to facilitate the propagation of state information between coupled solvers. Defining such a state representation
is outside of the scope of this work. Nonetheless we take into account the existence of a solver-independent state
representation as an intermediate step when mapping quantities between the fluid and solid solvers. This has the
added benefit of decoupling the choice for specific fluid and solid discretization methods: Solution information of each
discipline-specific solver is passed to the solver-independent state representation, and thus separate solution/state maps
can be defined for each solver. Figure 1 contains a visual representation of such a framework for coupled aeroelastic
simulations.

Aerodynamic loads

Solid deformation

Solver-independent
model state
representation

Fluid simulation model Solid simulation model

𝑇𝒖,𝑎

𝑇𝑭,𝑎 𝑇𝑭,𝑠

𝑇𝒖,𝑠

Fig. 1 General solver-independent coupling framework

Four maps are shown in Fig. 1. 𝑇𝒖,𝑠 and 𝑇𝒖,𝑎 map the discretized displacement vector 𝒖 from the solid simulation to
the solver-independent state representation (𝑇𝒖,𝑠) and from there to the fluid simulation (𝑇𝒖,𝑎). Furthermore 𝑇𝑭 ,𝑎 and
𝑇𝑭 ,𝑠 map the (discretized) aerodynamic force vector 𝑭 from the fluid simulation to the solver-independent state (𝑇𝑭 ,𝑎)
and on to the solid simulation model (𝑇𝑭 ,𝑠). We use the following subscripts to denote:

• 𝑠 for quantities in the solid simulation model;
• 𝑎 for quantities in the fluid ("aerodynamic") simulation model;
• 𝑟 for quantities in the solver-independent ("reference") configuration.

Together with the four maps shown in Fig. 1 we thus know that:

𝒖𝑎 = 𝑇𝒖,𝑎𝒖𝑟 = 𝑇𝒖,𝑎𝑇𝒖,𝑠𝒖𝑠 (5)

𝑭𝑠 = 𝑇𝑭 ,𝑠𝑭𝑟 = 𝑇𝑭 ,𝑠𝑇𝑭 ,𝑎𝑭𝑎 (6)

The rest of this section covers how the four maps shown in Fig. 1 can be constructed to obtain a load- and energy-
conservative aeroelastic coupling approach. We derive relations between the individual maps and constraints on their
formulation, from which energy and load conservation follows automatically. Section IV.A will first cover conservation
of energy, after which load conservation is discussed in section IV.B.

A. Conservation of energy
To illustrate the conservative coupling approach we first focus on the coupling between the fluid model and the

solver-independent state representation. With discretized displacement and force vector variables in hand we can define
the work𝑊 that is being performed by the force vector under the aforementioned displacement:

5



• In the fluid model:
𝑊𝑎 = 𝒖𝑇

𝑎 𝐴𝑭𝑎 (7)

• In the solver-independent state representation:

𝑊𝑟 = 𝒖𝑇
𝑟 𝑅𝑭𝑟 (8)

𝐴 and 𝑅 are appropriately-sized matrices (not necessarily square) that make the multiplication with the displacement
and force vectors result in a scalar value. Their structure and entries depend on how the displacement and force vectors
are represented in their respective models. Two examples:
1) In fluid models that are discretized through the Finite Difference Method (FDM) or VLM the displacement 𝒖𝑎 and
force 𝑭𝑎 represent point values. As long as the entries of these vectors at the same index refer to the same point,
the matrix 𝐴 will be the identity matrix and 𝒖𝑇

𝑎 𝐴𝑭𝑎 reduces to a summation of pointwise displacement-force
products: 𝑊𝑎 = 𝒖𝑇

𝑎𝑭𝑎.
2) In models that use basis function expansions to express the displacement and force variables, such as FEA-type
methods or as is the case in the solver-independent state representation, matrix 𝑅 is instead the mass matrix
corresponding to the function bases being used.

For given pairs of displacements and force vectors we want to have conservation of energy between the fluid model and
the solver-independent state representation. In other words,𝑊𝑎 = 𝑊𝑟 . From Eq. (7) and (8) it then follows that:

𝒖𝑇
𝑎 𝐴𝑭𝑎 = 𝒖𝑇

𝑟 𝑅𝑭𝑟 (9)

We apply some of the relations from Eq. (5) and (6) to express 𝒖𝑎 in terms of 𝒖𝑟 and 𝑭𝑟 in terms of 𝑭𝑎. It then follows
that:

𝒖𝑇
𝑟 (𝑇𝒖,𝑎)𝑇 𝐴𝑭𝑎 = 𝒖𝑇

𝑟 𝑅𝑇𝑭 ,𝑎𝑭𝑎 (10)

Which holds for all 𝒖𝑟 , 𝑭𝑎 when:
(𝑇𝒖,𝑎)𝑇 𝐴 = 𝑅𝑇𝑭 ,𝑎 (11)

Conservation of energy thus implies that one of the pair of mappings (𝑇𝒖,𝑎, 𝑇𝑭 ,𝑎) can be specified, after which the
other mapping of the pair follows from Eq. (11). The resulting mapping pair will automatically conserve the work that
is performed by aerodynamic forces 𝑭𝑎 under the displacements 𝒖𝑟 . If the type of methods covered in example (1)
above are used both 𝐴 and 𝑅 are identity matrices, and the energy-conserving mapping pair will be equal to each others
transpose: (𝑇𝒖,𝑎)𝑇 = 𝑇𝑭 ,𝑎.

While this illustration focuses on coupling the fluid model and the solver-independent state representation, the same
relations can be derived for the mapping pair (𝑇𝒖,𝑠 , 𝑇𝑭 ,𝑠) that couples the solid model with the solver-independent state.
We define the work𝑊𝑟 in the solid model, in line with the work formulations given in Eq. (7) and (8):

𝑊𝑠 = 𝒖𝑇
𝑠 𝑆𝑭𝑠 (12)

We repeat the derivation that was carried out above for the fluid model and the solver-independent state representation,
by first equating𝑊𝑠 to the work𝑊𝑟 and applying Eq. (5) and (6). The result of these steps is:

𝒖𝑇
𝑠 (𝑇𝒖,𝑠)𝑇𝑅𝑭𝑟 = 𝒖𝑇

𝑠 𝑆𝑇𝑭 ,𝑠𝑭𝑟 (13)

Since this holds for all 𝒖𝑠 , 𝑭𝑟 , we find that the energy-conserving mapping pair satisfies:

(𝑇𝒖,𝑠)𝑇𝑅 = 𝑆𝑇𝑭 ,𝑠 (14)

We note here the similarity of Eq. (14) and (11).

So far we’ve established a way of constructing energy-conserving mapping pairs that relate the displacement and
force vectors of the solver-independent state representation to a fluid or solid solver, i.e. the left- and right halves of
Fig. 1. Quantities in the solid and fluid models can be directly related to one another through a composition of these
mappings. We equate𝑊𝑠 and𝑊𝑎:

𝑊𝑎 = 𝒖𝑇
𝑎 𝐴𝑭𝑎 = 𝒖𝑇

𝑠 𝑆𝑭𝑠 = 𝑊𝑠 (15)
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Applying Eq. (5) and (6) allows us to insert the composition of mapping pairs:

𝒖𝑇
𝑎 𝐴𝑭𝑎 = 𝒖𝑇

𝑠

(
𝑇𝒖,𝑎𝑇𝒖,𝑠

)𝑇
𝐴𝑭𝑎 = 𝒖𝑇

𝑠 𝑆
(
𝑇𝑭 ,𝑠𝑇𝑭 ,𝑎

)
𝑭𝑎 = 𝒖𝑇

𝑠 𝑆𝑭𝑠 (16)

Which has to hold for each 𝒖𝑠 , 𝑭𝑎, such that:(
𝑇𝒖,𝑠

)𝑇 (
𝑇𝒖,𝑎

)𝑇
𝐴 = 𝑆𝑇𝑭 ,𝑠𝑇𝑭 ,𝑎 (17)

Applying the transpose relation for the mapping pair (𝑇𝒖,𝑎, 𝑇𝑭 ,𝑎) that relates the fluid model to the solver-independent
state representation (given in Eq. (11)) results in:(

𝑇𝒖,𝑠
)𝑇

𝑅𝑇𝑭 ,𝑎 = 𝑆𝑇𝑭 ,𝑠𝑇𝑭 ,𝑎 (18)

In which we recognize the transpose relation for the mapping pair (𝑇𝒖,𝑠 , 𝑇𝑭 ,𝑠) that relates the solid model to the
solver-independent state representation, as given in Eq. (14). In other words, forces and displacements can be mapped
between the solid and fluid models in an energy-conserving way as long as each solver’s mapping pair with the
solver-independent state representation conserves energy. This adds to the flexibility of the proposed aeroelastic coupling
approach: Individual solvers can be substituted for alternatives, and as long as a new energy-conserving mapping pair is
defined for each new solver the aeroelastic coupling approach will conserve energy as well.

B. Load conservation
When applying the mapping operators shown in Fig. 1 we want to conserve the total loads in each principal direction

in addition to conserving the work that is carried out by the aerodynamic loads. While energy conservation involves
both the displacement 𝒖 and force 𝑭 and thus couples their respective mapping operators, load conservation involves
only the latter quantity. This provides constraints for the force mapping operators 𝑇𝑭 ,𝑎 and 𝑇𝑭 ,𝑠 . The transpose mapping
properties derived in section IV.A then imply that the displacement mapping operators 𝑇𝒖,𝑎 and 𝑇𝒖,𝑠 should be affected
as well if energy conservation is to be achieved.

Suppose for now that the aerodynamic force term 𝑭 consists of three columns, one corresponding to each coordinate
direction. We can pose a natural condition on (parts of) 𝑇𝑭 ,𝑎 and 𝑇𝑭 ,𝑠 for load conservation in each direction: The
column sums of 𝑇𝑭 ,𝑎 and 𝑇𝑭 ,𝑠 should be equal to the measure (integral) of their associated basis function. The "measure"
of a point value in this context is exactly 1. In other words: If 𝑭𝑎 and 𝑭𝑟 both consist of nodal values each column sum
of the matrices making up 𝑇𝑭 ,𝑎 should be equal to 1. If 𝑭𝑟 consists of FEA DoFs the column sums of 𝑇𝑭 ,𝑠 should be
equal to one over the integral of the corresponding basis functions. These conditions for load conservation are algebraic
in nature and can be encoded in the definition of suitable mapping operators 𝑇𝑭 ,𝑎 and 𝑇𝑭 ,𝑠 .

V. Models used in implementation examples
Several demonstration cases have been constructed to demonstrate the versatility and solver-independent nature

of the coupling approach. We include here (very) brief overviews of the fluid and solid models that are used in these
examples. Only those aspects are covered here that are directly relevant in establishing solver-dependant details of the
aeroelastic coupling framework introduced in section IV. Further sources are provided for interested readers. Section
V.A covers the fluid models, after which the solid models are treated in section V.B.

A. Fluid models
Two fluid models are used in this work and a companion paper. First we cover the Vortex Lattice Method in section

V.A.1, followed by the Vortex Particle Method in section V.A.2.

1. Vortex Lattice Method
In the Vortex Lattice Method (VLM) three-dimensional wings are reduced to their camber plane, which is then

regarded as a lifting surface placed in an (inviscid) potential flow. A discrete geometry representation is produced
by constructing a Cartesian mesh of quadrilateral panels on said camber plane. Each panel contains a single bound
vortex ring that lags 25% of the panel’s chordwise length behind its boundary, and a control point at 75% of the panel’s
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chordwise length. This is also shown in Fig. 2. All vortex tubes induce a flow velocity vector in each control point,
owing to their circulation strengths. These induced velocities can be computed with the Biot-Savart law. By requiring
the flow velocity in each panel’s control point to be tangential to said panel a unique solution vector of vortex circulation
strengths can be determined. A more elaborate treatment of this low-fidelity potential flow model can be found in
the reference work by Katz and Plotkin [9, Sec. 12.3]. Said treatment also covers how Kelvin’s theorem leads to the
shedding of vortex rings in unsteady VLM simulations.

x

y
z

bound vortex rings wake vortex rings
lifting surface mesh

n

Fig. 2 VLM panel geometry

We note the following relevant aspects for establishing an aeroelastic coupling implementation:
• The vertices of the camber plane’s surface mesh define the discrete VLM geometry. Thus the displacements of a
panel’s vertices define the motion of all points on said panel, including the control point.

• The vortex circulation strengths can be used to determine analytically the (constant) aerodynamic forces on each
panel. Each panel’s resultant force vector acts in its respective control point.

Both the aerodynamic displacement vector 𝒖𝑎 and force vector 𝑭𝑎 are thus defined in sets of points: The displacements
in the vertices of the surface mesh and the force vectors in the mesh’s control points. Since the displacement of a panel’s
vertices defines the movement of that panel’s control point, we have a straightforward way of constructing a matrix 𝐴
as in Eq. (7), that maps the displacements 𝒖𝑎 of the surface mesh vertices to the corresponding displacements of the
control points. This allows us to interpret𝑊𝑎 as the summed work resulting from the motion of the point forces acting
in all control points.

Figure 3 shows an example arrangement of surface mesh vertices and panels, with associated numbering. We focus
on the panel with index (𝑖, 𝑗). Recall that the control points lie in the middle of each panel at 75% of its chordwise
length. Using two-dimensional linear interpolation over the surface of panel (𝑖, 𝑗) results in the influence coefficients
shown in Tab. 1. These influence coefficients are used to populate the rows of matrix 𝐴, taking into account the indices
of the vertices that border each panel. Matrix 𝐴 will thus be sparse, with up to 4 nonzero entries in each of its columns
and exactly 4 nonzero entries per row. The entries in each row of 𝐴 sum to 1.

Table 1 Influence coefficients for mapping vertex displacements to the control point of panel (𝑖, 𝑗) shown in
Fig. 3

Vertex index Influence coefficient
(𝑖, 𝑗) 0.125

(𝑖, 𝑗 + 1) 0.125
(𝑖 + 1, 𝑗) 0.375

(𝑖 + 1, 𝑗 + 1) 0.375

We finish our treatment of VLM by briefly highlighting a difference between the physical aeroelastic coupling
mechanisms that were covered in section II and the actual outputs of VLM. As is mentioned above the VLM solution
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Fig. 3 Example numbering of surface mesh vertices and panels, reproduced from [9, p.342]

consists of vortex circulation strengths, which can be converted analytically into a set of force vectors, one per panel.
This is markedly different from having a pressure, traction or stress field as output, which would be closer to the physical
load transfer mechanism that was mentioned in section II.B. These two approaches describe the effects of the same
physical interaction mechanism in different ways. These differences in the specific approaches arise due to properties of
the discretization techniques that are used to obtain a computational model. Having a single force vector per surface
panel is a central feature of VLM, and thus using a finite set of force vectors to model the aerodynamic loads is a
straightforward way of including this physical effect. Other fluid simulation methods can use other descriptions; the
mappings that couple such fluid methods to other state descriptions or tools are modified accordingly.

2. Vortex Particle Method
The Vortex ParticleMethod (VPM) is similar in nature to VLM. In the same way as is done in VLM three-dimensional

wings are reduced to their camber plane. The VPM implementation covered here uses a single chordwise panel at all
spanwise stations. Thus the interpretation of the displacement and force vectors is identical to those of VLM, with the
only difference being the number of chordwise panels. The wake of the wing is modeled by releasing vortex particles at
the trailing edge of each panel. Each particle induces a velocity field and is in turn advected by the combined effects of
the wing-bound vortices and the other vortex particles that exist in the wing’s wake. A big advantage of using VPM is
its ability to accurately and efficiently resolve rotor wakes. Having such a tool is valuable within the context of this work
and its applications. One major difference exists between the VLM and VPM implementations that are covered here:
Whereas our VLM solver is used to generate steady-state solutions, the VPM solver is inherently transient due to the
vortex particle nature of its wing wake model. Interested readers are referred to the related work by Anderson et al. [15],
which goes into more detail and uses the coupling approach presented in this work.

B. Solid models
We use FEniCSx [16] and its predecessor (legacy) FEniCS [17] for the solid models used in this work. Both of

these platforms allow us to leverage code generation capabilities that greatly reduce the time and effort it takes to
implement FEA methods. We can define the weak forms that we want to use in precise mathematical language, after
which FEniCS(x) takes care of discretizing the weak form with user-defined function bases and carrying out all the
numerical integration that is necessary to set up the linear(ized) algebraic systems that are then solved.

1. FEA with Reissner-Mindlin shells in FEniCSx
The first of the solid models used in this work is a “classical" FEA implementation of the Reissner-Mindlin shell

model with FEniCSx. For more information on this shell model the reader is referred to [15, 18]. A central feature of
FEA-type discretizations is its precise definition of the bases in which variables are expressed. We model the solid
displacements 𝒖𝑠 in the Reissner-Mindlin model with quadratic basis functions and use a linear basis for the rotations.
We also use a linear basis for the aerodynamic forces 𝑭𝑠 that act on the solid domain Ω(𝑠) . Since both the displacements
and forces are defined as functions over Ω(𝑠) the work𝑊𝑠 that the aerodynamic loads carry out in the solid domain
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should be the result of an integral over said domain:

𝑊𝑠 =

∫
Ω(𝑠)

𝒖𝑇
𝑠 𝑆𝑭𝑠 𝑑Ω

(𝑠) (19)

As 𝒖𝑠 and 𝑭𝑠 contain the values of their respective DoFs, the entries of 𝑆 should thus contain the integrals of products
of the quadratic and linear basis functions of the displacements and forces respectively. Instead of constructing 𝑆 as
a rectangular matrix in this way, we elect instead to make 𝑆 a composition of two matrices. One matrix, which we
designate with 𝑄, will interpolate the quadratic basis functions to a linear basis on the same mesh. The product 𝑄𝒖𝑠

is then a vector of the solid displacements projected to the linear basis. The entries 𝑄𝑖 𝑗 are equal to the value of the
𝑗 th quadratic basis function in the 𝑖th solid mesh vertex. The linear basis has a direct one-to-one correspondence with
the vertices of the solid mesh, which provides a straightforward association of the displacement DoFs with the mesh
vertices. The second matrix that makes up 𝑆 is then taken as the mass matrix 𝑀 of the linear basis. With one eye on
Eq. (19) it follows that 𝑆 = 𝑄𝑇𝑀 gives an appropriate way to compute𝑊𝑠 for FEA-type methods.

2. IGA with Kirchhoff-Love shells in PENGoLINS
We use Isogeometric Analysis (IGA) as an alternative for "classical" FEA. IGA is an FEA-type method that was first

introduced by Hughes et al. in 2005 [19]. Instead of using piecewise polynomial functions for its function bases, IGA
uses Non-Uniform Rational B-Splines (NURBS). These splines are commonly used in Computer-Aided Design (CAD)
software for modeling geometric shapes. IGA allows one to directly use CAD-native geometry descriptions for use
in numerical simulations, without having to approximate the shape of said geometry in some way. Readers that are
interested in IGA are referred to the foundational book by Cottrell et al. [20]. In this work we make use of tIGAr [21], a
toolbox built on top of (legacy) FEniCS that uses the process of Bézier extraction to relate NURBS function bases
to piecewise polynomial bases. This allows us to leverage the utilities and capabilities of FEniCS for IGA implementations.

Kiendl et al. were the first to use IGA for simulating the Kirchhoff-Love (KL) shell model in [22]. IGA is an
attractive option for this due to the higher-order inter-element continuity of its basis functions. The KL model requires
a 𝐶1-continuous basis (i.e. continuity of functions and their first derivatives), which is possible with quadratic or
higher-degree IGA bases. We use the PENGoLINS framework [23] to simulate assemblies of multiple KL shells. This
allows us to simulate the behavior of aerospace structures under various loading conditions.

With PENGoLINS we do not construct a single mesh that envelops all KL shells of a given geometry, instead
a penalty approach is used to glue together shell surfaces along their intersection curves. An advantage of this for
aeroelastic coupling is that we natively have a separation of the computational domain into its different surface patches
and (if necessary) the parts of surface patches on either side of an intersection curve. This allows us to isolate the direct
effects of aeroelasticity to those (parts of) surface patches that are directly exposed to aerodynamic influences.

Since IGA is an FEA-type method the remarks that were made in section V.B.1 regarding Eq. (19) hold here as well.
This time we model the solid displacements 𝒖𝑠 as cubic NURBS functions; interpolation matrix 𝑄 thus maps from this
cubic basis to the linear NURBS basis in which 𝑭𝑠 is expressed. The linear NURBS basis has a similar one-to-one
association to mesh vertices as the standard piecewise linear basis, with the main difference being that standard IGA
uses structured Cartesian grids instead of triangular surface grids. Mass matrix 𝑀 is now computed with the linear
NURBS basis. This thus defines the product 𝑆 = 𝑄𝑇𝑀 in a similar way to its definition in section V.B.1.

VI. Fidelity-dependent coupling examples
We work out several implementation examples to show how the solver-independent coupling framework applies to

different solid and fluid models. The first of these examples is a coupling between FEniCSx and VLM in section VI.A,
followed by a coupling between PENGoLINS and VLM in section VI.B. Lastly, in section VI.C we briefly cover a
coupling between FEniCSx and VPM.

A. FEniCSx - Vortex Lattice Method
We couple the Vortex Lattice Method to the Reissner-Mindlin shell implementation in FEniCSx, without the use of

a solver-independent state representation between them. In line with section IV we need to define the mapping pair
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(𝑇𝒖,𝑠 , 𝑇𝑭 ,𝑎) such that:
(𝑇𝒖,𝑠)𝑇 𝐴 = 𝑆𝑇𝑭 ,𝑎 (20)

Where the matrix operators 𝐴 and 𝑆 = 𝑄𝑇𝑀 were covered in sections V.A.1 and V.B.1 respectively. We elect to define
the displacement map 𝑇𝒖,𝑠 , from which the force map 𝑇𝑭 ,𝑎 follows.

Recall that the solid displacements are defined in a basis of quadratic basis functions. We choose to first project
the displacement from this quadratic basis to a basis of linear functions. For this we use the same matrix 𝑄 that was
introduced in section V.B.1. At the end of the current derivation this results in 𝑇𝑭 ,𝑎 being independent of 𝑄. Note that
the product 𝑄𝒖𝑠 is a vector of the solid displacements projected to the linear basis.

The second step of establishing 𝑇𝒖,𝑠 consists of constructing the matrix 𝐺 that relates movements of the vertices of
the solid mesh to the vertices of the VLM mesh. We use an approach that is similar to how matrix 𝐴 was specified to
relate the displacements of the vertices of the VLM mesh to its control points: For each VLM mesh vertex we take a
weighted combination of the displacements of the solid mesh vertices. The first step of constructing 𝐺 is to use compute
the distance 𝑟𝑖 𝑗 = | |𝒙𝑎,𝑖 − 𝒙𝑠, 𝑗 | | between VLM mesh vertex 𝒙𝑎,𝑖 and solid mesh vertex 𝒙𝑠, 𝑗 . This distance is used as
input to a Radial Basis Function (RBF). Various RBFs can be used. In this work we opt to use the bump function, as it
has a compact support. The bump function is defined as:

𝑓𝜖 (𝑟𝑖 𝑗 ) =
{
exp

(
− 1
1−(𝜖 𝑟𝑖 𝑗 )2

)
if 𝑟𝑖 𝑗 < 1

𝜖

0 else
(21)

Here 𝜖 is a parameter that controls the size of the RBF support and the rate at which the RBF value drops off for
increasing 𝑟. Generally speaking 𝜖 ∈ [0.1, 2] was found to work best during development; the specific values of 𝜖 are
given for each presented test case. Next to computing 𝑓𝜖 (𝑟𝑖 𝑗 ) for all 𝑖 and 𝑗 , we compute the size of the support of the
(linear) solid basis functions 𝜙𝑠, 𝑗 , which we will denote with | |Ω𝑠, 𝑗 | |. The entries 𝐺𝑖 𝑗 of displacement mapping matrix
𝐺 are then defined as:

𝐺𝑖 𝑗 =
𝑓𝜖

(
| |𝒙𝑎,𝑖 − 𝒙𝑠, 𝑗 | |

)
| |Ω𝑠, 𝑗 | |∑

𝑗 𝑓𝜖
(
| |𝒙𝑎,𝑖 − 𝒙𝑠, 𝑗 | |

)
| |Ω𝑠, 𝑗 | |

(22)

This defines 𝐺. We note that the entries in each row of 𝐺 sum to 1; 𝐺 thus indeed contributes to a consistent and
conservative aeroelastic coupling method. The displacement map 𝑇𝒖,𝑠 becomes:

𝑇𝒖,𝑠 = 𝐺𝑄 (23)

And thus 𝒖𝑎 = 𝐺𝑄𝒖𝑠 . Conversely, with Eq. (20) we know that 𝑇𝑭 ,𝑎 should be defined as:

𝑇𝑭 ,𝑎 = 𝑀−1𝐺𝑇 𝐴 (24)

Note that this definition is independent of 𝑄. Letting 𝑭𝑠 and 𝑭𝑎 again denote the aerodynamic forces on the solid and
fluid domains, we can see that inverting 𝑀 can be avoided. Instead we can solve a linear system for 𝑭𝑠:

𝑭𝑠 = 𝑇𝑭 ,𝑎𝑭𝑎 = 𝑀−1𝐺𝑇 𝐴𝑭𝑎 =⇒ 𝑀𝑭𝑠 = 𝐺𝑇 𝐴𝑭𝑎 (25)

Both formulations of 𝑇𝑭 ,𝑎 are used interchangeably in this work.

This defines a coupled aeroelastic system where FEniCSx is used for the solid model and VLM as fluid model. We
solve the coupled system iteratively until a predefined convergence tolerance is satisfied, using the following order of
operations:
1) The fluid model computes 𝑭𝑎.
2) The aerodynamic forces in the solid model are calculated with 𝑭𝑠 = 𝑇𝑭 ,𝑎𝑭𝑎 = 𝑀−1𝐺𝑇 𝐴𝑭𝑎.
3) The solid model outputs 𝒖𝑠 .
4) The displacements of the fluid model follow from 𝒖𝑎 = 𝑇𝒖,𝑠𝒖𝑠 = 𝐺𝑄𝒖𝑠 .

Such an iterative approach can be used for steady-state and transient coupled simulations. For the examples presented in
this work the coupled iterative approach is considered to have converged when:

𝜖conv ≥ max
𝑖

| |𝒖 (𝑘)
𝑠,𝑖

− 𝒖 (𝑘−1)
𝑠,𝑖

| | (26)

11



Where 𝑖 is the index of the DoFs and 𝑘 is the number of the current iteration. Expressed in other words: The coupled
simulation is deemed to have converged when the maximum element-wise difference between solid displacement DoFs
of successive iterations is lower than the convergence tolerance 𝜖conv.

We apply this coupling method to the discretized solid geometry of a forward-swept starboard-side wing with
internal shell structure that is shown in Fig. 4. Roughly 67, 000 vertices and 137, 000 elements define the shell mesh,
which thus consists of patches of (shell) surface elements. The shell mesh has been constructed with the methods
outlined by Liu et al. in [18]. We apply clamping boundary conditions along the surface patch at the wing’s root. A
VLM grid of 80 spanwise panels (half on the starboard-side wing, half on the port-side wing) and 8 chordwise panels is
used. This mesh size was chosen due to hardware constraints. We note that this VLM mesh leads to under-resolved
results. We also note that this does not affect the accuracy or robustness of the aeroelastic coupling approach in any
way. For clarity we repeat that the solid simulation consists of a single starboard-side wing, while the fluid simulation
models both sides of the wing. As we focus here on symmetrical inflow conditions we can mirror the displacements
of the starboard-side wing to apply these to the port-side fluid mesh. We lastly note that a convergence tolerance of
𝜖conv = 10−6 is used, together with RBF parameter 𝜖 = 1.

This discretized wing is placed in an oncoming airflow of 𝑉∞ = 50 𝑚/𝑠 at angles of attack between −2◦ and 14◦.
Air density is kept at 1 𝑘𝑔/𝑚3. Since VLM is a potential flow method we do not expect any flow separation or stall
effects to show up in the results. Moreover, the lack of viscosity in potential flow methods makes the lift-induced drag
component the sole source of drag. All shell surfaces that make up the solid model have a thickness of 3 · 10−3 𝑚, a
Young’s modulus of 𝐸 = 6.8 · 1010 𝑃𝑎 and a Poisson’s ratio of a = 0.35.

Figure 5 shows the drag, lift and lateral forces over the range of angles of attack mentioned above for the starboard-side
wing. We see in Fig. 5a and 5c that the linear increase in lift leads to the well-known quadratic increase in lift-induced
drag. Figure 5d shows the relative differences of the force vector 2-norm and amount of work performed by the
aeroelastic forces between the fluid and solid simulations. Both quantities are normalized by the 2-norm of the fluid
simulation’s force vector and work respectively. As can be seen these relative differences are close to machine precision
over the entire range of angles of attack, which demonstrates that the aeroelastic coupling approach presented here is
indeed both consistent and conservative. The vertical wing tip displacement is shown in Fig. 6 and shows a similar
linear trend as the total lift force.

Next we look at the aerodynamic force distributions over the wing surface. These are shown in Fig. 7 (upper wing
surface) and 8 (lower wing surface) for angles of attack of 2◦, 7◦ and 12◦. As can be seen the peak force on both the
upper and lower surface is present near the wing root, with the force gradually tapering off towards the wing tip. The
local force magnitudes increase as the angle of attack is increased, owing to the increase in force components that is also
reflected Fig. 5. Moreover, the location of the peak force moves towards the leading edge between angles of attack of 2◦
and 7◦ and stays there. Lastly we note that there is no discernible difference between the force distributions over the
lower and upper surfaces. This is a consequence from the fact that VLM models the aerodynamic loads directly as force
vectors instead of as surface tractions.

B. PENGoLINS - Vortex Lattice Method
Next we couple the Vortex Lattice Method with PENGoLINS and simulate the coupled system using the geometry

shown in Fig. 4a. The coupling formulation that is specified in section VI.A is used here as well; since PENGoLINS
is an FEA-type method much of the derivation carries over directly. The interpretation of the various terms can be
adjusted accordingly:

• 𝐺 now links the vertices of the VLM surface mesh to the vertices of the Cartesian IGA mesh on each KL shell
patch.

• 𝑄 now maps between the linear NURBS basis and the cubic basis used for solid displacement 𝒖𝑠 .
• 𝑀 is now the mass matrix of the linear NURBS basis.

We highlight one other relevant change for the construction of 𝐺: We change the RBF that we use. Instead of the bump
function we use a Gaussian RBF:

𝑓𝜖 (𝑟) = exp
(
−(𝜖𝑟)2

)
(27)

This change was made during initial testing for reasons of robustness: Since the bump function has a compact support
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(a) Geometry (b) Internal geometry (c) Meshed geometry

Fig. 4 Views of the wing geometry and triangular shell mesh on said geometry

and the aeroelastic coupling implementation in PENGoLINS is local to the wing skin it is possible to pick values of 𝜖
that lead to rows of 𝐺 with row sums equal to 0 (as the RBF centered around certain VLM mesh vertices does not have
any solid mesh vertices in its support). The Gaussian RBF is plugged into Eq. (22) and the rest of the assembly pro-
cedure is identical to what was covered in sectionVI.A.Matrix 𝐴 is unchanged as well, as is the iterative solution approach.

We run the test case that was covered in section VI.A for this solver pair. The same material parameters, inflow
variables and numerical parameters are used, apart from 𝜖 = 0.05 for the RBF. This value of 𝜖 leads to smeared out
force fields, i.e. it limits local force variations. Another change is the mesh that is used by PENGoLINS: Quadrilateral
elements are used to form a Cartesian grid on each surface patch. A total of roughly 6, 000 DoFs are used here. A
nearly identical version of this geometry was used in [23], where results of a mesh independence study are given which
show that this is an adequate number of DoFs. Figure 9 shows the three force components and relative work and force
vector conservation errors between the solid and fluid simulations. We draw the same conclusion as for the previous
example: Both work and force are conserved up to machine precision over the whole range of angles of attack that were
simulated. We also note that the force components for this example are nearly identical to those of the previous example.
Figure 10 shows the obtained tip displacements; these are within a couple percent of those predicted with FEniCSx.
This is consistent with the results that were presented in [23].

As mentioned before, using 𝜖 = 0.05 leads to the forces being smeared out. This is reflect in Fig. 11 and 12: For all
angles of attack shown the distributed load over the wing surface is nearly constant. A minor drop in force magnitude
is visible when moving towards the wing root and (especially) tip, but no discernible chordwise variation is visible.
Despite this the tip deflections obtained with these force distributions are similar to those obtained with FEniCSx, as
alluded to above.

C. FEniCSx - Vortex Particle Method
The last example mentioned in this work is that of a coupling implementation between FEniCSx as solid solver and

VPM as fluid solver, applied to the wing geometry of Fig. 4a. As mentioned in section V.A.2 the VPM implementation
used is nearly identical to our VLM implementation for the purpose of aeroelastic coupling. Because of this we can
directly use the coupling approach that is covered in section VI.A. We do not give results for this implementation in this
work. Instead we would like to refer the interested reader to the companion paper by Anderson et al. [15], where a more
elaborate treatment of the specifics of the solid and fluid solvers and this example are given.
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Fig. 5 Force components and relative conservation errors between the fluid (VLM) and solid (FEniCSx)
simulations for the wing geometry of Fig. 4
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Fig. 6 Vertical tip displacement versus angle of attack for the wing geometry of Fig. 4 simulated with FEniCSx
as solid solver

(a) 2◦ (b) 7◦ (c) 12◦

Fig. 7 Force magnitude distributions over the upper surface of the wing shown in Fig. 4 for different indicated
angles of attack as obtained with FEniCSx as solid solver; leading edges on the left
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(a) 2◦ (b) 7◦ (c) 12◦

Fig. 8 Force magnitude distributions over the lower surface of the wing shown in Fig. 4 for different indicated
angles of attack as obtained with FEniCSx as solid solver; leading edges on the right

VII. Conclusion
In this work we have put forth an aeroelastic coupling framework that is solver-independent and is suitable for

use in large-scale Multidisciplinary Design Optimization environments. We started off by introducing the physical
sources of aeroelastic coupling: Deformations of the boundary of the solid subdomain and fluid & solid surface tractions
on the fluid-solid interface. We introduced some desirable properties of any computational coupling approach that
are mentioned throughout the relevant literature. Chief among these are conservation of force components and the
work that is performed by aerodynamic forces (or surface tractions) under the corresponding deformations induced by
the solid domain. A solver-independent aeroelastic coupling framework was introduced. This framework contains a
solver-independent state representation as an intermediate state that couples to both solid and fluid simulation methods.
We formulated the use of pairs of maps which relate displacements and forces of the different models and states to
one another, and showed that conservation of energy implies a transpose relation between the mappings that make up
each pair. These transpose relations extend to compositions of mappings, when mapping through intermediate state
representations.

We introduced two solid and two fluid simulation methods to show that this framework indeed leads to coupling
approaches that conserve both force components and aeroelastic work. First a brief overview of the relevant solver
aspects was given, after which the solver-agnostic details of each coupling example were defined. A wing shell geometry
was used as representative example for the types of applications that we intend to use this coupling framework for. All
implementation examples covered in this work were shown to indeed conserve both force components and aeroelastic
work when mapping between various solid and fluid simulation models, which supports our notion that the current
approach is applicable to a range of computational methods.

Several directions have been identified as avenues for future work. The solver-independent state representation
that is present in the general coupling framework is currently not present in the examples given here; it is our plan to
define such a solver-independent state as intermediate state for future aeroelastic coupling methods. We furthermore
plan to look into whether it is possible to define force maps from which the displacement map follows through the
aforementioned mapping pair transpose relations, instead of the current approach of doing this the other way around.
Moreover, the choice for a specific Radial Basis Function formulation and its tuning parameter can affect the outputs of
the aeroelastic coupling method. More work and testing is needed with different Radial Basis Functions to quantify or
otherwise bound this influence. Lastly we note that we can improve upon the wing models that are used as examples in
this work. Instead of using fully-enclosed airfoils we intend to limit the solid structure in future applications to just the
wing box. This more accurately reflects the intended applications of this work.
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Fig. 9 Force components and relative conservation errors between the fluid (VLM) and solid (PENGoLINS)
simulations for the wing geometry of Fig. 4a
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Fig. 10 Vertical tip displacement versus angle of attack for the wing geometry of Fig. 4a simulated with
PENGoLINS as solid solver

(a) 2◦ (b) 7◦ (c) 12◦

Fig. 11 Force magnitude distributions over the upper surface of the wing shown in Fig. 4 for different indicated
angles of attack as obtained with PENGoLINS as solid solver; leading edges on the left
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(a) 2◦ (b) 7◦ (c) 12◦

Fig. 12 Force magnitude distributions over the lower surface of the wing shown in Fig. 4 for different indicated
angles of attack as obtained with PENGoLINS as solid solver; leading edges on the right
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